12 United States Patent

Olcese et al.

US010334056B2

US 10,334,056 B2
“Jun. 25,2019

(10) Patent No.:
45) Date of Patent:

(54) HARDWARE RESOURCE ACCESS SYSTEMS
AND TECHNIQUES

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Jose A. Olcese, Portland, OR (US);
Ricardo A. Morin, Portland, OR (US);
Vadim Gore, Beaverton, OR (US);
Suman Sharma, San Jose, CA (US);
Narasimham Gadiraju, Portland, OR
(US)

(73) Assignee: Intel Corporation, Santa Clara, CA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 15/698,575
(22) Filed: Sep. 7, 2017

(65) Prior Publication Data
US 2018/0183880 Al Jun. 28, 2018

Related U.S. Application Data

(63) Continuation of application No. 14/497,581, filed on
Sep. 26, 2014, now Pat. No. 9,762,676.

(51) Int. CL

HO4L 29/08 (2006.01)
GO6F 8/30 (2018.01)
(Continued)

(52) U.S. CL
CPC oo HO4L 67/142 (2013.01); GOG6F 8/31
(2013.01); GO6F 9/547 (2013.01); GO6F
21/335 (2013.01);

(38) Field of Classification Search
USPC e, 709/225
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

0,587,867 Bl 7/2003 Miller et al.
9,813,379 B1* 11/2017 Shevade HO4L 63/0272
(Continued)

FOREIGN PATENT DOCUMENTS

JP 2010039742 A 2/2010
JP 2011212231 A 10/2011
(Continued)

OTHER PUBLICAITONS

International Search Report and Written Opinion dated Nov. 4, 2015
for International Application No. PCT/US2015/041797, 16 pages.

(Continued)

Primary Examiner — David R Lazaro
Assistant Examiner — Berhanu Shitayewoldetadik

(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Wyatt, P.C.

(57) ABSTRACT

Systems and techniques for hardware resource access are
disclosed herein. In some embodiments, an apparatus may
receive, via a stateless protocol message, a request from an
application to pair with a hardware resource of a computing
device remote from the apparatus. The apparatus may pro-
vide to the computing device, via a stateless protocol mes-
sage, 1dentifiers of the application and the hardware
resource, and may receive, via a stateless protocol message,
pairing approval from the computing device. In response to
receiving the pairing approval, the apparatus may generate
a pairing token that may be used by the application to pair
the application with the hardware resource. Other embodi-
ments may be disclosed and/or claimed.

(Continued) 25 Claims, 10 Drawing Sheets
400 —., T N
-~ PAIRING ™-._ ™ END #—NO
_~ REQUESTRECEIVED™~. NO ~ :
¢ START s FROM AN APPLICATION FOR A |
. /7~ _HARDWARE RESOURCE OF A .-~ e
.. COMPUTING DEVICE? T T
Seo 402 7 L PAIRING ™.
T _—~"APPROVAL RECEIVED FROM ™. _
“T"” *~~._ THE COMPUTING DEVICE? _—~
YES RS- T
¥ e T
GENERATE A TEMPORARY TOKEN “T
FOR PROVISION TO THE YES
APPLICATION FOR USE IN
TRIGGERING A REQUEST BY THE) L

COMPUTING DEVICE FOR REQUEST
DATA
404

Y

T
.--""-- h““m
-\"l

;'r'-f-'. RH‘-\""\‘
.~ RECEWE ™._
" THE TEMPORARY

NO—- TOKEN FROM THE CDMF’UTINGR::;

-~ ~ -
P ORVICE?
" END) . T
e 2 '““-.HHI"-_____,-"
YES
¥

PROVIDE REQUEST DATA TQ THE
COMPUTING DEVICE

408

—~ q""'x___x
.

o~ RECEVE -

" THE TEMPORARY TOKEN ™. NO

~.._ FROM THE APPLICATION? i
- e

~o AR -
—~ -]
e " END
YES S A -
v

GENERATE A PAIRING TOKEN FOR
PROVISION TQ THE APPLICATION
FOR USE IN PAIRING THE
APPLICATION AND THE HARDWARE
RESOURCE
414

US 10,334,056 B2

Page 2
(51) Int. CL. 2013/0326614 Al 12/2013 Truskovsky et al.
GO6F 9/54 (2006.()”) 2014/0026193 Al1* 1/2014 Saxmano.oo... GO6F 21/33
) 726/4
GO6F 21/33 (2013'0;) 2014/0156726 Al 6/2014 Bohlmann et al.
HO4L 9/32 (2006.01) 2014/0157430 Al* 6/2014 McDowell-White o.oovvveeveinon.
HO4W 12/06 (2009.01) H041. 63/083
HO41 29/06 (2006.01) 726/27
(52) U.S. Cl 2014/0359073 Al* 12/2014 Mendoza HO4L 67/146
S 709/219
CPC HO4L 9/3213 (2013.01); HO4L 63/083
,, 2015/0229638 Al* 82015 LOO wovooooeii HO4L 63/029
(2013.01); HO4W 12/06 (2013.01); HO4L o e lo
2209/80 (2013.01) 2015/0288667 Al* 10/2015 Alder ..ocooovvvenii.. H04L, 63/061
713/171
(56) References Cited

2005/0182966
2006/0050703

2006/0095538
2007/0153813

2009/0106550

2009/0259612

2010/0054273
2010/0333116

2011/0194681

20
20

11/0296515
12/0110646

20

20
20

12/0117250

12/0144202
13/0086211

20

13/0103847

2013/0325983

U.S. PATENT DOCUMENTS
Al 8/2005 Pham et al.
Al* 3/2006 FoSS ..covvvvvnninnnn, HO041. 29/12009
370/392
Al 5/2006 Rehman et al.
Al* 7/2007 Terpstra HO041. 29/06027
370/401
Al* 4/2009 Mohamed HO041. 63/045
713/156
Al* 10/2009 Hanson HO041. 69/22
706/47
Al 3/2010 Johnson et al.
Al* 12/2010 Prahlad (GO6F 16/1844
719/328
Al* 82011 Fedorov HO4M 3/523
379/201.01
Al 12/2011 Kistic et al.
Al 5/2012 Ajitomu et al.
Al* 5/2012 Santamana HO41. 61/256
709/227
Al 6/2012 Counterman
Al 4/2013 Sondhi et al.
Al* 4/2013 Brownc.coceen... HO041. 63/083
709/229
Al* 12/2013 Brady HO041. 51/38
709/206

FOREIGN PATENT DOCUMENTS

5/2013
7/2015

TW
WO

M451895 U
W0O2015099722 Al

OTHER PUBLICATTIONS

Oflice Action dated Dec. 16, 2016 for Taiwanese Patent Application

No. 104125224, 23 pages.

International Preliminary Report on Patentability dated Apr. 6, 2017
for International Application No. PCT/US2015/041797, 12 pages.
Office Action dated Apr. 26, 2017 from Taiwan Patent Application
No. 104127513, 7 pages.

Extended European Search Report dated May 11, 2018 for Euro-
pean Patent Application No. 15843797.0, 17 pages.

D. Hardt et al., “The OAuth 2.0 Authorization Framework™, Oct.
2012. 76 pages, Internet Engineering Task Force (IETF), Geneva,
Switzerland.

“A How to Guide to OAuth and API Security”, Jan. 1, 2011, 14
pages, Layer7 Technologies Whitepaper.

Simone Cirani et al.,, “Enforcing Security Mechanisms in the
[P-Based Internet of Things: An Algorithmic Overview”, Apr. 2,
2013, 30 pages, vol. 6, No. 2.

“Representational state transfer—Wikipedia”, Sep. 23, 2014, 8
pages.

* cited by examiner

US 10,334,056 B2

Sheet 1 of 10

Jun. 25, 2019

U.S. Patent

901 ADINIA ONILNAINOD

oL T 304N0OS3IY
JHVYMAHVYH JYVYMANYH
0GT IdY
— ONIMHYOMLIN
3CT AXOHd —
ALITIEVdYD 9l SO
& |

L Ol

Ol 40IAdd ONILNdNOD

cel
JHVMOEVH:

8¢l AXO¥d
ALY dYOD

€L 304N0OS3IY
JdVMUdVH

0l 1dV

ONIAHOMLIN

A

A

_ 8T MAs _

9¥1 NOILYDIlddV

BT I————

h 4

T

h 4

9¢1 SO I.I_

_ ¥Cl MAS _

¢l NOILLYOl'lddV¥

47

¢l 44Ad4S Oldd4vdl

ddX0d49 ALILNAJ]

¢0l 30INFA ONILNdINOD F1OINTH

91l ¥OL103143Y

oLl

d31140dd dOIALd

PIL AVMY LIS

INANADVYNVYIN IdV

80l
1W1ldO0d ddd0 1dAdd

1€

" 00l

e Ol ¢ 9Ol

US 10,334,056 B2

90¢ ” —
D0 m O0¢
S INIWIOVYNYIN I0HN0OSTH _ D107 NOILLVYHINTSD NaMOL
-~
&
g
E
=
7
201 507
JID0TNOILLYIYIVAG NIAQOL IID0T AHVIAIJNGALNI
01,,
—
-
W,
g
=
=
—

c0¢

c0g

OID0 T NOILLVYNIVAL
1S3N0dd ONIHIVd

D190
.E_mom_m._.wm_:auzoz_m_i

8CL AXO¥d ALINIGYdVYD 911 ¥0103143

U.S. Patent

US 10,334,056 B2

Sheet 3 of 10

Jun. 25, 2019

U.S. Patent

v 9Old

1454
10dMN0S3dd
JHVMAAVYH JHL ANV NOILYOIMddV
dHL ONIRIVd NI SN d04
NOILVOIlddV dHL OL NOISIAOdd
04 NIMOL ONIKIVA V ALVEINID

|

w.m;
//

CNOILLYOMddY dHL INO e

NAXOL AdVHOdINAL JHL \\&\V

1...,..\\\.\
INFOIY

SdA

OL¥
(ADINIA ONILLNAINOD JH.L

ONIVd \
/\

\

80¥

,, T
T INO¥4 @3AIF03Y YAOHddY

- ON
ON 1\ AN3 UAL

d40IAJd ONILNdNOD
dHL OL v1vQd 1S3N0dd JAINOdd

A
SAA
P s
- 555 g Lana
R&axxa_ =il /,;/_ A.
< ONILNANOD FHL WOH zmxowooZ
T AYVHOANALIHL

e,

~_ 3aEoay

.,

I
-

-

A [EILTEEEL] [EILTEEEL] [ETLTEER TR RLETTIL JEEre s JRrer

0¥
v.1VQ
1SdN0dY J04 d0IA3A ONILNJNOD
dHL AL LSDN0OdY V ONIEIOOIL
NI dSN J0d NOILVOINddV
dHL Ol NOISIAOdd J04d
NIAOL AAdVHOdNDL V dLVHINID

A
SdA

~

x\c\

P 0%
_¢321A3A ONILNAINOD

v 40 30¥N0SIY IHYMANVYH e
Z 404 NOILYOIddY Ny Wou4 — + . 8VLS

~_a3NE03Y 1S3N03Y
T~ ONIYIvd

///\

" 00¥

CETETLL)

)
\

US 10,334,056 B2

vls
NOILYOIddV
dH1 Ol NOISINOdd
d04 304N0S3d
JH4VMAEVH 3HL

NOYA Y1VA IAINON w

111151%1\%11& ..Ql—.‘...lw ;fﬁﬁf
e (304N0Sdd dHVMAOLVYH dHL Ol

wmmooq ¥O4 Azmxo_. ONIMIVA ¥V ONIANTOND LSINOIH SSIOY
T NV zo_.Eo,._n_n_,q JHL NO¥AH _

ON

Sheet 4 of 10

809
01041448 dHL
Ol TVAQdddV dUINOYd _

% | :. ..151.,.11\..,.15.‘%11\.1 rff.rff..;f!.ft

1\11555111.

SdA——

I
—_ 3AOMddY

I;.{rrf.!\\\\s;i.\.{

Jun. 25, 2019

_— wW§ 1
OFwM_DOmm ONIHIVd m_I._.

90S
0104144
dHL OL TVINDA ddINOdd

maara w1 I T A A A T A 0 T 0 S e e e e e

0N

11|1l|.....

v "

e |

CONREIVd A3LS3N0Id

..:lr:J..,.,.rjflr,._.r.

U.S. Patent

SVH NOILYOIlddV NV HOIHM OL mOEDmem

- T FHVYMAHVYH V ONIALILNIA! HOLOTT43

T vV NOY¥4 V.IvAd LS3IN0IY —

/ \aiaaniax
. 3NEON -

//\Alh LYVIS

e

/

\W

US 10,334,056 B2

Sheet 5 of 10

Jun. 25, 2019

U.S. Patent

A SRR R SRRy R R PR PR SRR SRR RN e TR R R e Y T AN e N R R e S PR W e T - R SR O - N O S R O N -

_ JBUMQO _

/
209 —

dldo=djdde Ajusp (0

9 Old
~— 009

L]

C—

4140 Apog _
MO 002 (6

_
diAwsoroapali/{isoyly/:sdiuy 139 ay_

J10dE
‘90JN0SaY MH ‘aweNddy ‘AaMIdy Apog !
ONIONZd=sniels :Apog’

¢ MO 002 (Z ,_
MO 002 (X |

[irmmesemsrmssmsn s eeseesgsmsmsmseneene]
{NL¥}/isenbaidiuolosjasfisoyl//isdny

_
T —————————— 139 X |

{NL¥}sanbaud/iosyafisoyly:sdny 139 (o

A A A S A
ONISSIADOHd=SNIelS Apog’l

{N_L¥}senbaiduoiosyalifisou}s/.sdpy “

180d (9
| NLH yum Axold Ayjigeded youneT (v |
TRV [V ey ey e g e
{NLyIsenbaid/ioloapiel/1soy// Ay’

uoleOO7] .SIgPE-R

pPe)daddY 202 (€ “

_". NL¥ anss| (g | _

92In0say MH -Apog |
sweNddy ‘AaM|dY :SIepeaH

1senbaudyopsalfisoyly/isdiy 180d ()

%mmmmmmm“mm“mm«t

Axoud Aljigeden uoleoijddy

_ 10]08|}0Y _

/
8zl —/ o zz) —/

US 10,334,056 B2

Sheet 6 of 10

Jun. 25, 2019

U.S. Patent

I

parosddy (71

a 00/

| | |
|)
_ | 1Lv¥ Apog |
" | MO 002 (g1 |

T
| | {N_L¥}1senbasdiopapei/fisoyl//:sdny
| ~ IR=[DXVAN.
" | A91d300V=snels Apog”
_ | MO 002 (91 |
“ | {NLY}1senbaid/ioayalfisoyl/s:sdiuy “
_ m 139 (G |
| _Hv._
|

_ 1Y alejauen) (¥

" AiN©=a|1d> ‘d3.1d4300V=sniels Apogd
| {NLY}Asenbaid/ioi0apelfisoyl . sdny

1S0d (€1
|

S ————
92IN0S9Y |

AMH ‘suweNddy |
jeaosdde |

JoJ dwodd (L |

|
_
_
|
|
|
|

I

10]08|JoY

_
_
_
_
_
_
* _
_
_
_
_
_
_

| OSNIANId=sniels :Apog
| MO 002 (X |

e T . P
{N_L¥}senbalid/iopa)jai{isoyy//sdiny

139 X _

zcl —

Luoieol|day

US 10,334,056 B2

8 DI

Sheet 7 of 10

Jun. 25, 2019

9l 1

Ocl

U.S. Patent

AXold JanIag 10J03(j°o Y
Ajljigede) olyel |

B S
_ BlepelaWw aoJnosal my Apogi

__ MO 00,

{oolnosal muyt/{uiewop}/{q|doopnasd}
nssnbale/iolos|al/{di |eoo|isouy}//:sdny “
1349 “

cel

uoneolddy

US 10,334,056 B2

Sheet 8 of 10

Jun. 25, 2019

U.S. Patent

_
ejep |
aeisusb 01 1
92INosal MU “

$88920V (9

—

dl umo |

soydlew 4idde
vy !

(1Ep) asuodsal 44X (/

6 Old

-~ 006

Y Suae
ejep Apod)

MO 002 (8!

: |
| _
s ——————
_ (eyep) ssuodsal 44X (8

|
aleplieA (G ¢

Axoid

Alljiqede)

gzl —/

(d|dde ‘@oinosal My
‘UIBLIop
1Y) 1s8nbal ddINX (7

ozl —/

oljed]

N _
(d1dde ‘eainosas my !

‘UrewIop “
'1v¥) 1senbal 4dINX (¢]

—

didde penx3g (71

/
oLl —

LV -SlopevH)

snjen/{edinosal myj/{uiewop}/icidoopnasd} i
pAsenbae/oapalfisoy}//:sdpy 139 (1

JoanIDg _ J0J09|joY _

uoneoliddy

2

Ol Ol

US 10,334,056 B2

a 0001
| | | |
| _ _ _
_ _ | |

— | | | ejep Apog
S " _ | 30 002 (€
o | | |
g Mw._m _ _ _
= a1eJlausb o] | | | |
©0IN0SBI MY | “ _ _

$SO00Y (Z | | | |

a | | | 1V SISPESH)
= " " _ anjea/{aoinosal” mul{urewopladidoopnasd} _
- . | | Asenbale/ioelelAdl eD0]}//:sARY 139D (I |
& | | | |
: | | | |
= | | | |
= | | | |

uonesljdady

AXoid JoAleg | J0JOB|}oY

Ajliqeded oyjel] oLl

8Cl _/ Ocl -/

U.S. Patent

US 10,334,056 B2

Sheet 10 of 10

Jun. 25, 2019

U.S. Patent

AARLLELLEL ey

L ZHFWZ Z L

| AYILLIVE

SilLl
/ ~N— 7L

AV1dSId NIIHDS HONOL | Y¥3IMVIIS

ozLL —~ zeLl —

A1 T10HLINOD
NITHOS HONOL mm,\&zoo_ | 549
7ZLL — Octl . 8CL1

40SSI00¥d SOIHIYYD | NOd

/I@:; OLL1

A4 T1I0HLNOD

O/ HSY 14

—] NV &
80L1

dIHO NOILVYOINNANOD
0Ll — (S)40SS3D0Hd

diHO NOILVOINNANINOD

— 0L

US 10,334,056 B2

1

HARDWARE RESOURCE ACCESS SYSTEMS
AND TECHNIQUES

RELATED APPLICATIONS

This application 1s a continuation application of U.S.
patent application Ser. No. 14/497,581, entitled “HARD-
WARE RESOURCE ACCESS SYSTEMS AND TECH-
NIQUES”, filed Sep. 26, 2014, now U.S. Pat. No. 9,762,676,
the disclosure of which 1s hereby fully incorporated by
reference in 1ts entirety.

FIELD

Embodiments of the present disclosure generally relate to
the field of computing devices, and more particularly, to
hardware resource access.

BACKGROUND

Many computing devices include hardware resources that
support operation of the computing device, such as sensors
and memory devices. Access to these hardware resources 1s
conventionally controlled by proprietary protocols or 1is
manually configured as part of an enterprise device group.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be readily understood by the following
detailed description 1n conjunction with the accompanying
drawings. To {facilitate this description, like reference
numerals designate like structural elements. Embodiments
are 1illustrated by way of example and not by way of
limitation in the figures of the accompanying drawings.

FIG. 1 1s a block diagram of a resource access manage-
ment system, 1n accordance with various embodiments.

FIG. 2 1s a block diagram of a reflector, which may be
included in the resource access management system of FIG.
1., 1n accordance with various embodiments.

FIG. 3 1s a block diagram of a capability proxy, which
may be included 1n the resource access management system
of FIG. 1, 1n accordance with various embodiments.

FIG. 4 1s a flow diagram of a process for regulating
pairing with hardware resources, 1n accordance with various
embodiments.

FIG. 5 1s a flow diagram of a process for regulating access
to hardware resources, 1n accordance with various embodi-
ments.

FIGS. 6 and 7 are signal flow diagrams of the exchange
of various signals between components of the resource
access management system of FIG. 1 for regulating pairing
between an application and a hardware resource, 1 accor-
dance with various embodiments.

FIG. 8 1s a signal flow diagram of the exchange of various
signals between components of the resource access man-
agement system of FIG. 1 for exchanging hardware resource
metadata, 1n accordance with various embodiments.

FIGS. 9-10 are signal flow diagrams of the exchange of
various signals between components of the resource access
management system of FIG. 1 for regulating access to a
hardware resource by an application, 1n accordance with
various embodiments.

FIG. 11 1s a block diagram of an example computing
device that may be used to practice various embodiments
described herein.

DETAILED DESCRIPTION

Systems and techniques for hardware resource access are
disclosed heremn. In some embodiments, an apparatus may

5

10

15

20

25

30

35

40

45

50

55

60

65

2

receive, via a stateless protocol message (e.g., a Represen-
tational State Transfer (REST) call), a request from an
application to pair with a hardware resource of a computing
device remote from the apparatus. The apparatus may pro-
vide to the computing device, via a stateless protocol mes-
sage, 1dentifiers of the application and the hardware
resource, and may receive, via a stateless protocol message,
pairing approval from the computing device. In response to
receiving the pairing approval, the apparatus may generate
a pawring token that may be used by the application to pair
the application with the hardware resource. As used herein,
“patring” may refer to a process by which an application
may be authorized to access a hardware resource, and may
be separate from an act of access by the application to the
hardware resource.

In some embodiments, an apparatus may receive, via a
stateless protocol message, request data from a computing
device. The request may identify a hardware resource of the
apparatus and an application that has provided a pairing
request for pairing with the hardware resource. In response
to receipt of the request data, the apparatus may provide, to
the computing device via a stateless protocol message, an
approval or a denmial of the pairing request. The apparatus
may also recetrve, via a stateless protocol message, an access
request from the application for access to the hardware
resource. The access request may include a pairing token
that was generated and provided to the application by the
computing device 1n response to receipt by the computing
device of an approval of the pairing request. The apparatus
may validate or invalidate the token, and in response to
validation of the token, may provide data from the hardware
resource for provision to the application (e.g., via a stateless
protocol message, such as a REST call).

The embodiments disclosed herein may find particularly
advantageous application 1n cloud environments, such as
those 1 which hardware 1s provided as a service. As
suggested above, many of the embodiments disclosed herein
may utilize the REST protocol during communications. In
the REST protocol, resources (such as hardware resources)
may be addressed using a uniform resource identifier, and
standard commands such as GET, POST, PUT, and
DELETE may be used to interact with these resources. This
may provide a uniform interface by which many different
kinds of applications may access many different kinds of
resources. The REST protocol may be referred to as a
“stateless” protocol, in the sense that all of the information
needed to process a REST call may be included 1in the REST
call. As used herein, the term “‘stateless protocol message™
may refer to a message formatted in accordance with a
stateless communication protocol such that all information
needed for a receiving device to process the stateless pro-
tocol message 1s included 1n the stateless protocol message.
It will be appreciated by one skilled 1n the art that REST 1s
discussed herein for exemplary purposes only, and that other
stateless protocols using HI'TP, XML or other transport or
markup languages may be used to implement the disclosed
embodiments. When appropriate, a statetul protocol (such as
SOAP) may also be suitably modified for use 1n the embodi-
ments disclosed herein.

Use of a uniform interface for managing access to hard-
ware resources may enable developers to provide such
access 1n a manner not previously achievable. For example,
many conventional devices utilize software environments or
stacks (e.g., proprietary operating systems) in which it 1s not
possible for applications (local and/or remote) to access
certain hardware resources. In some embodiments, this
restriction 1n access 1s 1imposed by developers of the soft-

US 10,334,056 B2

3

ware stack, who may simply not have developed any suit-
able pathways through which such access may take place.
For example, some two-1n-one systems may have a sensor
that can determine whether the system 1s 1n tablet mode or
desktop mode. However, data generated by the sensor 1s not
available to applications 1n standard operating environ-
ments, so applications cannot change the user experience
based on the current mode. In another example, a user may
have a laptop that does not include a global positioning
system (GPS) receiver, but the user may have a smartphone
with such a receiver. Conventionally, the user 1s unable to
access the GPS receiver in her smartphone from her laptop.

Various ones of the embodiments disclosed herein may
use standard networking channels that are almost always
present 1 a computing environment to access such
resources. In particular embodiments, hardware resources
may be exposed as RESTT1ul services or services of another
stateless communication protocol. If a local path to the
hardware resource 1s available, the REST call or other
stateless protocol message may be made locally. If not, a
remote component (e.g., the remote computing device 102
discussed below with reference to FIG. 1) may route the
request to the correct location (either locally or on another
computing device) and may also be configured to set up a
device-to-device channel in the case of multi-device com-
munication.

Various embodiments disclosed herein may enable appli-
cations to access useful hardware functionality, and may
make it easier for developers to allow for and take advantage
of such access. Moreover, various embodiments disclosed
herein provide a common protocol with which many differ-
ent types of applications can access many diflerent types of
hardware resources, unlike the highly proprietary systems
existing.

In the following detailed description, reference 1s made to
the accompanying drawings, which form a part hereof
wherein like numerals designate like parts throughout, and
in which 1s shown by way of illustration embodiments that
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural or logical changes may
be made without departing from the scope of the present
disclosure.

Various operations may be described as multiple discrete
actions or operations 1n turn, in a manner that 1s most helpiul
in understanding the disclosed subject matter. However, the
order of description should not be construed as to imply that
these operations are necessarily order dependent. In particu-
lar, these operations may not be performed 1n the order of
presentation. Operations described may be performed in a
different order than the described embodiments. Various
additional operations may be performed and/or described
operations may be omitted in additional embodiments.

For the purposes of the present disclosure, the phrase “A
and/or B” means (A), (B), or (A and B). For the purposes of
the present disclosure, the phrase “A, B, and/or C” means
(A), (B), (C),(Aand B), (A and C), (B and C), or (A, B, and
C). The description may use the phrases “in an embodi-
ment,” or “1n embodiments,” which may each refer to one or
more of the same or different embodiments. Furthermore,
the terms “comprising,” “including,” “having,” and the like,
as used with respect to embodiments of the present disclo-
sure, are synonymous.

As used herein, the term “logic” may refer to, be part of,
or include an application specific integrated circuit (ASIC),
an electronic circuit, a processor (shared, dedicated, or
group) and/or memory (shared, dedicated, or group) that
execute one or more solftware or firmware programs, a

10

15

20

25

30

35

40

45

50

55

60

65

4

combinational logic circuit, and/or other suitable hardware
components that provide the described functionality. Any of
the logic and computing devices disclosed herein may
include or have access to storage devices to store any
suitable data or mnstructions used to provide the described
functionality.

FIG. 1 1s a block diagram of a resource access manage-
ment system 100, 1n accordance with various embodiments.
The resource access management system 100 may include a
computing device 104, a computing device 106, and a
remote computing device 102. The remote computing
device 102 may be remote from both the computing device
104 and the computing device 106. Although FIG. 1 1llus-
trates only two computing devices 104 and 106 1n commu-
nication with each other and with the remote computing
device 102, the resource access management system 100
may 1nclude any number of computing devices, configured
similarly to computing devices 104 and 106 as described
herein, 1n communication with each other 1n any combina-
tion and with the remote computing device 102.

The operation of the resource access management system
100 may be described below with reference to example use
cases 1n which an application of the computing device 104
accesses a hardware resource of the computing device 106,
and cases 1 which an application of the computing device
104 accesses a hardware resource of the computing device
104. As used herein, an application may be said to “access”
a hardware resource when the application controls an opera-
tion of the hardware resource or when the application
receives data generated by the hardware resource. However,
this 1s for ease of i1llustration only, and the computing device
106 may access hardware resources of other computing
devices (e.g., the computing device 104) 1n accordance with
any of the techniques disclosed herein (e.g., those discussed
as performed by the computing device 104). Additionally,
the fTollowing discussion may focus on various components
of the computing device 104, but the analogous components
of the computing device 106 may be configured analogously.

The computing device 104 may include hardware 132.
The hardware 132 may include any computing device hard-
ware, such as any of the hardware discussed below with
reference to FIG. 11. The hardware 132 may include a
hardware resource 134 to which applications executing on
the computing device 104 (or on other computing devices,
such as the computing device 106) may request access.
Examples of such a hardware resource 134 may include
sensors, a transcoding device for converting media files
from one format to another, imaging devices (such as 3-D
cameras), audio recording devices, positioning devices
(such as Global Positioming System (GPS) receivers), dis-
play devices, robotic devices, one-time password capability
(e.g., 1n accordance with Identity Protection Technology of
Intel Corporation, Santa Clara, Calitf.), perceptual comput-
ing capabilities (e.g., 1n accordance with REALSENSE™ of
Intel Corporation, Santa Clara, Calif.), but these are simply
examples, and access to any suitable hardware resource may
be managed 1n accordance with the embodiments disclosed
herein. Additionally, although the hardware resource 134
may be referred to in the singular, this 1s simply for ease of
discussion, and the computing device 104 may include two
or more hardware resources to which access may be granted.
The hardware 142 may be 1n accordance with any of the
embodiments of the hardware 132.

The hardware 132 of the computing device 104 may
support the operation of an operating system (OS) 126, an
application 122, and a networking Application Programming

Interface (API) 130. The OS 126 may be any suitable OS,

US 10,334,056 B2

S

such as a UNIX-based OS, a mobile device OS, a laptop or
tablet OS, a desktop computer OS, or a server OS. The
application 122 may execute on the computing device 104
(e.g., using processors included in the hardware 132). In
some embodiments, the application 122 may execute within
the OS 126, while 1n other embodiments, the application 122
may execute outside of the OS 126. The networking API 130
may serve as an interface between the OS 126 and the
hardware 132, and/or as an interface between the application
122 and the hardware 132. The networking API 130 may
also Tacilitate communication between the computing device
104 and the computing device 106 via the remote computing
device 102 (e.g., via the traflic server 120, as discussed
below). The networking API 150 may be 1n accordance with
any of the embodiments of the networking API 130, and the
OS 136 may be 1n accordance with any of the embodiments
of the OS 126.

In some embodiments, the application 122 may include or
have access to a Software Development Kit (SDK) 124. The
SDK 124 may be a package of predetermined instructions
that make it easier for developers to program the application
122 to use the capabilities of the resource access manage-
ment system 100. In some embodiments, the SDK 124 may
support multiple programming languages. The SDK 124
may be specific to one or more particular hardware resources
(e.g., GPS devices or cameras) and may aid the developer 1n
configuring application 122 to access these kinds of hard-
ware resources using the techniques disclosed herein. For
example, 11 a developer wishes to configure the application
122 to access a GPS receiver, the SDK 124 may provide
particular syntax regarding particular GPS receiver capa-
bilities (e.g., latitude, longitude, and accuracy formats) that
the developer may use to more readily access and utilize data
from GPS receiver. In some embodiments, the SDK 124
may include predetermined instructions that a developer
may use to enable the application 122 to detect the “best”
pathway between the application 122 and a desired hardware
resource (e.g., to determine whether a local or remote
pathway 1s most eflicient). The SDK 148 may be in accor-
dance with any of the embodiments of the SDK 124.

The hardware 132 may also support the operation of a
capability proxy 128. In some embodiments, the capability
proxy 128 may be partitioned or otherwise 1solated from the
OS 126 in the computing device 104. For example, the
capability proxy 128 may be embedded in the hardware 132
and 1solated from the OS 126. The capability proxy 128 may
be coupled with the networking API 130 and the hardware
resource 134, and may assist 1n regulating access to the
hardware resource 134 and/or to the hardware resources of
other computing devices (e.g., the hardware resource 144 of
the computing device 106) 1n accordance with the embodi-
ments disclosed herein. For example, the capability proxy
128 may be configured to receirve (e.g., via a stateless
protocol message, such as a REST call) request data that
identifies a particular hardware resource 134 and an appli-
cation (e.g., the application 122 or the application 146) that
has requested to pair with the particular hardware resource
134. In response to receipt of the request data, the capability
proxy 128 may be configured to provide (e.g., via a stateless
protocol message, such as a REST call), an approval of the
pairing request or a demal of the pairing request. In another
example, the capability proxy 128 may be configured to
receive (e.g., via a stateless protocol message, such as a
REST call), a request for access to a particular hardware
resource 134 from an application (e.g., the application 122
or the application 146), and to evaluate a pairing token
provided with the access request. If the capability proxy 128

5

10

15

20

25

30

35

40

45

50

55

60

65

6

validates the pairing token, the capability proxy 128 may be
configured to provide (e.g., via a stateless protocol message,
such as a REST call) data from the hardware resource 134
for provision to the application (thereby granting access to
the hardware resource).

As discussed 1n further detail below, the capability proxy
128 may be configured to validate a pairing token in any of
a number of ways. For example, in embodiments 1n which
the application requesting access to the hardware resource
134 purports to be local to the computing device 104, the
capability proxy 128 may be configured to validate the
pairing token 1f an IP address of the application matches an
IP address of the computing device 104 (and invalidate the
pairing token otherwise). In some embodiments, the reflec-
tor 116 may provide this IP address information to the
capability proxy 128. In some embodiments, the capability
proxy 128 may be configured to validate the pairing token 1t
the pairing token includes a correct identifier for the com-
puting device 104 (and invalidate the pairing token other-
wise). Various embodiments of the capability proxy 128 are
discussed below with reference to FIG. 3.

When the application 122 of the computing device 104
wishes to access the hardware resource 134 of the comput-
ing device 104, management of that access may be per-
formed via the capability proxy 128. The application 122
may communicate with the capability proxy 128 in any of a
number of ways. In some embodiments, the application 122
may communicate with the networking API 130, which may
in turn communicate with the capability proxy 128 via a
device-to-device pathway. One example of a device-to-
device pathway that may be used 1s a Web Real-Time
Communication (WebRTC) pathway. In some embodiments,
the application 122 may communicate with the networking
API 130, which may 1n turn communicate with the reflector
116 of the remote computing device 102 (e.g., via the API

management gateway 114, as shown). Various embodiments
of the reflector 116 are discussed below with reference to
FIG. 2. Communication between the networking API 130
and the API management gateway 114 may take place via a
cloud pathway or cloud device-to-device pathway, such as a
REST pathway. The reflector 116 may in turn communicate
with the capability proxy 138 (e.g., via the traflic server
120). Communication between the traflic server 120 and the
capability proxy 138 may take place via a cloud pathway or
cloud device-to-device pathway, such as an Extensible Mes-
saging and Presence Protocol (XMPP) pathway.

When the application 122 of the computing device 104
wishes to access the hardware resource 144 of the comput-
ing device 106, local management of that access may be
performed via the capability proxy 138. In some embodi-
ments, the application 122 may communicate with the
capability proxy 138 via the networking API 130, which
may 1n turn communicate with the capability proxy 138 via
a local pathway. Once the capability proxy 138 has received
access-related data from the application 122, the capability
proxy 138 may communicate with the reflector 116 to
manage access to a particular hardware resource 144. In
some embodiments, the capability proxy 138 may commu-
nicate with the reflector 116 via the networking API 130 and
the APl management gateway 114. This commumnication
may take place via a cloud pathway or cloud device-to-
device pathway, such as a REST pathway. In some embodi-
ments, the capability proxy 128 may communicate with the
reflector 116 via the tratlic server 120. This communication
may take place via a cloud pathway, such as an XMPP
pathway.

US 10,334,056 B2

7

In some embodiments, the capability proxy 128 may have
access to the hardware resource 134 and may expose the
hardware resource 134 as a RESTTul service or a service of
another stateless communication protocol. The capability
proxy 128 may be instantiated as logic in a conventional
computing device (e.g., stored instructions 1n a memory
accessible by a processor or implemented 1 embedded
specialized hardware). As discussed 1n further detail below,
the capability proxy 128 may maintain a connection with the
remote computing device 102 (e.g., the reflector 116) and
may use this connection to serve requests from applications
that cannot reach the capability proxy 128 directly (e.g., due
to firewall issues, Network Address Translation (NAT)
1ssues, proxy issues, etc.).

The capability proxy 128 may be implemented at any
suitable level within the computing device 104. For
example, 1n some embodiments, the capability proxy 128
may be included 1n a kernel application of the computing
device 104 (and may thereby have special privileges for
accessing hardware resources). In some embodiments, the
capability proxy 128 may be included in a network interface
card having a programmed processor that monitors all
packets received and transmitted by the computing device
104. In such an embodiment, the capability proxy 128 may
be configured to route packets i accordance with the
techniques disclosed herein. In some embodiments, the
capablhty proxy 128 may be included 1n a manageablhty
engine of the computing device 104. A manageability engine
may include a processor running on the computing device
104 that has more privileges for hardware access than the
main processor(s) and that may manage the keyboard,
various hardware drivers, power supplies, and other essen-
tial hardware functionality.

As 1ndicated above, the remote computing device 102
may 1include a reflector 116. The reflector 116 may be
implemented as one or more computing devices, and may be
configured to assist 1n the management of pairing and access
to hardware resources in the resource access management
system 100. For example, the retlector 116 may be config-
ured to receive (e.g., via a stateless protocol message, such
as a REST call) a request from an application (e.g., the
application 122 or the application 146) to pair with a
hardware resource of a computing device remote from the
reflector 116 (e.g., a hardware resource of the hardware
resources 134 and 144 of the computing devices 104 and
106, respectively). The reflector 116 may provide, to the
computing device (e.g., via a stateless protocol message,
such as a REST call), identifiers of the application and the
hardware resource, and may receive (e.g., via a stateless
protocol message, such as a REST call) pairing approval
from the computing device. In response to receiving the
pairing approval, the reflector 116 may generate a pairing,
token that may be used by the application to pair with the
hardware resource.

The reflector 116 may be configured to generate multiple
different types of tokens for use 1n various applications. For
example, the reflector 116 may be configured to generate a
temporary token for provision to an application (e.g., the
application 122 or the application 146), 1n response to
receipt ol a pairing request from that application. The
temporary token may be provided (e.g., via a stateless
protocol message, such as a REST call) by the application to
the computing device associated with the hardware resource
with which pairing 1s desired. In response to receiving the
temporary token, the computing device may send a request
to the reflector 116 (e.g., via a stateless protocol message,
such as a REST call), including the temporary token, for the

10

15

20

25

30

35

40

45

50

55

60

65

8

request data discussed above. In some embodiments, the
reflector 116 may be configured to require that the applica-
tion provide the retlector 116 with the temporary token (e.g.,
via a stateless protocol message, such as a REST call), and
that pairing approval be received, before providing the
pairing token to the application. The retlector 116 may also
be configured to provide other suitable information to vari-
ous components of the resource access management system
100. For example, 1n some embodiments, the reflector 116
may be configured to provide, to a computing device (e.g.,
via a stateless protocol message, such as a REST call), the
IP address of the computing device.

As noted above, and as discussed in additional detail
below, in some embodiments, the reflector 116 may be
configured to route pairing and access requests from appli-
cations to capability proxies. The reflector 116 may be
configured to do so when the application and the hardware
resource are resident on the same computing device and/or
when the application and the hardware resource are resident
on different computing devices. In some embodiments, the
reflector 116 may provide this routing functionality when-
ever a direct path between the application and the capability
proxy managing the hardware resource i1s not available. In
some embodiments, the reflector 116 may provide hardware
capabilities not available on the computing device from
which a request 1ssues. For example, the reflector 116 may
generate one-time passwords when this functionality 1s not
available on another computing device, and 1n some
embodiments, may simulate hardware-based one-time pass-
word generation techniques. Various embodiments of the
reflector 116 are discussed below with reference to FIG. 2.

As 1dicated above, the remote computing device 102
may include a tratlic server 120. The traflic server 120 may
be configured to route signals between various components
of the resource access management system 100. In some
embodiments, the tratlic server 120 may be an XMPP server,
and may provide an Extensible Markup Language (XML)-
based protocol for message passing. In some embodiments,
the traflic server 120 may support any suitable tratlic trans-
port mechamsms, such as queues, websockets (which may
provide full duplex communication over a Transmission
Control Protocol (TCP) connection), and WebRTC, among
others.

As mdicated above, the remote computing device 102
may include an APl management gateway 114. The API
management gateway 114 may serve to manage APIs 1n the
resource access management system 100. The API manage-
ment gateway 114 may take the form of conventional API
management gateways, and thus 1s not discussed in further
detail.

The remote computing device 102 may include a number
of additional components to support operation of the
resource access management system 100. For example, in
some embodiments, the remote computing device 102 may
include a developer portal 108. The developer portal 108
may be implemented as one or more computing devices, and
may be coupled with the API management gateway 114. The
developer portal 108 may be configured to provide an API
key to an application developer for use with the application.
The API key may identify the application, and may be used
by various components of the resource access management
system 100 (e.g., by the reflector 116) to identily the
application when the application provides a pairing request
(and thus may be used to validate the identity of the
application). In some embodiments, the API key may be
used to 1dentify the application for billing the application
developer for use of the resource access management system

US 10,334,056 B2

9

100 (e.g., by counting the number of tokens issued to
applications associated with the API key).

In some embodiments, the remote computing device 102
may include a device profiler 110. The device profiler 110
may be implemented as one or more computing devices, and
may be coupled to the retlector 116. The device profiler may
be configured to allow authorized entities (e.g., an owner, as
discussed below with reference to FIGS. 6 and 7) to manage
access to one or more computing devices for which the
authorized entities are responsible. For example, an entity
responsible for a particular computing device may access the
device profiler 110 to grant access to various hardware
resources of the computing device to selected users of the
resource access management system 100. In some embodi-
ments, an authorized entity may store a setting 1n the device
profiler 110 such that the device profiler 110 1s configured to
automatically approve a particular user for access to a
particular hardware resource when the authorized entity has
previously manually approved the particular user for access
to the particular hardware resource. Authorized entities may
be credentialed using login names and passwords, or any
other suitable mechanism. The device profiler 110 may also
be configured to manage the revocation of access permis-
sions, and may store a list of all hardware resources to
various computing devices available 1n the resource access
management system 100.

Thus, 1n some embodiments, the device profiler 110 may
provide a central repository for registration of hardware
resources and storing access permissions for such resources.
The device profiler 110 may be used 1n any of a number of
ways, as 1ndicated above. For example, an owner of a
computing device may log 1n to the device profiler 110 and
grve permission for a friend’s smartphone to access a storage
device or other hardware resource of the computing device.

In some embodiments, the remote computing device 102
may include an identity broker 112. The 1dentity broker 112
may be implemented as one or more computing devices, and
may be coupled with the reflector 116 and with a third-party
identity platform (not shown). The 1dentity broker 112 may
be configured to manage user credentials and perform other
authentication functions for regulating use of the resource
access management system 100 by various users. For
example, 1n some embodiments, the identity broker 112 may
allow a user to log 1n to the device profiler 110 using login
information from another web service (e.g., social media
login 1information, email login information, etc.). In some
embodiments, the device profiler 110 and the identity broker
112 may, in conjunction, maintain the relationship between
various computing devices and their owners, and may man-
age authorizations and revocations of permissions.

FIG. 2 1s a block diagram of a reflector 116, which may
be included in the remote computing device 102 of the
resource access management system 100 of FIG. 1, in
accordance with various embodiments.

The reflector 116 may include pairing request receipt
logic 202. The pairing request receipt logic 202 may be
configured to receive a pairing request from an application
(e.g., the application 122 or the application 146). The pairing
request may specily a particular hardware resource (e.g., the
hardware resource 134 or the hardware resource 144) with
which the application requests a pairing. The pairing request
may specily a particular hardware resource by including an
identifier of that hardware resource (e.g., a uniform resource
name 1dentifier generated in accordance with known
schema, or a proprietary identifier). The hardware resource
that 1s the subject of the pairing request may be remote from
the retlector 116 (e.g., when the hardware resource 1s the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

hardware resource 134 or the hardware resource 144). A
pairing request may include any other suitable information
for aiding the reflector 116 and/or the computing device
associated with the requested hardware resource (e.g., the
capability proxy of the computing device) in determining
whether or not to approve the pairing request. In some
embodiments, the pairing request may also include an 1den-
tifier of the application providing the pairing request, or
information that may be used by the pairing request receipt
logic 202 to identily the application. In some embodiments,
the pairing request may be provided to the pairing request
receipt logic 202 from the application via a stateless protocol
message, such as a REST call.

The reflector 116 may include mtermediary logic 204. The
intermediary logic 204 may be coupled to the pairing request
receipt logic 202, and may be configured to provide request
data to the computing device associated with the requested
hardware resource (e.g., to the capability proxy of the
computing device). The request data may include an 1den-
tifier of the hardware resource and an identifier of the
application. As used herein, an “identifier of a hardware
resource” may specily a particular hardware device (e.g., a
sensor) or a particular capability of a hardware device with
multiple capabilities (e.g., an acceleration measurement
along a first axis generated by a multi-axis accelerometer).
The request data may include any other suitable information
for aiding the associated computing device (e.g., the capa-
bility proxy of the computing device) in determining
whether or not to approve the pairing request. For example,
in some embodiments, the request data may include an IP
address of the application. In some embodiments, the inter-
mediary logic 204 may be configured to provide an IP
address of the associated computing device to the computing
device (e.g., along with or separately from the request data).
In some embodiments, the request data may be provided to
the associated computing device via a stateless protocol
message, such as a REST call.

The mtermediary logic 204 may also be configured to
receive a pairing approval or a pairing denial from the
associated computing device (e.g., from the capability proxy
of the computing device). The pairing approval or pairing
denial may be generated by the associated computing device
(e.g., by the capability proxy of the computing device) based
on at least some of the request data provided to the associ-
ated computing device by the imtermediary logic 204. In
some embodiments, the pairing approval or pairing denial
may be provided to the intermediary logic 204 via a stateless
protocol message, such as a REST call.

The reflector 116 may include token generation logic 206.
The token generation logic 206 may be coupled with the
intermediary logic 204, and may be configured to generate
a pairing token for provision to the application in response
to receipt of a pairing approval from the associated com-
puting device (e.g., from the capability proxy of the com-
puting device). As discussed 1n further detail below, the
application may receive the pairing token and may provide
the pairing token to the associated computing device (e.g., to
the capability proxy of the computing device) to pair with
the hardware resource. In some embodiments, the pairing
token may be provided to the application via a stateless
protocol message, such as a REST call. In some embodi-
ments, the application may provide the pairing token to the
associated computing device via a stateless protocol mes-
sage, such as a REST call.

In some embodiments, the token generation logic 206
may be configured to generate tokens other than the pairing
token. For example, the token generation logic 206 may be

US 10,334,056 B2

11

coupled to the pairing request receipt logic 202, and may be
configured to generate a temporary token for provision to the
application 1n response to receipt of the pairing request from
the application. As discussed 1n further detail below, the
application may receive the temporary token and may pro-
vide the temporary token to the associated computing device
(e.g., to the capability proxy of the computing device) to
trigger a request from the associated computing device to the
intermediary logic 204 for the request data. In some embodi-
ments, the request from the computing device to the inter-
mediary logic 204 for the request data may include the
temporary token provided by the application to the associ-
ated computing device. In some embodiments, the token
generation logic 216 may be configured to provide the
temporary token to the application via a stateless protocol
message, such as a REST call. In some embodiments, the
application may provide the temporary token to the associ-
ated computing device via a stateless protocol message, such
as a REST call.

In some embodiments, the token generation logic 206
may be configured not to generate the pairing token unless
the reflector 116 has received the temporary token from the
application and the intermediary logic has received a pairing
approval from the associated computing device (e.g., from
the capability proxy of the computing device). In some such
embodiments, once these conditions are satisfied, the token
generation logic 206 may provide the pairing token to the
application (e.g., via a stateless protocol message, such as a
REST call). In some embodiments, the application may
provide the temporary token to the reflector 116 (e.g., the
pairing request receipt logic 202) via a stateless protocol
message, such as a REST call.

FI1G. 3 1s a block diagram of a capability proxy 128, which
may be included 1 the computing device 104 of the resource
access management system 100 of FIG. 1, 1n accordance
with various embodiments. As noted above with reference to
FIG. 1, although the following discussion may focus on
communication between the reflector 116 and the capability
proxy 128 when another computing device desires access to
the hardware resource 134, this 1s simply for ease of
illustration, and analogous logic may be included in the
capability proxy 138 (and capability proxies included in
other computing devices whose hardware resources are
managed by the resource access management system 100).

The capability proxy 128 may include pairing request
cvaluation logic 302. The pairing request evaluation logic
302 may be configured to receive request data from the
reflector 116 of the remote computing device 102. As
discussed above with reference to the intermediary logic 204
of the reflector 116, the request data may include an 1den-
tifier of the hardware resource 134 of the computing device
104. The request data may also include an identifier of an
application (e.g., the application 122 or the application 146)
that has provided a pairing request to the retlector 116 for
pairing with the hardware resource. In some embodiments,
the pairing request evaluation logic 302 may receive the
request data via a stateless protocol message, such as a
REST call.

The pairing request evaluation logic 302 may also be
configured to provide an approval or a denial of the pairing
request to the reflector 116 in response to receipt of the
request data. In some embodiments, the pairing request
evaluation logic 302 may be configured to provide the
approval or the demal to the reflector 116 via a stateless
protocol message, such as a REST call.

The capability proxy 128 may include token evaluation
logic 304. The token evaluation logic 304 may be configured

10

15

20

25

30

35

40

45

50

55

60

65

12

to recerve an access request from the application for access
to the hardware resource 134. The access request may
include a pairing token that was generated and provided to
the application by the reflector 116 1n the response to receipt
by the reflector 116 of an approval of the pairing request
(provided by the pairing request evaluation logic 302). In
some embodiments, the token evaluation logic 304 may be
configured to receirve the access request via a stateless
protocol message, such as a REST call.

The token evaluation logic 304 may also be configured to
validate or invalidate a received pairing token. For example,
in embodiments 1n which the application requesting access
to the hardware resource 134 purports to be local to the
computing device 104, the token evaluation logic 304 may
be configured to validate the pairing token 1f an IP address
of the application matches an IP address of the computing
device 104 (and invalidate the pairing token otherwise). In
some embodiments, the token evaluation logic 304 may be
configured to validate the pairing token if the pairing token
includes a correct 1dentifier for the computing device 104
(and invalidate the pairing token otherwise).

The capability proxy 128 may include resource manage-
ment logic 306. The resource management logic 306 may be
coupled with the token evaluation logic 304 and may be
configured to provide access to the hardware resource 134 to
the application 1n response to validation of the pairing token
by the token evaluation logic 304. Providing access to the
hardware resource 134 may include providing data from the
hardware resource for provision to the application, for
example. In some such embodiments, the resource manage-
ment logic 306 may be configured to provide the data from
the hardware resource 134 to the application via a stateless
protocol message, such as a REST call.

In some embodiments, the capability proxy 128 may have
a pluggable architecture. For example, the capability proxy
128 may include capability plugins that may be dynamically
installed. These may be developed by any suitable source
(e.g., hardware or platform manufacturers, original equip-
ment manufacturers, third parties, etc.) and may each pro-
vide access to a particular functionality or tfunctionalities
(e.g., GPS functionality, one-time password functionality,
etc.).

FIG. 4 1s a flow diagram 400 of a process for regulating
pairing with hardware resources, 1n accordance with various
embodiments. For ease of illustration, the operations dis-
cussed below with reference to the flow diagram 400 may be
principally described as performed by the reflector 116 of
the resource access management system 100 to regulate
pairing between the application 122 and the hardware
resource 134 of the computing device 104. However, any
suitable computing device or devices may perform the
operations with respect to any suitable application and
hardware resource. In particular, the following discussion
may apply to embodiments in which the retlector 116
performs the operations of the flow diagram 500 to regulate
access by the application 122 to the hardware resource 144
of the computing device 106. The operations discussed
below with reference to the tlow diagram 400 may take the
form of any of the embodiments disclosed herein (e.g., as
discussed above with reference to FIG. 1 and FIG. 3).

The flow diagram 400 may begin at 402, 1n which the
reflector 116 (e.g., the pairing request receipt logic 202) may
determine whether a pairing request has been received from
the application 122 for pairing with the hardware resource
134. In some embodiments, the pairing request may be
received via a stateless protocol message, such as a REST

US 10,334,056 B2

13

call. If the reflector 116 determines at 402 that no pairing
request has been received, the process may then end.

I1 the reflector 116 determines at 402 that a pairing request
has been received, the reflector 116 (e.g., the token genera-
tion logic 206) may proceed to 404 and may generate and
provide a temporary token for provision to the application
122. In some embodiments, the temporary token may be
provided via a stateless protocol message, such as a REST
call. The application 122 may provide the temporary token
to the computing device 104 (e.g., to the capability proxy
128) to trigger the computing device 104 to provide (e.g., via
a stateless protocol message, such as a REST call) a request
for request data to the reflector 116. In some embodiments,
the request for the request data may include the temporary
token. Thus, at 406, the reflector 116 (e.g., the intermediary
logic 204) may determine whether the temporary token has
been recerved from the computing device 104 (e.g., from the
capability proxy 128) as part of a request for request data. If
the reflector 116 determines at 406 that no request for
request data has been received, the process may then end. IT
the reflector 116 determines at 406 that the temporary token
has been received as part of a request for request data, the
reflector 116 may proceed to 408. In some embodiments, the
reflector 116 may not be configured to generate and receive
a temporary token, and thus the operations discussed above
with reference to 404 and 406 may not be performed.

At 408, the reflector 116 (e.g., the intermediary logic 204)
may provide request data to the computing device 102. In
some embodiments, the request data may be provided via a
stateless protocol message, such as a REST call. As dis-
cussed above, the request data may include an identifier of
the application 122 and identifier of the hardware resource
134.

At 410, the reflector 116 (e.g., the intermediary logic 204)
may determine whether a pairing approval has been recerved
from the computing device 104, approving the pairing
request between the application 122 and the hardware
resource 134. In some embodiments, the indicator of pairing,
approval may be received via a stateless protocol message,
such as a REST call. If the reflector 116 determines at 410
that a pairing approval has not been received (e.g., when a
pairing denial has been received, or when the computing
device 104 does not respond to the request data), the process
may then end.

If the reflector 116 determines at 410 that a pairing
approval has been received, the reflector 116 (e.g., the token
generation logic 206) may proceed to 412 and determine
whether the temporary token has been received from the
application 122. In some embodiments, the temporary token
may be received via a stateless protocol message, such as a
REST call. If the reflector 116 determines at 412 that the
temporary token has not been recerved from the application
122, the process may then end.

If the reflector 116 determines at 412 that the temporary
token has been recerved from the application 122, the
reflector 116 (e.g., the token generation logic 206) may
proceed to 414 and may generate a pairing token for
provision to the application 122 for use 1n pairing the
application 122 and the hardware resource 134. In some
embodiments, the token generation logic 206 may provide
the temporary token to the application 122 (e.g., via a
stateless protocol message, such as a REST call). The
process may then end. In embodiments in which the reflector
116 1s not configured to generate or use a temporary token,
the operations discussed above with reference to 412 may
not be performed.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 5 1s a flow diagram 500 of a method for regulating
access to hardware resources, 1n accordance with various
embodiments. For ease of illustration, the operations dis-
cussed below with reference to the tflow diagram 500 may be
principally described as performed by the capability proxy
128 of the computing device 104, in communication with the
reflector 116, to regulate access by the application 122 to the
hardware resource 134. However, any suitable computing
device or devices may perform the operations with respect
to any suitable application and hardware resource. In par-
ticular, the following discussion may apply to embodiments
in which the capability proxy 138 performs the operations of
the flow diagram 500 to regulate access by the application
146 to the hardware resource 144. The operations discussed
below with reference to the tlow diagram 500 may take the
form of any of the embodiments disclosed herein (e.g., as
discussed above with reference to FIG. 1 and FIG. 3).

The flow diagram 500 may begin at 502, at which the
capability proxy 128 (e.g., the pairing request evaluation
logic 302) may determine whether request data has been
received from the reflector 116. In some embodiments, the
request data may be received via a stateless protocol mes-
sage, such as a REST call. As discussed above, the request
data may include an identifier of the hardware resource 134
and an 1dentifier of the application 122, which has requested
pairing with the hardware resource 134 via a pairing request
provided to the reflector 116 (e.g., via a stateless protocol
message, such as a REST call). In some embodiments, the
request data may be provided to the capability proxy 128
from the retlector 116 as discussed above with reference to
402-408 of FIG. 4 (e.g., 1n response to a pairing request
received by the reflector 116 from the application 122).

At 504, the capability proxy 128 (e.g., the pairing request
evaluation logic 302) may determine whether to approve the
pairing request. Approval or demal may be based on any
suitable criteria stored 1n a storage device accessible by the
capability proxy 128, such as a predetermined hardware
resource use policy, the current demand on the hardware
resource, the identity of the requesting application, an
expected schedule for the hardware resource, and available
power supply for the hardware resource, or any other
suitable criteria. If the capability proxy 128 determines at
504 not to approve the pairing request, the capability proxy
128 (e.g., the pairing request evaluation logic 302) may
provide a demal to the reflector 116 at 506 (e.g., via a
stateless protocol message, such as a REST call), and the
process may then end.

If the capability proxy 128 determines at 504 to approve
the pairing request, the capability proxy 128 (e.g., the
pairing request evaluation logic 302) may provide an
approval to the retlector 116 at 508. In some embodiments,
the approval may be provided via a stateless protocol
message, such as a REST call.

At 510, the capability proxy 128 (e.g., the token evalua-
tion logic 304) may determine whether an access request has
been received from the application 122. In some embodi-
ments, the access request may be received via a stateless
protocol message, such as a REST call. An access request
may include a pairing token, generated by the reflector 116
and provided to the application 122 (e.g., in accordance with
the operations discussed above with reference to 414 of FI1G.
4). If the capability proxy 128 determines at 510 that no
access request has been received from the application 122,
the process may then end.

If the capability proxy 128 determines at 510 that an
access request has been received from the application 122,
the capability proxy 128 (e.g., the token evaluation logic

US 10,334,056 B2

15

304) may proceed to 512 and determine whether to validate
the pairing token (included in the access request of 510). The
token evaluation logic 304 may use any desired critena to
determine whether to validate the pairing token, such as the
criteria discussed above with reference to the token evalu-
ation logic 304 of FIG. 3). IT the capability proxy 128
determines at 512 not to validate the pairing token, the
process may then end.

If the capability proxy 128 determines at 512 to validate
the pairing token, the capability proxy 128 (e.g., the resource
management logic 306) may proceed to 514 and provide
data from the hardware resource 134 for provision to the
application 122. In some embodiments, the data may be
provided via a stateless protocol message, such as a REST
call. In some embodiments, the capability proxy 128 may
provide the data directly to the application 122. In other
embodiments, the capability proxy 128 may provide the data
to the reflector 116 or another intermediate computing
device, which may then provide data to the application 122.
The process may then end.

FIGS. 6-10 are signal tlow diagrams of an example of the
exchange of various signals between components of the
resource access management system 100 during use. FIGS.
6-10 may represent signals exchanged in accordance with
the tlow diagrams discussed above with reference to FIGS.
4 and 5. The signals depicted in FIGS. 6-10 are illustrated as
REST signals, but as noted above, any suitable protocol may
be used 1n various embodiments.

FIGS. 6 and 7 are signal tlow diagrams 600 and 700,

respectively, of the exchange of various signals between
components of the resource access management system 100
for regulating pairing between an application and a hardware
resource, 1n accordance with various embodiments. For ease
of 1illustration, the signals illustrated in FIGS. 6 and 7
represent example signals that may be exchanged when the
application 122 of the computing device 104 wishes to pair
with the hardware resource 134 of the computing device
104. However, this 1s simply illustrative, and analogous
signals may be exchanged when the application 122 wishes
to pair with the hardware resource 144 of the computing

device 106, or when the application 146 wishes to pair with
the hardware resource 134 or the hardware resource 144, for
example.

FIGS. 6 and 7 include signals exchanged between the
application 122, the reflector 116, the capabaility proxy 128,
and an owner 602. The owner 602 may be a user or
administrator of the computing device associated with the
requested hardware resource (e.g., the computing device
104) or may be an administrative or control application
executing on the computing device 104. A human or auto-
mated owner 602 may determine whether to approve pairing,
requests or deny pairing requests based on any desired
criteria, such as a predetermined hardware resource use
policy, the current demand on the hardware resource, the
identity of the requesting application, an expected schedule
for the hardware resource, and available power supply for
the hardware resource, or any other suitable criteria. In some
embodiments, the functionality of the owner 602 may be
included in the capability proxy 128.

The signal flow exchange of FIG. 6 may begin with a
pairing request POST call from the application 122 to the
reflector 116. The pairing request POST call may include an
identifier of the application 122 (e.g., the AppName data 1n
the header) and may include an API key (e.g., as discussed
above with reference to the developer portal 108). A body of

10

15

20

25

30

35

40

45

50

55

60

65

16

the pairing request POST call may include an identifier of
the hardware resource 134 (e.g., the HW Resource data in
the body).

In response to receiving the pairing request POST call, the
reflector 116 may store the data of the pairing request POST
call, 1ssue a pairing request identifier (e.g., the routing ticket
number, RTN), and may respond to the pairing request
POST call with the pairing request identifier for later use by
the application 122, as discussed below. The RTN may be,
for example, a unique string of characters of a predetermined
s1ze (e.g., a 128 bit number), or any other suitable format. In
some embodiments, the pairing request 1dentifier (e.g., the
RTN) may serve as a temporary token, as discussed above.

In response to receiving the pairing request identifier, the
application 122 may use the pairing request identifier to
launch the capability proxy 128. In some embodiments, the
application 122 may launch the capability proxy 128 by
causing the capability proxy 128 to establish a connection
with the reflector 116. In contexts in which the capability
proxy 128 is already connected to the reflector 116, the
application 122 may not launch the capability proxy 128.
Once launched, the capability proxy 128 may provide a
POST call to the reflector 116, identifying the pairing
request 1dentifier and indicating that the capability proxy
128 1s currently processing the pairing request (e.g., as
indicated by the Status data 1n the body of the POST call).
The capability proxy 128 may also provide a GET call to the
reflector 116, 1dentiiying the pairing request identifier, to get
all of the data stored by the reflector 116 about the pairing
request (e.g., the identifier of the associated application, the
identifier of the associated hardware resource, etc.).

Intermittently, after providing the pairing request POST
call as discussed above, the application 122 may query the
reflector 116 to check on the status of the pairing request.
The status checks may take the form indicated by the signals
labeled “x” 1n FIGS. 6 and 7, and may include providing a
GET call to the retlector 116 (including the pairing request
identifier) and receiving a response from the retlector 116
indicating status of the pairing request (e.g., the status
PENDING 1n the body of the response).

In response to recerving the GET call from the capability
proxy 128 (represented by the signal labeled “67), the
reflector 116 may respond with the data about the pairing
request. This data may include data provided by the appli-
cation 122 with the pairing request (e.g., the AppName,
APIKey, and HW Resource). This data may also include
data generated by the reflector 116. For example, the retlec-
tor 116 may determine an IP address from which the pairing
request originated, and may provide that information to the
capability proxy 128 (e.g., the applP 1n the body of the
response).

If the capability proxy 128 desires additional information,
capability proxy 128 may request that information from the
reflector 116. For example, the capability proxy 128 may
provide a GET call to the reflector 116 to request the IP
address of the capability proxy 128 itself (represented by the
signal labeled “8”). In response, the reflector 116 may
provide the IP address of the capability proxy 128 (e.g., the
cplP 1n the body of the response). The capability proxy 128
may compare the IP address of the application 122 and the
IP address of the capability proxy 128 to determine 1f the two
IP addresses are the same.

In embodiments in which the capability proxy 128 1s
configured to only allow access to the hardware resource
134 from applications that execute on the computing device
104, this check may confirm that the application 122 indeed
executes on the computing device 104, and may be a

US 10,334,056 B2

17

prerequisite to continuing with the pairing process. It this
comparison fails, the capability proxy 128 may transmit a
denial signal to the reflector 116 (not shown in FIG. 6). In
embodiments 1n which the capability proxy 128 is config-
ured to allow access to the hardware resource 134 from
applications that execute on computing devices other than
the computing device 104 (e.g., from the application 146,
which executes on the computing device 106), the capability
proxy 128 may not perform this comparison, and thus the
capability proxy 128 may not request IP information from
the retlector 116.

The signal flows represented by FIG. 6 continue in FIG.
7. As shown, the application 122 may perform another status
check (as indicated by the signals labeled “x,” and as
discussed above).

If the capability proxy 128 determines that the IP address
of the application 122 matches the IP address of the capa-
bility proxy 128 (if such a determination 1s required), the
capability proxy 128 may prompt the owner 602 {for
approval of the pairing request. This prompt may 1dentily
the application requesting the pairing (e.g., the application
122), the computing device associated with the application
(e.g., 1f the computing device 1s diflerent from the comput-
ing device on which the capability proxy 128 executes), the
particular hardware resource requested (e.g., the hardware
resource 134), or any other information about the pairing
request that the owner 602 may find helpful 1in determining,
whether or not to approve the pairing request. The prompt
may take the form of an on-screen message (e.g., on a
display device associated with the computing device 104),
an eclectronic message (e.g., a text message or email trans-
mitted to another device associated with the owner 602), a
signal transmitted purely internally to the computing device
104 and used by an automated owner 602 to determine
whether or not to approve the pairing request.

If the owner 602 determines the pairing request 1s to be
denied, the owner 602 may provide a denmial signal to the
capability proxy 128 (not shown). If the owner 602 approves
the pairing request, the owner 602 may provide an approval
signal to the capability proxy 128. In response to receiving
the approval of the pairing request, the capability proxy 128
may provide a POST call to the reflector 116, indicating that
the pairing request has been approved (e.g., the ACCEPTED
status 1n the body).

The POST call may also include an identifier of the
capability proxy 128 (e.g., the cpID=GUID data in the body)
that may be used by the retlector 116 1n generating a token
for use by the application 122 when requesting access to the
hardware resource 134 (e.g., as discussed below with ref-
erence to FIGS. 8-10). In some embodiments, the identifier
of the capability proxy 128 may be a global unique 1dentifier
of the capability proxy 128 in the sense that 1t may uniquely
identify the capability proxy 128 within the resource access
management system 100. If the token 1s generated based on
an 1dentifier of the capability proxy 128 (e.g., signed by such
an 1dentifier), the capability proxy 128 may be able to
determine whether a token presented to the capability proxy
128 was indeed provided by the reflector 116 so the appli-
cation 122 could access the capability proxy 128; 1f the
token fails this check, the token may be invalid. In some
embodiments, the token may have a set of attributes and
values, as well as a signature; the 1dentifier of the capability
proxy 128 may be one of the attributes. In some embodi-
ments, a token may be valid for one access or more than one
access. In some embodiments, the token may be valid for a
particular window of time (e.g., 90 minutes or one year),
after which it may be 1nvalid. In some embodiments, a token

10

15

20

25

30

35

40

45

50

55

60

65

18

may be renewable by the reflector 116 and/or the capability
proxy 128. This token expiration information may be
encoded 1n the token 1tself for use by the capability proxy
128 1n determining whether or not to validate the token. The
reflector 116 may then generate the token (e.g., the RAT of
the operation labeled “147).

When the application 122 next performs a status check (as
indicated by the signal labeled “15”), the reflector 116 may
respond by indicating that the pairing request has been
approved (e.g., the ACCEPTED status in the body). Upon
receipt of the status information, the application 122 may
provide a GET call to the reflector 116, including the pairing
request 1dentifier, to which the reflector 116 may respond by
providing the application 122 with the token (e.g., in the
body of the response). This may complete the pairing
between the application 122 and the hardware resource 134.

After a pairing request has been approved, an application
may seek additional information about the hardware
resource with which it 1s now paired. In some embodiments,
the reflector 116 may provide this information to the appli-
cation. This information may take the form of metadata
about the hardware resource, and may be used by the
application to enable a schema to be able to fail early (e.g.,
via an SDK), determine whether the hardware resource
supports some events instead of pooling, and/or determine
the type of the hardware resource, for example. FIG. 8 1s a
signal flow diagram 800 of the exchange of various signals
between components of the resource access management
system 100 of FIG. 1 for exchanging hardware resource
metadata, 1n accordance with various embodiments. For ease
of illustration, the signals illustrated in FIGS. 8-10 represent
example signals that may be exchanged when the applica-
tion 122 of the computing device 104 wishes to access the
hardware resource 134 of the computing device 104 after
pairing. However, this 1s simply illustrative, and analogous
signals may be exchanged when the application 122 wishes
to access the hardware resource 144 of the computing device
106, or when the application 146 wishes to access the
hardware resource 134 or the hardware resource 144, for
example.

As shown i FIG. 8, the application 122 may provide a
GET call to the reflector 116, specifying that the application
122 wishes to make an access request (arequest) of the
hardware resource 134 (hw_resource) associated with the
capability proxy 128. In some embodiments, the GET call
may i1dentify the capability proxy 128 that manages access
to the hardware resource 134. This identification may take
the form of a pseudo-identifier, which may not be a global
unmique 1dentifier as discussed above with reference to the
generation of the token by the reflector 116 in FIG. 7. In
some embodiments, the pseudo-identifier may be provided
to the application 122 by the retlector 116 upon approval of
the pairing request (not shown), and the use of the pseudo-
identifier may protect the global unique identifier of the
capability proxy 128 from misuse. The retlector 116 may be
configured to recognize the pseudo-identifier and determine
with which capability proxy 1t 1s associated. In some
embodiments, the GET call may identily the domain (do-
main) of the hardware resource. A domain may be a
namespace for grouping related device capabilities. For
example, “Domain=Sensors” may group all hardware sen-
sors ol a computing device, while “Domain=Security” may
group all hardware security capabilities of the computing
device.

In response to the GET call from the application 122, the
reflector 116 may provide metadata descriptive of the hard-
ware resource 134 (e.g., in the body). Examples of metadata

US 10,334,056 B2

19

may include schemas (e.g., an optional parameter describing,
a configuration of the hardware resource 134) and IO (e.g.,
a list of mput/output communication mechanisms, such as
“events,” 1stream, ostream, 10stream, etc.).

FIGS. 9-10 are signal flow diagrams 900 and 1000,
respectively, of the exchange of various signals between
components of the resource access management system 100
of FIG. 1 for regulating access to a hardware resource by an
application, in accordance with various embodiments. As
noted above, for ease of 1llustration, the signals illustrated in
FIGS. 9-10 represent example signals that may be
exchanged when the application 122 of the computing
device 104 wishes to access the hardware resource 134 of
the computing device 104 aifter pairing. However, this 1s
simply 1llustrative, and analogous signals may be exchanged
when the application 122 wishes to access the hardware
resource 144 of the computing device 106, or when the
application 146 wishes to access the hardware resource 134
or the hardware resource 144, for example.

In particular, FIG. 9 1s a signal flow diagram 900 of the
exchange of various signals for regulating access by the
application 122 to the hardware resource 134 via the retlec-
tor 116 and the tratlic server 120. The application 122 may
provide a GET call to the reflector 116, specifying that the
application 122 wishes to make an access request (arequest)
of the hardware resource 134 (hw_resource) associated with
the capability proxy 128, and that the application 122
requests data from the hardware resource 134 (value). The
GET call may include the token (e.g., RAT in the header)
provided to the application 122 by the reflector 116, as
discussed above with reference to FIG. 7.

Upon recerving the GET call from the application 122, the
reflector 116 may extract an IP address of the application
122, and may provide the extracted IP address, the token, the
domain, and the identifier of the hardware resource 134 1n an
XMPP request to the traflic server 120. In response, the
traflic server 120 may forward the XMPP request to the
capability proxy 128. In general, the traflic server 120 may
be responsible for handling communication with the capa-
bility proxy 128 using the best available protocol.

Upon receipt of the XMPP request, the capability proxy
128 may validate the token (e.g., using any of the validation
techniques discussed above, or any other suitable validation
technique), and if desired, confirm that the IP address of the
application 122 matches the IP address of the capability
proxy 128 (e.g., as discussed above with reference to FIG.
6). If these checks fail, the capability proxy 128 may provide
a denial signal to the reflector 116 (e.g., via the traflic server
120) (not shown).

Upon validation of the token, the capability proxy 128
may access the hardware resource 134 to generate the data
requested by the application 122. For example, if the hard-
ware resource 134 1s a sensor, the capability proxy 128 may
access the sensor and retrieve sensor-generated data for
provision to the application 122. The capability proxy 128
may provide the data to the traflic server 120 1n response to
the XMPP request from the traflic server 120, and the traflic
server 120 may provide data to the reflector 116 1n response
to the XMPP request from the reflector 116. The reflector
116 may then, 1n turn, respond to the mmitial GET call by
providing the data to the application 122 (e.g., in the body).
In this manner, the application 122 may access the hardware
resource 134.

In some embodiments, once pairing has been achieved, an
applica‘[ion may access the hardware resource with which it
1S palred without going through the retlector 116 and/or the
traflic server 120. Instead, in some embodiments, the appli-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

cation may commumnicate directly with the associated capa-
bility proxy. This communication may take place via an
embedded web server (EWS) pathway, for example. FIG. 10
1s a signal flow diagram 1000 of the exchange of various
signals regulating access by the application 122 to the
hardware resource 134, without going through the reflector
116 or the trathic server 120.

The application 122 may provide a GET call to the
capability proxy 128, specilying that the application 122
wishes to make an access request (arequest) of the hardware
resource 134 (hw_resource) associated with the capability
proxy 128, and that the application 122 requests data from
the hardware resource 134 (value). The GET call may
include the token (e.g., RAT in the header) provided to the
application 122 by the retlector 116, as discussed above with
reference to FIG. 9. Upon receiving the GET call, the
capability proxy 128 may access the hardware resource 134
to generate the data, as discussed above with reference to
FIG. 9, and may provide data to the application 122 1n
response to the GET call. In this manner, the application 122
may access the hardware resource 134.

FIG. 11 1s a block diagram of an example computing
device 1100, which may be suitable for practicing various
disclosed embodiments. For example, the computing device
1100 may serve as the remote computing device 102, the
computing device 104, and/or or the computing device 106
of FIG. 1. In some embodiments, the components of the
computing device 1100 may be distributed across multiple
physical device housings or locations, while 1n other
embodiments, the components of the computing device 1100
may be included 1n a single housing or location.

The computing device 1100 may include a number of
components, including one or more processor(s) 1104 and at
least one communication chip 1106. In various embodi-
ments, the processor 1104 may include a processor core. In
various embodiments, at least one communication chip 1106
may also be physically and electrically coupled to the
processor 1104. In further implementations, the communi-
cation chip 1106 may be part of the processor 1104. In
various embodiments, the computing device 1100 may
include a printed circuit board (PCB) 1102. For these
embodiments, the processor 1104 and the communication
chip 1106 may be disposed thereon. In alternate embodi-
ments, the various components may be coupled without the
employment of the PCB 1102.

Depending on 1ts applications (e.g., hardware resource
access applications), the computing device 1100 may
include other components that may or may not be physically
and electrically coupled to the PCB 1102. These other
components include, but are not limited to, random access
memory (RAM) 1108, volatile memory (such as dynamic
RAM (DRAM)), non-volatile memory (e.g., read-only
memory 1110, also referred to as “ROM,” one or more hard
disk drives, one or more solid-state drives, one or more
compact disc drives, and/or one or more digital versatile disc
drives), flash memory 1112, input/output (I/O) controller
1114, a digital signal processor (not shown), a crypto pro-
cessor (not shown), graphics processor 1116, one or more
antenna 1118, touch screen display 1120, touch screen
controller 1122, other displays (such as liquid-crystal dis-
plays, cathode-ray tube displays, and e-ink displays, not
shown), battery 1124, an audio codec (not shown), a video
codec (not shown), global positioning system (GPS) device
1128, compass 1130, an accelerometer (not shown), a gyro-
scope (not shown), speaker 1132, camera 1134, and a mass
storage device (such as hard disk drive, a solid state drive,

compact disk (CD), digital versatile disk (DVD)) (not

US 10,334,056 B2

21

shown), any other desired sensors (not shown) and so forth.
In various embodiments, the processor 1104 may be inte-

grated on the same die with other components to form a
System on Chip (SoC).

In various embodiments, volatile memory (e.g., DRAM),
non-volatile memory (e.g., ROM 1110), flash memory 1112,
and the mass storage device may include programming
instructions configured to enable the computing device
1100, 1n response to execution by the processor(s) 1104, to
practice all or selected aspects of the processes described
herein. For example, one or more of the memory compo-
nents, such as volatile memory (e.g., DRAM), non-volatile
memory (e.g., ROM 1110), flash memory 1112, and the mass
storage device may be machine readable media that include
temporal and/or persistent (e.g., non-transitory) copies of
instructions that, when executed by the one or more proces-
sor(s) 1104, enable the computing device 1100 to practice all
or selected aspects of the processes described herein.
Memory accessible to the computing device 1100 may
include one or more storage resources that are physically
part of a device on which the computing device 1100 1s
installed and/or one or more storage resources that are
accessible by, but not necessarily a part of, the computing
device 1100. For example, a storage resource may be
accessed by the computing device 1100 over a network via
the commumnications chip 1106.

The communication chip 1106 may enable wired and/or
wireless communications for the transier of data to and from
the computing device 1100. The term “wireless” and its
derivatives may be used to describe circuits, devices, sys-
tems, methods, techmques, communication channels, etc.,
that may communicate data through the use of modulated
clectromagnetic radiation through a non-solid medium. The
term does not imply that the associated devices do not
contain any wires, although in some embodiments they
might not. Many of the embodiments described herein may
be used with WikF1 and 3GPP/LTE communication systems,
as noted above. However, communication chips 1106 may
implement any of a number of wireless standards or proto-
cols, mncluding but not limited to IEEE02.20, General Packet
Radio Service (GPRS), Evolution Data Optimized (Ev-DO),
Evolved High Speed Packet Access (HSPA+), Evolved High
Speed Downlink Packet Access (HSDPA+), Evolved High
Speed Uplink Packet Access (HSUPA+), Global System for
Mobile Communications (GSM), Enhanced Data rates for
GSM Evolution (EDGE), Code Division Multiple Access
(CDMA), Time Division Multiple Access (TDMA), Digital
Enhanced Cordless Telecommunications (DECT), Blu-
ctooth, derivatives thereol, as well as any other wireless
protocols that are designated as 3G, 4G, 5G, and beyond.
The computing device 1100 may include a plurality of
communication chups 1106. For instance, a first communi-
cation chip 1106 may be dedicated to shorter range wireless
communications such as Wi-Fi1 and Bluetooth and a second
communication chip 1106 may be dedicated to longer range
wireless communications such as GPS, EDGE, GPRS,
CDMA, WiMAX, LTE, Ev-DO, and others.

In various implementations, the computing device 1100
may be a laptop, a netbook, a notebook, an ultrabook, a
smartphone, a computing tablet, a personal digital assistant,
an ultra mobile PC, a mobile phone, a desktop computer, a
server, a printer, a scanner, a monitor, a set-top box, an
entertainment control unit (e.g., a gaming console), a digital
camera, a portable music player, or a digital video recorder.
In further implementations, the computing device 1100 may
be any other electronic device that processes data.

10

15

20

25

30

35

40

45

50

55

60

65

22

The following paragraphs describe examples of various
embodiments.

Example 1 1s one or more computer readable media
having instructions thereon that, 1n response to execution by
one or more processing devices of an apparatus, cause the
apparatus to: receive, via a stateless protocol message, a
pairing request from an application, wherein the pairing
request specifies a hardware resource of a computing device,
remote from the apparatus, with which the application
requests a pairing; provide, via a stateless protocol message,
request data to the computing device, wherein the request
data includes an 1dentifier of the application and an 1dentifier
of the hardware resource to the computing device; receive,
via a stateless protocol message, pairing approval from the
computing device, wherein the pairing approval 1s generated
by the computing device based on at least some of the
request data; and 1n response to receipt of the pairing
approval, generate a pairing token for provision to the
application, wherein the pairing token 1s to be provided to
the computing device by the application, via a stateless
protocol message, to pair the application with the hardware
resource.

Example 2 may include the subject matter of Example 1,
and may further specity that the application executes on the
computing device.

Example 3 may include the subject matter of any of
Examples 1-2, and may turther have instructions thereon
that, when executed by the one or more processing devices
of the apparatus, cause the apparatus to generate a temporary
token for provision to the application, in response to receipt
of the pairing request, wherein the temporary token 1s to be
provided to the computing device by the application, via a
stateless protocol message, to trigger a request from the
computing device to the apparatus, via a stateless protocol
message including the temporary token, for the request data.

Example 4 may include the subject matter of Example 3,
and may further have instructions therecon that, when
executed by the one or more processing devices of the
apparatus, cause the apparatus to 1n response to a stateless
protocol message including the temporary token from the
application and receipt of the pairing approval, provide the
pairing token to the application via a stateless protocol
message.

Example 5 may include the subject matter of any of
Examples 1-4, and may further specily that the request data
includes an Internet Protocol (IP) address of the application.

Example 6 may include the subject matter of Example 3,
and may further have instructions therecon that, when
executed by the one or more processing devices of the
apparatus, cause the apparatus to provide, via a stateless
protocol message to the computing device, an IP address of
the computing device.

Example 7 1s one or more computer readable media
having instructions thereon that, 1n response to execution by
one or more processing devices of an apparatus, cause the
apparatus to: receive, via a stateless protocol message,
request data from a computing device, wherein the request
data includes an 1dentifier of a hardware resource of the
apparatus and an identifier of an application that has pro-
vided a pairing request for pairing with the hardware
resource; 1n response to receipt of the request data, provide,
via a stateless protocol message, an approval of the pairing
request or a demal of the pairing request to the computing
device; receive, via a stateless protocol message, an access
request for access to the hardware resource from the appli-
cation, wherein the access request includes a pairing token
that was generated and provided to the application by the

US 10,334,056 B2

23

computing device 1n response to receipt by the computing
device of an approval of the pairing request; validate or
invalidate the pairing token; and provide, via a stateless
protocol message, data from the hardware resource for
provision to the application 1n response to validation of the
pairing token.

Example 8 may include the subject matter of Example 7,
and may further specity that the application executes on the
apparatus.

Example 9 may include the subject matter of Example 7,
and may further specily that the access request 1s received
from the computing device, and that the application executes
on a second computing device different from the computing
device.

Example 10 may include the subject matter of Example 9,
and may further specily that the access request includes an
Internet Protocol (IP) address of the application, and
wherein validate or invalidate the pairing token comprises
determine that the IP address of the application matches or
does not match, respectively, an IP address of the apparatus.

Example 11 may include the subject matter of Example
10, and may further specily that the access request is
received from a third computing device different from the
computing device and different from a second computing
device on which the application executes.

Example 12 may include the subject matter of any of
Examples 7-11, and may further specily that validate or
invalidate the pairing token comprises determine that the
pairing token does or does not i1dentity the apparatus.

Example 13 1s an apparatus for regulating pairing with
hardware resources, comprising: pairing request receipt
logic to receive, via a stateless protocol message, a pairing
request from an application, wherein the pairing request
specifies a hardware resource of a computing device, remote
from the apparatus, with which the application requests a
pairing; intermediary logic, coupled with the pairing request
receipt logic, to: provide, via a stateless protocol message,
request data to the computing device, wherein the request
data includes an 1dentifier of the application and an 1dentifier
of the hardware resource to the computing device, and
receive, via a stateless protocol message, pairing approval
from the computing device, wherein the pairing approval 1s
generated by the computing device based on at least some of
the request data; and token generation logic, coupled with
the intermediary logic, to, 1n response to receipt of the
pairing approval, generate a pairing token for provision to
the application, wherein the pairing token 1s to be provided
to the computing device by the application, via a stateless
protocol message, to pair the application with the hardware
resource.

Example 14 may include the subject matter of Example
13, and may further specity that the application executes on
the computing device.

Example 15 may include the subject matter of any of
Examples 13-14, and may further specity that the token
generation logic 1s coupled to the pairing request receipt
logic, and 1s further to generate a temporary token for
provision to the application, 1n response to receipt of the
pairing request, wherein the temporary token is to be pro-
vided to the computing device by the application, via a
stateless protocol message, to trigger a request from the
computing device to the apparatus, via a stateless protocol
message including the temporary token, for the request data.

Example 16 may include the subject matter of Example
15, and may further specily that the token generation logic
1s further to, i response to a stateless protocol message
including the temporary token from the application and

10

15

20

25

30

35

40

45

50

55

60

65

24

receipt of the pairing approval, provide the pairing token to
the application via a stateless protocol message.

Example 17 may include the subject matter of any of
Examples 13-16, and may further specily that the request
data includes an Internet Protocol (IP) address of the appli-
cation.

Example 18 may include the subject matter of Example
17, and may further specily that the mtermediary logic is
turther to provide, via a stateless protocol message to the
computing device, an IP address of the computing device.

Example 19 1s an apparatus for regulating access to
hardware resources, comprising: pairing request evaluation
logic to: recetve, via a stateless protocol message, request
data from a computing device, wherein the request data
includes an 1dentifier of a hardware resource of the apparatus
and an 1dentifier of an application that has provided a pairing
request for pairing with the hardware resource, and in
response to receipt of the request data, provide, via a
stateless protocol message, an approval of the pairing
request or a demal of the pairing request to the computing
device; token evaluation logic to: receive, via a stateless
protocol message, an access request for access to the hard-
ware resource from the application, wherein the access
request includes a pairing token that was generated and
provided to the application by the computing device in
response to receipt by the computing device of an approval
of the pairing request provided by the pairing request
evaluation logic, and validate or invalidate the pairing token;
and resource management logic, coupled with the token
evaluation logic, to provide, via a stateless protocol mes-
sage, data from the hardware resource for provision to the
application 1n response to validation of the pairing token.

Example 20 may include the subject matter of Example
19, and may further specily that the application executes on
the apparatus.

Example 21 may include the subject matter of Example
19, and may further specity that the access request is
received from the computing device, and wherein the appli-
cation executes on a second computing device different from
the computing device.

Example 22 may include the subject matter of Example
21, and may further specify that the access request includes
an Internet Protocol (IP) address of the application, and
wherein validate or invalidate the pairing token comprises
determine that the IP address of the application matches or
does not match, respectively, an IP address of the apparatus.

Example 23 may include the subject matter of Example
19, and may further specity that the access request is
received from a third computing device different from the
computing device and different from a second computing
device on which the application executes.

Example 24 may include the subject matter of any of
Examples 19-23, and may further specity that the pairing
request evaluation logic 1s included 1n a kernel application,
a network interface card, or a manageability engine.

Example 25 may include the subject matter of any of
Examples 19-24, and may further specily that validate or
invalidate the pairing token comprises determine that the
pairing token does or does not identily the apparatus.

Example 26 1s a method for regulating, by an apparatus,
pairing with hardware resources, comprising: receiving, via
a stateless protocol message, a pairing request from an
application, wherein the pairing request specifies a hardware
resource of a computing device, remote from the apparatus,
with which the application requests a pairing; providing, via
a stateless protocol message, request data to the computing
device, wherein the request data includes an 1dentifier of the

US 10,334,056 B2

25

application and an identifier of the hardware resource to the
computing device; receiving, via a stateless protocol mes-
sage, pairing approval from the computing device, wherein
the pairing approval 1s generated by the computing device
based on at least some of the request data; and 1n response
to receipt of the pairing approval, generating a pairing token
for provision to the application, wherein the pairing token 1s
to be provided to the computing device by the application,
via a stateless protocol message, to pair the application with
the hardware resource.

Example 27 may include the subject matter of Example
26, and may further specity that the application executes on
the computing device.

Example 28 may include the subject matter of any of
Examples 26-27, and may further include generating a
temporary token for provision to the application, 1n response
to receipt of the pairing request, wherein the temporary
token 1s to be provided to the computing device by the
application, via a stateless protocol message, to trigger a
request from the computing device to the apparatus, via a
stateless protocol message including the temporary token,
for the request data.

Example 29 may include the subject matter of Example
28, and may further include, 1n response to a stateless
protocol message including the temporary token from the
application and receipt of the pairing approval, providing the
pairing token to the application via a stateless protocol
message.

Example 30 may include the subject matter of any of
Examples 26-29, and may further specily that the request
data includes an Internet Protocol (IP) address of the appli-
cation.

Example 31 may include the subject matter of Example
30, and may further include providing, via a stateless
protocol message to the computing device, an IP address of
the computing device.

Example 32 1s a method for regulating, by an apparatus,
access to hardware resources, comprising: receiving, via a
stateless protocol message, request data from a computing
device, wherein the request data includes an 1dentifier of a
hardware resource of the apparatus and an identifier of an
application that has provided a pairing request for pairing
with the hardware resource; in response to receipt of the
request data, providing, via a stateless protocol message, an
approval of the pairing request or a denial of the pairing
request to the computing device; receiving, via a stateless
protocol message, an access request for access to the hard-
ware resource from the application, wherein the access
request includes a pairing token that was generated and
provided to the application by the computing device in
response to receipt by the computing device of an approval
of the pairing request; validating or invalidating the pairing
token; and providing, via a stateless protocol message, data
from the hardware resource for provision to the application
in response to validation of the pairing token.

Example 33 may include the subject matter ol Example
32, and may further specify that the application executes on
the apparatus.

Example 34 may include the subject matter of Example
32, and may further specily that the access request is
received from the computing device, and wherein the appli-
cation executes on a second computing device different from
the computing device.

Example 35 may include the subject matter of Example
34, and may further specily that the access request includes
an Internet Protocol (IP) address of the application, and
wherein validating or invalidating the pairing token com-

10

15

20

25

30

35

40

45

50

55

60

65

26

prises determining that the IP address of the application
matches or does not match, respectively, an IP address of the
apparatus.

Example 36 may include the subject matter of Example
32, and may further specity that the access request is
received from a third computing device different from the
computing device and different from a second computing
device on which the application executes.

Example 37 may include the subject matter of any of
Examples 32-36, and may further specity that validating or
invalidating the pairing token comprises determining that
the pairing token does or does not 1dentity the apparatus.

Example 38 includes one or more computer readable
media having instructions thereon that, 1n response to execu-
tion by one or more processing devices of an apparatus,
cause the apparatus to perform the method of any of
Examples 26-37.

Example 39 1s an apparatus for regulating pairing with
hardware resources, comprising: means for receiving, via a
stateless protocol message, a pairing request from an appli-
cation, wherein the pairing request specifies a hardware
resource of a computing device, remote from the apparatus,
with which the application requests a pairing; means for
providing, via a stateless protocol message, request data to
the computing device, wherein the request data includes an
identifier of the application and an 1dentifier of the hardware
resource to the computing device; means for receiving, via
a stateless protocol message, pairing approval from the
computing device, wherein the pairing approval 1s generated
by the computing device based on at least some of the
request data; and means for generating, i response to
receipt of the pairing approval, a pairing token for provision
to the application, wherein the pairing token 1s to be pro-
vided to the computing device by the application, via a
stateless protocol message, to pair the application with the
hardware resource.

Example 40 may include the subject matter of Example
39, and may further specilty that the application executes on
the computing device.

Example 41 may include the subject matter of any of
Examples 39-40, and may further include means for gener-
ating a temporary token for provision to the application, 1n
response to receipt of the pairing request, wherein the
temporary token 1s to be provided to the computing device
by the application, via a stateless protocol message, to
trigger a request from the computing device to the apparatus,
via a stateless protocol message including the temporary
token, for the request data.

Example 42 may include the subject matter of Example
41, and may further include, means for providing, 1n
response to a stateless protocol message including the tem-
porary token from the application and receipt of the pairing
approval, the pairing token to the application via a stateless
protocol message.

Example 43 may include the subject matter of any of
Examples 39-42, and may further specily that the request
data includes an Internet Protocol (IP) address of the appli-
cation.

Example 44 may include the subject matter of Example
43, and may further include means for providing, via a
stateless protocol message to the computing device, an IP
address of the computing device.

Example 45 1s an apparatus for regulating access to
hardware resources, comprising: means for receiving, via a
stateless protocol message, request data from a computing
device, wherein the request data includes an identifier of a
hardware resource of the apparatus and an i1dentifier of an

US 10,334,056 B2

27

application that has provided a pairing request for pairing
with the hardware resource; means for providing, in
response to receipt of the request data, via a stateless
protocol message, an approval of the pairing request or a
denial of the pairing request to the computing device; means
for receiving, via a stateless protocol message, an access
request for access to the hardware resource from the appli-
cation, wherein the access request includes a pairing token
that was generated and provided to the application by the
computing device 1n response to receipt by the computing
device of an approval of the pairing request; means for
validating or invalidating the pairing token; and means for
providing, via a stateless protocol message, data from the
hardware resource for provision to the application in
response to validation of the pairing token.

Example 46 may include the subject matter ol Example
45, and may further specily that the application executes on
the apparatus.

Example 47 may include the subject matter of Example
45, and may further specily that the access request is
received from the computing device, and wherein the appli-
cation executes on a second computing device different from
the computing device.

Example 48 may include the subject matter of Example
4’7, and may further specily that the access request includes
an Internet Protocol (IP) address of the application, and
wherein the means for validating or invalidating the pairing,
token comprises means for determining that the IP address
of the application matches or does not match, respectively,
an IP address of the apparatus.

Example 49 may include the subject matter of Example
45, and may further specily that the access request is
received from a third computing device different from the
computing device and different from a second computing
device on which the application executes.

Example 50 may include the subject matter of any of
Examples 45-49, and may further specity that the means for
validating or invalidating the pairing token comprises means
for determining that the pairing token does or does not
identily the apparatus.

Example 51 may include the subject matter of any of
Examples 1-50, and may further specity that the stateless
protocol messages are REST calls.

What 1s claimed 1s:

1. A computer device to be employed as a server 1n a cloud
computing environment the computer device comprising;:

Communication circuitry to:

receive a first stateless protocol message from an
application 1mplemented by another computer
device via a cloud pathway, the first stateless proto-
col message to include a pairing request, wherein the
pairing request 1s to indicate a hardware resource to
which the application requests pairing,

transmit a second stateless protocol message to the
application via the cloud pathway, the second state-
less protocol message to include a pairing request
identifier to be provisioned in or to the application,
wherein the pairing request identifier 1s to trigger a
request for pairing request data,

receive a third stateless protocol message from a capa-
bility proxy via the cloud pathway, the third stateless
protocol message to include the request for pairing
request data, wherein the request for pairing request
data includes the pairing request 1dentifier, and

transmit a fourth stateless protocol message to the
capability proxy via the cloud pathway, the fourth
stateless protocol message to include the pairing

28

request data, wherein the pairing request data 1s for

verification of the pairing request to permit the

application to access the hardware resource, and the

pairing request data includes an 1dentifier of the

5 application and an identifier of the hardware
resource; and

processor circuitry communicatively coupled with the

communication circuitry, the processor circuitry to:

generate the pairing request identifier 1n response to
receipt of the pairing request, the pairing request
identifier to trigger a request for pairing request data,
wherein the pairing request identifier 1s to be provi-
sioned 1n or to the application, and

in response to receipt of the third stateless protocol
message, generate the pairing request data or obtain
the pairing request data from storage, wherein the
pairing request data includes an i1dentifier of the
application and an identifier of the hardware
resource, and the pairing request data 1s to trigger
verification of the pairing request for permitting
access to the hardware resource.

2. The computer device of claim 1, wherein:

the communication circuitry is to receive, based on the

fourth stateless protocol message, a fifth stateless pro-
tocol message from the capability proxy via the cloud
pathway, where 1n the fifth stateless protocol message
1s to include a pairing approval, wherein the pairing
approval 1s generated based at least on some or all of
the pairing request data; and

the processor circuitry 1s to generate, based on the pairing

approval, a pairing token to pair the application with
the hardware resource, wherein the pairing token 1s to
be provisioned to the application.

3. The computer device of claam 2, wherein the fifth
stateless protocol message 1s to include an 1dentifier of the
capability proxy, and the processor circuitry 1s to generate
the pairing token using the identifier of the capability proxy.

4. The computer device of claim 3, wherein:

the communication circuitry is to:

receive a sixth stateless protocol message from the
application via the cloud pathway, and

transmit a seventh stateless protocol message to the
application via the cloud pathway, the seventh state-
less protocol message to include the pairing token;
and

the processor circuitry to generate the seventh stateless

protocol message when the sixth stateless protocol
message mncludes the pairing request 1dentifier.

5. The computer device of claim 4, wherein the commu-
50 nication circuitry 1s to:

recerve a status check request stateless protocol message

from the application via the cloud pathway, the status
check request stateless protocol message to request a
status of approval for access to the hardware resource,
and

transmit a status check response stateless protocol mes-

sage to the application via the cloud pathway, the status
check response stateless protocol message to indicate
the status of approval for access to the hardware
resource.

6. The computer device of claam 1, wherein the other
computer device 1s a first other computer device, and the
hardware resource 1s disposed 1n the first other computer
device or a second other computer device that 1s remote from
65 the first computer device and the server.

7. The computer device of claim 6, wherein the capability
proxy 1s implemented by the first other computer device

10

15

20

25

30

35

40

45

55

60

US 10,334,056 B2

29

when the hardware resource 1s disposed in the first other
computer device, and the capability proxy 1s implemented
by the second other computer device when the hardware
resource 1s disposed 1n the second other computer device.

8. The computer device of claim 1, wherein the first,
second, third, and fourth stateless protocol messages are
Representational State Transfer (REST) messages, wherein
the identifier of the application included in the pairing
request data 1s an Internet Protocol (IP) address of the
application, and the pairing request data further includes an
application programming interface key.

9. One or more non-transitory computer readable storage
media (NTCRSM) including instructions, wherein execu-
tion of the mstructions by one or more processors of a server
in a cloud computing environment 1s to cause the server to:

control receipt of a first stateless protocol message from

an application mmplemented by another computer
device via a cloud pathway, the first stateless protocol
message to include a pairing request, wherein the
pairing request 1s to indicate a hardware resource to
which the application requests pairing;

generate, 1 response to receipt of the pairing request, a

temporary token to trigger a request for pairing request
data, wherein the temporary token 1s to be provisioned
in or to the application;

control transmission of a second stateless protocol mes-

sage to the application via the cloud pathway, the
second stateless protocol message to include the tem-
porary token,

control receipt of a third stateless protocol message from

a capability proxy via the cloud pathway, the third
stateless protocol message to include the temporary
token;

generate, 1 response to receipt of the third stateless

protocol message, the pairing request data, or obtain the
pairing request data from storage, wherein the pairing
request data includes an 1dentifier of the application and
an 1dentifier of the hardware resource, and the pairing
request data 1s to trigger vernfication of the pairing
request for permitting access to the hardware resource;
and

control transmission of a fourth stateless protocol mes-

sage to the capability proxy via the cloud pathway, the
fourth stateless protocol message to include the pairing
request data.

10. The one or more NTCRSM of claim 9, wherein
execution of the instructions is to cause the server to:

control receipt of a fifth stateless protocol message from

the capability proxy via the cloud pathway, wherein the
fifth stateless protocol message 1s to include a pairing
approval, wherein the pairing approval 1s generated
based at least on some or all of the pairing request data;
and

generate, based on the pairing approval, a pairing token to

pair the application with the hardware resource,
wherein the pairing token 1s to be provisioned to the
application.

11. The one or more NTCRSM of claim 10, wherein the
fifth stateless protocol message 1s to include an i1dentifier of
the capability proxy, and execution of the instructions 1s to
cause the server to generate the pairing token based on the
identifier of the capability proxy.

12. The one or more NTCRSM of claim 11, wherein
execution of the mnstructions 1s to cause the server to:

control receipt of a sixth stateless protocol message from

the application via the cloud pathway;

10

15

20

25

30

35

40

45

50

55

60

65

30

generate a seventh stateless protocol message to include
the pairing token when the sixth stateless protocol
message includes the temporary token, or

generate the seventh stateless protocol message to include

an access denial message when the sixth stateless
protocol message does not include the temporary token;
and

control transmission ol the seventh stateless protocol

message to the application via the cloud pathway.

13. The one or more NTCRSM of claim 12, wherein
execution of the mstructions is to cause the server to:

control receipt of a status check request stateless protocol

message from the application via the cloud pathway,
the status check request stateless protocol message to
request a status of approval for access to the hardware
resource, and

control transmission of a status check response stateless

protocol mess age to the application via the cloud
pathway, the status check response stateless protocol
message to indicate the status of approval for access to
the hardware resource.

14. A computer device to implement a capability proxy,
the computer device comprising:

processor circuitry to operate the capability proxy to

authorize access to a hardware resource; and

communication circuitry communicatively coupled with

the processor circuitry, the communication circuitry to:

receive a {irst stateless protocol message from a server
via a cloud device-to-device (D2D) pathway, the first
stateless protocol message to include a routing ticket
number (RN) that 1s based on a pairing request
provided to the server by an application for pairing
with the hardware resource, wherein the RTN 1s to
trigger a request a request for pairing request data,
and wherein the RTN 1s to be provisioned 1n or to the
application,

transmit a second stateless protocol message to the
server via the cloud D2D pathway, the second state-
less protocol message to include the RTN and the
request for pairing request data,

receive a third stateless protocol message from the
server via the cloud D2D pathway, the third stateless
protocol message to include the pairing request data,
wherein the pairing request data includes an appli-
cation i1dentifier and a hardware resource 1dentifier,
and the pairing request data 1s to trigger verification
of the pairing request for permitting access to the
hardware resource, and

transmit a fourth stateless protocol message to the
server via the cloud D2D pathway, the fourth state-
less protocol message to include a pairing approval
or a pairing denial, wherein the pairing approval 1s to
indicate that the application 1s authorized to access
the hardware resource and the pairing denial 1s to
indicate that the application 1s not authorized to
access the hardware resource; and

wherein the processor circuitry 1s to generate the pairing

approval or the pairing denial based at least on some or
all of the pairing request data.

15. The computer device of claim 14, wherein the pro-
cessor circultry 1s to verily the application based on the
pairing request data, and to generate the pairing approval
upon properly verifying the application.

16. The computer device of claim 14, wherein the RTN 1s
to trigger the processor circuitry to imtiate execution of the
capability proxy or to trigger the capability proxy to estab-
lish a network connection with the server.

US 10,334,056 B2

31

17. The computer device of claim 14, wherein the second
stateless protocol message or the fourth stateless protocol
message 1s to idicate a status of the pairing request veri-

fication at the capability proxy.

18. The computer device of claim 14, wherein the com-
puter device 1s a first computer device, the hardware

resource 1s disposed 1n the first computer device, and t

1C

application 1s implemented by the processor circuitry, or t.
application 1s mmplemented by processor circuitry of

1C
d

second computer device that 1s remote from the first com-

puter device and the server.

19. The computer device of claim 18, wherein, when the
application 1s implemented by the second computer device,

the processor circuitry 1s to:

provide a prompt for approval via a user interface; and

generate the pairing approval in response to receipt of
approval via the user interface.

20. The computer device of claim 14, wherein the pro-

cessor circuitry 1s to:

permit establishment of a direct D2 D communications
link with a computer device that implements the appli-
cation when the pairing approval 1s generated.
21. The computer device of claim 20, wherein:
the processor circuitry 1s to:
control access to the hardware resource 1n response to
receipt ol a request to access the hardware resource,
and
generate data based on the access to the hardware
resource; and
the communication circuitry 1s to:
receive a fifth stateless protocol message directly from
the application, the fifth stateless protocol message
to include the request to access the hardware
resource, and
transmit a sixth stateless protocol message, the sixth
stateless protocol message to include the generated
data based on the access to the hardware resource.
22. The computer device of claim 21, wherein:
the first, second, third, fourth, fifth, and sixth stateless
protocol messages are Representational State Transfer
(REST) messages;
the application identifier included in the pairing request
data 1s an Internet Protocol (IP) address of the appli-
cation, and the pairing request data further includes an
application programming interface key; and
the processor circuitry 1s implemented as one or more
application processors, a controller of a network inter-
face card, or a manageability engine, wherein the
capability proxy 1s a kernel application when the pro-
cessor circuitry 1s implemented as the one or more
application processors.
23. One or more non-transitory computer readable storage

media (NTCRSM) including instructions, wherein execu-
tion of the instructions by one or more processors of a
computer device 1s to cause the computer device to:

control receipt of a first stateless protocol message from
a server via a cloud device-to-device (D2D) pathway,
the first stateless protocol message to include a routing
ticket number (RTN) that 1s based on a pairing request
provided to the server by an application for pairing with
a hardware resource, the RTN to trigger a request for

10

15

20

25

30

35

40

45

50

55

60

32

pairing request data, and wherein the RTN 1s to be
provisioned 1n or to the application;

control transmission of a second stateless protocol mes-
sage to the server via the cloud D2D pathway, the
second stateless protocol message to include the RTN
and the request for pairing request data;

control receipt of a third stateless protocol message from
the server via the cloud D2D pathway, the third state-
less protocol message to include the pairing request
data, wherein the pairing request data includes an
application identifier and a hardware resource 1denti-
fier, and the pairing request data 1s to trigger verifica-
tion of the pairing request for permitting access to the
hardware resource;

generate a pairing approval or a pairing denial based at
least on some or all of the pairing request data and 1n
response to receipt ol approval via the user interface,
wherein the pairing approval i1s to indicate that the
application 1s authorized to access the hardware
resource and the pairing denial 1s to indicate that the
application 1s not authorized to access the hardware
resource;

control transmission of a fourth stateless protocol mes-
sage to the server via the cloud D2D pathway, the
fourth stateless protocol message to include the pairing
approval or the pairing denial;

cause establishment of a direct D2D communication link
with a computer device that implements the application
when the pairing approval 1s generated;

control receipt of a fifth stateless protocol message
directly from the application, the fifth stateless protocol
message to mclude a request to access the hardware
resource;

access the hardware resource 1n response to receipt of a
request to access the hardware resource;

generate data based on the access to the hardware
resource; and

control transmission of a sixth stateless protocol message,
the sixth stateless protocol message to include the
generated data based on the access to the hardware

resource.
24. The one or more NTCRSM of claim 23, wherein

execution of the instructions 1s to cause the computer device

verily the application based on the pairing request data;
and

generate the pairing approval upon properly verifying the
application.

25. The one or more NTCRSM of claim 23, wherein:

the first, second, third, fourth, fifth, and sixth stateless
protocol messages are Representational State Transier
(REST) messages;

the application identifier included 1n the pairing request
data 1s an Internet Protocol (IP) address of the appli-
cation, and the pairing request data further includes an
application programming interface key;

the request to access the hardware resource includes the
token and information for accessing the hardware
resource; and

the direct D2 D communication link comprises an embed-
ded web server (EWS) pathway.

G ex x = e

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 10,334,056 B2 Page 1 of 1
APPLICATION NO. : 15/698575

DATED June 25, 2019

INVENTOR(S) : Jose A. Olcese et al.

It is certified that error appears In the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 27
Line 46, Claim 1 *...environment...” should read — *...environment,...”

Line 47, Claim 1 “Communication...” should read — “communication...”

Column 30

Line 18, Claim 13 *...mess age...” should read — *...message...”

Lines 34-35, Claim 14 “trigger a request a request for pairing request data,...”” should read — “trigger
a request for pairing request data,...”

Column 31
Line 21, Claim 20 *“...D2 D...” should read — *...D2D...”

Column 32
Line 59, Claim 25 *..D2 D...” should read — “...D2D...”

Signed and Sealed this
T'wenty-tourth Day of September, 2019

Andrer lancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

