a2y United States Patent
Doyle, 111 et al.

US010327681B2

US 10,327,681 B2
Jun. 25, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(63)

(60)

(1)

(52)

GLUCOSE RATE INCREASE DETECTOR: A
MEAL DETECTION MODULE FOR THE
HEALTH MONITORING SYSTEM

Applicant: The Regents of the University of
California, Oakland, CA (US)

Francis J. Dovle, 111, Cambridge, MA
(US); Rebecca Harvey, Santa Barbara,
CA (US); Eyal Dassau, Cambridge,
MA (US); Howard Zisser, Santa
Barbara, CA (US)

Inventors:

The Regents of the University of
California, Oakland, CA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 218 days.

Appl. No.: 15/149,129

Filed: May 7, 2016

Prior Publication Data

US 2016/0256087 Al Sep. 3, 2016

Related U.S. Application Data

Continuation of application
PCT/US2014/062991, filed on Oct. 29, 2014.

Provisional application No. 61/903,963, filed on Nov.
14, 2013.

No.

Int. CI.

A6IB 5/145 (2006.01)

Gil6H 40/63 (2018.01)

A61B 5/00 (2006.01)

A6IM 5/172 (2006.01)

GO6F 19/00 (2018.01)

U.S. CL

CPC .......... A61IB 5/14532 (2013.01); A61B 5/725

(2013.01); A61B 5/7235 (2013.01); A61B
5/7275 (2013.01); A61B 5/746 (2013.01);

Call Treatment
Mode

A6IM 5/1723 (2013.01); GO6F 19/3456
(2013.01); GO6F 19/3475 (2013.01); GI6H
40/63 (2018.01); A6IM 2230/201 (2013.01)

(38) Field of Classification Search
CPC ... A61B 5/14532; A61B 3/72335; A61B 5/725;
A61B 5/7275; A61B 5/746; A61M
5/1723; A61M 2230/201; GO6F 19/3406;
GO6F 19/3456; GO6F 19/3475

USPC 600/309, 345-366
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,171,343 B1* 10/2015 Fischell ................. G06Q 50/22
2011/0028817 Al1* 2/2011 Jin .......ocooeeeeennnen, A61B 5/0002
600/365

2012/0123234 Al* 5/2012 Atlas ...........ooo.. A61B 5/7264
600/365

2015/0018633 Al* 1/2015 Kovachev ............ A61B 5/0022
600/301

FOREIGN PATENT DOCUMENTS

A61B 5/0022
A61B 5/7235

WO 2012178134 A2 * 12/2012
WO 2015073211 Al * 5/2015

WO
WO

ttttttttttt

ttttttttttt

* cited by examiner

Primary Examiner — Navin Natnithithadha
(74) Attorney, Agent, or Firm — Richard Aron Osman

(57) ABSTRACT

A glucose rate increase detector (GRID) for use 1n an
artificial pancreas (AP), wheremn the GRID detects 1 a
person persistent increases 1 glucose associated with a
meal, and either triggers a meal bolus to blunt meal peak
sately, during closed-loop control, or alerts the person to
bolus for a meal, during open-loop control.

20 Claims, 6 Drawing Sheets

1 ¢ [User Enters Meal Amount i
or Fgmores Adamm

Calimuiare Lalonlate
Fuli Bolos o
T3 g CHO Meal (10

|
| Caleplate
Minitom of
| h 4 Full Bobus fat || °
75 g CHO Meal | !
| znd Correction ||,
o RN il .
o Dugil

L ——=

Add Recent History Correction;
Comection to 140 mgrdL for the Minnmum Glacoses
m the Past | b {msy bz neaativn)
= Total Losaelin Ohver Basal Detivered in Past 1 b

] 5]

My

Amonnt
it ]

exortamiend PDolus #
Cootre Fler




U.S. Patent

Jun. 25, 2019 Sheet 1 of 6

Call Treatment {
Mode '

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

) ;
o BHERN N :
Automatic™~__ 0 u
NMode?
'Automatic¥ Yes ~11 {L
[B’ﬁ}d% Mei NG E

~ Bohus Protecol™

| N Active? |
l Yes _ N E
SLorrections_ No

Protocot
. Achive? .

Yes

Calculate
Mimimuarg of
Full Bolus for
75 ¢ CHO Meal
and Correction
i 20 mg/dLl

Calculate
{Comrection
t0 80 mg/dL

Calculate
Fall Bolus for
75 g CHO Meal

, Add Recent History Correction:
| Correction to 140 mg/dL for the Mimmurn Glacose
i the Past | h (may be negative)

- Total Insulin Over Basal Delivered in Past 1 b

Bolus
. Amount 3
NoOULS”

No

ecommend Bolus to
{ontroller

Fig. 1

User-Input Mode

iser Enters Meal Amount

NSACHVE LA

US 10,327,681 B2

ot fgnores Alarm

Mesal
Amound

rrrrrrrrrr

Protocol

{alcuiste
Partial
Belus

Calculate
Full
Bius

Wy W G T R A R AR T W N, D O G R R R RGN, T W, D W o

Return




U.S. Patent Jun. 25, 2019 Sheet 2 of 6 US 10,327,681 B2

HMS

ki
-
I

Alert

. H .
[ 3 ¥
{ ‘ : & W R A PR RO W W W R
-
E -

:- b L W T T WY TW T Y . 'I"-'""E
! ]
: § §
! i 1
! : i E
. 1 £
e (3RILD |
: ! i
;. i 1
. 1 i
; § ]
) i3 i
. & - ™

3 200 DR S QN K G DT 0 20 0 00 O GK QU 0 0 3G 104 0 00 K G OF 00 X0 00

Meals, Exercise,
|| Stress, etc.

s 00 oo oG o M M MK B0 Ae oo oo

I r £ &# M1 ™ 7 % W ™ = W N K

M e e e S e o S O O O OO0 O O

e SUDJECE g (31UCOSE
. . tConcentration

F # ® A W W K K & Y W W 2 #F E 5 % ¥ VW 3 F 4 & T B B E K

llllllllllllll

animrmumnw:mumnm:mnmw?nmnmnmnmnwﬂ

ceesmmmmssesmmmmnnsssesp 13100 YS1CA1 COnINECHION
o s e e o oo 3IUCOSE Stgnal
.0 0€ D€ B¢ 5 B4 203630 3630 - :EHS'E,,{}}H, I}Eﬁ‘&?@r}f Sigﬂﬂﬁ ‘
e oo oo Alert Signal

%" ¥ O 4 W o ¥ o M o h

., B £
Calibratione s e

Fig. 2



U.S. Patent Jun. 25, 2019

Sheet 3 of 6 US 10,327,681 B2

q h
RPN

Ciucose Bale lacrease Detector (GRIDY) B27 2-Sitate Kalman Filler (KFY EX Zone-MPC Insulin Besponse (EMPO)

- WT W ST WEY VST YWY YESTYEYYFEYESSFYFESTFEYESTF ST FAYWFENTEYETYSWEFSYESTYFERYYESWEYSWYEYTYESYTYFEFYYFYESTYESTYFESWYEFSYESTFESNT YR YSYTESFYIESTYRERYYEYTYEYYESTFEYETFESFFYTERY TSRS REFETFERSYYERTFYSTEYRFYTEFSYESTYSTEYRFRYT SRS TFYRYTEFYTEFYSTYRT ST FY ST RS Y EFRSTF TR EFYEESE

)y Simulation

- -
% 10} :
Wy

z i RO

o
o

gL
cnﬂh
- -

Time of Delect

S
S

4

Kk

ZMPC

GRID

.
o
o

24

(}.,._

-

iy KF

£NPC

G

260

i
1
]
|
h ]
-_..:§ ;_-- .
1
!
L]

g ooy ey oy

e ale

(R

KE  ZMPC

x i \ {
% » i . i
o : . i i . :
- H ! ; - |
::; -Thj : ] : H |
C, L t * :
. " ¥ 3
1500 s¢ Lo1so
¥ ¥ . -, . - = m -4 a_a - "4 e hw e R ~ h - - 2% - . a o h e e R e e A e e e A g Ty F o ka4 - Ak 4 e M4 m e e R e e R e e e -
3§ 1503 150 15
" ‘E-"'. T & Y : ]
?}#T-'i : - : . '
PO H ' i
~ Gy : : 5 ,
w : : /
. ' -
=2 1001 -= 0o @
fw ok L} -+ 3 . -’ . '.h-il'l
x H 4 LT
':I-;i .- * ¥ * ﬂ, R
B : : : :'
N S f : |
o : ! : : l
pes ‘H:-Ih-‘ et x [P | .
"""r‘;’t -ﬂ.’\:, .; S A a $; A N .
t:::: "'1-: -~ : : : - - - L]
!L} it * 1 3 * *
it -] * * i
= 3 : . |
N i x
"‘T-"ﬂ ¥
1

Lad
oy

Kk

LMPC

KE  ZMPC

O N g 166
; X (} : ) i")‘ : h J‘{ r :
! 3 4 : ! ; : 1
L3 : i3 . : : .
S : : : ;
¥ a a
N : : : :
Ao g g wE Y 3y i [ * : j:: .: t.
- ] } ") ¥ : . - - My - - - - r 3
\;ﬂ Mﬁ o : i}n‘ : 3 i H
o et b % 1 3 e
b l‘"i'* T 15 ] )
2 o3 : d 5 ; -
= : ; ?
O T o % ' A 5 4 4
- ﬂl ".'r n -I---.'.I|| ' ] } '§ } S‘{. ¥ o
S 30 H ) ® "; B i 1 \
] ® N
S = : : : -
B 3 : ]
et P : ]
moE 2§t 'S 3 24
et e dew) : - : s
2y’ s "
- L |
@ l-:"""":l *
*im) 3
~Z ; *
: | ' '

4)

(1

3 .
¥
|
T H
- E E S 3 i :
1 ) L]
® ¥ ¥
3 ¥ ¥ L :
* ¥ L
“*‘55: ¥ + + : H
E 3 ]
o a 3 3 i ¥
G ¥ . ~ }- L -
* L | 3
= " : ul '
."’""" 3 t
E |
i
¥
‘
i\

frppnber/Oav)

L

False Positive

atesiony

Fig. 3

{RID

Kb

LMPC

r
T
3
¥
x

Eh'\-;'
d‘#‘ﬂﬂ#ﬂ##‘-ﬁ#ﬂ#ﬂ‘

-
L I B I N
L

CGRID

*
o . -
i il

s

: *E
‘.l.<‘
X

+

KE

gm,,

o

-

GRID

KE  ZMPC

GRID

KF

-----------------------




U.S. Patent

Jun. 25, 2019

Sheet 4 of 6

US 10,327,681 B2

ard:
25 g CHQ e 75 g CHIO

weroeooene S0 & CHID wovreelgere 100 2 CHO

2.0on

£,
s

MPC:
84

-
r

 CRO = wllp w

3 = s = ,

TP rTresrrrrrirdfirrrrd

-
j q ﬂﬂwlmw#*mﬁ%-&*ﬂﬂﬁﬂl&l&#*#mﬂw%wﬁ¢1ﬂ%w#*mﬂlﬁﬂm*ﬂnﬂhﬂhﬂ#mlﬂﬂﬁﬂhhﬂﬂmﬁdﬂuﬁﬂ%'\-'ﬁullh'rhrll-ﬂlnmhﬂ#ﬁﬁﬂﬂﬂhmﬂﬂhﬂﬂlﬂhﬂhﬂ%%#'h-ﬂln-rt"h-hﬂl-l"r-ﬂl-ﬂh-nh'rh'h'h'Hll-ﬂh-rll-rﬁﬂlﬂﬂlm#*rﬁ-rﬁﬂhlhﬁ#ﬂr*ﬂmﬂlﬂ#ﬁhﬂh?rﬁf#lﬁ-ﬁ#lﬂﬂrﬁﬂnrﬂﬂlﬁ--‘#-‘#rﬁ#-ﬁﬁlh%#ﬂhﬁdﬂm-***TﬂﬂWﬁ*mﬂwwmﬁ*ﬂﬂﬂﬂﬁﬂﬂMﬂmﬁﬁ*hvwﬁ
4 L
!I #{i‘ 1 * N n ]
I . . . . .
e +
x ""'\ 3 o+
. : - . 3 T - rpat
1
4
I Iy ] . : ' '
‘i LY ] ] ] -
- )
- X W
T . 1 . ] - r Py
Y
L !"*IE k x ﬂ g
- N N
: ' 4 4 P
‘:‘.:! 3 o ] 3 4
-I‘ P . . . . - - - - . . . . . - . - a ' - a [ - a . - . . . - - - - - - . . . - . - . + iq- - a [ - ﬁ . " -
\.‘} . ] - ] ] ] ﬁ +
AR o™} o
-.,l,} o . . b . . .
4 €1
A, ! e ALK
' ' 3 i) M
1 + * LRE T ]
H F"‘"‘"‘ F: ++-| # + +-|l -I-blii-
] + + * L] + +
T ] ] # g .
EF. u-i_ + .+
j + + + s
LA + w -
1 - ' - [ - L]
1':. } - - ok -
A ik JLN
.
r b 3 e 4
corwrel . - - s o AR # '
'-e!-"-'" et k-
+ + FF []
f 1‘ I * . . * LS * P -
- llll* o . " . " - - - * . . . . . ] . - ] . - " ' - " * ) - - - [BCN. = ey e . " [ - " - . . - v . * " . " . e
i AL ety “are
- . b2 .
f F o+ 1""-'#1- - 4 + l‘.l.‘l. !
qb . | * + * iy -
.1 1 ++++i- 1'1.1 + + h +* C
r ' + ok + - * "
-+ ok * *
rar - .+
o {:3 ' R ; .
- - - -
L
L] fﬂq gt
- i Tl
""‘h"ﬂ"" 1 * ‘_-‘_1- i J-+J-‘_t ' - L]
F » 1 F. + + 4 0 -+ T & + +
Y- i ettt ot
. + 4+ . kAt o+ + + . * r "
c“) + + + kY + 4 .+
. + AL S L N
LW | P EC SN
el - + + % ¥ ERE ] LK) . -
w Fete ap et e e ATt L
el q eIl .i.'I“'rtr‘.r‘ﬂhi-i =T
{;?‘\ L Lok k ko 4 * . f L i
- - o ok d ok b+ o+ ko + + - + - . - - - 4 - . ] " 1 . - - 1 r ] | * - * - - - - . - 4 - . - L 1 .-
lﬂ o .+ R . -
m o RN - -
-’..l‘ * A g . . - 1 .
2] } +
"'h. » » 3
X wr N ' ] k - '
L omoya e
‘:'.. i ' "i-" *
M L L + +t. + +
AL + 1 ] ]
.+
b --_-1 E
I: 1 b b - b -
*
-
L+ 1]
T 1 T ] i r - '
*H{mm{ 3
4 ] ]
- - r L]
i ' § i z_
.

" J;r? 4} \ et 4y
¥ {_
> e . W . - A % h.I’
) )
L |
; . ! 1 H '
L1 r [ - -
f L 1 F a '
!ﬁ ‘f-“\‘,‘. r - - r - - - - - - - - - - - - a - - - - - - . - - - - . . - - r - - r - - - - - - - - - - - - LI - a a - - a - - . - - s -
LYt -
‘ﬁ- ﬁ - ] ] -
"'ﬂ""} L
- E 1 r ' r
]
""l"""} - . . - # 1,
f : ) L k| et
-1 ‘w.t‘" r ] ] ] w l'
\J} A | il .+ -
i 4 --'ri.*n. -
: +i‘bq HLJRL S . .
A
llq,:-,-} ! 1*+h¢ L L, * "
A e
e s
(LY | oafine -
e &
_— - - - - - -y = - - - - r . a - 4 = - - - . - . - P
i. : ‘L . '
ey
I""l"ﬂ c@ - © r
-
& .
o 2
"-* F 3 ]
=4 . -
m tir* i} N a - . . - - . - - - - = - - - - - - . - - - - aom - - . r N = r N - - N » - . . - - - - . - - - — - - - - - - . - - . r o3 n = - N - - N . - - . - [ pe—
-
-
'l-?h} I N ) 1 [l b F .
E . 4 4 1
ﬁ 54-4 r . . - - -
i [l r ¢ .
a b b
. - ' M
i ]
TsrassrdMrasermwwn -II“‘ﬁ*“bﬁ***‘L‘-"-'-'-II"-‘-II"‘I‘II"‘----‘.{h-----ﬂ'«ﬂh*“-'ﬂ-ﬂ-"*".“---Ii‘hiﬁ“‘-'ﬁ-'ﬂ-*ﬁ“'hﬁ-ﬂ““bﬂhh“‘*hh&‘“

LA R .E R R N L L R LN N L]

}

-mEWWTT swrhrhdhhrrhrasrsrrasT eaeEs T TFEREETE

¢

* 1
- + & & e s + e A e + + e + + ¥
1"., + + + + o+ - -+ + kA + + ¥ + + + + o+
+ + + + 4 + + % 44 L T A R e + + & F ¥ + 4+ + + + + + + + o+ + o+ * + + +
4+ L] LI LIE + P+ + % P + + P + F % + + % LR
* ¥ + - - = ] L3 * L]
w T L]
e ) : -
. L] 4 4 -+ + +
) m m m *i++ +-|i*+ +++-| +++*
P =y + + * 4 '
- )
Cy e . : -
g
* b : - *
.;::: k1 ] 1 ] 1 r - - Q -m- m -m +:+:+ :1:1-: ' -
‘i i + 4+ ¥ + 4
o L. . ' -
gl F
nxm gy
v e . .
1
o + T g * ‘ %
z: :;_‘ | - r
L 1 .
-
f!
't") T r
T e 1 .
: b * - - a - a - ' ' - ' r . L a . a . - " -
H-' E:s
e et
-
lﬂ 1
LY g
LT L L ,,}
an LA
ﬁh} +‘é_.._,
It"‘f::;
iy gt gk AL B L, A Ll - i iy . o ., e, -y o bt Sy ol R 2y

Fig. 4

“
¥

i

{3

oo g SN 2 may

24

r "'-; é}
R E r-}

~

A

§

arppiing Peood {(min )

1
el m%\- i o o] P s 1

~

-
nkﬂf-ﬂ



U.S. Patent Jun. 25, 2019

Sheet 5 of 6

US 10,327,681 B2

{1 A Standard Care: Announced Meals s Median
g 13} Standard Care: Unasnounced Meals 4 Mearn
230 Standard Care: Active GREDY Usec-laput Mode, $0% Bohus ® i}m‘tier |
P33y Standard Care: Active GRID User-Input Mode, 50% Bokss -+ Regent History Correction ¥ p < 0,08 (vs. B}
S E) Standard Care: Active OGRID User-Input Mode, 1060% Bolus G p {} M (vs. B}
T3k Standard Care; Active GRID Userwfnput Nf{}dp; f‘ﬁi‘ Yo Bolus + Becent History Correction
i} } ' : * } 1 : i
8O
o { :
=
2% o i E
5 60 -
ﬁ
& :
l:ﬁ h |
ﬁ 4{ Fhe o HSBEREEE - T R - BRI L __:
e i
& |
fm Y0 R R Gk DT - LUREREE ® . L "
% |
{3 AP BB RGP
300400 >4

80} |
i%} A3 oy
o -
540+ 4
2
k=
20

<Gl 6O 31 s0—140 14{}-—-‘%%{; 18ﬂ~—~j{;{3 *{J{}~4(}{} ‘4{34”?
3} ) N ? N T R 7 : S
" 80 -
S
o
£ 40
3
b~ 200 SR

] 2 i@ | g .
{3 PP PR s PP A PIPR vnn 23 ,
<63 HO—~7( 70~ %éO U~ 144} 14{3**8{; 1 8{—300 1{}{}%4{}{3 "*4\3{}

Fig. 5

{fncose Range {mg/dl.)



U.S. Patent

Jun. 25, 2019

Sheet 6 of 6 US 10,327,681 B2

8} (-

TIA) ZMPC:
B 1) ZMPC
£33 ZMPC:

ek, o= e sl ke~ il vl e~ vl vk~ vk vl

Anncunced Meals

Unarmounced Meals
Active GRID User-Input Mode, 50% Bolus Z3G) ZMPC: Active GRID Auto. Mods, mintmum of B, F
33%% Bolas

538y LMPC: Active GRID Awuto, Mude, 75 Bguiv. Balus
23 ) ZMPC Active (GRID Agto. Maode, SUmp/dl Coreation;

el .~ e e - el - L L % L Bl e el - bl -

Ll

oy
-
e g

Meagdinn
Mean
Outhier

Tune m Range (¥
S
=
EH

i{

3 }“,.
L

LU I

<60

Fig. 6

. r -

........

&

S e

6074

® _
£} L spediin—— oBohEd

*f g8 S i - ; L
Ka RS Rg ik T S

B iiied

PR, s - [

E . VN S

f
§
]

[
e A e L

..............

i

3
.

73R

80-140 140180 180300 300400 >400
(lucose Range (mg/di)



US 10,327,681 B2

1

GLUCOSE RATE INCREASE DETECTOR: A
MEAL DETECTION MODULE FOR THE
HEALTH MONITORING SYSTEM

This invention was made with government support under
Grant Numbers DP3DK094331 and ROIDKO085628

awarded by the National Institutes of Health (NIH). The
government has certain rights 1n the mvention.

INTRODUCTION

The primary goal of the artificial pancreas (AP) 1s to
climinate the occurrence of severe hypoglycemia and reduce

.

the time spent 1n hyperglycemia (>>180 mg/dL) in an eflort
to 1mprove quality of life and reduce long-term complica-
tions.! Safe and effective control of type 1 diabetes mellitus
(T1DM) using an AP has been researched widely for several
decades, with many advances, but several challenges
remain, mncluding overcoming large meal disturbances, the
ellects of exercise, and the delays associated with subcuta-
neous glucose sensing and insulin delivery.” One of the most
challenging aspects of the diabetes therapy routine 1s dealing
with meals, and 1t has been shown that inaccurate estimation
of meal sizes occurs Irequently, resulting in additional
glucose fluctuations.” Recent behavioral studies have also
shown that people with TIDM are interested in an auto-
mated system but are concerned with relinquishing full
control.” Therefore, an automatic AP that is safe and robust
to daily living conditions and is trusted by the users 1s
critical.

The AP 1s a multi-layer device that will contain several
teatures, including a core glucose controller, devices for
monitoring of glucose and possibly other biologically rel-
evant compounds or signals, software to interface with the
user, safety systems to monitor the status of the system, and
telemedicine to convey information about the system to the
user and family and/or medical personnel. The core of the
AP 1s the controller, the design of which has been explored
by several research teams, with promising results®**. Con-
tinuous glucose monitoring (CGM) devices and insulin
pumps are continually being improved, and are at a perior-
mance level that enables automatic control.'*> ' Currently,
longer clinical trials with several meals and exercise are
being performed with good results.> '* Generally, the trials
with meals larger than 350 g of carbohydrate (CHO) use a
teed-forward approach, announcing meals and giving a full
or partial bolus near meal time.'” >'7 This approach is
taken due to the large glucose excursion caused by high
CHO meals and the delays in subcutaneous glucose sensing
and insulin action. For fully automatic control to be possible
with the currently available glucose sensing and insulin
delivery routes, meal detection must be itegrated into the
control scheme.

Several types ol meal detection algorithms have been
devised and studied in recent years.'® ' In those cases, 1
minute sampling was used, which may increase the speed of
detection and allow for increased accuracy. At this time,
however, most CGMs provide data at a 5 minute sampling
time. In Dassau et al.'®, the algorithms were tuned using data
with withheld boluses, enhancing the meal excursion and
allowing for higher sensitivity and faster detection. In addi-
tion, only 1solated meals were evaluated, not tull traces with
several meals, and other disturbances. Some of the algo-
rithms were trained and tested on 1 minute simulation data,
with very little noise and disturbances.'” *° This disclosure
provide, mter alia, an algorithm that has been trained and
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2

tested on clinical data that was 1n fully closed-loop mode, a
reasonable model for the actual conditions in which meal

detection will be utilized.

The Glucose Rate Increase Detector (GRID) 1s a module
of the Health Monitoring System (HMS) that has been
designed as a component of the AP that operates 1n parallel
to the controller. The objective of the GRID 1s to detect
persistent increases in glucose associated with a meal, and
trigger a meal bolus to blunt the meal peak safely. It may be
used 1n open-loop control, closed-loop control with user
input, or fully automatic closed-loop control.

SUMMARY OF THE INVENTION

Glucose management using continuous glucose monitor-
ing and insulin pumps as well as the use of an artificial
pancreas (AP) system that implements intensive insulin
therapy has an inherent risk of adverse events such as
hypoglycemia and hyperglycemia. Real-time prediction of
pending adverse events by the Health Momitoring System
(HMS) would allow prevention by either a corrective action
or shifting to manual control. This invention 1s based on
continuous glucose monitoring (CGM) data that provides a
reliable layer of protection to insulin therapy, and provides
a Glucose Rate Increase Detector (GRID) for the use with
CGM Systems, Insulin pumps and the Artificial Pancreas
(AP) for the detection of rises 1n glucose associated with
meal events and for triggering of safe meal boluses.

The GRID 1s a module of the HMS that has been designed
as a component of the AP that operates 1n parallel to the
controller. The objective of the GRID 1s to detect persistent
increases in glucose associated with a meal, and either
trigger a meal bolus to blunt the meal peak sately (during
closed-loop control) or alert the subject to bolus for a meal
(open-loop control). It may be used 1n open-loop control,
closed-loop control with user mput, or fully automatic
closed-loop control.

The mmvention GRID provides a safety system that can
accompany insulin pumps and continuous glucose monitor-
ing systems, as well as artificial pancreas. The invention can
be used to improve CGM capabilities 1n detecting meal
disturbances and recommending correction boluses to pro-
vide better glycemic control, including less time in hyper-
glycemia.

In one aspect the invention provides a GRID for use 1n an
artificial pancreas (AP), wheremn the GRID detects 1 a
person persistent increases 1 glucose associated with a
meal, and either triggers a meal bolus to blunt meal peak
sately, during closed-loop control, or alerts the person to
bolus for a meal, during open-loop control.

In embodiments the GRID comprises a GRID algorithm
which uses CGM data to estimate the rate of change (ROC)
of glucose and detect meal-related glucose excursions, the
algorithm comprising: a) a pre-processing section to prepare
the CGM data for analysis, b) an estimation section to
approximate the ROC of glucose, and ¢) a detection section
to logically pinpoint meal events.

In embodiments: a) in the pre-processing section, the
algorithm filters the CGM data using a noise-spike filter; b)
in the estimation section, the ROC of glucose 1s calculated
using the first derivative of a 3-point Lagrangian interpola-
tion polynomuial, evaluated at the most recent point; and/or,
c) the detection section comprises a logic wherein the
detection 1s positive and equal to 1 at the current point only
i a corresponding filtered point 1s above a value (G, . )
chosen large enough to 1solate post-meal glucose values and
to avoid the hypoglycemia region, and either the last three
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ROC values are above G,,;,, or the last two are above G,,,,,,
wherein the ROC cutofls are chosen to 1solate post-meal

rises, and provides a hierarchical approach, with either two
at a higher ROC or three at a lower ROC, which allows
faster detection with higher ROC values.

FrILF?

In another aspect the invention provides a GRID config-
ured to provide the steps of FIG. 1.

In another aspect the invention provides a HMS ifor
real-time prediction of pending adverse events based on
CGM data, comprising a subject GRID and a controller,
which provides prevention of the events by either a correc-
tive action or shifting to manual control.

In another aspect the mmvention provides a method for
providing a reliable layer of protection to insulin therapy,
comprising detecting rises in glucose associated with meal
events and triggering safe meal boluses, wherein the detect-
ing and triggering steps are performed with a subject GRID
with a CGM system, an 1sulin pump or an artificial pan-

creas (AP).

In another aspect the invention provides an artificial

pancreas programmed and configured to implement the
protocol of FIG. 2.

The mvention also provides corresponding algorithms for
programming controllers, HMS, and APs to eflectively
implement the disclosed steps.

The invention also provides a method comprising direct-
ing and optionally, delivering, insulin delivery using a
subject GRID, controller, HMS or AP.

The invention includes algorithms and msulin directing
systems essentially as described herein, and all combina-
tions of the recited particular embodiments. All publications
and patent applications cited 1n this specification are herein
incorporated by reference as 1f each individual publication
or patent application were specifically and individually
indicated to be incorporated by reference. Although the
foregoing 1nvention has been described 1n some detail by

way of illustration and example for purposes of clarity of

understanding, 1t will be readily apparent to those of ordi-
nary skill in the art 1n light of the teachings of this invention
that certain changes and modifications may be made thereto
without departing from the spirit or scope of the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1: Flow chart for GRID treatment protocols, fol-
lowed after a meal 1s detected.

FIG. 2: Block diagram of a fully-automated AP with the
GRID receiving CGM and insulin delivery information, and,
upon detection of a meal, relaying a bolus recommendation
to the Glucose Controller.

FIG. 3: Results for the GRID and Kalman Filter (KF),
compared with the zone-MPC 1nsulin response.

FIG. 4: Results of a cost-benefit analysis of sampling
period on meal detection metrics using 1n silico data.

FIG. 5: Time 1n range results of an 18 h study of adult
subjects using the UVA/Padova simulator with CHO meal at
4.5 h.
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FIG. 6: Time in range results of a 24 h 1n silico study of 65

10 adult subjects using the UVA/Padova simulator with
CHO meals.

4

DESCRIPTION OF PARTICULAR
EMBODIMENTS OF THE INVENTION

Design of the Glucose Rate Increase Detector: Summary.

The Glucose Rate Increase Detector (GRID), a module of
the Health Monitoring System (HMS), has been designed to
operate 1n parallel to the glucose controller to detect meal
events and safely trigger a meal bolus.

The GRID algorithm was tuned on climical data with
40-70 ¢ CHO meals and tested on simulation data with
50-100 g CHO meals. Active closed and open-loop proto-
cols were executed 1n silico with various treatments, includ-
ing automatic boluses based on a 75 g CHO meal and
boluses based on simulated user input of meal size. An
optional function was used to reduce the recommended
bolus using recent msulin and glucose history.

For closed-loop control of a three-meal scenario (50, 75
and 100 ¢ CHO), the GRID mmproved median time in the
80-180 mg/dL range by 17% and 1n the >180 range by 14%
over unannounced meals, using an automatic bolus for a 75
g CHO meal at detection. Under open-loop control of a 75
g CHO meal, the GRID shifted the median glucose peak
down by 73 mg/dL and earlier by 120 min and reduced the
time >180 mg/dL by 37% over a missed-meal bolus sce-
nario, using a full meal bolus at detection.

The GRID mmproved closed-loop control 1n the presence
of large meals, without increasing late postprandial hypo-
glycemia. Users ol basal-bolus therapy could also benefit
from GRID as a safety alert for missed meal corrections.

Methods

The modules of the HMS are each designed to monitor a
specific component of the AP, or type of adverse event or
disturbance seamlessly without interference. The most
prevalent and risky occurrence 1s hypoglycemia. Thus, the
Low Glucose Predictor (LGP) was designed to predict and
prevent severe hypoglycemia 1n parallel to a controller, and

has been shown to be effective 1n clinic in combination with
the zone-Model Predictive Control (zone-MPC) control-
161‘.22'24

In an automatically controlled system, unmeasured dis-
turbances such as meals can cause large excursions out of
the target zone, leading to hyperglycemia and, often, sub-
sequent hypoglycemia due to over-delivery in response to a
meal. The GRID has been designed as the second module in
the HMS, for the express purpose of detecting meal excur-
sions with high specificity and short reaction time.

HMS with GRID Design

The GRID algorithm uses CGM data to estimate the rate
of change (ROC) of glucose and detect meal-related glucose
excursions. The GRID consists of three main subsections: 1)
a pre-processing section to prepare the CGM data for
analysis, 2) an estimation section to approximate the ROC of
glucose, and 3) a detection section to logically pinpoint meal
events.

In the pre-processing section, the algorithm filters the data
using a noise-spike filter:*>

( G (k) it |Gp(k) — Gpysk — 1) <= AG (0)
Grnsth — 1) —AG it (Gryslk —1)— Gu(k)) > AG,

 Genslk — 1) +AG 1t (Gp(k) — Geus(k — 1)) > AG

Grns(k) =<

where k 1s the sampling instant, Gz e (k=1) 1s the
previous filtered value from the noise spike filter, G ;¢ (k)
1s the filtered value resulting from the noise-spike filter, G,
(k) 1s the measurement, and AG 1s the maximum allowable




US 10,327,681 B2

S

ROC, set to 3 mg/dL in a one-minute period, to limit the
ROC to a physiologically-probable value.”® *’ The data are
then passed through a low pass {filter to damp high frequency
fluctuations:*”

(0)

Gr(k) = Gr s (k) + (1 - Grik=1),

Tr + At Tp +&r)

where At 1s the sampling period, T~ 1s the filter time
constant, and G. 1s the filtered value. The value for T, has
been tuned to smooth the data without introducing a long
delay to optimize the specificity and detection speed of the
algorithm.

In the estimation section, the ROC of glucose 1s calculated
using the first derivative of the 3-point Lagrangian interpo-

lation polynomial, evaluated at the most recent point, as
follows: " 2

1k)—rk—-1)
(1l = 2) —t(k = D))tk = 2) — 1(k))
k) —1rk—2)
(t(k = 1) —t(k = 2)((k — 1) — (k)
2tk -tk —2)—tk-1)
(k) — (ke — 1))(2(k) — t(k = 2))

(0)

G (k) = Grik —2) +

Grlk — 1)+

Gr (k).

In the detection logic, the detection, GRID™, 1s positive
(equal to 1) at the current point only 1f the filtered point 1s
above a value GG, . and (") either the last three ROC values
are above G',,, 5 or (\/) the last two are above G

i ,2"

GRID' = { ‘
0 otherwise

The value of G, 1s chosen large enough to 1solate
post-meal glucose values and to avoid the hypoglycemia
region. The ROC cutofls are chosen to 1solate post-meal
rises and the hierarchical approach (with either two at a
higher ROC or three at a lower ROC) allows faster detection
with higher ROC values.

Kalman Filter Algorithm
A standard Kalman Filter (KF) was used as a benchmark

to evaluate the GRID algorithm. The KF was a version of the
Optimal Estimation algorithm used by Palerm, et al.*®,
modified for use with 5 min sampling. The detection logic
was 1mplemented as it was 1n the GRID, and tuned along
with the number of states (two states including glucose value
and rate of change of glucose and three states including the
acceleration of glucose as well) and the Q to R ratio for
specificity and detection speed, resulting 1n slightly different
tuning than the GRID.

Integration of HMS into Control Scheme

The knowledge of a meal event 1s helpiul for disturbance
rejection, and can be used as a form of inferential control.
Using GRID, the state of the system, with respect to meal
events, 1s estimated. Once the discrete meal event 1s detected
by the GRID module, a sequence of events to reject the
disturbance 1s activated. There are two modes explored 1n
this paper, as shown in FIG. 1: The User-Input Mode, in
which the detection triggers an alert that requests meal
information, which 1s then used to deliver a full or partial
meal bolus; and the Automatic Mode, 1n which a medium-
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s1zed meal bolus or a correction to low normal glucose levels
1s calculated and delivered automatically. Both modes can
operate with the Recent History Correction (RHC) function
active to adjust the recommended bolus. The RHC has two
functions: 1) to calculate the insulin delivery over the last 60
min and subtract the amount over basal from the recom-
mended bolus, and 2) to calculate a correction to 140 mg/dL
for the lowest glucose value 1n the past 60 min and add 1t to
the recommended bolus. The correction to 140 mg/dL can be
negative, reducing the recommended bolus 11 recent glucose
values were on the lower end of the target zone. This action
provides an additional safeguard against over-delivery. All
of these calculations are based on the clinical parameters of

the subjects, including insulin to carbohydrate ratios and

correction factors.

The tull incorporation of the HMS, including the GRID
and the LGP 1s shown in FIGS. 1 and 2, with CGM
information being sent to both LGP and GRID, and insulin
information being sent to GRID to allow for calculation of
the RHC. The HMS operates 1n parallel with the controller
to minimize interference and also to reduce the likelihood of
adverse safety events due to module failure.

—

Iraining and Validation
The GRID and KF algorithms were tuned using training,
data from clinical trials and tested on a validation set of
clinical data and an 1n silico data set, all with unannounced
meals. As mentioned above, the algorithms were tuned, 1n
order of importance, for low detection time, low {false
positive rate (high specificity), and high number of meals
positively 1dentified. Study details from all trials are shown
in Table 1, with further results detailed in several refer-

ences.”” 2

(0)

Retrospective Clinical Data

The tramning data was comprised of 12 fully closed-loop,
24-h trials with subjects with T1DM using zone-MPC with
a target zone of 80-140 mg/dL. and HMS with LGP, per-
formed at the Sansum Diabetes Research Institute using the
Artificial Pancreas System (APS©).>> The subjects were

given small to medium-sized meals (40-50 ¢ CHO) and
performed 30 min of moderate exercise, with some subjects
receiving 16 g CHO snacks belfore exercise, and several
receiving 16 g rescue CHO per the HMS. All subjects used
Dexcom® SEVEN® PLUS, (Dexcom® San Diego, Calif.)
CGMs with a 5 min sampling period, and received subcu-
taneous mnsulin delivery.

After tuning the algorithms, validation was performed on
data from a separate set of clinical trials with different
subjects, all with TIDM.>* Again, zone-MPC with HMS
was used 1n the AP system. Subjects consumed meals of
40-70 g CHO and several recerved 16 g rescue CHO per the
HMS.

In Silico Tnal Testing,

To further compare sets of tuning parameters, in silico
trials were conducted using the Food and Drug Administra-
tion (FDA)-accepted UVA/Padova metabolic stmulator con-
sisting of 10 adult subjects. The simulation was started at
3:00 am and closed-loop control using zone-MPC with
Insulin-on-board (IOB) mput constraints was initiated at
5:00 am. The zone-MPC target glucose zones were 80-140

mg/dL from 7:00 am to 10:00 pm and 110-170 mg/dL from
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midnight to 5:00 am, with smooth transitions in between.>*
Meals of 30, 75, and 100 g were given at 7:00 am, 1:00 pm,
and 6:00 pm, respectively, with control continuing until 3:00
am the next day. Data were collected using a sampling time
of 1 min and tested using the GRID and KF algorithms after
down-sampling to 5 min.

Cost-Benefit Analysis

The success of automatically rejecting the meal distur-
bance 1s highly dependent on the speed of detection. If
detected too late, 1t may be of no use, or even cause
hypoglycemia 11 too much isulin 1s delivered in excess of
the controller correction. The simulator provides a sampling,
pertod of 1 min, so an analysis of the benefit of faster
sampling rate on speed of detection, rise at detection, and the
percentage of meals detected was performed.

Prospective Application

Several 1n silico scenarios with GRID actively running
and triggering meal boluses were performed to test the
algorithm. All scenarios used a sampling period of 5 min

Standard Care Alert

For subjects on standard basal-bolus therapy, meal
boluses are sometimes missed, especially by adolescents or
busy adults.”> A missed meal bolus during standard basal-
bolus therapy was simulated, to evaluate the ability of the
algorithm to mnform a CGM user of the missed bolus 1n a
timely manner, blunting the glucose peak and decreasing the
time 1n hyperglycemia. An 18 h scenario with a 50, 73, or
100 ¢ CHO meal at 4.5 h was simulated with several
protocols, shown 1n Table 2. User-input boluses are deliv-
ered at the cycle after detection to simulate the delay of
waiting for user response.

Zone-MPC with Inferential Control

As shown above, the GRID was integrated into the control
scheme as a form of inferential control, by detecting the
meal disturbance, calculating an insulin bolus to reject the
disturbance, and feeding this information to the zone-MPC
controller. The LGP module of the HMS was also active,
with a prediction threshold of 65 mg/dL. and an activation
threshold of 100 mg/dL.>> > °% 7 A 24 h scenario with
three meals of 50, 75, and 100 g CHO was performed, as
above in the CHO per the HMS.

In Silico Tnal Testing section. Control protocols are
shown 1n

Table 3.

Results and Discussion: Training and Validation

Based on the training data, the best set of tuning param-
eters for the GRID was the following: T=6 min, G, . =130
mg/dL, G',,, »=1.5 mg/dL/min, and ', ,,, ,=1.6 mg/dL/min.
This combination of parameters resulted 1n a mean time to
detection of 42 min from the start of the meal, 87.5% of
meals detected within 2 h, and 1.6 false positive detections
per day. Due to the large number of snacks and hypoglyce-
mia rescues, adjusted values for meals detected and false
positive alarms were calculated, resulting in 63% of all
carbohydrate ingestions being detected and only 0.58 false
positive detections per day. For KF, the best set of tuning
parameters was a two-state estimate with Q:R=0.1,
G,.5—140 mg/dL, G' ., :=1.75 mg/dL/min, and G',,,,,, ,=1.85
mg/dL/min. The mean time to detection was 45 min from the
start of the meal, 79.2% of meals were detected within 2 h,
and 1.5 false positive detections occurred per day. The
adjusted calculation resulted mm 57% of all carbohydrate
ingestions being detected and only 0.58 false positive detec-
tions per day. Both algorithms were compared to the msulin
response by the controller, quantified as the time from the
start of the meal to the time when the average delivery over
15 min was more than 50% above the basal rate. The insulin
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response was compared because, depending on the glucose
values and trend at meal time, and the subject’s sensitivity
to CHO and isulin, some meals did not result 1n a pro-
nounced excursion. In these cases, a positive meal detection
alert 1s not expected or necessary. In both validation and
simulation, both algorithms performed with higher detection
rates and lower false positive rates than 1n the traiming set.
In simulation, detection was faster for the GRID. Results of
GRID and KF on the training, validation, and simulation
data are shown 1n FIG. 3, with paired t-test results compar-
ing GRID to KF shown above the boxes with asterisks or
circled asterisks when statistically significant.

Cost-Benefit Analysis

The cost of faster sampling can be seen in the form of
expensive sensors and increased energy consumption by the
sensors, recetvers, and controllers, which could lead to
shorter life and increased monetary cost. As the glucose
sampling period increases, 1t 15 expected that detection of
meals will deteriorate, so faster sampling period could
improve the performance of a controller with inferential
control using meal detection. The cost-benefit analysis of
this system was performed by testing sampling times of 1 to
30 min, as seen 1 FIG. 4. For meals above 50 g CHO, a 5
min 1ncrease 1n time to detection and a 15 mg/dL increase in
glucose at detection resulted when increasing from 1 to 5
min sampling, while all meals were still detected. Metrics
for smaller meals were more impacted, due to a less pro-
nounced glucose excursion. Small meals can generally be
dealt with without the use of additional insulin from meal
detection. This result indicates that a sampling period of 5
min 1s suflicient for meal detection of medium to large meals
but, 1f reliable 1 min sampling was readily and cheaply
available, meal detection could be improved.

Prospective Application; Standard Care Alert

The GRID wielded positive meal detections approxi-
mately 40-45 min from the start of meals, and reduced both
the meal peaks and the duration of hyperglycemia, when
compared to unannounced meals. The result of the delay 1n
the bolus during GRID-active protocols 1s a large improve-
ment over the missed meal protocol (B).

The time 1n range results of single meals of 50, 75, or 100
g CHO with open-loop therapy are shown i FIG. §, with
paired t-test results comparing the unannounced protocol (B)
to the others shown above the boxes with asterisks or circled
asterisks when statistically significant. In the case of open-
loop control, a full bolus with RHC 1s recommended at
detection (E), with significantly better time 1n range and
much less time 1n the hyperglycemia range than the unan-
nounced protocol (B).

Zone-MPC with Inferential Control

Detailed results of the zone-MPC protocols were deter-
mined, with time 1n range i FIG. 6. The GRID yielded
positive meal detections approximately 40-45 min from the
start of the meal, and delivered a calculated bolus, as
described above. For the Automatic Mode bolus protocol
(E), the meal peak and time in the 80-180 range were
significantly better than in the unannounced case (B). For all
meals, the time 1n the 80-180 range was improved over the
unannounced protocol (B) by both the Automatic Mode
bolus protocol (E), and User-Input Mode protocol (D).
Although up to five hypoglycemia treatments were given per
HMS with LGP, seven out of ten subjects had no hypogly-
cemia (<70 mg/dL), and the number of treatments and time
under 70 mg/dL. was not significantly higher for any of the
protocols when compared to announced meals. In the case of
closed-loop control, a full bolus for a 75 ¢ CHO meal with
RHC 1s recommended at detection (E), with significantly
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better time 1n range and much less time 1n the hyperglycemia
range than the unannounced protocol (B). Detailed results
are shown 1n Table 4.

CONCLUSIONS

The GRID module of the HMS was designed to accu-

rately and quickly identity meal glucose excursions and
logically recommend an insulin bolus to reject the meal
disturbance. The algorithm was tuned using noisy clinical
trial data with unannounced meals and several snacks, and
the same controller used in the simulations. It should be
noted that, while tuning for speed of detection was the first
priority, any algorithms that produced more than 2.0 false
positive detections per day were excluded. Even with those
algorithms 1ncluded, the fastest detection time would have
been 35 min for KF or GRID. Thus, with controlled data and
medium-sized meals, a 30+ min delay for meal detection
based on CGM data 1s the limit of detection speed.

The GRID 1s designed as a parallel module to the con-
troller that focuses on meal detection, to trigger a rejection
of the meal disturbance. This approach provides a more
bolus-like meal response by the controller, and the 1I0B
constraint keeps over-delivery from occurring, essentially
front-loading the insulin for the meal response without need
for outside mput. With the knowledge that the meal detec-
tion 1s delayed by at least 30 min, the disturbance rejection
action was logically modified with by the RHC function,
which reduced the recommended bolus by recent delivery
and adjusted for recent glucose history.

During closed-loop control, the GRID was able to
improve control in the presence of large meals, without
increasing the instances of hypoglycemia or increasing the
time 1n the hypoglycemia range (<70 mg/dL), as seen in
FIG. 6 and Table 4. In addition, fast recognition of missed
meal boluses 1n open-loop mode, for users on standard
therapy can greatly improve the time 1n range and serve as
a safety alert for users of the currently available devices.

LEGENDS TO THE FIGURES

FIG. 1: Flow chart for GRID treatment protocols, fol-
lowed after a meal 1s detected. Automatic Mode protocols
are 1n the box surrounded by a dashed line and User-Input
Mode protocols are 1n the box surrounded by the dotted line.

FIG. 2: Block diagram of a fully-automated AP with the
GRID receiving CGM and insulin delivery information, and,
upon detection of a meal, relaying a bolus recommendation
to the Glucose Controller. The HMS 1s outlined 1n a black
solid line, with sub-modules GRID and LGP outlined 1n
double lines, the controller 1n black solid and physical
devices and the subject 1n dotted lines.

FIG. 3: Results for the GRID (no fill) and KF (45 degree
lines), compared with the zone-MPC insulin response (45
degree cross hatches). (A) Traming set from a 12-subject
climical trial using zone-MPC with two unannounced meals
(50 and 40 g CHO); (B) Validation set from a 10-subject
climmcal trial using zone-MPC, with three unannounced
meals (70, 40, and 70 g CHO); and (C) Simulation set from
a 10-subject scenario, with three unannounced meals (50,
75, and 100 g CHO). (1) Time of detection; (2) rise 1n
glucose at detection; (3) the percentage of meals that were
detected within 2 h; (4) rate of false positive detections. The
metrics with statistically significantly different results from
the GRID algorithm (paired t-test, p<t0.05 and p<0.01) are
shown above the boxes with asterisks and circled asterisks,
respectively. Means are shown as crosses and totals 1n x’s.
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FIG. 4: Results of a cost-benefit analysis of sampling
period on meal detection metrics using 1n silico data. Meals
of 25, 50, 75, or 100 g CHO with no bolus are shown 1n
diamonds, squares, circles, and triangles, respectively. Both
Zone-MPC, shown in dotted lines with open symbols, or
Standard Care (basal/bolus), shown with solid lines and
filled symbols, control types were tested. The GRID was
executed on the data with sampling periods varying from 1
to 30 min (A) Mean rise 1n glucose from meal commence-
ment to time of detection; (B) mean time from meal com-
mencement to time of detection; and (C) percent of meals
detected within 2 h from the start of the meal.

FIG. 5: Time 1n range results of an 18 h 1n silico study of
10 adult subjects using the UVA/Padova simulator with,
from top to bottom, 50 g (1), 75 g (2), or 100 g (3) CHO meal
at 4.5 h. Scenarios (A-F) correspond to (A-F) i FIG. 5 and
Table 2 1 no fill, black fill, 45 degree cross hatches, 45
degree lines (from bottom left to top night), —45 degree lines
(from top left to bottom right), and horizontal lines, respec-
tively. Means are shown in black crosses, and medians in
dots with white borders. Protocols that have statistically
significantly different results from the unannounced (B)
protocol (paired t-test, p<0.05 and p<0.01) are shown above
the boxes with asterisks, *, and circled asterisks, @,,
respectively.

FIG. 6: Time 1n range results of a 24 h 1n silico study of
10 adult subjects using the UVA/Padova simulator with 350,
75, and 100 g CHO meals at 7:00, 13:00, and 19:00,
respectively. Scenarios (A-G) correspond to (A-G) 1n

Table 3 1n no fill, black fill, 45 degree cross hatches, 45
degree lines (from bottom left to top right), —45 degree lines
(from top leit to bottom right), horizontal lines, and vertical
lines, respectively. Means are shown 1n black crosses, and
medians 1n black dots with white borders. Protocols that
have statistically significantly different results from the
unannounced (B) protocol (paired t-test, p<0.05 and p<<0.01)
are shown above the boxes with asterisks, *, and circled
asterisks, @, respectively.
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TABLE 2

Standard care alert simulation protocols.

5
Announced GRID GRID  Recent History  Bolus Size
Protocol Meal Mode  Protocol Correction Active (%0)
0 A Yes Off — — 100
B No Off — — 0
C No User-Input  Partial No 50
D No User-Input  Partial Yes 50
E No User-Input  Full No 100
1 g No User-Input  Full Yes 100

Characteristics of training clinical datasets, validation clinical datasets, and

simulation testing set. Zone-MPC with unannounced meals was used during each trial and

simulation. Values after the number of males are presented as median (range) except where

indicated. All ranges are calculated with CGM data.

A) Training

N, datasets 12
Male sex, number 4
Age, vy 53 (28-62)
Height, cm 167 (157-193)
Weight, kg 70 (53-132)

Total Daily Basal, U 18.4 (11.6-46.2)

Total Daily Insulin, U 33 (22.9-73.2)
Default Carbohydrate Ratio, g CHO/U 10.5 (6.33-15)
Hypoglycemia Treatments®, g CHO 56 (16-112)

Default Correction Factor, mg/dL/U  51.5 (25-100)

Overall duration, h 22 (19-24)
Time <50 mg/dL, % 0 (0-1.6)
Time <70 mg/dL, % 2 (0-6.4)

Time 70-80 mg/dL, % 2.5 (0.76-6.8)
Time 80-140 mg/dL, % 46 (15-65)
Time 140-180 mg/dL, % 22 (4.5-39)
Time 180-250 mg/dL, % 18 (4.2-41)
Time >250 mg/dL, % 7.6 (0-20)
Total Insulin Delivered, U 22.3 (14.6-53.8)
Size of Meal 1, g CHO 50 (50-51)
Baseline Glucose at Meal 1, mg/dl. 112 (63-204)
Time of Meal 17 19:25 £ 00:30

Peak Glucose after Meal 1, mg/dL. 218 (128-266)
Time of Peak Glucose after Meal 1, min® 100 (60-115)

Si1ze of Meal 2, g CHO 40 (38-40)
Baseline Glucose at Meal 2, mg/dL. 111 (79-160)
Time of Meal 2¢ 06:58 + 00:08

Peak Glucose after Meal 2, mg/dL. 285 (176-378)
Time of Peak Glucose after Meal 2, min® 91 (65-115)
Size of Meal 3, g CHO —
Baseline Glucose at Meal 3, mg/dl. —
Time of Meal 3¢ —
Peak Glucose after Meal 3, mg/dl. —

Time of Peak Glucose after Meal 3, min®—

“mean * standard deviation,

’Calculated as peak within 2 h of the start of the meals.

B) Validation

10
7
52 (30-62)
170 (156-178)
65 (54-94)
24 (7.5-39.5)
38 (23.1-105)
11.5 (3.5-20)
24 (0-112)
58 (12.5-70)
24 (22-25)
0 (0-14)
1.7 (0-20)
1.7 (0-13)
26 (15-41)
19 (6.8-25)
24 (7.1-45)
25 (4.6-53)

37.2 (14.7-56.2) 35.8 (29.3-50.8)

70 (70-70)
108 (58-244)
18:54 + 00:08
286 (217-366)
113 (70-120)

40 (40-40)
126 (67-185)
07:52 + 00:07
269 (164-387)

90 (75-115)

70 (70-70)
150 (39-226)
12:52 + 00:07
291 (83-401)
115 (60-120)

C) Simulation

10

72 (46-99)
29.7 (22-45.7)
43 (34-72)
16.5 (9-22)
0 (0-80)
42.5 (26-53)

24
0 (0-1.3)
0 (0-5.9)
0 (0-3.9)
44 (29-33)
18 (9.3-26)
26 (14-40)
9.5 (0-36)

50 (50-50)
117 (98-139)
7:00

229 (178-286)

113 (77-120)
75 (75-75)
116 (91-138)

13:00

250 (219-423)

107 (73-120)

100 (100-100)

97 (70-141)
19:00

310 (233-509)

111 (86-120)
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Zone-MPC with inferential control simulation protocols.

Protocol

O W

Recent

History Bolus

Announced GRID GRID Correction  Size

Meal Mode Protocol Active (%)

Yes Off — — 100

No Off — — 0

No User-Input Partial Yes 50

No User-Input Full Yes 100

No Automatic 75 g CHO Meal Yes 100
Bolus

No Automatic Correction to 80 Yes 100
mg/dL

Time <50 mg/dL, %
Time 50-70 mg/dL, %
Time 70-80 mg/dL., %
Time 80-180 mg/dL, %
Time >180 mg/dL, %
Time >250 mg/dL, %
Total Insulin Delivered, U

Hypoglycemia Treatments, g CHO

Size of Meal 1, g CHO

Baseline Glucose at Meal 1, mg/dL

Time of Meal 1

Peak Glucose after Meal 1, mg/dL

Time of Peak Glucose from Start of Meal 1, min
Time 80-180 mg/dL from Start of Meal 1 to Meal 2%
Glucose at Detection for Meal 1, mg/dL

Time of Detection from Start of Meal 1, min
Equivalent Meal Size for Bolus, g CHO

Size of Meal 2, g CHO

Baseline Glucose at Meal 2, mg/dL

Time of Meal 2

Peak Glucose after Meal 2, mg/dL

Time of Peak Glucose from Start

of Meal 2, min

Time 80-180 mg/dL from Start of Meal 2 to Meal 3%

Glucose at Detection for Meal 2,

mg/dL

Time of Detection from Start of Meal 2, min
Equivalent Meal Size for Bolus, g CHO

Size of Meal 3, g CHO

Baseline Glucose at Meal 3, mg/dL

Time of Meal 3

Peak Glucose after Meal 3, mg/dL

Time of Peak Glucose from Start

of Meal 3, min

Time 80-180 mg/dL from Start of Meal 3 to end, %

Glucose at Detection for Meal 3,

mg/dL

Time of Detection from Start of Meal 3, min
Equivalent Meal Size for Bolus, g CHO

Time <50 mg/dL, %
Time 50-70 mg/dL, %o
Time 70-80 mg/dL, %
Time 80-180 mg/dL, %

Time >180 mg/d
Time >250 mg/d

1, %
1, %

Total Insulin De

vered, U

Hypoglycemia Treatments, g CHO
Size of Meal 1, g CHO
Baseline Glucose at Meal 1, mg/dL

Time of Meal 1

Peak Glucose after Meal 1, mg/dL
Time of Peak Glucose from Start of Meal 1, min
Time 80-180 mg/dL from Start of Meal 1 to Meal 2%
Glucose at Detection for Meal 1, mg/dL

Time of Detection from Start of Meal 1, min
Equivalent Meal Size for Bolus, g CHO

Size of Meal 2, g CHO

Baseline Glucose at Meal 2, mg/dL

Time of Meal 2
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TABLE 3-continued

Zone-MPC with inferential control simulation protocols.

GRID
Protocol

Minimum of E

and F

Recent
History Bolus
Correction Size
Active (%0)
Yes 100

Table 4: Characteristics of an 1n silico study of 10 adult
subjects using the UVa/Padova simulator. Scenarios are A-G

5
Announced GRID
Protocol Meal Mode
G No Automatic
10
as described 1n
TABLE 3
A B
0 (0-0) 0 (0-1.3)
0 (0-0) 0 (0-4.6)
0 (0-2.0) 0 (0-3.9)
89 (72-96)@ 57 (44-78)
9.9 (3.6-28)® 39 (22-51)
0 (0-0)@ 9.5 (0-36)
40 (31-64) 36 (29-51)
0 (0-16) 0 (0-80)
50 50
117 (9%-139) 117 (9%8-139)
7:00 7:00
183 (148-197)@ 229 (178-286)
81.5 (53-116) 113 (77-120)
93 (75-100)@ 58 (36-85)
158 (147-173) 159 (147-169)
48 (45-55) 43 (40-45)
50 —
75 75
108 (95-123) 116 (91-138)
13:00 13:00
189 (161-222)© 250 (219-423)
78.5 (58-120) 107 (73-120)
89 (67-100)@ 42 (33-64)
149 (144-156) 156 (152-198)
40 (30-50) 40 (30-55)
75 —
100 100
96.5 (86-137) 97 (70-141)
19:00 19:00
215 (186-241)¢ 310 (233-509)
75 (51-98) 111 (86-120)
83 (60-96)0 52 (19-71)
153 (144-163) 172 (145-244)
40 (25-50) 40 (25-90)
100 —
E
0 (0-1.5)
0 (0-4.7)
0 (0-4.9)
74 (54-85)¢
25 (15-35)9@
4.7 (0-13)
38 (31-61)
0 (0-64)
50
117 (98-139)
7:00
212 (178-238) *
89.5 (75-119)
80 (56-90)@
159 (147-169)
13 (40-45)
63 (60-69)
75
94 (78-123)
13:00

C

0 (0-0)
0 (0-3.8)
0 (0-3.2)
63 (53-81)
34 (19-42)
7.8 (0-30)
37 (30-54)
0 (0-32)
50

117 (98-139)

7:00

D

0 (0-4.5)

0 (0-3.5)

0 (0-4.9)
73 (48-85)@
25 (15-39)®
3.6 (0-17)
38 (30-60)

0 (0-64)

50
117 (98-139)
7:00

224 (178-283)
108 (77-120)
62 (44-85)

159 (147-169)

221 (178-259)
104 (76-119)
73 (52-85) *
159 (147-169)

43 (40-45)

11 (6.6-17)

75

114 (91-139)

13:00

247 (216-421)
107 (72-119)

53 (39-71)
153
40 (30-55)

21 (3.3-31)

100

02.5 (68-132)

19:00

294 (223-179)
101 (78-118)

63 (44-75)

158 (150-209)

37 (25-45)
31 (18-42)

F

0 (0-2.6)

0 (0-5.6)

0 (0-3.9)
66 (46-82)
31 (18-42) *
6.7 (0-20)
37 (30-54)

0 (0-80)

50
117 (98-139)
7:00
222 (178-258)
106 (77-120)

68 (51-85)
159 (147-169)
43 (40-45)
22 (15-29)

75
109 (91-124)
13:00

(148-199)

43 (40-45)
36 (32-42)
75
105 (87-125)
13:00
235 (204-344)
99.5 (69-115)
64 (39-82)®
159 (147-18%)
43 (30-55)
57 (48-66)

100
92 (84-199)
19:00
276 (223-397)
R5.5 (64-102)
71 (25-82) *
165 (146-319)
40 (25-50)
R0 (64-89)

G

0 (0-2.8)

0 (0-5.7)

0 (0-4.0)
66 (51-82)
31 (18-40) *
6.7 (0-18)
37 (30-54)

0 (0-64)
50
(98-139)
7:00
222 (178-258)
106 (77-120)
68 (51-85)
159 (147-169)
43 (40-45)
22 (15-29)
75
(91-124)
13:00

117

109
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TABLE 3-continued

232 (197-330)

Peak Glucose after Meal 2, mg/dL

Time of Peak Glucose from Start of Meal 2, min
Time 80-180 mg/dL. from Start of Meal 2 to Meal 3%
Glucose at Detection for Meal 2, mg/dL

Time of Detection from Start of Meal 2, min
Equivalent Meal Size for Bolus, g CHO

Size of Meal 3, g CHO

Baseline Glucose at Meal 3, mg/dL

Time of Meal 3

Peak Glucose after Meal 3, mg/dL

Time of Peak Glucose from Start of Meal 3, min
Time 80-180 mg/dL from Start of Meal 3 to end, %
Glucose at Detection for Meal 3, mg/dL

Time of Detection from Start of Meal 3, min
Equivalent Meal Size for Bolus, g CHO

18

242 (212-361) 242 (212-361)

97 (67-118) 104 (71-120) 104 (71-120)

63 (40-83)@ 52 (37-74) 52 (37-74)

157 (149-185) 156 (147-167) 156 (147-167)

45 (30-55) 43 (30-55) 43 (30-55)

58 (56-62) 22 (15-31) 22 (15-31)
100 100 100

03 (83-190) 99 (84-188) 99 (84-188)
19:00 19:00 19:00

279 (222-324)
R7.5 (65-115)

299 (225-383)
103 (83-120)

299 (225-383)
103 (83-120)

66 (39-79) * 59 (23-76) 59 (36-76)
165 (147-273) 159 (154-351) 159 (154-351)
40 (25-50) 37 (25-60) 37 (25-60)
58 (45-79) 24 (15-57) 24 (15-56)

Values are presented as median (range). Metrics that are statistically significantly different results from the unannounced (B) protocol (paired t-test, p < 0.05 and

p < 0.01) are shown after the values with asterisks, *, and circled asterisks, & , respectively.

What 1s claimed 1s:

1. A glucose rate increase detector (GRID) operative 1n
conjunction with a continuous glucose monitoring (CGM)
system, a controller and an isulin pump, wherein the GRID
detects 1n a user persistent increases 1 glucose associated
with a meal, and either triggers a meal bolus to blunt meal
peak safely, during closed-loop control, or alerts the user to
bolus for a meal, during open-loop control, wherein:

the GRID 1s configured to operate in two modes: (a) a
user-input mode, 1n which the user enters meal 1nfor-
mation, which the GRID uses to calculate the meal
bolus, and (b) an automatic mode, 1n which the GRID
automatically calculates the meal bolus or a glucose
level correction, wherein the GRID comprises an algo-
rithm which uses CGM data to estimate the rate of
change (ROC) of glucose and detect meal-related glu-
cose excursions, the algorithm comprising:

1) a pre-processing section which uses a noise-spike filter
to filter the CGM data for glucose ROC estimation,

11) an estimation section which uses the filtered CGM data
to calculate glucose ROCs, and

111) a detection section which uses the calculated glucose
ROCs to logically pinpoint meal events; the GRID
configured to detect 1n the user persistent increases 1n
blood glucose concentration associated with meal
events, wherein the GRID triggers the controller to
actuate the pump to deliver safe meal boluses to blunt
meal peak safely, or to shift to manual control, during
closed-loop control, or alerting the user to bolus for a
meal, during open-loop control, wherein:

(a) the pre-processing section filters the data using a
noise-spike filter:

( G lk) it |G,k) — Gpystk — 1) = AG
Grysk) =4 Gpys(k—1)—AG it (Gpys(k —1)—G,k) > AG
\ GF,NS(k — 1) +AG 1t (Gm(k) — GF,NS(k — 1)) > AG

where k 1s the sampling mstant, G ,¢(k-1) 1s the previous
filtered value from the noise spike filter, G, ¢ (k) 1s the
filtered value resulting from the noise-spike filter, G, (k) 1s
the measurement, and AG 1s the maximum allowable ROC,
set to 3 mg/dL 1n a one-minute period, to limit the ROC to
a physiologically-probable value, and the data are then
passed through a low pass filter to damp high frequency
fluctuations:
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Grlk) = Grns(k) + (1 - Grlk = 1),

Tr + Al TF +&r)

where At 1s the sampling period, T~ 1s the filter time constant,
and G 1s the filtered value, wherein the value for T~ has been
tuned to smooth the data without introducing a long delay to
optimize the specificity and detection speed of the algo-
rithm; or
(b) in the estimation section, the ROC of glucose 1s
calculated using the first derivative of a 3-point Lagran-
gian interpolation polynomial, evaluated at the most
recent point, as, as follows:

rk)—rk—1)
(t(k = 2) —t(k = 1 )((k = 2) —1(k))
1ky—rk —2)
(tlk — 1) —t(k = 2))(e(k — 1) —1(k))
2tk —tk-2)—rk-1)
(t(k) —1(k — 1)(e(k) — 1(k = 2))

Grlk) =

Grlk—2)+

Grlk — 1) +

Gr (k)

where k 1s the sampling instant, G ¢ (k—1) 1s the previous
filtered value from the noise spike filter, G yi(k) 1s the
filtered value resulting from the noise-spike filter, G_ (k) 1s
the measurement: or
(c) the detection section comprises a logic wherein the
detection 1s positive and equal to 1 at the current point

only 1f a corresponding filtered point 1s above a value
(G, ..) and (") either the last three ROC values are
above G', . 5 or (\/) the last two are above @'

2"

(i Grlk) > G A (Gplk —2:k) > G, 3) v
i ,

GRIDT =< (G"F(k — 1:k) > G:m”,g))

0 otherwise

wherein k 1s the sampling instant, G y(k-1) 1s the previous
filtered value from the noise spike filter, the value of G, . 1s
chosen large enough to 1solate post-meal glucose values and
to avoid the hypoglycemia region, and the ROC cutofls are
chosen to 1isolate post-meal rises and the hierarchical
approach, with either two at a higher ROC or three at a lower
ROC, allows faster detection with higher ROC values.

2. The detector of claim 1 wherein the pre-processing
section filters the data using a noise-spike filter:
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( G (k) if [Gpk) = Gpusk —1)| = AG
Gepystk—1)—AG 1if (Gpysk—1)—-G, k) > AG
| Grns(k—=1)+AG 1if (Gp(k) = Geps(k —1)) > AG

Gr ns(k) =4

where k 1s the sampling instant, G ,(k-1) 1s the previ-
ous filtered value from the noise spike filter, G (k) 15
the filtered value resulting from the noise-spike filter,
G, (k) 1s the measurement, and AG 1s the maximum
allowable ROC, set to 3 mg/dL 1n a one-minute period,
to limit the ROC to a physiologically-probable value,
and the data are then passed through a low pass filter to
damp high frequency fluctuations:

Gr (k) = Grns(k) + (1 - |Gr k- 1),

Tr + At Tr + At

where At 1s the sampling period, T~ 1s the filter time
constant, and G 1s the filtered value, wherein the value
for T~ has been tuned to smooth the data without
introducing a long delay to optimize the specificity and
detection speed of the algorithm.

3. The detector of claim 1, wherein in the estimation
section, the ROC of glucose 1s calculated using the first
derivative of a 3-point Lagrangian interpolation polynomaial,
evaluated at the most recent point, as, as follows:

1(k)—r1k —1)
(t(k = 2) —t(k = 1)((k = 2) —1(k))
1k)— 1k —2)
(tlk = 1) —1(k = 2))e(k — 1) —1(k))
2iky—tk—-2)—1tk - 1)
(t(h) —t(k = I)(e(k) —t(k = 2))

Grik) = Grlk—2) +

Grlk — 1) +

G (k)

where k 1s the sampling instant, G 5(k-1) 1s the previ-
ous filtered value from the noise spike filter, G (k) 1s
the filtered value resulting from the noise-spike filter,

G, (k) 1s the measurement.
4. The detector of claim 1, wherein the detection section
comprises a logic wherein the detection 1s positive and equal
to 1 at the current point only 11 a corresponding filtered point

is above a value (G, ) and (') either the last three ROC
values are above G', . 5 or (\/) the last two are above &

mir,2"

GRID" =

{ 1 af GF(k) > Gmin N ((G!F(k -2 k) > G:nin,?)) v (G;F(k -1 k) > G:nin,iZ))

§ otherwise

wherein k 1s the sampling instant, G, y(k-1) 1s the
previous filtered value from the noise spike filter, the
value of G, . 1s chosen large enough to 1solate post-
meal glucose values and to avoid the hypoglycemia
region, and the ROC cutofls are chosen to 1solate
post-meal rises and the hierarchical approach, with
either two at a higher ROC or three at a lower ROC,
allows faster detection with higher ROC values.

5. A health monitoring system (HMS) for real-time pre-
diction of pending adverse events based on continuous
glucose monitoring (CGM) data, comprising the glucose
rate increase detector (GRID) of claim 1 and a controller,
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which provides prevention of the events by either a correc-
tive action or shifting to manual control.

6. A health monitoring system (HMS) for real-time pre-
diction of pending adverse events based on continuous
glucose monitoring (CGM) data, comprising the glucose
rate increase detector (GRID) of claim 2 and a controller,
which provides prevention of the events by either a correc-
tive action or shifting to manual control.

7. A health monitoring system (HMS) for real-time pre-
diction of pending adverse events based on continuous
glucose monitoring (CGM) data, comprising the glucose
rate increase detector (GRID) of claim 3 and a controller,
which provides prevention of the events by either a correc-
tive action or shifting to manual control.

8. A health monitoring system (HMS) for real-time pre-
diction of pending adverse events based on continuous
glucose monitoring (CGM) data, comprising the glucose
rate increase detector (GRID) of claim 4 and a controller,
which provides prevention of the events by either a correc-
tive action or shifting to manual control.

9. An artificial pancreas comprising the glucose rate
increase detector (GRID) of claim 1, a low glucose predictor
(LGP), a continuous glucose monitoring (CGM) device, a
glucose controller, and an insulin pump, programmed and
configured wherein the LGP receives CGM data from the
CGM device and upon detection of low glucose, relays an
alert to the user, and wherein the GRID receives CGM date
from the CGM device and 1nsulin delivery information, and
upon detection of a meal, relays a bolus recommendation to
the controller, which directs the pump to deliver the bolus.

10. An artificial pancreas comprising the glucose rate
increase detector (GRID) of claim 2, a low glucose predictor
(LGP), a continuous glucose monitoring (CGM) device, a
glucose controller, and an isulin pump, programmed and
configured wherein the LGP receives CGM data from the
CGM device and upon detection of low glucose, relays an
alert to the user, and wherein the GRID receives CGM date
from the CGM device and 1nsulin delivery information, and
upon detection of a meal, relays a bolus recommendation to
the controller, which directs the pump to deliver the bolus.

11. An artificial pancreas comprising the glucose rate
increase detector (GRID) of claim 3, a low glucose predictor
(LGP), a continuous glucose monitoring (CGM) device, a
glucose controller, and an msulin pump, programmed and
configured wherein the LGP receives CGM data from the
CGM device and upon detection of low glucose, relays an
alert to the user, and wherein the GRID receives CGM date
from the CGM device and 1nsulin delivery information, and
upon detection of a meal, relays a bolus recommendation to
the controller, which directs the pump to deliver the bolus.

12. An artificial pancreas comprising the glucose rate
increase detector (GRID) of claim 4, a low glucose predictor
(LGP), a continuous glucose monitoring (CGM) device, a
glucose controller, and an msulin pump, programmed and
configured wherein the LGP receives CGM data from the
CGM device and upon detection of low glucose, relays an
alert to the user, and wherein the GRID receives CGM date
from the CGM device and 1nsulin delivery information, and
upon detection of a meal, relays a bolus recommendation to
the controller, which directs the pump to deliver the bolus.

13. A method for providing a reliable layer of protection
to isulin therapy, performed by the glucose rate increase
detector (GRID) of claim 1 1n conjunction with a continuous
glucose monitoring (CGM) system, a controller and an
insulin pump, the method comprising:

operating the GRID, wherein the GRID detects 1n a user

persistent increases 1 blood glucose concentration
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associated with meal events and either triggers a meal
bolus to blunt meal peak safely, during closed-loop
control, or alerts the user to bolus for a meal, during
open-loop control, wherein the GRID triggers the con-
troller to actuate the pump to deliver sate meal boluses
to blunt meal peak safely, or to shiit to manual control,
during closed-loop control, or alerting the user to bolus
for a meal, during open-loop control.

14. A method for providing a reliable layer of protection
to msulin therapy, performed by the glucose rate increase
detector (GRID) of claim 2 1n conjunction with a continuous
glucose monitoring (CGM) system, a controller and an
insulin pump, the method comprising:

operating the GRID, wherein the GRID detects 1in a user

persistent increases 1 blood glucose concentration
associated with meal events and either triggers a meal
bolus to blunt meal peak safely, during closed-loop
control, or alerts the user to bolus for a meal, during
open-loop control, wherein the GRID triggers the con-
troller to actuate the pump to deliver sate meal boluses
to blunt meal peak safely, or to shiit to manual control,
during closed-loop control, or alerting the user to bolus
for a meal, during open-loop control.

15. A method for providing a reliable layer of protection
to msulin therapy, performed by the glucose rate increase
detector (GRID) of claim 3 1n conjunction with a continuous
glucose monitoring (CGM) system, a controller and an
insulin pump, the method comprising:

operating the GRID, wherein the GRID detects 1in a user

persistent increases 1 blood glucose concentration
associated with meal events and either triggers a meal
bolus to blunt meal peak safely, during closed-loop
control, or alerts the user to bolus for a meal, during
open-loop control, wherein the GRID triggers the con-
troller to actuate the pump to deliver sate meal boluses
to blunt meal peak safely, or to shiit to manual control,
during closed-loop control, or alerting the user to bolus
for a meal, during open-loop control.

16. A method for providing a reliable layer of protection
to msulin therapy, performed by the glucose rate increase
detector (GRID) of claim 4 1n conjunction with a continuous
glucose monitoring (CGM) system, a controller and an
insulin pump, the method comprising:

operating the GRID, wherein the GRID detects 1in a user

persistent 1ncreases in blood glucose concentration
associated with meal events and either triggers a meal
bolus to blunt meal peak safely, during closed-loop
control, or alerts the user to bolus for a meal, during
open-loop control, wherein the GRID triggers the con-
troller to actuate the pump to deliver sate meal boluses
to blunt meal peak safely, or to shiit to manual control,
during closed-loop control, or alerting the user to bolus
for a meal, during open-loop control.

17. The detector of claim 1:

wherein the pre-processing section filters the data using a

noise-spike filter:

( G (k) it |Gp(k) = Grysth =1 <AG
Grystk—1)—AG 1t (Grys(k —1)—Gplk)) > AG
 Grnstk—1)+AG 1t (Gp(k) — Geustk — 1)) > AG

Grns(k) =5

where k 1s the sampling instant, G ,.(k—1) 1s the previous
filtered value from the noise spike filter, G 5 (k) 15 the
filtered value resulting from the noise-spike filter, G, (k) 1s
the measurement, and AG 1s the maximum allowable ROC,
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set to 3 mg/dL 1 a one-minute period, to limit the ROC to
a physiologically-probable value, and the data are then
passed through a low pass filter to damp high frequency
fluctuations:

Grk) =

Grws(k) + (1 - |Gtk - 1),

T + Al Tr + Al

where At 1s the sampling period, T 1s the filter time constant,
and G 1s the filtered value, wherein the value for Tt~ has been
tuned to smooth the data without introducing a long delay to
optimize the specificity and detection speed of the algo-
rithm; and
wherein 1n the estimation section, the ROC of glucose 1s
calculated using the first derivative of a 3-point Lagran-
gian interpolation polynomial, evaluated at the most
recent point, as, as follows:

rk)—r1k—1)
(t(k —2) —t(k = 1 )(a(k = 2) — (k)
k) —1tk —2)
(tlk — 1) —1(k = 2)(e(k — 1) —2(k))
2tiky—tk=2)—1rk -1)
(t(k) — 1k — 1))(e(k) — 1(k — 2))

Gr(k) = Grlk—2)+

Grlk — 1) +

Gr(k)

where k 1s the sampling mstant, G ,,(k-1) 1s the previous
filtered value from the noise spike filter, G (k) 1s the
filtered value resulting from the noise-spike filter, G, (k) 1s
the measurement.
18. The detector of claim 1:
wherein the pre-processing section filters the data using a
noise-spike filter:

G (k) it |G, (k) — Geus(k — )] = AG
Grpystk—=1)—AG 1t (Gpys(k —1)—=Gpk)) > AG
GF,NS(k — 1) +AG 1t (Gm(k) — GF,NS(k — 1)) > AG

Grns(k) =

where k 1s the sampling instant, G ,.(k—1) 1s the previous
filtered value from the noise spike filter, G (k) 1s the
filtered value resulting from the noise-spike filter, G, (k) 1s
the measurement, and AG 1s the maximum allowable ROC,
set to 3 mg/dL 1in a one-minute period, to limit the ROC to
a physiologically-probable value, and the data are then
passed through a low pass filter to damp high frequency
fluctuations:

Gr(k) = Grns(k) + (1 - Grik = 1),

Tr + Ar TF +m)

where At 1s the sampling period, T, 1s the filter time constant,
and G 1s the filtered value, wherein the value for T~ has been
tuned to smooth the data without introducing a long delay to
optimize the specificity and detection speed of the algo-

rithm; and
wherein the detection section comprises a logic wherein
the detection 1s positive and equal to 1 at the current

point only 11 a corresponding filtered point 1s above a
value (G, . )and (") either the last three ROC values are
above ', 5 or (\/) the last two are above G

min,2"
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GRID" =

{1ifGFw)}cam»4u34k—2:hn}G;mgv(G}w—J:k)}Cﬂm;D

§ otherwise

wherein k 1s the sampling instant, G 5. (k—1) 1s the previous
filtered value from the noise spike filter, the value of G, . 1s
chosen large enough to 1solate post-meal glucose values and
to avoid the hypoglycemia region, and the ROC cutolls are
chosen to 1solate post-meal rises and the hierarchical
approach, with either two at a higher ROC or three at a lower
ROC, allows faster detection with higher ROC values.
19. The detector of claim 1:
wherein 1n the estimation section, the ROC of glucose 1s
calculated using the first derivative of a 3-point Lagran-
gian interpolation polynomial, evaluated at the most
recent point, as, as follows:

1(k)—r1k —1)
(t(k = 2) —t(k = 1)k = 2) —1(k))
1ky—1tk —2)
(2l = 1) — 2k = 2))z(k — 1) — 1(k))
2iky—tk—-2)—rk - 1)
(t(k) — ek — 1)(2(k) — t(k — 2))

G (k) =

Grlk —2) +

Grlk — 1) +

Gr(k)

where k 1s the sampling nstant, G .(k-1) 1s the previous
filtered value from the noise spike filter, G 4(k) 1s the
filtered value resulting from the noise-spike filter, G, (k) 1s
the measurement: and
wherein the detection section comprises a logic wherein
the detection 1s positive and equal to 1 at the current
point only 1f a corresponding filtered point 1s above a
value (G, . ) and (") either the last three ROC values are
above G',,, 5 or (\/) the last two are above ('

mir,2"

(if Grlk) > G A ((Gplk —2:k) > G 3) v
i ,

GRIDT =< (GJ’F(!{ —1:k) > G:Hm,z))

0 otherwise

wherein k 1s the sampling instant, G y(k-1) 1s the previous
filtered value from the noise spike filter, the value of G, . 1s
chosen large enough to 1solate post-meal glucose values and
to avold the hypoglycemia region, and the ROC cutolils are
chosen to 1solate post-meal rises and the hierarchical
approach, with either two at a higher ROC or three at a lower
ROC, allows faster detection with higher ROC values.
20. The detector of claim 1:

wherein the pre-processing section filters the data using a
noise-spike filter:

( G (k) it |G, (k) - Gpusk — 1) = AG
Gpystk—1)—AG 1t (Gpys(k —1)—=Gyk)) > AG
\ GF,NS(k — 1) +AG if (Gm(k) — GF,NS(k — 1)) > AG

Grys(k) =+
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where k 1s the sampling instant, G ¢ (k—1) 15 the previous
filtered value trom the noise spike filter, G ¢ (k) 1s the
filtered value resulting from the noise-spike filter, G, (k) 1s
the measurement, and AG 1s the maximum allowable ROC,
set to 3 mg/dL i a one-minute period, to limit the ROC to
a physiologically-probable value, and the data are then

passed through a low pass filter to damp high frequency
fluctuations:

Grk) =

Grns(k) + (1 - Grik = 1),

Tr + Ar TF +Ar)

where At 1s the sampling period, T 1s the filter time constant,
and G 1s the filtered value, wherein the value for T, has been
tuned to smooth the data without introducing a long delay to
optimize the specificity and detection speed of the algo-
rithm;
wherein 1n the estimation section, the ROC of glucose 1s
calculated using the first derivative of a 3-point Lagran-

gian interpolation polynomial, evaluated at the most
recent point, as, as follows:

rik)—rk—1)

GHKH5mk_Z%¢w_1DMK—Z%4WD

Grlk —2) +

1ky—rtk =2)
(k= 1) —1(k = 2))(2(k — 1) — 1(k))

Grlk — 1) +

2ty =tk =2)—1tk -1)
(1) —1(k — 1) (k) —1(k — 2))

Gr(k)

where k 1s the sampling instant, G ¢ (k—1) 1s the previous
filtered value from the noise spike filter, G ¢ (k) 15 the
filtered value resulting from the noise-spike filter, G_ (k) 1s
the measurement: and

wherein the detection section comprises a logic wherein
the detection 1s positive and equal to 1 at the current
point only 1f a corresponding filtered point 1s above a
value (G, . )and (") either the last three ROC values are
above G',,,, 5 or (\/) the last two are above &

IR, 2"

f’ | AL Gr) > G (Gplk = 2:k) > Gy 3) v
GRID" =« (Grlk — 1:k) > G:nm,z))
0 otherwise

wherein k 1s the sampling instant, G ;¢ (k—1) 1s the previous
filtered value from the noise spike filter, the value of G . 1s
chosen large enough to 1solate post-meal glucose values and
to avoid the hypoglycemia region, and the ROC cutofls are
chosen to 1solate post-meal rises and the hierarchical
approach, with either two at a higher ROC or three at a lower
ROC, allows faster detection with higher ROC values.
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