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SYSTEM, METHOD AND APPARATUS FOR
DETECTING AN EVOKED RESPONSE

SIGNAL

RELATED APPLICATIONS

The present disclosure claims priority to U.S. Provisional
Patent Application No. 62/054,538 filed Sep. 24, 2014 the
content of which 1s hereby incorporated herein.

FIELD

The present application relates to an apparatus, system
and method for detecting evoked responses to a stimulus (a
stimulus-response signal). In particular, the application
relates to apparatus, system and method for detecting
evoked responses when there 1s a low signal to noise ratio
such as 1n electrophysiological evoked responses.

BACKGROUND

There are many situations in which it may be necessary to
extract a signal of interest from a noisy recerved signal. This
task becomes more difficult in a situation 1n which the
received signal has a low signal to noise ratio (SNR). In
some cases, the signal of interest may be generated in
response to a stimulus and may also be synchronized to the
stimulus. An example of such a case relates to the measure-
ment of evoked responses. Electrophysiological evoked
responses to a variety of stimuli are known to contain
valuable clinical and scientific information 1n the assessment
of the sensorineural systems of humans and animals. Evoked
responses (ER), such as, for example, auditory evoked
potentials, somatosensory evoked potentials, visual evoked
potentials, otoacoustic emissions, or the like, are signals that
are often 10-1000 times smaller than the noise that 1is
typically recorded by signal transducers (such as electrodes
or microphones) at the time of recording the ER. In many
cases, the ER wavetorm and 1ts clinically relevant features
may only be detectable after averaging thousands of
responses to individual stimuli.

The noise that 1s recorded by the signal transducers may
be caused by various sources, including, for example, noise
generated by muscular activity, for example, EMG noise, or
the like, during an evoked response (ER) test and may also
include electrical noise from lighting, other instruments and
the like. Because the noise 1s generally many times greater
than the ER signal, the noise tends to mask the ER signal.
One challenge of clinical ER measurement 1s determining
whether specific features of an ER waveform represent true
clectrophysiological responses or 1f the specific features are
a result ol noise. A special application of ER detection is the
detection of the auditory brainstem response (ABR) and
auditory steady state responses (ASSR) with applications to
infant hearing screening and to the determination of auditory
thresholds for all ages, which may be used in the customized
fitting of hearing aids.

Several conventional techniques used to mimimize noise
in the recorded response to auditory stimuli are known.
These techniques 1nclude, for example, signal averaging and
weilghted signal averaging, signal filtering, artifact rejection,
and various techmiques designed to relax or sedate the
subject.

Signal averaging involves stimulating the patient with
multiple stimuli, obtaining multiple time-based data series,
cach data series synchronized to a single instance of the
stimulus, and averaging the multiple synchronized data

10

15

20

25

30

35

40

45

50

55

60

65

2

series. Limitations of this traditional averaging method 1n
evoked potential acquisition have long been recognized. A
problem may arise from a poor signal to noise ratio (SNR)
and that the number of averages required typically increases
in iverse proportion to the square of the SNR.

Artifact rejection (AR) can be used to eliminate a data
series or groups ol data series that are most contaminated
with noise, by excluding from the average those data series
for which the noise exceeds a preset threshold.

Weighted averaging (WA) may further improve SNR by
welghting groups of data series 1n inverse proportion to their
noise content. There are various conventional methods of
assessing noise content of a group of data series to determine
the weights. Assuming the noise 1s quasi-stationary, 1.c.
stationary within each group of data series, and independent
between data series, weighting each group in iverse pro-
portion to the variance of the noise within the group will
minimize the squared error of the weighted average.

In a conventional example, a group of 2350 responses to
stimul1 that were stimulated at a rate of 30 Hz can be
examined and averaged. In this case, the group 1s greater
than 8 seconds 1n duration. The drawback of this technique
1s that noise 1n evoked potential measurements 1s, in general,
not stationary over an 8 second duration, especially when the
time series 1s contaminated with interference from the
patient’s EMG caused by muscle activity. A further draw-
back where multiple groups of measurements are being
made 1s that electrical noise 1in the environment 1s, 1n
general, not independent from group to group, especially
when a significant component of that noise 1s periodic or
quasi-periodic such as noise arising from powerline inter-
ference or from coherent cortical EEG during deep sleep, or
the like. For example, coherent or quasi-coherent EEG noise
in the alpha band i1s particularly large under anesthesia,
making the detection of cortical evoked potentials that
contain significant frequency content in the alpha band
particularly diflicult.

An mmprovement to an averaging scheme or weighted
averaging scheme may include using normative data for the
ABR signal and EEG to estimate the magnitude of the noise
component of the vanance in the data series which 1is
comprised of both signal and additive noise. If the signal
model based on normative data 1s accurate, this technique
allows estimation of the noise from individual data series
instead of groups of data series. For this technique to be
valid, the stationarity assumption may only be required for
the duration of a single data series or response, typically, less
than 100 ms. However, normative data 1s generally based on
stimulus type and stimulus level and, 1n at least some cases,
the noise might not necessarily be stationary, even at such a
small duration.

In a different conventional approach, weights may be
chosen to be inversely related to a measure of dissimilarity
between individual data series and the estimated average. In
an example, the weights may be inversely proportional to the
mean squared error between each individual data series and
the averaged signal estimate.

Overall, similar to other conventional methods noted
above, the weighted techmques operate under the assump-
tion that the noise from data series to data series 1s inde-
pendent, 1.e. the noise between pair of data series has zero
covariance. It this independence assumption 1s not valid, the
resulting weights will not be optimal 1n the sense that the
mean squared noise in the weighted average will not be
minimized. In evoked response signals, the independence
assumption 1s generally not valid because of environmental
noise, when present, such as sinusoidal noise arising from
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power-line frequencies and their harmonics, which are gen-
erally not independent and non-stationary.

Embodiments of the apparatus, system and method
described herein are intended to address at least one of the
dificulties of conventional methods of detecting an evoked
response signal.

SUMMARY

In a first aspect, the present disclosure provides a method
for detection of an evoked response signal in noise, the
method including: generating a plurality of stimuli; receiv-
ing a noisy signal related to an evoked response to the
plurality of stimuli; divide the noisy signal into a plurality of
responses to the plurality of stimuli; estimate a statistic
matrix for the plurality of responses; shrink the statistic
matrix; calculate weights based on an mnverse of the shrunk
statistic matrix; apply weights to the plurality of responses
to construct a final response; and output the final response.

In a particular case, the shrinking the statistic matrix may
include: calculate a correlation between combinations of
responses; create a list of negatively correlated pairs; for
cach negatively correlated pair 1n the list: determine 1f one
of the responses in the pair 1s in a shrinkage list, i so,
remove the pair from the list of negatively correlated pairs,
otherwise, add both responses of the pair to the shrinkage
list; when the list of negatively correlated pairs 1s empty, set
all non-diagonal elements of the statistic matrix correspond-
ing to responses 1n the shrinkage list to 0 to provide a shrunk
statistic matrix; and return the shrunk statistic matrix.

In another particular case, the method may further include
decomposing each response into a plurality of sub-responses
to create a plurality of sets of sub-responses and performing,
the: estimate a statistic matrix for the plurality of responses;
shrink the statistic matrix; calculate weights based on an
inverse ol the shrunk statistic matrix; apply weights to the
plurality of responses to construct a final response; for each
of the plurality of sets of sub-responses.

In yet another particular case, the decomposing com-
prises: performing a multilevel discrete wavelet transform
on individual responses i a loop for each scale of the
multilevel discrete wavelet transform, selecting a scale of
the multilevel discrete wavelet transform and, for the
selected scale: set wavelet coeflicients for non-selected
scales to 0; and perform a multilevel inverse discrete wave-
let transform to obtain a time domain sub-response for the
selected scale; and return a plurality of sets of sub-responses,
cach set comprising sub-responses having the same scale.

In still yet another particular case, the statistic may be
covariance and the statistic matrix may be a covariance
matrix.

In another particular case, the statistic matrix may be an
array having greater than two dimensions.

In yet another particular case, the statistic may be root
mean square and the statistic matrix may be a root mean
array having greater than two dimensions.

In still another particular case, the divide the noisy signal
into a plurality of responses to the plurality of stimuli may
be based on the plurality of responses being synchronized
with the plurality of stimull.

In another aspect, the disclosure provides for an apparatus
for detection of an evoked response signal in noise, the
apparatus having: an input device configured to recerve data
related to a plurality of stimuli and a noisy signal related to
the evoked response signal to the plurality of stimuli; and a
processor configured to: receive the noisy signal from the
input device and divide the noisy signal into a plurality of
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responses to the plurality of stimuli; estimate a statistic
matrix for the plurality of responses; shrink the statistic
matrix; calculate weights based on an inverse of the shrunk
statistic matrix; and apply weights to the plurality of
responses to construct a final response representing the
evoked response signal.

In a particular case, when shrinking the statistic matrix the
processor may be further configured to: calculate a correla-
tion between combinations ol responses; create a list of
negatively correlated pairs; for each negatively correlated
pair in the list: determine if one of the responses 1n the pair
1s 1n a shrinkage list, 1f so, remove the pair from the list of
negatively correlated pairs, otherwise, add both responses of
the pair to the shrinkage list; when the list of negatively
correlated pairs 1s empty, set all non-diagonal elements of
the statistic matrix corresponding to responses 1n the shrink-
age list to 0 to provide a shrunk statistic matrix; and return
the shrunk statistic matrix.

In another particular case, the processor may be further
configured to decompose each response mto a plurality of
sub-responses to create a plurality of sets of sub-responses
and performing the: estimate a statistic matrix for the
plurality of responses; shrink the statistic matrix; calculate
welghts based on an 1mverse of the shrunk statistic matrix;
apply weights to the plurality of responses to construct a
final response; for each of the plurality of sets ol sub-
responses.

In yet another particular case, the processor, when decom-
posing each response, may be further configure to: perform
a multilevel discrete wavelet transform on individual
responses 1n a loop for each scale of the multilevel discrete
wavelet transform, selecting a scale of the multilevel dis-
crete wavelet transform and, for the selected scale: set
wavelet coellicient for non-selected scales to 0; and perform
a multilevel inverse discrete wavelet transform to obtain a
time domain sub-response for the selected scale; and return
a plurality of sets of sub-responses, each set comprising
sub-responses having the same scale.

In still yet another particular case, the statistic may be
covariance and the statistic matrix may be a covarance
matrix.

In a particular case, the statistic matrix may be an array
having greater than two dimensions.

In another particular case, the statistic may be root mean
square and the statistic matrix may be a root mean square an
array having greater than two dimensions.

In still another particular case, the divide the noisy signal
into a plurality of responses to the plurality of stimuli may
be based on the plurality of responses being synchronized
with the plurality of stimula.

In st1ll another aspect of the disclosure, there 1s provided
a system for detection of an evoked response signal 1n noise,
the system comprising: a stimulus generator configured to
generate a plurality of stimuli; a plurality of sensors con-
figured to receive a noisy signal including an evoked
response signal to the plurality of stimuli; an mnput device
configured to receive data related to the plurality of stimuli
and the noisy signal; a processor configured to: receive the
noisy signal from the input device and divide the noisy
signal into a plurality of responses to the plurality of stimuli;
estimate a statistic matrix for the plurality of responses;
shrink the statistic matrix; calculate weights based on an
inverse of the shrunk statistic matrix; and apply weights to
the plurality of responses to construct a final response
representing the evoked response signal; and an output
device to output the final response received from the pro-
CESSOT.
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In a particular case, when shrinking the statistic matrix the
processor may be further configured to: calculate a correla-
tion between combinations ol responses; create a list of
negatively correlated pairs; for each negatively correlated
pair in the list: determine if one of the responses in the pair
1s 1n a shrinkage list, 1f so, remove the pair from the list of
negatively correlated pairs, otherwise, add both responses of
the pair to the shrinkage list; when the list of negatively
correlated pairs 1s empty, set all non-diagonal elements of
the statistic matrix corresponding to responses 1n the shrink-
age list to 0 to provide a shrunk statistic matrix; and return
the shrunk statistic matrix.

In another particular case, the processor may be further
configured to decompose each response mto a plurality of
sub-responses to create a plurality of sets of sub-responses
and performing the: estimate a statistic matrix for the
plurality of responses; shrink the statistic matrix; calculate
welghts based on an mverse of the shrunk statistic matrix;
apply weights to the plurality of responses to construct a
final response; for each of the plurality of sets of sub-
responses.

In still another particular case, the processor, when
decomposing each response, may be further configure to:
perform a multilevel discrete wavelet transform on indi-
vidual responses 1n a loop for each scale of the multilevel
discrete wavelet transform, selecting a scale of the multi-
level discrete wavelet transform and, for the selected scale:
set wavelet coeflicients for non-selected scales to 0; and
perform a multilevel inverse discrete wavelet transform to
obtain a time domain sub-response for the selected scale;
and return a plurality of sets of sub-responses, each set
comprising sub-responses having the same scale.

In still yet another case, the statistic may be covariance
and the statistic matrix may be a covariance matrix.

In a particular case, the statistic matrix may be an array
having greater than two dimensions.

In another particular case, the statistic may be root mean
square and the statistic matrix may be a root mean square
array having greater than two dimensions.

In still yet another particular case, the divide the noisy
signal into a plurality of responses to the plurality of stimuli
may be based on the plurality of responses being synchro-
nized with the plurality of stimuli.

Other aspects and features of the present disclosure will
become apparent to those ordinarily skilled 1n the art upon
review ol the following description of specific embodiments
in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE

DRAWINGS

Embodiments of the present disclosure will now be
described by way of example only, with reference to the
attached Figures.

FIG. 1 illustrates an embodiment of an apparatus and
system for evoked response detection;

FI1G. 2 illustrates an embodiment of a method for evoked
response detection;

FIG. 3 illustrates an example of a method for detecting
evoked responses using noise reduction with a covariance
matrix;

FIG. 4 illustrates an example of a method to shrink a
covariance matrix;

FI1G. 5 illustrates an example of a method for the decom-
position of a response 1mnto multiple sub-responses;

FIG. 6 illustrates sample data (*noisy signal”) from elec-
trodes 1n response to a stimulus;
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FIG. 7 1llustrates a final response for an ABR experiment
using Method 1;

FIG. 8 illustrates a final response for an ABR experiment
using Method 2;

FIG. 9 illustrates a final response for an ABR experiment
using Method 3;

FIG. 10 1llustrates a final response for an MM\T eXperi-
ment 1n a pre-operation condition using Method 1

FIG. 11 illustrates a final response for an MM\T eXPpEri-
ment 1n a pre-operation condition using Method 2;

FIG. 12 1llustrates a final response for an MMN experi-
ment 1n a pre-operation condition using Method 3;

FIG. 13 1llustrates a final response for an MMN experi-
ment 1n a anesthetic condition using Method 1;

FIG. 14 1llustrates a final response for an MMN experi-
ment 1n a anesthetic condition using Method 2; and

FIG. 15 1llustrates a final response for an MMN experi-
ment 1n a anesthetic condition using Method 3.

DETAILED DESCRIPTION

The present application relates to an apparatus, system
and method for detecting an evoked response signal and, 1n
particular, to an evoked response in a series of data that
contains synchronized signals, for example as a signal
generated 1n response to a stimulus (a stimulus-response
signal). In particular, the application relates to apparatus,
system and method for detecting a signal when there 1s a low
signal to noise ratio such as 1n electrophysiological evoked
responses, for example, wvisual, auditory, and sensory
responses.

The method of detecting a signal 1s particularly suited to
the use of auditory evoked responses where the background
noise, such as EEG noise and power-line noise 1s very large
and quasi-sinusoidal. Embodiments of the apparatus, system
and method herein are intended to reduce the negatively
correlated noise from the resultant average in an improved
manner comparatively to conventional techniques, for
example standard weighted averaging, and the like.

An embodiment of an apparatus or system 100 for detec-
tion of an evoked response signal 1s shown in FIG. 1. The
apparatus described herein 1s intended for electro-physi-
ological signals such as advanced ABR or consciousness
detection but a similar apparatus could be developed for
other electro-physiological signals or applications by one of
skill 1n the art on reviewing the description herein.

The system 100 includes a stimulus generator 105, which
may be internal or external to other portions of the system
and which provides a stimulus to a subject 110. A sensor or
sensors 115, for example an electrode or electrodes, are
provided to the subject to detect a noisy signal including a
response to the stimulus, which 1s sent to an 1nput module
120. The input module 120 may also receive input from the
stimulus generator 105 related to the stimulus provided for
synchronization purposes.

It will be understood that the electrodes receive continu-
ous data, sometimes referred to as “noisy data” or “noisy
signal”. For each stimulus, a synchronized evoked response
within the subject’s brain will be generated. Typically, this
evoked response will also be detected by the electrodes but
1s generally hidden in the noisy signal. Embodiments of the
system, apparatus and method herein are itended to sepa-
rate the evoked response, or stimulus-synchronized compo-
nent, (sometimes referred to as a “response”) from the
non-synchronized components (1.€. noise). For ease of ref-
erence, a portion of the noisy signal that 1s expected to
include a stimulus-synchronized component 1s also some-
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times referred to as a “response” and 1s also referred to as a
“sweep”. In situations with poor signal to noise ratios
(SNR), which are typical in physiological evoked responses,
the detection of whether or not there 1s a response 1n the
noisy signal generally involves providing a plurality of
essentially identical stimuli and averaging a plurality of
responses (1.e. portions of the noisy signal) corresponding to
the stimuli. The final waveform or averaged response (some-
times called the “final response™), 1s the estimate of the
synchronized evoked response, with reduced noise. It will be
understood that the type of evoked response will generally
be dependent on the stimulus and on the subject. For
example, 11 a subject cannot hear an auditory stimulus, then
there would not be an evoked response to the auditory
stimulus.

Returning to FIG. 1, the mput from the sensors 115 may
be filtered, via a filter module 1235, for example a bandpass
filter or the like, before or after receipt at the input module
120 (In this example, the filter module 1235 1s shown after the
input module but 1t may be helpful to provide filtering 1n
advance of the mput module). In some cases, the filter 1235
may be attached to or incorporated into the sensor or sensors
115.

The system 100 may further include an amplifier 130. In
some cases, the mput from the mput module 120 may be
amplified prior to or after i1t has been filtered by the filter
125. In other cases, the amplifier 130 may be connected to
or incorporated into the sensor or sensors 115.

The 1mnput module 120 provides data, for example data
relating to the noisy signal and the stimuli, to a processor
135, which provides capability for various functions and/or
modules as described below, while making use of a memory
140 for storing data, calculating results and the like. The
processor 1335 also provides capability for outputting data
via an output module 145. In some cases, the processor 135
may also be connected with the stimulus generator 103 to
provide instructions to the stimulus generator 105 and, in
some cases, may also receive iformation directly from the
stimulus generator 1035. The output module 145 may output
data 1n various formats as are known 1n the art, including, for
example, output to a display 150 for review by a user of the
system.

The stimulus generator 145 may include multiple stimu-
lus sources, such as visual and auditory, or may be a single
source. Further, 1n either case, the stimuli may generate a
plurality of responses, such as an auditory stimulus that
clicits both an ABR and an ASSR. Each response may or
may not have a specific frequency band and filtering may be
used 1n order to 1solate each response-specific frequency
band for analysis. As noted above, filtering may be before or
alter amplification and, further, each montage (1.e. electrode
combination) may be provided with or subject to multiple
filters.

FIG. 2 illustrates an embodiment of a method 200 for
detecting an evoked response signal generated 1n response to
a stimulus. At 205, a plurality of stimuli 1s generated by the
stimulus generator 105. At 210, a noisy signal containing a
plurality of responses 1s detected by the sensor or sensors
115 and sent to the mput module 120. In some cases, data
from the generated stimuli or the noisy signal relating
thereto may also be stored 1n memory 140.

At 215, 1n some cases filtering and/or amplification may
be applied to the noisy signal, via, for example, filter 125 and
amplifier 130. As noted above, the filtering and/or amplifi-
cation may be performed either before or after the signal 1s
received at the imnput module 120. In an example of filtering
and considering an ABR stimulus, for example, between 30
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and 3000 Hz, 100 and 1500 Hz, or other range depending on
the stimulus rate, data outside that region of interest would
be noise and the removal of that noise prior to subsequent
signal processing may improve the analysis to determine the
evoked response.

At 220, the noisy signal 1s analyzed by the processor 135
to separate individual responses, perform an analysis on the
responses, and determine a final response, representing an
estimated evoked response and indicative of whether or not
an evoked response has been detected. At 225, the final
response may be output via the output module 145 to, for
example, the display 150. In some cases, the final response
may also be saved to memory 140.

The following description provides further detail on
embodiments of methods for analyzing the noisy signal to
detect an evoked response.

As noted above, averaging and weighted averaging (WA)
1s sometimes used in analyzing a signal to improve SNR, for
example, by weighting data series or groups of data series 1n
inverse proportion to their noise content. However, 1n gen-
eral, the weighted techniques operate under the assumption
that the noise from data series to data series 1s independent,
1.¢. the noise between pairs of data series has zero covariance
and, 1n most cases, this assumption may not be valid 1n
evoked responses, depending on the environment.

Interestingly, the problem of optimal weighting of evoked
responses can be seen as a variance minimization problem,
that 1s attempting to determine a response such that the error
variance 1n the response 1s minimized. Another way to
consider this 1s that optimal weighting may be addressed by
a method for deriving weights that result 1n an optimal
weighted average, 1.e. a weighted average with minimal
variance (and hence minimal standard deviation).

The proposed method herein differs from conventional
methods 1n, at least, that embodiments of the method make
use of an estimate of a statistic, such as covariance, of the
noise matrix rather than an estimate of the noise variance
alone. Using this approach, global minimization of the noise
variance 1n the average 1s mtended to be achieved with
weights that satisty the equation:

—1 (equation 1)

where 2! is an inverse of a matrix of a statistic related to the
noise among measured response pairs and 1 1s a vector of
1’s. The following description deals with covariances
between measured response pairs (and the matrix 1s referred
to as the “covariance matrix”), however other statistics
related to the noise may be substituted as appropriate. As
discussed below, for example, another statistic could be an
rms measure, and the matrix may be an array having greater
than two dimensions. In the case of the covariance matrix,
the covariance matrix can be predicted from, for example,
the sample data used to predict variance data with clusters of
data or the response data 1tself.

Other (non-global) solutions of the minimization problem
can be developed when linear constraints are added. For
example, finding a minimum variance for a given desired
overall mean and the constraint that weights cannot be
negative. Linear programming techniques can be used to
derive a vector w that mimimizes the noise variance
o, =w’Zw with the linear constraints. These solutions can
generally be expressed as a linear combination of the global
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mimmum variance solution given above and the expected
value of each individual 1nput:

wE=3"1h 1+ho1) (equation 2)

where u 1s a vector of expected values of the individual
results and coetflicients A, are derived using LaGrangian or
numerical methods to minimize the variance.

Practical implementation of these minimization solutions,
however, may be limited as the covariance matrix may not
be known precisely. The estimated covariance matrix 1s
generally based on a limited sample of data and generally
may be considered to be i1ll conditioned. As a result, small
errors 1n covariance estimation can lead to poor weight
selections. Further, mversion of the matrix can amplily
estimation errors. It 1s believed that, in evoked potential
applications, the covariance matrix may be extrapolated
from inter-stimulus data, for example, but keeping 1n mind
that small inaccuracies in the covariance estimates may
result in poor weighting choices. By nature, sampling may
just be an estimation of the population.

In some cases, applying shrinkage to the covariance
matrix can provide a more robust covariance matrix. In some
cases, a shrinkage estimator may be provided that 1s a linear
combination of the covariance predicted from sample data
and a structured covariance, typically a constant covariance
that 1s derived from the expected value of all the sample
covariances. Other shrinkage techmques may be used that
involve reducing the covariance to zero for most covariance
pairs, leave the diagonal variance terms the same as the
predicted variances, and using statistical techniques or the
like that require the remaining covariance terms to exceed
some threshold or be shrunk or set to zero.

The present disclosure provides an apparatus, system and
method for applying shrinkage of the covariance matrix to
evoked response applications and using the resulting modi-
fied covariance matrix to determine the weights for weighted
averaging ol the evoked potential response. Embodiments
herein include estimating an 1mitial covariance matrix. One
of the methods described above or known in the art to
estimate the covariance matrix from interstimulus, prestimu-
lus or intrastimulus data may be used. Since errors 1n the
covariance matrix may be amplified when the matrix 1s
inverted, the covariance matrix 1s intended to be subjected to
shrinkage as described herein. For example, 1n an embodi-
ment, the diagonal elements of the covariance matrix may be
untouched and represent the individual variances i1n each
response. Some or all of the non-diagonal elements are then
selectively shrunk toward the global expected covarance,
which 1s typically zero.

FIG. 3A illustrates an embodiment of a method 300 for
analyzing the noisy signal (220 i FIG. 2). At 305, the
on-going EEG signal (noisy signal) 1s divided into a set of
individual responses to the stimulus. In this particular
embodiment, the division of mdividual responses 1s based
on the responses being synchronized to the stimulus but one
of skill in the art will understand that other ways of dividing
the noisy signal may be available.

At 310, a matnix of a statistic related to the noise content
1s formed (in this embodiment, a covariance matrix) from
the individual responses of 305. For the covariance example,
for responses X and Y, the covariance may be calculated
from, for example:
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At 315, the covariance matrix 1s shrunk. At 320, global
minimum variance weights are calculated from the co-
variance matrix. At 325, weights are applied to the response
data to construct a final response. At 330, a final response 1s
returned.

The covariance matrix may be shrunk in one or more or
a combination of manners. For example, in some cases,
non-diagonal elements of the covariance matrix that are
below some statistical threshold may be set to zero. In one
example, the threshold may be set such that the covariance
matrix becomes a sparse matrix. In another example, at most
one non-zero non-diagonal element may be allowed for each
response, resulting 1n at most one non-zero element 1n any
non-diagonal row or column of the matrix. This constraint 1s
intended to simplily the matrix inversion which can be
reduced to a series of 2x2 matrix inversions. Further detail
on one example of shrinking the covariance matrix 1s shown
in FIG. 4.

FIG. 3B illustrates another embodiment of a method 340
for analyzing the noisy signal (220 in FIG. 2). At 345, the
on-going EEG signal (noisy signal) 1s divided into a set of
individual responses to the stimulus. In this case, the divi-
sion 1s based on the responses being synchronized to the
stimuli.

At 350, a decomposition algorithm may be applied to
obtain sub-responses, for example, of different frequency
components, for each individual response. The sub-re-
sponses can then be arranged 1n sets made up of correspond-
ing sub-responses from each response, for example, a set of
sub-responses for each frequency component. An example
method for obtaiming the sub-responses using wavelets 1s
described 1n further detail below with reference to FIG. 5.
Other examples of decomposition methods include short-
time Fourner transform, chirplets, and bandwidth (bank)
filtering.

At 355, a loop for each set of sub-responses 1s performed
in which a final sub-response 1s constructed. For each set of
sub-responses, at 360, a covariance matrix 1s estimated. At
365, the covariance matrix 1s selectively shrunk. At 370,
global minimum variance weights are calculated. At 375,
weights are applied to construct a final sub-response. This
process loops until all sub-responses have been processed.

At 380 the sub-responses are summed to produce a final
response and, at 385, the final response 1s returned.

An embodiment of a method 400 for shrinking the cova-
riance matrix 1s 1llustrated 1in FIG. 4. At 405, a correlation 1s
calculated between pair combinations of responses. At 410,
a list of negatively correlated pairs 1s created. At 415, the
most negatively correlated pair 1s determined. At 420, 1t 1s
determined whether one of the responses 1n the correlated
pair 1s 1n a shrinkage list. If the response 1s not 1n the list, at
4235, both responses of the pair are added to the shrinkage
list. If the response 1s already 1n the list, or after 1t has been
added to the shrinkage list, the pair 1s removed from the list
ol negatively correlated pairs, at 430. This preparation of the
shrinkage list fulfils the criteria of at most one non-zero
clement 1n any non-diagonal row or column of the matrix.

At 435, 1t 1s determined whether there remain any nega-
tively correlated pairs. It there are still pairs 1n the list, a loop
1s repeated until the list of negatively correlated pairs 1s
empty. Once empty, at 440, all non-diagonal elements of the
covariance matrix corresponding to responses not in the
shrinkage list are set to 0. At 445, the shrunk covanance
matrix 2 1s returned.

Another way of visualizing or considering the process of
FIG. 4 1s to make use of a correlation matrix containing
correlation values for pairs of responses. For the correlation
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matrix, an upper-triangular correlation matrix 1s suflicient,
since the lower triangular 1s just a retlection of the upper-
triangular along the diagonal, which will be understood to be
all *“1°s”. Fuirst, all positively correlated pairs are set to zero.
At this point, there are various approaches for selecting the
pairs to remain while still maintaining the general criteria
that no more than one non-diagonal element should be
non-zero per row and column. As an example, with refer-
ence to the method of FIG. 4, next the most negatively
correlated pair 1s selected and the remaining non-diagonal
clements within the same row or column are set to zero. This
1s repeated with the next most negatively correlated pair of
the remaining matrix and continued until there are no more
negatively correlated pairs. This negative correlation matrix
1s then used as a “mask’ such that, in the covariance matrix
>, the elements corresponding to the zero elements in the
negative correlation matrix are set to zero to provide a
shrunk covariance matrix.

As a simple example, a method of creating a negative
correlation matrix for six responses i1s as follows:

1 =08 03 01 =09 -0.6]
-08 1 =02 -07 -08 -04
0.3 =02 1 0.5 04 008
0.1 =07 05 1 =-0.1 =05
-09 -08 04 -01 1 =07

-06 -04 09 -05 =07 1

Original Correlation Matrix

1 -08 03 01 =09 -0.6]
o 1 =02 =07 -08 -04
0 0 1 0.5 04 0.9
0 0 0 1 -=0.1 -=0.5
0 0 0 0 1 =0.7
0 0 0 0 0 1

Setting Lower Triangular Components to Zero (Since
Reflected)

‘1 -08 0 0 -09 —06
0 1 —02 —07 -0.8 —04
0o 0 1L 0 0 0
0 0 0 1 =01 =05
0 0 0 0 1 =07
0o 0 o0 o0 0 1

Removing Positive Correlations

1 0 0 O -09 0
o 1 -02 =07 0 -04
0 0 1 0 0 0
0 0 0 1 0 -05
0 0 0 0 1 0
0 0 0 0 0 1

Selecting most negative correlated element (1,5) and
setting remaining non-diagonal elements in rows 1 and 5 and
columns 1 and 5 to O.
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Selecting the next most negative correlated element (2.4)
and setting remaining non-diagonal elements in rows 2 and
4 and columns 2 and 4 to 0.

This correlation matrix 1s then used as a mask for the
covariance matrix 2 _such that only pair 1,5 and 2,4 will be
non-zero 1n the covariance matrix and thus used with regard
to adjusting the weighting via the inverted covariance
matrix.

In an alternative, 1t may be possible to extrapolate the
negative correlation concept further by selecting a pairing
combination that will give an optimized response, such as
the sum of the correlation of the pairs that will give a
maximum negative correlation. It will be noted that the
criteria ol no more than one non-diagonal element can be
non-zero per row and column will generally be maintained
in order to ease computation. A simple 4 response example
1s shown below:

1 -08 =04 0.1
-08 1 =02 =07
-04 -02 1 0.5

0.1 =07 0.5 1

Original Correlation Matrix

1 0.8 —04 0.1
0 1 02 —07
0 0 1 05
0o 0 0 1

Setting Lower Trniangular Components to Zero (Since
Reflected)

1 —-0.8 —04 0
0 1 =02 -07
0 0 1 0
0o 0 0 1

Removing Positive Correlations

Option 1:
1 -0.8 0 0
o0 1 0 0
0 0 1 0
0 0 0 1

Selecting negative correlated element (1,2) and setting
remaining non-diagonal elements in rows 1 and 2 and
columns 1 and 2 to 0. After doing this, there are no more
remaining negative correlated pairs. Option 1 has a sum of

-0.8.
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Option 2:

R R
S R
[—

—

Selecting negative correlated element (1,3) and setting
remaining non-diagonal elements i rows 1 and 3 and
columns 1 and 3 to 0. After doing this, there 1s one more
negative correlated pair at (2,4). Option 2 has a sum of -1.1

Option 3:

‘10 0 O
01 —02 0
00 1 0
00 0 1

Selecting negative correlated element (2,3) and setting
remaining non-diagonal elements m rows 2 and 3 and
columns 2 and 3 to 0. After doing this, there are no more
remaining negative correlated pairs. Option 3 has a sum of

-0.2.

Option 4:
1 0 -04 0
o1 0 =07
0 0 1 0
0 0 0 1

Selecting negative correlated element (2,4) and setting
remaining non-diagonal elements m rows 2 and 4 and
columns 2 and 4 to 0. After doing this, there 1s one more
negative correlated pair at (1,3). Option 4 has a sum of -1.1.
As such, the method would select the most negatively
co-related result of Option 2 (which 1s the same as Option 4)
instead of Option 1 or Option 3, and this Option 2 would be

used to prepare the shrunk covariance matrix 2_. As can be
seen from this simple example, this method may become
more computationally extensive than the method of FIG. 4.

The method 400 may be used such that the correlation,
corresponding to a covariance element/term, may be used to
determine the threshold for inclusion of the covariance
clement/term in the shrunk covariance matrix such that only

the most negatively correlated elements are included and all

other elements are set to zero. Using negatively correlated
clements only, combined with the constraint of one non-zero
non-diagonal element per row or column, 1s intended to
reduce computational complexity and ensure that the result-
ing weights are non-negative.

Following the shrinkage operation, weights may be cho-
sen (320 and 370) to minmimize the variance based on the
shrunk/sparse covariance matrix. If the matrix 1s mvertible,
one example solution for global minimum variance weights
1s determined by equation 1:
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where 2 1s the shrunk covariance matrix.

Alternatively the variance may be mimmized with con-
straints on the w* vector such as limiting the value of a
single weight below a predetermined threshold. In some
applications, a priori knowledge of the signal may allow
prediction. Minimization can also or alternatively be
achieved using linear programming methods to choose a
weighting vector w* that minimizes the equation
0, =WHZ wk

The technique of weighting evoked response measure-
ments to reduce noise may be used in combination with
other techniques, such as filtering and adaptive filtering.
Filtering may be performed prior to or after completion of
the method for detecting an evoked response.

As noted above at 350, another option for this technique

1s to decompose each individual response into multiple
responses, for example, of different frequency components
(1n this case, the original response can be obtained from the
sum of time domain reconstruction of each of these multiple
responses).

An embodiment of a method 500 of decomposition (350
from FI1G. 3B) through wavelets 1s illustrated 1n FI1G. 5. Each
of a plurality of responses may be processed separately as
per the above method for the whole response and the result
may be a sum of the processed plurality of responses.

For example, at 505, a decomposition can be made
through a discrete wavelet transform (DWT) as follows:
cach individual response i1s processed with a multilevel
DWT to provide sub-responses in multiple scales or fre-
quency bands 1n the wavelet domain. At 510, one of the
plurality of sub-response scales 1s selected. At 515, a wave-
let coellicient for each of the other scales 1s set to 0. At 520,
a multi-level inverse discrete wavelet transformation 1s
performed. At 525 a time domain sub-response 1s returned.
This 1s repeated at 530 for the other scales (from 510 to 525).

As noted above, at 380 of FIG. 3B, the final response will
simply be the sum of all the sub-responses from the plurality
of wavelet scales (leveraging the mathematical properties of
the wavelet transform).

The method 500 1s intended to produce a time domain
reconstruction for each scale, with each imndividual response
equal to the sum of these time domain reconstructions. Each
time domain reconstruction corresponding to a specific scale
of the discrete wavelet transform 1s used to estimate a
covariance matrix for that scale. Weights are estimated on a
scale-by-scale basis as per the above procedure for the
whole wave response and a final response 1s the sum of each
scale’s weighted response estimate. This enhancement of
weighting of each scale takes advantage of the structure of
the covariance matrix for each scale individually. This may
be especially beneficial when the noise 1n the responses
contains more than one sinusoidal component at different
frequencies (that are separated into different wavelet scales)
which would commonly occur when the noise 1s, for
example, dominated by several power-line harmonics. This
method of decomposition, may be applied to other synchro-
nized signals, for example, other physiological signals.

Another option for the analysis of the responses (223 1n
FIG. 2) imnvolves a multi-dimensional expansion (unlike the
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covarlance matrix, which, 1s only two-dimensional),
whereby another statistic, such as residual root mean square
(rms), may be used 1nstead of or 1n addition to covariance.
This other statistic may be calculated based on the combi-
nation of measured response singles, pairs, triplets, quadru-
plets, and quintuplets (for example, a fifth-dimensional
analysis). This multi-dimensional matrix or array will be the
statistic matrix 1n 310 and 360 (in place of the covariance
matrix from the description above). In the rms example, the
diagonal of this matrix will be populated with the rms of the
single responses and the three-dimensional matrix will be
populated with the residual rms after combining each mea-
sured response pair, and each measured response triplet.
Combining the response may be done as an average,
weilghted average, or other method. The shrinking may then
be done with the constraint of only one non-zero non-
diagonal element per dimension (row or column in two-
dimension, as done above). For the example of rms, 1n the
shrinking, the choice of which element(s) to include may be
based, for example, on the element with the smallest residual
rms 1n that dimension that is not 1n contlict with a smaller
residual rms 1n an intersecting dimension using a pProcess
adapted from that of FIG. 4. In a similar way, the method of
determining weights to be used, may be based on the statistic
chosen. In the rms example, the weights may be calculated
from the inverse of the residual rms of the shrunk matrix
(with approprniate simplifications) as 1n 320 and 370, and the
responses will be combined to construct the final response as
in 325 and 375.

Experimental Results for Noise Reduction Techniques

To 1llustrate the eflect of the detection methods herein in
measuring the auditory brainstem response and 1n measuring,
the mismatched negativity (MMN) response, an embodi-
ment of the apparatus, system and method described herein
was 1mplemented and its use in ABR and MMN examined.
Sample results are presented herein. While results may vary
somewhat from individual to individual and depending on
the noise 1n each situation, i1t 1s believed that these results
show the advantages of embodiments of the apparatus,
system and method described herein.

ABR Experiment

In this experiment, responses were collected to auditory
click stimuli (30 dB nHL) in the rnight ear of a newborn
infant. The data was collected 1n a hospital environment that
included several powerline harmonics from powered equip-
ment. An example of raw data responses 1s shown in FIG. 6
and 1illustrates multiple powerline harmonics dominating the
response. For 3200 responses, the variance and covariance
of all response pairs was calculated and the data was used to
populate the covariance matrix 2. The covariance matrix
was shrunk by leaving all the diagonal elements and apply-
ing all of the following three methods:

Method 1) create 2 _ by setting all non-diagonal elements
to zero. This method 1s similar to selecting weights for each
response proportional to the imverse of the variance of the
response. This 1s a conventional method.

Method 2)

a. Sort response pairs in order of the most negatively

correlated first.

b. Select the most negatively correlated pairs in order,
discarding pairs that include a response that has already
been selected.

c. Create 2_ by leaving the value of the non-diagonal
terms corresponding to the above selected pairs to their
original value 1 X and setting all other non-diagonal
terms to zero.
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Method 3)

a. Preprocess individual responses to an individual stimu-
lus by applying a multilevel discrete wavelet transform
(in this experiment a Biorthogonal 5.5 multilevel
DWT), separating the response into 5 scales, which
included 4 detail and 1 approximation.

b. Convert these scales back to the time domain by setting
the wavelet coelflicients for the other scales to zero and
applying the corresponding multilevel mnverse DWT.

c. Perform the following on a scale-by-scale basis for the
time domain scale specific signals for all responses:

1. Sort response pairs 1n order of the most negatively
correlated first.

11. Select the most negatively correlated pairs 1n order
discarding pairs that include a response that has
already been selected.

111. Create 2_ by leaving the value of the non-diagonal
terms corresponding to the above selected pairs to

their original value 1n X and setting all other non-
diagonal terms to zero.
For all methods (for Method 3, this 1s performed on a
scale-by-scale basis):
a. Calculate the minimum variance weights with the
equation

b. Calculate the weighted average of the responses using
the above weighting vectors.

c. For Method 3 recombine the weighted average
responses for all 5 scales by summing the weighted
average calculated for each scale.

Results of this experiment are illustrated 1n FIGS. 7, 8 and

9. In order to examine response repeatability for each
method, the results are divided into 2 independent series.
Half the data (1600 responses) were used to generate Series
1 and half the data (1600 responses) was used to generate
Series 2. The division of the data mto these groups/sets can
be performed using various appropriate techniques, how-
ever, 1n this particular experiment, the technique used was
the Monte Carlo procedure described in U.S. Pat. No.
8,484,270 to Kurtz.

It may be noted that, for all methods, the auditory brain-
stem response, known as Wave V, at about 8 milliseconds
(peak followed by a negatively sloping wave) 1s clearly
apparent. In FIG. 7, it 1s apparent that the response 1n
Method 1 1s impacted by 60 Hz power line noise, which may
impact repeatability (as illustrated by diflerences between
Series 1 and Series 2). Method 2 appears to reduce or
climinate the dominant 60 Hz harmonic but higher harmon-
ics may negatively aflect the repeatability of the response
(the tracking of Series 1 and Series 2 1s still not precise).
Using Method 3, 1t 1s apparent that unwanted variance due
to noise 1s minimized, as among these three methods.
Mismatch Negativity (MMN) Experiment

The mismatched negativity response 1s an evoked
response that 1s generated to an odd or deviant stimulus in
a sequence of otherwise similar stimuli. Although 1t 1s not
dependent on attention, 1t 1s a cortical response and, as such,
related to consciousness. The hypothesis of this experiment
1s that there 1s a detectable difference between the responses
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to standard and deviant stimuli when the patient 1s conscious
but there 1s not a detectable difference during anesthesia and
that the variability in the data will be reduced by making use
of embodiments of the apparatus, system and method
described herein.

A patient was stimulated with a short duration auditory
chirp stimulus at an intensity of 65 dB HL at approximately
1.7 stimul1 per second. Randomly inserted deviant stimuli
that contained slightly higher frequency content than the
standard stimuli were also applied. In the experiment, 426
responses to the standard stimulus and 107 responses to the
randomly 1nserted deviant stimuli were collected from elec-
trodes on the patient’s scalp prior to the administration of
anesthesia. This process was repeated during the mainte-
nance phase of anesthesia. These responses were analyzed
and weighted according to the three methods described 1n
the ABR experiment described above and the performance
was compared.

The results of the experiment using the 3 methods are
displayed in the graphs in FIGS. 10, 11 and 12 for the
pre-operative testing and FIGS. 13, 14 and 15 for the

anesthesia testing and i Table 1 below. The MMN experi-
ment 1s intended to 1llustrate the average standard and

deviant responses as opposed to illustrating repeatabaility as
in the ABR experiment described above. An MMN response

1s determined to be present when the peak amplitude of the
processed deviant response 1s statistically different than that

of a standard response in the region of expected MMN
response (between 50 and 300 ms after onset of stimulus).
As an MMN response depends on the consciousness state of
the subject, 1n the awake pre-op state, we expect there to be
a significant MMN, while 1n the anesthesia state, we do not

expect there to be an MMN present.

Using Method 1, a detectable response 1n the appropriate
50-300 ms time frame during the pre-operative period 1s
clear (FIG. 10). There 1s also an artifactual response detected
when the patient was unconscious under anesthesia (FIG.
13), which makes it diflicult to determine if the patient 1s
truly unconscious. This artifactual response 1s believed to be
present because of the overwhelmingly large alpha band
EEG present 1n the anesthesia condition. In particular, since
the EEG noise 1s 1n the same frequency range as the signal,
it interferes with the signal. The difference in peaks between
the standard and deviant 1s high even 1n the anesthesia case.
The statistically-based t-test in Table 1 illustrates that the
response may not be statistically significant. The noise in
this case would therefore appear to prevent definitive clas-

sification as to whether this patient 1s 1n the conscious state
Or not.

Using Method 2, however, the situation 1s significantly
improved and the difference between the pre-operative data
(FIG. 11) and the anesthesia data (FIG. 14) 1s clear. This
example 1s believed to be generally typical of results using
this method but there may be some variation based on, for
example, the subject, the noise conditions and the like.

Using Method 3, the large alpha band was removed from
the results, clearly showing the lack of an MMN response in
the anesthesia data (FIG. 15) but maintaining a clear
response 1n the pre-operative data (FIG. 12). Again, there
may be some variation in the performance of the diflerent
methods based on, for example, the subject, the noise
conditions and the like.
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TABLE 1

MMN Performance: Comparing Peak Deviant with Peak Standard

Difference Standard

(LV) Error t-test
Pre-Op
Method 1 4.876 0.360 0.001
Method 2 3.493 0.270 0.001
Method 3 1.988% 0.168 0.001
Anesthesia
Method 1 2.515 2.083 0.314
Method 2 0.846 0.920 0.426
Method 3 0.289 0.292 0.396

In the preceding description, for purposes of explanation,
numerous details are set forth 1n order to provide a thorough
understanding of the embodiments. However, 1t will be
apparent to one skilled in the art that these specific details
may not be required. In other instances, well-known struc-
tures may be shown 1n block diagram form 1n order not to

obscure the understanding. For example, specific details are
not provided as to whether the embodiments or portions
thereof described herein are implemented as a software
routine, hardware circuit, firmware, or a combination
thereof.

Embodiments of the disclosure or portions thereof can be
represented as a computer program product stored 1 a
machine-readable medium (also referred to as a computer-
readable medium, a processor-readable medium, or a com-
puter usable medium having a computer-readable program
code embodied therein). The machine-readable medium can
be any suitable tangible, non-transitory medium, including
magnetic, optical, or electrical storage medium including a
diskette, compact disk read only memory (CD-ROM),
memory device (volatile or non-volatile), or similar storage
mechanism. The machine-readable medium can contain
various sets of instructions, code sequences, configuration
information, or other data, which, when executed, cause a
processor to perform steps 1 a method according to an
embodiment of the disclosure. Those of ordinary skill in the
art will appreciate that other instructions and operations
necessary to implement the described implementations can
also be stored on the machine-readable medium. The
instructions stored on the machine-readable medium can be
executed by a processor or other suitable processing device,
and can interface with circuitry to perform the described
tasks.

We claim:

1. A method for detection of an evoked response signal in
noise, the method comprising:

generating a plurality of stimuls;

recerving a noisy signal related to an evoked response to

the plurality of stimuli;

dividing the noisy signal into a plurality of responses to

the plurality of stimuli;
calculating weights for the plurality of responses;
identifying sets of responses, and for each set:
combining the responses as a revised response;
calculating a new weight for the revised response; and
removing the responses from the plurality of responses;

constructing a final response by weight averaging the
revised responses and responses not 1dentified 1n a set,
the final response representing the evoked response or
indicative of whether or not an evoked response has
been detected; and

outputting the final response.
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2. The method of claim 1, further comprising:
decomposing each response into a plurality of sub-re-
sponses 1o create a plurality of sets of sub-responses,
wherein each sub-response contains a particular subset
ol information from 1ts corresponding response;

performing the steps of calculating, identifying, combin-
ing, calculating, removing and constructing for each of
the plurality of sets of sub-responses; and

combining the final response of each set of sub-responses.

3. The method of claim 2, wherein each set of sub-
responses corresponds to a particular frequency band.

4. The method of claim 3, wherein the particular fre-
quency band 1s determined using wavelet decomposition.

5. The method of claim 1, wherein the step of dividing the
noisy signal into a plurality of responses to the plurality of
stimuli 1s based on the plurality of responses being synchro-
nized with the plurality of stimuli.

6. The method of claim 1, wherein i1dentifying sets of
correlated responses comprises:

estimating a statistic matrix for the plurality of responses;

determining sets of correlated responses whose combina-

tion will result 1n noise reduction; and

shrinking the statistic matrix at least by removing or

combining sets of correlated responses whose combi-
nation will result 1n noise reduction.

7. The method of claim 6, wherein shrinking the statistic
matrix comprises:

creating a list of negatively correlated combinations of

responses;

for each negatively correlated combination 1n the list:

determining if one of the responses 1n the combination
1s 1n a shrinkage list, and 11 so, removing the com-
bination from the list of negatively correlated com-
binations, otherwise, add the responses of the com-
bination to the shrinkage list;
when the list of negatively correlated combinations 1s
empty, creating a mask for the statistic matrix;
applying the mask to the statistic matrix to provide a
shrunk statistic matrix; and

returning the shrunk statistic matrix.

8. The method of claim 7, wherein one of:

the statistic 1s covariance and the statistic matrix 1s a

covariance matrix of two dimensions; and

the statistic 1s root mean squared and the statistic matrix

1s a root mean squared matrix of two or more dimen-
S1011S.

9. The method of claim 7, wherein the mask 1s created by:

creating a diagonal matrix of the same dimension as the

statistic matrix; and

setting all non-diagonal elements of the statistic matrix

corresponding to responses not 1n the shrinkage list to
0.

10. The method of claim 6, wherein the new weights are
calculated based on an inverse of the shrunk statistic matrix.

11. The method of claim 6, wherein the sets of correlated
responses are pair combinations of responses.

12. A non-transitory computer readable medium having
stored thereon computer program code for execution by one
or more processors to perform the method of claim 1.

13. An apparatus for detection of an evoked response

signal 1n noise, the apparatus comprising:
an put device configured to receirve data related to a
plurality of stimuli and a noisy signal related to the
evoked response signal to the plurality of stimuli; and
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a processor configured to:

receive the noisy signal from the mnput device and
divide the noisy signal into a plurality of responses
to the plurality of stimuls;

calculate weights for the plurality of responses;

identily set of responses, and for each set:
combine the responses as a revised response;
calculate a new weight for the revised response; and
remove the responses 1rom the plurality of

responses;

construct a final response by weight averaging the
revised responses and responses not 1dentified 1n a
set, the final response representing the evoked
response or indicative of whether or not an evoked
response has been detected; and

outputting the final response.

14. The apparatus of claim 13, wherein the processor 1s
further configured to decompose each response nto a plu-
rality of sub-responses to create a plurality of sets of
sub-responses, wherein each sub-response contains a par-
ticular subset of information from 1ts corresponding
response;

performing the steps of calculating, identitying, combin-

ing, calculating, removing and constructing for each of
the plurality of sets of sub-responses; and

combining the final response of each set of sub-responses.

15. The apparatus of claim 13, wherein 1dentitying sets of
correlated responses comprises:

estimating a statistic matrix for the plurality of responses;

determining sets of correlated responses whose combina-

tion will result 1n noise reduction; and

shrinking the statistic matrix at least by removing or

combining sets of correlated responses whose combi-
nation will result in noise reduction.

16. The apparatus for detection of claim 15, wherein when
shrinking the statistic matrix the processor i1s further con-
figured to:

create a list of negatively correlated combinations of

responses;

for each negatively correlated combination 1n the list:

determine 11 one of the responses in the combination 1s
in a shrinkage list, and 1f so, remove the combination
from the list of negatively correlated combinations,
otherwise, add the responses of the combination to
the shrinkage list;

when the list of negatively correlated pairs combina-
tions 1s empty, create a mask for the statistic matrix;

apply the mask to the statistic matrix to provide a
shrunk statistic matrix; and

return the shrunk statistic matrx.

17. The apparatus of claim 16, wherein the processor 1s
configured to create the mask by:

creating a diagonal matrix of the same dimension as the

statistic matrix; and

setting all non-diagonal elements of the statistic matrix

corresponding to responses not 1n the shrinkage list to
0.

18. The apparatus of claim 15, wherein the new weights
are calculated based on an 1nverse of the shrunk statistic
matrix.

19. The apparatus of claim 15, wherein the sets of
correlated responses are pair combinations of responses.

20. A system for detection of an evoked response signal
in noise, the system comprising:

a stimulus generator configured to generate a plurality of

stimuli;
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a plurality of sensors configured to recetve a noisy signal
including an evoked response signal to the plurality of
stimuli;

an 1nput device configured to receive data related to the
plurality of stimuli and the noisy signal; 5

a processor configured to:
receive the noisy signal from the iput device and

divide the noisy signal into a plurality of responses
to the plurality of stimuli;
calculate weights for the plurality of responses; 10
identily set of responses, and for each set:
combine the responses as a revised response;
calculate a new weight for the revised response; and
remove the responses from the plurality of
responses; 15
construct a final response by weight averaging the revised
responses and responses not identified 1n a set, the final
response representing the evoked response or indica-
tive ol whether or not an evoked response has been
detected; and 50
an output device to output the final response recerved
from the processor.

21. The system of claim 20, wherein the processor 1s
turther configured to decompose each response 1nto a plu-
rality of sub-responses to create a plurality of sets of .4
sub-responses, wherein each sub-response contains a par-
ticular subset of information from 1its corresponding
response;

performing the steps of calculating, identifying, combin-
ing, calculating, removing and constructing for each of ,,
the plurality of sets of sub-responses; and

combining the final response of each set of sub-responses.

22. The system of claim 20, wherein identifying sets of
correlated responses comprises:

22

estimating a statistic matrix for the plurality of responses;

determining sets of correlated responses whose combina-
tion will result 1n noise reduction; and

shrinking the statistic matrix at least by removing or
combining sets of correlated responses whose combi-
nation will result 1n noise reduction.

23. The system of claim 22, wherein when shrinking the

statistic matrix the processor 1s further configured to:

create a list of negatively correlated combinations of
responses;
for each negatively correlated combination 1n the list:
determine 11 one of the responses in the combination 1s
in a shrinkage list, and 11 so, remove the combination
from the list of negatively correlated combinations,
otherwise, add the responses of the combination to
the shrinkage list;
when the list of negatively correlated combinations 1s
empty, create a mask for the statistic matrix;
apply the mask to the statistic matrix to provide a
shrunk statistic matrix; and
return the shrunk statistic matrix.
24. The system of claim 23, wherein the processor 1s

configured to create the mask by:

creating a diagonal matrix of the same dimension as the
statistic matrix; and

setting all non-diagonal elements of the statistic matrix
corresponding to responses not 1n the shrinkage list to

0.
25. The system of claim 22, wherein the new weights are

calculated based on an inverse of the shrunk statistic matrix.

26. The system of claim 22, wherein the sets of correlated

responses are pair combinations of responses.
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