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INCORPORATING TOP-DOWN
INFORMATION IN DEEP NEURAL
NETWORKS VIA THE BIAS TERM

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims the benefit of U.S. Provi-
sional Patent Application No. 62/154,097, filed on Apr. 28,
2015 and titled “INCORPORATING TOP-DOWN INFOR -

MATION IN DEEP NEURAL NETWORKS VIA THE
BIAS TERM,” the disclosure of which 1s expressly incor-

porated by reference herein 1n 1ts entirety.

BACKGROUND

Field

Certain aspects of the present disclosure generally relate
to neural system engineering and, more particularly, to
systems and methods for adjusting a bias term of activation
functions of neurons in the network to increase sensitivity to
an clement based on whether the element has an increased
probability of being present 1in an mnput to the network.

Background

An artificial neural network, which may comprise an
interconnected group of artificial neurons (e.g., neuron mod-
els), 1s a computational device or represents a method to be
performed by a computational device.

Convolutional neural networks are a type of feed-forward
artificial neural network. Convolutional neural networks
may 1nclude collections of neurons that each have a recep-
tive field and that collectively tile an mput space. Convo-
lutional neural networks (CNNs) have numerous applica-
tions. In particular, CNNs have broadly been used 1n the area
ol pattern recognition and classification.

Deep learning architectures, such as deep beliel networks
and deep convolutional networks, are layered neural net-
works architectures in which the output of a first layer of
neurons becomes an mmput to a second layer of neurons, the
output of a second layer of neurons becomes and mput to a
third layer of neurons, and so on. Deep neural networks may
be trained to recognize a hierarchy of features and so they
have increasingly been used in object recognition applica-
tions. Like convolutional neural networks, computation in
these deep learning architectures may be distributed over a
population of processing nodes, which may be configured in
one or more computational chains. These multi-layered
architectures may be trained one layer at a time and may be
fine-tuned using back propagation.

Other models are also available for object recogmtion.
For example, support vector machines (SVMs) are learning
tools that can be applied for classification. Support vector
machines include a separating hyperplane (e.g., decision
boundary) that categorizes data. The hyperplane 1s defined
by supervised learning. A desired hyperplane increases the
margin ol the training data. In other words, the hyperplane
should have the greatest minimum distance to the training

examples.

Although these solutions achieve excellent results on a
number of classification benchmarks, their computational
complexity can be prohibitively high. Additionally, training
of the models may be challenging.

SUMMARY

In one aspect of the present disclosure, a method of
biasing a deep neural network 1s disclosed. The method
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2

includes determining whether an element has an increased
probability of being present 1n an input to the network. The
method also 1includes adjusting a bias of activation functions
of neurons in the network to increase sensitivity to the
clement. In one configuration, the bias i1s adjusted without
adjusting weights of the network. The method further
includes adjusting an output of the network based at least 1n
part on the biasing.

Another aspect of the present disclosure 1s directed to an
apparatus including means for determining whether an ele-
ment has an increased probability of being present 1 an
input to the network. The apparatus also includes means for
adjusting a bias of activation functions of neurons in the
network to increase sensitivity to the element. In one con-
figuration, the bias 1s adjusted without adjusting weights of
the network. The apparatus further includes means for
adjusting an output of the network based at least 1n part on
the biasing.

In another aspect of the present disclosure, a computer
program product for biasing a deep neural network 1s
disclosed. The computer program product has a non-transi-
tory computer-readable medium with non-transitory pro-
gram code recorded thereon. The program code 1s executed
by a processor and includes program code to determine
whether an element has an increased probability of being
present 1n an input to the network. The program code also
includes program code to adjust a bias of activation func-
tions of neurons in the network to 1increase sensitivity to the
clement. In one configuration, the bias 1s adjusted without
adjusting weights of the network. The program code further
includes program code to adjust an output of the network
based at least in part on the biasing.

Another aspect of the present disclosure 1s directed to an
apparatus for biasing a deep neural network, the apparatus
having a memory unit and one or more processors coupled
to the memory. The processor(s) 1s configured to determine
whether an element has an increased probability of being
present 1n an mput to the network. The processor(s) 1s also
configured to adjust a bias of activation functions of neurons
in the network to 1ncrease sensitivity to the element. In one
configuration, the bias 1s adjusted without adjusting weights
of the network. The processor(s) 1s further configured to
adjust an output of the network based at least in part on the
biasing.

Additional features and advantages of the disclosure will
be described below. It should be appreciated by those skilled
in the art that this disclosure may be readily utilized as a
basis for moditying or designing other structures for carry-
ing out the same purposes of the present disclosure. It should
also be realized by those skilled 1n the art that such equiva-
lent constructions do not depart from the teachings of the
disclosure as set forth in the appended claims. The novel
features, which are believed to be characteristic of the
disclosure, both as to its organization and method of opera-
tion, together with further objects and advantages, will be
better understood from the following description when con-
sidered 1n connection with the accompanying figures. It 1s to
be expressly understood, however, that each of the figures 1s
provided for the purpose of 1llustration and description only
and 1s not intended as a definition of the limits of the present
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, nature, and advantages of the present dis-
closure will become more apparent from the detailed
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description set forth below when taken 1n conjunction with
the drawings in which like reference characters identify
correspondingly throughout.

FIG. 1 1llustrates an example implementation of designing,
a neural network using a system-on-a-chip (SOC), including
a general-purpose processor 1 accordance with certain
aspects of the present disclosure.

FIG. 2 illustrates an example implementation of a system
in accordance with aspects of the present disclosure.

FIG. 3A 1s a diagram 1llustrating a neural network in
accordance with aspects of the present disclosure.

FIG. 3B 1s a block diagram 1llustrating an exemplary deep
convolutional network (DCN) 1in accordance with aspects of
the present disclosure.

FIG. 4 1s a block diagram illustrating an exemplary
software architecture that may modularize artificial intelli-
gence (Al) functions 1 accordance with aspects of the
present disclosure.

FIG. 5 1s a block diagram illustrating the run-time opera-
tion of an Al application on a smartphone in accordance with
aspects of the present disclosure.

FIG. 6 1s a diagram illustrating an image, filters, and
neurons of a neural classifier network.

FIGS. 7 and 8 1llustrate examples of graphs for evidence
mputs and activation outputs of a neural classifier network
according to aspects of the present disclosure.

FIG. 9 1s a diagram 1llustrating filters and neurons of a
neural classifier network according to aspects of the present
disclosure.

FIG. 10 1s a diagram 1illustrating an image, filters, and

neurons of a neural classifier network according to aspects
of the present disclosure.

FIGS. 11 and 12 are flow diagrams for methods of

adjusting a bias in a neural classifier network according to
aspects of the present disclosure.

DETAILED DESCRIPTION

The detailed description set forth below, 1n connection
with the appended drawings, 1s intended as a description of
various configurations and 1s not intended to represent the
only configurations 1n which the concepts described herein
may be practiced. The detailed description includes specific
details for the purpose of providing a thorough understand-
ing ol the various concepts. However, 1t will be apparent to
those skilled in the art that these concepts may be practiced
without these specific details. In some instances, well-
known structures and components are shown 1n block dia-
gram form in order to avoid obscuring such concepts.

Based on the teachings, one skilled in the art should
appreciate that the scope of the disclosure 1s intended to
cover any aspect of the disclosure, whether implemented
independently of or combined with any other aspect of the
disclosure. For example, an apparatus may be implemented
or a method may be practiced using any number of the
aspects set forth. In addition, the scope of the disclosure 1s
intended to cover such an apparatus or method practiced
using other structure, functionality, or structure and func-
tionality in addition to or other than the various aspects of
the disclosure set forth. It should be understood that any
aspect of the disclosure disclosed may be embodied by one
or more elements of a claim.

The word “exemplary” 1s used herein to mean “serving as
an example, 1nstance, or illustration.” Any aspect described
herein as “exemplary” 1s not necessarily to be construed as
preferred or advantageous over other aspects.
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4

Although particular aspects are described herein, many
variations and permutations of these aspects fall within the
scope of the disclosure. Although some benefits and advan-
tages of the preferred aspects are mentioned, the scope of the
disclosure 1s not intended to be limited to particular benefits,
uses or objectives. Rather, aspects of the disclosure are
intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of
which are illustrated by way of example 1n the figures and
in the following description of the preferred aspects. The
detailed description and drawings are merely 1llustrative of
the disclosure rather than limiting, the scope of the disclo-
sure being defined by the appended claims and equivalents
thereof.

In conventional systems, filters may be specified to
modily or enhance an image. Additionally, a filter may be
used to determine 11 a specific element 1s present 1n a portion
of an immage. For example, a filter may determine 11 a
horizontal line 1s present 1n a 3x3 pixel portion of an 1mage.
Thus, by applying various types of filters, a system may
determine whether specific objects are present in an 1mage.
Accordingly, the filtering may be used to facilitate classify-
ing the image.

Convolution may be specified for linear filtering of an
image. The convolution output 1s the weighted sum of mnput
pixels. A matrix of weights may be referred to as the
convolution kemnel or filter. The convolution may be
obtained by a matrix multiply of a linearized image and a
linearized filter.

In conventional systems, an 1mage may be classified
based on the pixels of the image. Still, 1n some cases, there
may be a prior1 knowledge that an object will be present in
an 1mage or has an increased probability of being present 1n
the 1image. Aspects of the present disclosure are directed to
biasing a network toward classiiying an object based on a
prior1 knowledge that the object will be present in an 1mage
or has an increased probability of being present 1n the 1image.

FIG. 1 illustrates an example implementation of the
alforementioned network biasing using a system-on-a-chip
(SOC) 100, which may include a general-purpose processor
(CPU) or multi-core general-purpose processors (CPUs) 102
in accordance with certain aspects of the present disclosure.
Variables (e.g., neural signals and synaptic weights), system
parameters associated with a computational device (e.g.,
neural network with weights), delays, frequency bin infor-
mation, and task information may be stored in a memory
block associated with a neural processing unit (NPU) 108 or
in a dedicated memory block 118. Instructions executed at
the general-purpose processor 102 may be loaded from a
program memory associated with the CPU 102 or may be
loaded from a dedicated memory block 118.

The SOC 100 may also include additional processing
blocks tailored to specific functions, such as a graphics
processing unit (GPU) 104, a digital signal processor (DSP)
106, a connectivity block 110, which may include fourth
generation long term evolution (4G LTE) connectivity, unli-
censed Wi-Fi1 connectivity, USB connectivity, Bluetooth
connectivity, and the like, and a multimedia processor 112
that may, for example, detect and recognize gestures. The
SOC 100 may also include a sensor processor 114, 1mage
signal processors (ISPs), and/or navigation 120, which may
include a global positioning system. The SOC may be based
on an ARM instruction set.

The SOC 100 may also include additional processing
blocks tailored to specific functions, such as a GPU 104, a
DSP 106, a connectivity block 110, which may include
fourth generation long term evolution (4G LTE) connectiv-
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ity, unlicensed Wi-F1 connectivity, USB connectivity, Blu-
ctooth connectivity, and the like, and a multimedia processor
112 that may, for example, detect and recognize gestures. In
one 1mplementation, the NPU 1s implemented in the CPU,
DSP, and/or GPU. The SOC 100 may also include a sensor
processor 114, image signal processors (ISPs), and/or navi-
gation 120, which may include a global positioning system.

The SOC 100 may be based on an ARM 1nstruction set.
In an aspect of the present disclosure, the imstructions loaded
into the general-purpose processor 102 may comprise code
for determiming whether an element has an increased prob-
ability of being present in an input to the network. The
instructions loaded into the general-purpose processor 102
may also comprise code for adjusting a bias of activation
functions of neurons 1n the network to 1ncrease sensitivity to
the element. In one configuration, the bias 1s adjusted
without adjusting weights of the network. The 1nstructions
loaded 1nto the general-purpose processor 102 may further
comprise code for adjusting an output of the network based
on the biasing.

FI1G. 2 1llustrates an example implementation of a system
200 1n accordance with certain aspects of the present dis-
closure. As 1llustrated 1in FIG. 2, the system 200 may have
multiple local processing units 202 that may perform various
operations of methods described herein. Each local process-
ing unit 202 may comprise a local state memory 204 and a
local parameter memory 206 that may store parameters of a
neural network. In addition, the local processing unit 202
may have a local (neuron) model program (LMP) memory
208 for storing a local model program, a local learning
program (LLP) memory 210 for storing a local learning
program, and a local connection memory 212. Furthermore,
as 1llustrated 1n FIG. 2, each local processing unit 202 may
interface with a configuration processor unit 214 for pro-
viding configurations for local memories of the local pro-
cessing unit, and with a routing connection processing unit
216 that provides routing between the local processing units
202.

Deep learming architectures may perform an object rec-
ognition task by learning to represent inputs at successively
higher levels of abstraction 1n each layer, thereby building
up a useful feature representation of the mnput data. In this
way, deep learning addresses a major bottleneck of tradi-
tional machine learning. Prior to the advent of deep learning,
a machine learning approach to an object recognition prob-
lem may have relied heavily on human engineered features,
perhaps 1n combination with a shallow classifier. A shallow
classifier may be a two-class linear classifier, for example, 1n
which a weighted sum of the feature vector components may
be compared with a threshold to predict to which class the
input belongs. Human engineered features may be templates
or kernels tailored to a specific problem domain by engi-
neers with domain expertise. Deep learning architectures, in
contrast, may learn to represent features that are similar to
what a human engineer might design, but through training.
Furthermore, a deep network may learn to represent and
recognize new types of features that a human might not have
considered.

A deep learning architecture may learn a hierarchy of
teatures. If presented with visual data, for example, the first
layer may learn to recognize relatively simple features, such
as edges, 1 the mput stream. In another example, 11 pre-
sented with auditory data, the first layer may learn to
recognize spectral power in specific frequencies. The second
layer, taking the output of the first layer as mput, may learn
to recognize combinations of features, such as simple shapes
for visual data or combinations of sounds for auditory data.
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6

For instance, higher layers may learn to represent complex
shapes 1n visual data or words 1n auditory data. Still higher
layers may learn to recognize common visual objects or
spoken phrases.

Deep learning architectures may perform especially well
when applied to problems that have a natural hierarchical
structure. For example, the classification of motorized
vehicles may benelit from first learning to recognize wheels,
windshields, and other features. These features may be
combined at higher layers in different ways to recognize
cars, trucks, and airplanes.

Neural networks may be designed with a variety of
connectivity patterns. In feed-forward networks, informa-
tion 1s passed from lower to higher layers, with each neuron
in a given layer communicating to neurons 1n higher layers.
A hierarchical representation may be built up in successive
layers of a feed-forward network, as described above. Neu-
ral networks may also have recurrent or feedback (also
called top-down) connections. In a recurrent connection, the
output from a neuron 1n a given layer may be communicated
to another neuron 1n the same layer. A recurrent architecture
may be helpiul 1 recognizing patterns that span more than
one of the mput data chunks that are delivered to the neural
network 1n a sequence. A connection from a neuron in a
given layer to a neuron 1n a lower layer 1s called a feedback
(or top-down) connection. A network with many feedback
connections may be helpful when the recognition of a
high-level concept may aid 1n discriminating the particular
low-level features of an mput.

Referring to FIG. 3A, the connections between layers of
a neural network may be fully connected 302 or locally
connected 304. In a fully connected network 302, a neuron
in a first layer may communicate 1ts output to every neuron
in a second layer, so that each neuron 1n the second layer will
receive mput from every neuron in the first layer. Alterna-
tively, 1 a locally connected network 304, a neuron 1n a first
layer may be connected to a limited number of neurons 1n
the second layer. A convolutional network 306 may be
locally connected, and 1s further configured such that the
connection strengths associated with the inputs for each
neuron in the second layer are shared (e.g., 308). More
generally, a locally connected layer of a network may be
configured so that each neuron 1n a layer will have the same
or a similar connectivity pattern, but with connections
strengths that may have different values (e.g., 310, 312, 314,
and 316). The locally connected connectivity pattern may
give rise to spatially distinct receptive fields in a higher
layer, because the higher layer neurons 1 a given region
may receive mputs that are tuned through training to the
properties ol a restricted portion of the total mput to the
network.

Locally connected neural networks may be well suited to
problems 1n which the spatial location of puts 15 mean-
ingful. For imstance, a network 300 designed to recognize
visual features from a car-mounted camera may develop
high layer neurons with diflerent properties depending on
their association with the lower versus the upper portion of
the image. Neurons associated with the lower portion of the
image may learn to recognize lane markings, for example,
while neurons associated with the upper portion of the image
may learn to recognize traflic lights, traflic signs, and the
like.

A DCN may be trained with supervised learning. During
training, a DCN may be presented with an image 326, such
as a cropped 1mage of a speed limit sign, and a “forward
pass” may then be computed to produce an output 322. The
output 322 may be a vector of values corresponding to
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features such as “sign,” “60,” and “100.” The network
designer may want the DCN to output a high score for some
of the neurons 1n the output feature vector, for example the

ones corresponding to “sign” and “60” as shown in the
output 322 for a network 300 that has been trained. Before
training, the output produced by the DCN 1s likely to be
incorrect, and so an error may be calculated between the
actual output and the target output. The weights of the DCN
may then be adjusted so that the output scores of the DCN
are more closely aligned with the target.

To adjust the weights, a learning algorithm may compute
a gradient vector for the weights. The gradient may indicate
an amount that an error would increase or decrease if the
weight were adjusted slightly. At the top layer, the gradient
may correspond directly to the value of a weight connecting
an activated neuron in the penultimate layer and a neuron 1n
the output layer. In lower layers, the gradient may depend on
the value of the weights and on the computed error gradients
of the higher layers. The weights may then be adjusted so as
to reduce the error. This manner of adjusting the weights
may be referred to as “back propagation” as 1t mnvolves a
“backward pass” through the neural network.

In practice, the error gradient of weights may be calcu-
lated over a small number of examples, so that the calculated
gradient approximates the true error gradient. This approxi-
mation method may be referred to as stochastic gradient
descent. Stochastic gradient descent may be repeated until
the achievable error rate of the entire system has stopped
decreasing or until the error rate has reached a target level.

After learming, the DCN may be presented with new
images 326 and a forward pass through the network may
yield an output 322 that may be considered an inierence or
a prediction of the DCN.

Deep belief networks (DBNs) are probabilistic models
comprising multiple layers of hidden nodes. DBNs may be
used to extract a hierarchical representation of training data
sets. A DBN may be obtained by stacking up layers of
Restricted Boltzmann Machines (RBMs). An RBM 1s a type
of artificial neural network that can learn a probability
distribution over a set of inputs. Because RBMs can learn a
probability distribution 1n the absence of information about
the class to which each iput should be categorized, RBMs
are often used in unsupervised learning. Using a hybnd
unsupervised and supervised paradigm, the bottom RBMs of
a DBN may be trained 1n an unsupervised manner and may
serve as feature extractors, and the top RBM may be trained
in a supervised manner (on a joint distribution of inputs from
the previous layer and target classes) and may serve as a
classifier.

Deep convolutional networks (DCNs) are networks of
convolutional networks, configured with additional pooling
and normalization layers. DCNs have achieved state-of-the-
art performance on many tasks. DCNs can be trained using
supervised learning i which both the mput and output
targets are known for many exemplars and are used to
modily the weights of the network by use of gradient descent
methods.

DCNs may be feed-forward networks. In addition, as
described above, the connections from a neuron in a first
layer of a DCN to a group of neurons 1n the next higher layer
are shared across the neurons in the first layer. The feed-
torward and shared connections of DCNs may be exploited
for fast processing. The computational burden of a DCN
may be much less, for example, than that of a similarly sized
neural network that comprises recurrent or feedback con-
nections.
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The processing of each layer of a convolutional network
may be considered a spatially invaniant template or basis
projection. If the mput 1s first decomposed into multiple
channels, such as the red, green, and blue channels of a color
image, then the convolutional network trained on that input
may be considered three-dimensional, with two spatial
dimensions along the axes of the image and a third dimen-
s1on capturing color information. The outputs of the convo-
lutional connections may be considered to form a feature
map 1n the subsequent layer 318 and 320, with each element
of the feature map (e.g., 320) receiving mput from a range
of neurons 1n the previous layer (e.g., 318) and from each of
the multiple channels. The values 1n the feature map may be
turther processed with a non-linearity, such as a rectification,
max(0,x). Values from adjacent neurons may be further
pooled, which corresponds to down sampling, and may
provide additional local invariance and dimensionality
reduction. Normalization, which corresponds to whitening,
may also be applied through lateral inhibition between
neurons in the feature map.

The performance of deep learning architectures may
increase as more labeled data points become available or as
computational power increases. Modern deep neural net-
works are routinely tramned with computing resources that
are thousands of times greater than what was available to a
typical researcher just fifteen years ago. New architectures
and training paradigms may further boost the performance
of deep learning. Rectified linear units may reduce a training
1ssue known as vanishing gradients. New training tech-
niques may reduce over-litting and thus enable larger models
to achieve better generalization. Encapsulation techniques
may abstract data in a given receptive field and further boost
overall performance.

FIG. 3B 1s a block diagram 1llustrating an exemplary deep
convolutional network 350. The deep convolutional network
350 may include multiple different types of layers based on
connectivity and weight sharing. As shown in FIG. 3B, the
exemplary deep convolutional network 350 includes mul-
tiple convolution blocks (e.g., C1 and C2). Each of the
convolution blocks may be configured with a convolution
layer, a normalization layer (LNorm), and a pooling layer.
The convolution layers may include one or more convolu-
tional filters, which may be applied to the mput data to
generate a feature map. Although only two convolution
blocks are shown, the present disclosure 1s not so limiting,
and instead, any number of convolutional blocks may be
included 1n the deep convolutional network 350 according to
design preference. The normalization layer may be used to
normalize the output of the convolution filters. For example,
the normalization layer may provide whitening or lateral
inhibition. The pooling layer may provide down sampling
aggregation over space for local invariance and dimension-
ality reduction.

The parallel filter banks, for example, of a deep convo-
lutional network may be loaded on a CPU 102 or GPU 104
of an SOC 100, optionally based on an ARM instruction set,
to achieve high performance and low power consumption. In
alternative embodiments, the parallel filter banks may be
loaded on the DSP 106 or an ISP 116 of an SOC 100. In
addition, the DCN may access other processing blocks that
may be present on the SOC, such as processing blocks
dedicated to sensors 114 and navigation 120.

The deep convolutional network 350 may also include
one or more fully connected layers (e.g., FC1 and FC2). The
deep convolutional network 350 may further include a
logistic regression (LR) layer. Between each layer of the
deep convolutional network 350 are weights (not shown)
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that are to be updated. The output of each layer may serve
as an mput of a succeeding layer in the deep convolutional
network 350 to learn hierarchical feature representations
from input data (e.g., images, audio, video, sensor data
and/or other mput data) supplied at the first convolution
block C1.

FIG. 4 1s a block diagram illustrating an exemplary
soltware architecture 400 that may modularize artificial
intelligence (Al) functions. Using the architecture, applica-
tions 402 may be designed that may cause various process-
ing blocks of an SOC 420 (for example a CPU 422, a DSP
424, a GPU 426 and/or an NPU 428) to perform supporting
computations during run-time operation of the application
402.

The AI application 402 may be configured to call func-
tions defined 1n a user space 404 that may, for example,
provide for the detection and recognition of a scene indica-
tive of the location 1n which the device currently operates.
The Al application 402 may, for example, configure a
microphone and a camera differently depending on whether
the recognized scene 1s an oflice, a lecture hall, a restaurant,
or an outdoor setting such as a lake. The Al application 402
may make a request to compiled program code associated
with a library defined 1n a SceneDetect application program-
ming interface (API) 406 to provide an estimate of the
current scene. This request may ultimately rely on the output
of a deep neural network configured to provide scene
estimates based on video and positioning data, for example.

A run-time engine 408, which may be compiled code of
a Runtime Framework, may be further accessible to the Al
application 402. The Al application 402 may cause the
run-time engine, for example, to request a scene estimate at
a particular time interval or triggered by an event detected by
the user interface of the application. When caused to esti-
mate the scene, the run-time engine may 1n turn send a signal
to an operating system 410, such as a Linux Kernel 412,
running on the SOC 420. The operating system 410, 1n turn,
may cause a computation to be performed on the CPU 422,
the DSP 424, the GPU 426, the NPU 428, or some combi-
nation thereof. The CPU 422 may be accessed directly by the
operating system, and other processing blocks may be
accessed through a drniver, such as a driver 414-418 for a
DSP 424, for a GPU 426, or for an NPU 428. In the
exemplary example, the deep neural network may be con-
figured to run on a combination of processing blocks, such
as a CPU 422 and a GPU 426, or may be run on an NPU 428,
il present.

FIG. 5 15 a block diagram illustrating the run-time opera-
tion 500 of an Al application on a smartphone 502. The Al
application may include a pre-process module 504 that may
be configured (using for example, the JAVA programming,
language) to convert the format of an 1mage 506 and then
crop and/or resize the image 508. The pre-processed image
may then be communicated to a classity application 510 that
contains a SceneDetect Backend Engine 512 that may be
configured (using for example, the C programming lan-
guage) to detect and classity scenes based on visual input.
The SceneDetect Backend Engine 512 may be configured to
turther preprocess 314 the image by scaling 516 and crop-
ping 518. For example, the image may be scaled and
cropped so that the resulting image 1s 224 pixels by 224
pixels. These dimensions may map to the mput dimensions
of a neural network. The neural network may be configured
by a deep neural network block 520 to cause various
processing blocks of the SOC 100 to further process the
image pixels with a deep neural network. The results of the
deep neural network may then be thresholded 522 and
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passed through an exponential smoothing block 524 1n the
classity application 510. The smoothed results may then
cause a change of the settings and/or the display of the
smartphone 502.

In one configuration, a machine learning model, such as
a neural network, 1s configured for determining whether an
clement has an increased probability of being present in an
input to the network; adjusting a bias of activation functions
of neurons 1n the network to increase sensitivity to the
clement; and adjusting an output of the network based at
least 1n part on the biasing. The model includes a determin-
ing means and/or an adjusting means. In one aspect, the
determining means and/or an adjusting means may be the
general-purpose processor 102, program memory associated
with the general-purpose processor 102, memory block 118,
local processing units 202, and or the routing connection
processing units 216 configured to perform the functions
recited. In another configuration, the aforementioned means
may be any module or any apparatus configured to perform
the Tunctions recited by the atorementioned means.

According to certain aspects of the present disclosure,
cach local processing umt 202 may be configured to deter-
mine parameters of the model based upon desired one or
more functional features of the model, and develop the one
or more functional features towards the desired functional
features as the determined parameters are further adapted,
tuned and updated.

Incorporating Top-Down Information 1n Deep Neural Net-
works Via the Bias Term

As previously discussed, there may be a prior1 knowledge
that an object will be present 1n an 1image or has an increased
probability of being present 1n the image. For example, a
time/location of an 1mage may provide information regard-
ing objects that may be present in the 1image. That 1s, 1n one
example, 1 an 1mage 1s taken at a football game, there 1s an
increased probability that a football, grass, and/or helmets
are present 1n the image. As another example, a probability
of an object being present 1n the image may increase based
on the presence of other objects in the image. For example,
an 1mage of a snowboarder has an increased probability of
including snow.

Although aspects of the present disclosure are described
for determining objects 1n 1mages, aspects of the present
disclosure are not limited to determining objects 1n 1mages.
Of course, aspects of the present disclosure are also con-
templated for determining whether any element 1s present or
has an increased probability of being present 1n an mnput to
a network. For example, aspects of the present disclosure
may be used to determine whether a specific sound 1s present
in an audio mnput.

In one configuration, a network 1s biased toward classi-
tying an object based on a prior1 knowledge that the object
will be present 1n an 1mage or has an increased probability
ol being present 1n the 1image. The bias may be specified to
prevent false positives. That 1s, rather than increasing the
output of a classifier neuron based on a probabaility that an
object 1s present, aspects of the present disclosure scale a
bias to amplify responses for objects detected 1n an 1mage.

FIG. 6 illustrates an example of an 1image 600 and filters
602-608 that may be applied to the image 600. As shown 1n
FIG. 6, the image 600 1s an image of a kickball game. In this
example, the image includes green grass 610, a red ball 612,
players on a blue team 614, and a player on a purple team
616. The filters include a horizontal filter 602 that filters
horizontal lines, a vertical filter 604 that filters vertical lines,
a green filter 606 that filters green objects, and a red/purple

filter 608 that filters red/purple objects. The filters of FIG. 6
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are exemplary filters. Aspects of the present disclosure are
not limited to the filters of FIG. 6 as aspects of the present
disclosure are contemplated for a variety of filters to be
applied to an mput.

In the present example, after applying the filters 602-608
to the image 600, the output of the network may be:

1. 0.24—ball

2. 0.60—blue team

3. 0.15—purple team

4. 0.01—tree

The output refers to the determined probability of an
object being 1n the mput based on evidence derived from the
input. In this example, there 1s a twenty-four percent prob-
ability that a ball 1s 1n the 1mage, a sixty percent probability
that a player on the blue team 1s in the image, a fifteen
percent probability that a player on the purple team 1s 1n the
image, and a one percent probability that a tree 1s 1n the
1mage.

As shown 1n FIG. 6, each filter 602-608 has an input to a
classifier neuron associated with a specific object (e.g.,
class). In this example, for illustrative purposes, a thick line
indicates a strong output from the filter and a thin line
indicates a weak output from the filter. As the amount of
evidence for the presence of an object increases, the strength
of the output from the filter increases. For example, an
output from the red/purple filter 608 to the red ball neuron
618 1s strong based on the filter determining that there 1s
evidence that a red object 1s present 1n the 1image.

However, as shown in FIG. 6, the output from the vertical
filter 604 to the purple team neuron 620 1s weak because the
vertical filter 604 does not find any evidence of the purple
team 616. As previously discussed, the vertical filter 604
determines whether vertical lines are present 1n the image.
That 1s, the vertical filter 604 does not filter for features
associated with the purple team 616, such as humans wear-
ing purple shirts. Thus, because players on the purple team
616 are not associated with vertical lines, there 1s a weak
connection between the vertical filter 604 to the purple team
neuron 620.

According to aspects of the present disclosure, connec-
tions between network elements, such as filters and neurons
may be referred to as synapses. Furthermore, the classifier
neurons may be referred to as output neurons and/or object
neurons. The classifier neurons, output neurons, and object
neurons refer to neurons that output a value from an acti-
vation function based on an mput from a filter.

As previously discussed, the image 600 includes a red ball
612 and an 1individual wearing a purple shirt (e.g., player on
the purple team 616). Still, in the image 600, the red ball 612
1s relatively small 1n comparison to other objects. Moreover,
in the 1mage 600, the individual wearing a purple shirt 1s not
as numerous as other objects, such as the group of individu-
als wearing blue shirts. Accordingly, the red ball 612 and the
individual wearing a purple shirt might be missed or
assumed not to be present based on the network output.

Still, in the present configuration, the classification 1s
specified to determine whether a player on the purple team
616 1s 1n the 1image. In conventional systems, based on prior
knowledge that the image 600 1s an 1image of the blue team
614 playing kickball with the purple team 616, the response
tor the classifier neuron of the purple team (e.g., purple team
neuron 620) may be increased based on the probability that
the 1mage 600 includes a player on the purple team 616.
Still, there 1s a likelihood that a player on the purple team
616 1s not present 1n an 1mage. Therefore, increasing the
response (e.g., activation value output) for the purple team
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neuron 620 based on the probability that the image 600
includes a player on the purple team 616 may lead to a false
positive.

Thus, 1 addition to preventing false positives, 1t 1s
desirable to mitigate incorrect or weak classifications of
objects that are relatively small 1n comparison to other
objects and/or not as numerous as other objects. According
to aspects ol the present disclosure, based on a priori
knowledge that an object will be present in an 1mage or an
object has an increased probability of being present in the
image, a bias of an activation function may be adjusted so
that the output of the filters 1s adjusted based on the biasing.
In one configuration, the bias of a synapse to a classifier
neuron may be adjusted based on the probability that object
1s present 1n an 1mage. As an example, the bias of synapses
622 to the purple team neuron 620 may be adjusted based on
the probability that a player on the purple team 616 1s
present 1n the 1mage.

In some cases, 1t may be undesirable to adjust the weights
of the filter to alter the output of the network based on a
prior1 knowledge that an object will be present 1n an 1mage
or an object has an increased probability of being present 1n
the 1mage. Specifically, the weights of the filters have been
determined from numerous traimng passes. Therefore,
adjusting the weights after training may alter the results of
the training and lead to false values.

Additionally, directly changing the activation values may
result 1n the network classitying objects that are not present
(e.g., hallucinations). Therefore, 1n one configuration, the
bias term 1s scaled to amplily responses that are likely to
indicate the presence ol an object. That i1s, 1n the present
configuration, scaling the bias changes the operating range
of the activation function to be more sensitive to the input.
EQUATION 1 shows an equation for the activation function.

(1)

In EQUATION 1, w, 1s the weight, x; 1s the activation
value output from a lower layer, such as a filter, and vb, 1s the
bias term. Speuﬁcally,, v 1s the amount of adjustment for the
bias and b, 1s the bias. According to EQUATION 1, the bias
term may be scaled for all synapses that lead to a partlcular
classifier neuron. That 1s, the gain of an mput to a classifier
neuron may be increased or decreased based on the bias.

FIG. 7 illustrates a coordinate graph 700 with the input (2,
w.X +Yvb.) to a classifier neuron on the x-axis and a value of
an activation function (EQUATION 1) that i1s output from
the classifier neuron on the y-axis. The value of the activa-
tion function may be referred to as the activation value and
the mput to a classifier neuron may be referred to as the
evidence input. The evidence mput on the x-axis 1s a value
for an amount of evidence for the presence of an object. In
this example, the input values range from —10 to 10, such
that a value of —10 indicates that there 1s little to no evidence
that the object 1s present 1n the image and 10 indicates a large
amount of evidence for the presence of the object. Further-
more, the activation value 1s the probability that an object 1s
present in the image based on the amount of evidence (e.g.,
x-axis iput) for the presence of the object 1n the 1mage.
Thus, as shown 1n FIG. 7, the activation value increases as
the evidence mput to the classifier neuron 1ncreases. That 1s,
a strong evidence iput to the classifier neuron results in a
strong activation value output.

Additionally, FIG. 7 1llustrates numerous lines plotted on
the graph 700. The lines indicate results of adjusting the bias
of an input. For example, a first line 702 indicates a baseline
for an input and activation (e.g., no bias adjustment). In this
example, as shown 1n the first line 702, an evidence mput of

activation=f (Z,wx+vb,)
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0 results 1n an activation value of approximately 0.5. Addi-
tionally, a second line 704 provides an example of adjusting,
the bias by 1.5. As shown on the second line 704, an
evidence mnput of 0 results 1n an activation value of approxi-
mately 0.9.

Accordingly, as shown in FIG. 7, although the first line
702 and the second line 704 receive a same value for the
evidence 1put, the activation value that 1s output from the
classifier neuron 1s adjusted based on the scaled bias.

It should be noted that the bias may be positively adjusted
or negatively adjusted. For example, FIG. 7 illustrates both
positive and negative adjustments. The second line 704 plots
the coordinates for adjusting the bias by 1.5. The third line
706 plots the coordinates for adjusting the bias by -1.5.

As previously discussed, the bias may be positively
adjusted based on a prior1 knowledge of an item being
present 1n an iput. For example, because birds are associ-
ated with trees the bias may be positively adjusted for a tree
when an 1mage of a bird 1s presented. Furthermore, the bias
may be negatively adjusted based on a priori knowledge of
an 1tem not being present 1n an 1nput. For example, because
baseballs are not associated with football games, the bias
may be negatively adjusted for a baseball when an 1mage of
a football game 1s presented.

It should be noted that the bias 1s applied to each input of
a classifier neuron. That 1s, the bias 1s applied to each piece
ol evidence, such as the output of each filter. For example,
based on the example of FIG. 6, a bias may be applied to
cach of the synapses 622 that 1s input to the purple team
neuron 620. As previously discussed, the value determined
for the presence of an object may vary based on the type of

filter.

For example, based on the example of FIG. 6, the hori-
zontal filter 602 1s specified to determine whether horizontal
lines are present 1n the image. Accordingly, because a red
ball has little to no vertical lines, the value of the evidence
input to the red ball neuron 618 from the horizontal filter 602
1s low. That 1s, the horizontal filter 602 found little to no
evidence for horizontal lines that are associated with a red
kick ball. Thus, because the bias 1s applied to an 1nput from

cach filter, the probabaility that the object 1s present increases
based on the amount of evidence found for the object from
cach filter.

As previously discussed, based on the example of FIG. 6,
the output of the network with an unadjusted bias may be:

1. 0.24—ball

2. 0.60—blue team

3. 0.15—purple team

4. 0.01—tree

In the present configuration, based on the example of FIG.
6, the bias 1s scaled to the ball based on a prior1 knowledge
that the ball will be present 1n an 1mage or has an increased
probability of being present in the image. Based on a
positive bias applied for the ball, the output of the network
may be:

1. 0.50—ball

2. 0.35—blue team

3. 0.05—purple team

4. 0.00—tree

As shown 1n the output provided above for a positive bias
adjusted for the ball, in comparison to the unadjusted bias
output, the probability of the ball 1s changed from twenty-
four percent to filty percent.

In the present configuration, based on the example of FIG.
6, the bias 1s scaled to the tree based on a prior1 knowledge
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that the tree has an increased probability of being present in
the 1mage. Based on this configuration, the output of the
network may be:

1. 0.10—ball

2. 0.35—blue team

3. 0.05—purple team

4. 0.02—tree

As shown 1n the output provided above for a positive bias
adjusted for the tree, 1n comparison to the unadjusted bias
output, the probability of the tree i1s changed from one
percent to two percent. That 1s, because a tree 1s not present
in the image 600 of FIG. 6, scaling a bias to a tree does not
cause a significant increase in the probability of the tree
being present.

FIG. 8 1llustrates a graph 800 having an x-axis represent-
ing an evidence value that 1s input to a classifier neuron from
a filter and a y-axis representing a value of an activation
function that 1s output from a classifier neuron. In FIG. 8, the
different curved lines indicate results of adjusting the bias of
an mmput. For example, a first line 802 indicates an unad-
justed baseline for an mput and activation. In this example,
as shown 1n the first line 802, when a bias 1s not adjusted for
the evidence mput, an mput of -1 results 1n an activation of
approximately 0.24. Additionally, a second line 804 pro-
vides an example of adjusting the bias by 0.5 for the
evidence mput. As shown on the second line 804, an 1nput
of —1 results 1n an activation of approximately 0.5. Thus, as
previously discussed, in the unadjusted network output, the
value for an object, such as a ball, 1s 0.24. Furthermore, as
described above, when a bias 1s adjusted for the object, the
value 1s 0.3.

Additionally, as shown 1n FIG. 8, for a second object with
a low evidence value, such as -3, the unadjusted activation
value from the first line 802 1s 0.01. Furthermore, a second
line 804 provides an example of adjusting the bias by 0.5 for
the evidence mput of the second object. As shown on the
second line 804, a value of -5 for evidence mnput results 1n
an activation value of approximately 0.02. Thus, as
described above, 1n the unadjusted network output, the
activation value for the second object 1s 0.01. Furthermore,
as described above, when a bias 1s adjusted for the second
object, the activation value 1s 0.02. As previously discussed,
because there 1s little to no evidence that the second object
1s present, adjusting the bias for the evidence mput will not
cause a significant change in the activation value.

In one configuration, the bias 1s adjusted as a function of
the weights that lead to the object. For example, if a bias of
ball 1s to be adjusted, an adjustment term that is proportional
to the weight of the synapses 1s back propagated from the
classifier neuron of the ball.

FIG. 9 illustrates an example 900 of a network with
classifier neurons at a top layer (layer J) connected to object
specific filters at a middle layer (Layer I). The classifiers are
connected to the general filters at the lower layer (Layer H).
In one example, the bias may be adjusted for the evidence
of the ball. Thus, 1n this example, the adjustment value may
be present at the top layer so that the adjustment value (y;))
1s back propagated from the ball neuron 902 to the network
in proportion to the weight of the synapses 1n the network.
In this example, the adjustment value may be applied at the
top layer when 1t 1s known that an object 1s present 1n the
image or there 1s an increased probability that the object 1s
present 1n the 1mage.

For example, as shown in FIG. 9, the weight of the
synapse 904 from the ball filter 906 to the ball neuron 902
1s high. However, the weight of the other synapses 908 from
the other object specific filters to the ball neuron 902 1s
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weak. Therefore, the adjustment value back propagated to
the ball filter 906 1s stronger 1n comparison to the adjustment
value that 1s back propagated from the ball neuron 902 to the
other object specific filters of Layer I. That 1s, the adjustment
value 1s back propagated in proportion to the weight of the
synapse from each object specific filter at layer 1 to the
classifier neuron at Layer J.

Additionally, the adjustment value 1s back propagated
from the object specific filters at layer I to the general filters
at layer H based on the weight of the synapses from the
object specific filters to each general filter at layer H.

The equation for determining the adjustment value based
on the weight of each synapse 1s as follows:

Y7~ Yow;; VjCball class (2)

Yoi Vi Whi (3)

In EQUATIONS 2 and 3, based on the example of FIG.
8, w,; 1s the weight of the synapse from Layer J to Layer I,
w, . 15 the weight of the synapse form Layer H to Layer 1, v,
1s the amount of bias adjustment present at the output
neuron, v,;; 1s the adjustment value applied to the synapse
tfrom Layer J to Layer I, and v, 1s the adjustment value
applied to the synapse from Layer H to Layer 1.

In another configuration, istead of adjusting the bias for
a specific object (e.g., class), the bias may be adjusted to
specific features, such as red objects, and/or objects with
round edges. In this example, there may not be a priori
knowledge of an object 1n an 1mage. Still, n this example,
the network may be searching for a specific object, such as
a purple shirt. Therefore, the bias may be adjusted at any
layer in the network. For example, based on FIG. 9, the bias
may be adjusted for the purple 1image filter 910 at Layer I and
the adjustment value may be back propagated to the filters
at Layer H 1n proportion to the weight of each synapse from
Layer H to Layer I. The equation for back propagating the
adjustment value to each synapse connected to a filter at
Layer I 1s as follows:

Yy=U (4)

Yri YoWhi (5)

In EQUATIONS 4 and 5, based on the example of FIG.
9, w, . 1s the weight of the synapse from Layer H to Laver 1,
v, 1s the amount of bias adjustment present at the output
neuron, v,; 1s the adjustment value applied to the synapse
from Layer J to Layer I, and v, 1s the adjustment value
applied to the synapse from Layer H to Layer I. In this
configuration y,=0 because the adjustment 1s back propa-
gated from Layer I to Layer H instead of being applied and
back propagated from Layer J.

In another configuration, the bias may be adjusted based
on a measured response ol the network to an exemplary
image. For example, an image may be presented to the
network and the response of the network 1s measured in
response to the image. Furthermore, the bias may be
adjusted based on the response. The adjusting may be
performed at an internal level of the network.

FIG. 10 1llustrates an example of generating a bias based
on a measured response to an 1mage 1002 presented to the
network 1000. As shown in FIG. 10, the network 1000
includes a top layer (Layer I) of classifier neurons, a middle
layer (Layer I) of object specific filters, and a bottom layer
(Layer H) of general filters. Furthermore, as shown 1n FIG.
10, an image 1002 1s presented to the network 1000. In this
example, the image 1002 1s a purple ball with a background
of leaves. As shown 1n FIG. 10, the purple ball of the image
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1002 1s not present as an object in the object neurons.
Therefore, to determine the adjustment value for the objects
in the mmage 1002, the image 1002 is presented to the
network 1000 to measure the response of the network 1000.

In the present example, when the image 1002 1s presented
to the network 1000, the activations of the network are
measured at the neurons, synapses, and layers. For example,
as shown 1n FIG. 10, the activations are distributed at
various lilters, synapses, and neurons. Specifically, in this
example, a purple filter 1004, a green filter 1006, a red ball
filter 1008, a purple square filter 1010, and a tree filter 1012
are the filters that are activated in response to the image
1002. Furthermore, the activations are distributed at the
classifier neurons, such that a tree neuron 1014, a purple
team neuron 1016, and a ball neuron 1018 are activated. It
should be noted that 1n FIG. 10, the synapses with thick lines
represent the synapses that are activated in response to the
image 1002. In the example of FIG. 10, the size of a circle
relative to the filter/neuron i1s indicative of the level of
activation, such that a bigger circle represents an activation
that 1s greater than a smaller circle.

After determining the activations for the specific object,
the bias may be adjusted as a function of the activations. For
example, a new 1mage can be presented to the network and
the pattern of activations throughout the network 1s
observed. The bias 1s then distributed to each synapse
proportional to the activation of the neuron to which the
synapse 1s connected. In this example, the bias 1s adjusted
from the bottom-up, such that some of the bias 1s distributed
among the synapses at each layer. In this configuration, the
bias may be adjusted from the bottom-up based on the
following equations:

Lo 6)
o ;
N i} SVRAPSES
Yo (7)
Vhi = An
N hi synapses

In EQUATIONS 6 and 7, based on the example of FIG.
10, v, 1s the amount of bias adjustment present at the output
neuron, y,; 1s the adjustment value applied to the synapse
from Layer J to Layer I, and v, 1s the adjustment value
applied to the synapse from Layer H to Layer I, X, 1s the
value output from a specific synapse of Layer I, and X, 1s the
value output from a specific synapse of Layer H.

In another configuration, the adjustment value 1s back
propagated from the output based on the following equa-
tions:

Y~ (YoW )%, (8)

Yoi YijWhi (9)

In EQUATIONS 8 and 9, based on the example of FIG.
10, v, 1s the amount of bias adjustment present at the output
neuron, y,; 1s the adjustment value applied to the synapse
from Layer I to Layer I, and v,. 1s the adjustment value
applied to the synapse from Layer H to Layer I, Xx; 1s the
pattern of activations at Layer I, w,, 1s the weight of the
synapse from Layer H to Layer I, and w; 1s the weight of the
synapse from Layer I to Layer 1.

Based on aspects of the present disclosure, multiple
configurations are presented for adjusting the bias. In one
configuration, the bias may be adjusted as a constant. The
bias may be adjusted as a constant when the top-down si1gnal
1s determined from a knowledge-graph type source. For
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example, the bias may be adjusted as a constant when 1t 1s
known that an 1mage of a bird has an increased probability
of including an 1image of a tree. EQUATION 1 may be used
for adjusting the bias as a constant.

In another configuration, the bias 1s adjusted as a function
of the synaptic weight. The bias may be adjusted as a
function of the synaptic weight so that important weights for
a given object are biased. Additionally, or alternatively, the
bias may be adjusted as a function of the synaptic weight so
that the adjustment value 1s back propagated through the
network. The equation for adjusting the bias as a function of
the synaptic weight 1s:

activation=J(Z,wx+y(w,)b;) (10)

In EQUATION 10, w, 1s the weight, ( ) 1s the bias
adjustment (e.g., change 1n bias), X, 1s the value output from
a lower layer, and b, 1s the bias.

In another configuration, the bias 1s adjusted as a function
of the activations 1n response to a target class presentation.
This configuration may be used when the top-down signal 1s
derived from an example presented to the network. For
example, as shown in FIG. 10, an image 1002 1s presented
to the network 1000 and the bias 1s determined based on the
distribution of activations in the network. The equation for
adjusting the bias as a function of the activations in response
to a target class presentation may be based on the following,
equation:

activation=J (Z,wx,+v(x,)b,) (11)

In EQUATION 11, w, 1s the weight, ( ) 1s the bias
adjustment (e.g., change 1n bias), X, 1s the value output from
a lower layer, and b, 1s the bias.

Furthermore, the bias adjustment may be applied addi-
tively or multiplicatively. The application of the bias may
depend on the activation function.

The adjustment of the bias may be additively applied
based on the following equation:

activation=F(Z,wx+(y+5,)) (12)

In EQUATION 12, w. 1s the weight, v 1s the bias adjust-
ment (e.g., change 1n bias), x. 1s the value output from a
lower layer, and b, 1s the bias.

In one configuration, the adjustment of the bias 1s multi-
plicatively applied based on EQUATION 1. Multiplicatively
applying the bias may be desirable because the bias 1s scaled
from the original value.

FIG. 11 1illustrates a method 1100 of adjusting a bias for
an activation function in a machine learming network, such
as a neural classifier network. At block 1102, a network
determines whether an element has an increased probability
ol being present 1n an input to the network. At block 1104,
the network adjusts a bias term of activation functions of
neurons 1n the network to increase sensitivity to the element.
In one configuration, the bias 1s adjusted without adjusting
weights of the network. Furthermore, at block 1106, the
network adjusts an output of the network based on the
biasing.

FIG. 12 illustrates a method 1200 of adjusting a bias for
an activation function 1n a machine learming network, such
as a neural classifier network. At block 1202, a network
determines attributes associated with an input, such as an
image. As an example, the attributes may include a time of
an 1mage, location of an 1image, and/or specific objects that
are present in the image. Based on the determined attributes,
at block 1204, the network determines whether an element
has an increased probability of being present 1n the mput.
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If the element has an increased probability of being
present 1n an input to the network, at block 1206, the
network adjusts a bias term of activation functions of
neurons in the network to increase sensitivity to the element.
Furthermore, at block 1210, the network adjusts the network
output based on the adjusted bias term.

If the element does not have an increased probability of
being present 1n an iput to the network, at block 1208, the
network adjusts a bias term of activation functions of
neurons in the network to decrease sensitivity to the element.
Furthermore, at block 1210, the network adjusts the network
output based on the adjusted bias term.

The various operations of methods described above may
be performed by any suitable means capable of performing
the corresponding functions. The means may include vari-
ous hardware and/or software component(s) and/or
module(s), including, but not limited to, a circuit, an appli-
cation specific integrated circuit (ASIC), or processor. Gen-
crally, where there are operations 1illustrated 1n the figures,
those operations may have corresponding counterpart
means-plus-function components with similar numbering.

As used herein, the term “determining” encompasses a
wide variety of actions. For example, “determining” may
include calculating, computing, processing, deriving, inves-
tigating, looking up (e.g., looking up 1n a table, a database
or another data structure), ascertaining and the like. Addi-
tionally, “determining” may include receiving (e.g., receiv-
ing 1information), accessing (e.g., accessing data 1n a
memory) and the like. Furthermore, “determining” may
include resolving, selecting, choosing, establishing and the
like.

As used herein, a phrase referring to “at least one of” a list
of 1tems refers to any combination of those items, including
single members. As an example, “at least one of: a, b, or ¢”
1s 1intended to cover: a, b, ¢, a-b, a-c, b-c, and a-b-c.

The various illustrative logical blocks, modules and cir-
cuits described 1n connection with the present disclosure
may be implemented or performed with a general purpose
processor, a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a field programmable gate
array signal (FPGA) or other programmable logic device
(PLD), discrete gate or transistor logic, discrete hardware
components or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but 1n the alternative, the proces-
sor may be any commercially available processor, controller,
microcontroller or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
MICroprocessors, one or more miCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

The steps of a method or algorithm described in connec-
tion with the present disclosure may be embodied directly in
hardware, 1n a software module executed by a processor, or
in a combination of the two. A software module may reside
in any form of storage medium that 1s known 1n the art.
Some examples of storage media that may be used include
random access memory (RAM), read only memory (ROM),
flash memory, erasable programmable read-only memory
(EPROM), clectrically erasable programmable read-only
memory (EEPROM), registers, a hard disk, a removable
disk, a CD-ROM and so forth. A soiftware module may
comprise a single mnstruction, or many instructions, and may
be distributed over several diflerent code segments, among
different programs, and across multiple storage media. A
storage medium may be coupled to a processor such that the
processor can read mformation from, and write information
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to, the storage medium. In the alternative, the storage
medium may be integral to the processor.

The methods disclosed herein comprise one or more steps
or actions for achieving the described method. The method
steps and/or actions may be interchanged with one another
without departing from the scope of the claims. In other
words, unless a specific order of steps or actions 1s specified,
the order and/or use of specific steps and/or actions may be
modified without departing from the scope of the claims.

The functions described may be implemented 1n hard-
ware, soltware, firmware, or any combination thereof. IT
implemented in hardware, an example hardware configura-
tion may comprise a processing system in a device. The
processing system may be implemented with a bus archi-
tecture. The bus may include any number of interconnecting
buses and bridges depending on the specific application of
the processing system and the overall design constraints.
The bus may link together various circuits including a
processor, machine-readable media, and a bus interface. The
bus interface may be used to connect a network adapter,
among other things, to the processing system via the bus.
The network adapter may be used to implement signal
processing functions. For certain aspects, a user interface
(e.g., keypad, display, mouse, joystick, etc.) may also be
connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regula-
tors, power management circuits, and the like, which are
well known 1n the art, and therefore, will not be described
any further.

The processor may be responsible for managing the bus
and general processing, including the execution of software
stored on the machine-readable media. The processor may
be implemented with one or more general-purpose and/or
special-purpose processors. Examples imnclude microproces-
sors, microcontrollers, DSP processors, and other circuitry
that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination
thereof, whether referred to as software, firmware, middle-
ware, microcode, hardware description language, or other-
wise. Machine-readable media may include, by way of
example, random access memory (RAM), flash memory,
read only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable programmable
Read-only memory (j.,_JPROM) registers, magnetic disks,
optical disks, hard drnives, or any other suitable storage
medium, or any combination thereof. The machine-readable
media may be embodied 1n a computer-program product.
The computer-program product may comprise packaging
materials.

In a hardware implementation, the machine-readable
media may be part of the processing system separate from
the processor. However, as those skilled in the art waill
readily appreciate, the machine-readable media, or any
portion thereof, may be external to the processing system.
By way of example, the machine-readable media may
include a transmission line, a carrier wave modulated by
data, and/or a computer product separate from the device, all
which may be accessed by the processor through the bus
interface. Alternatively, or in addition, the machine-readable
media, or any portion thereol, may be integrated into the
processor, such as the case may be with cache and/or general
register files. Although the various components discussed
may be described as having a specific location, such as a
local component, they may also be configured 1n various
ways, such as certain components being configured as part
of a distributed computing system.
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The processing system may be configured as a general-
purpose processing system with one or more microproces-
sors providing the processor functionality and external
memory providing at least a portion of the machine-readable
media, all linked together with other supporting circuitry
through an external bus architecture. Alternatively, the pro-
cessing system may comprise one or more neuromorphic
processors for implementing the neuron models and models
of neural systems described herein. As another alternative,
the processing system may be implemented with an appli-
cation specific integrated circuit (ASIC) with the processor,
the bus interface, the user interface, supporting circuitry, and
at least a portion of the machine-readable media integrated
into a single chip, or with one or more field programmable
gate arrays (FPGAs), programmable logic devices (PLDs),
controllers, state machines, gated logic, discrete hardware
components, or any other suitable circuitry, or any combi-
nation of circuits that can perform the various functionality
described throughout this disclosure. Those skilled 1n the art
will recognize how best to implement the described func-
tionality for the processing system depending on the par-
ticular application and the overall design constraints
imposed on the overall system.

The machine-readable media may comprise a number of
software modules. The software modules include instruc-
tions that, when executed by the processor, cause the pro-
cessing system to perform various functions. The software
modules may include a transmission module and a receiving
module. Each software module may reside in a single
storage device or be distributed across multiple storage
devices. By way of example, a soltware module may be
loaded 1into RAM from a hard drive when a triggering event
occurs. During execution of the software module, the pro-
cessor may load some of the instructions into cache to
increase access speed. One or more cache lines may then be
loaded into a general register file for execution by the
processor. When referring to the functionality of a software
module below, 1t will be understood that such functionality
1s 1implemented by the processor when executing instruc-
tions from that software module. Furthermore, 1t should be
appreciated that aspects of the present disclosure result 1n
improvements to the functioning of the processor, computer,
machine, or other system implementing such aspects.

If implemented 1n software, the functions may be stored
or transmitted over as one or more 1nstructions or code on a
computer-readable medium. Computer-readable media
include both computer storage media and communication
media mcluding any medium that facilitates transfer of a
computer program from one place to another. A storage
medium may be any available medium that can be accessed
by a computer. By way of example, and not limitation, such
computer-readable media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium that can be used to carry or store desired program
code 1n the form of instructions or data structures and that
can be accessed by a computer. Additionally, any connection
1s properly termed a computer-readable medium. For
cxample, iI the software 1s transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared (IR), radio, and
microwave, then the coaxial cable, fiber optic cable, twisted
pair, DSL, or wireless technologies such as infrared, radio,
and microwave are included in the definition of medium.
Disk and disc, as used herein, include compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy
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disk, and Blu-ray® disc where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Thus, 1n some aspects computer-readable media may
comprise non-transitory computer-readable media (e.g., tan-
gible media). In addition, for other aspects computer-read-
able media may comprise transitory computer-readable
media (e.g., a signal). Combinations of the above should
also be included within the scope of computer-readable
media.

Thus, certain aspects may comprise a computer program
product for performing the operations presented herein. For
example, such a computer program product may comprise a
computer-readable medium having instructions stored (and/
or encoded) thereon, the mstructions being executable by
one or more processors to perform the operations described
herein. For certain aspects, the computer program product
may include packaging matenal.

Further, 1t should be appreciated that modules and/or
other appropriate means for performing the methods and
techniques described herein can be downloaded and/or oth-
erwise obtained by a user terminal and/or base station as
applicable. For example, such a device can be coupled to a
server to facilitate the transter of means for performing the
methods described herein. Alternatively, various methods
described herein can be provided via storage means (e.g.,
RAM, ROM, a physical storage medium such as a compact
disc (CD) or floppy disk, etc.), such that a user terminal
and/or base station can obtain the various methods upon
coupling or providing the storage means to the device.
Moreover, any other suitable technique for providing the
methods and techniques described herein to a device can be
utilized.

It 1s to be understood that the claims are not limited to the
precise configuration and components illustrated above.
Various modifications, changes and variations may be made
in the arrangement, operation and details of the methods and
apparatus described above without departing from the scope
of the claims.

What 1s claimed 1s:

1. A computer-implemented method for classitying an
clement 1n an input by biasing a deep neural network,
comprising:

determining, prior to classifying the element in the input

to the deep neural network, whether the element has an
increased probability of being present 1n the input to the
deep neural network based on at least one of a location
of the mput, a time of the mput, or another element
classified 1n the mput;

adjusting a bias of activation functions of neurons in the

deep neural network to increase sensitivity to the
clement based on whether the element has an increased
probability of being present in the mput, the bias being
adjusted without adjusting weights of the deep neural
network:

adjusting an output of the deep neural network based at

least 1n part on the adjusted bias; and

classitving the element based on the output of the deep

neural network.

2. The computer-implemented method of claim 1, further
comprising determining an amount of adjustment for the
bias as a constant, function of a synaptic weight, or function
ol activations 1n response to presentation of a target class.

3. The computer-implemented method of claim 1, in
which adjusting the bias comprises scaling the bias.

4. The computer-implemented method of claim 3, in
which a scale of the adjusting 1s based at least 1n part on a
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prior1 knowledge of what 1s likely to be present in the input
and/or what 1s not likely to be present in the nput.

5. The computer-implemented method of claim 1, 1n
which the adjusting 1s performed at an internal level of the
deep neural network.

6. An apparatus for classitying an element 1n an iput by
biasing a deep neural network, comprising:

means for determining, prior to classiiying the element 1n

the mput to the deep neural network, whether the
clement has an increased probability of being present 1n
the mput to the deep neural network based on at least
one of a location of the input, a time of the input, or

another element classified 1n the mput;

means for adjusting a bias of activation functions of
neurons 1n the deep neural network to increase sensi-
tivity to the element based on whether the element has
an 1ncreased probability of being present in the nput,
the bias being adjusted without adjusting weights of the

deep neural network;

means for adjusting an output of the deep neural network
classitying the element based at least 1n part on the
adjusted bias; and

means for classitying the element based on the output of

the deep neural network.

7. The apparatus of claim 6, further comprising means for
determining an amount of adjustment for the bias as a
constant, function of a synaptic weight, or function of
activations 1n response to presentation of a target class.

8. The apparatus of claim 6, in which the means for
adjusting the bias comprises means for scaling the bias.

9. The apparatus of claim 8, 1n which a scale of the
adjusting 1s based at least 1n part on a prior1 knowledge of
what 1s likely to be present 1n the mput and/or what 1s not
likely to be present in the mnput.

10. The apparatus of claim 6, in which the means for
adjusting 1s performed at an 1nternal level of the deep neural
network.

11. An apparatus for classifying an element in an input by
biasing a deep neural network, comprising:

a memory unit; and

at least one processor coupled to the memory unit, the at

least one processor configured:
to determine, prior to classifying the element in the
input to the deep neural network, whether the ele-
ment has an increased probability of being present 1n
the 1input to the deep neural network based on at least
one of a location of the mput, a time of the input, or
another element classified 1n the input;
to adjust a bias of activation functions of neurons in the
deep neural network to increase sensitivity to the
clement based on whether the element has an
increased probability of being present in the mput,
the bias being adjusted without adjusting weights of
the deep neural network;
to adjust an output of the deep neural network based at
least 1n part on the adjusted bias; and
to classily the element based on the output of the deep
neural network.

12. The apparatus of claim 11, 1n which the at least one
processor 1s Iurther configured to determine an amount of
adjustment for the bias as a constant, function of a synaptic
weilght, or function of activations 1n response to presentation
ol a target class.

13. The apparatus of claim 11, 1n which the at least one
processor 1s further configured to adjust the bias by scaling
the bias.
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14. The apparatus of claim 13, 1n which a scale of the
adjusting 1s based at least in part on a prior1 knowledge of
what 1s likely to be present 1n the input and/or what 1s not
likely to be present 1n the 1put.

15. The apparatus of claim 11, in which the at least one
processor 1s further configured to adjust the bias at an
internal level of the deep neural network.

16. A non-transitory computer-readable medium having
program code recorded thereon for classifying an element in
an 1nput by a deep neural network, the program code being
executed by a processor and comprising:

program code to determine, prior to classiiying the ele-

ment 1n the mput to the deep neural network, whether
the element has an increased probability of being
present in the input to the deep neural network based on
at least one of a location of the input, a time of the
input, or another element classified in the input;
program code to adjust a bias of activation functions of
neurons in the deep neural network to increase sensi-
tivity to the element based on whether the element has
an increased probability of being present in the nput,
the bias being adjusted without adjusting weights of the

deep neural network;

5

10

15

20

24

program code to adjust an output of the deep neural
network based at least 1n part on the adjusted bias; and

program code to classily the element based on the output
of the deep neural network.

17. The computer-readable medium of claim 16, 1n which
the program code further comprises program code to deter-
mine an amount ol adjustment for the bias as a constant,
function of a synaptic weight, or function of activations 1n
response to presentation of a target class.

18. The computer-readable medium of claim 16, 1n which
the program code to adjust the bias comprises program code
to adjust the bias by scaling the bias.

19. The computer-readable medium of claim 18, 1n which
a scale of the adjusting 1s based at least in part on a priori
knowledge of what 1s likely to be present 1n the mput and/or
what 1s not likely to be present 1n the input.

20. The computer-readable medium of claim 16, in which
the program code to adjust the bias comprises program code

to adjust the bias at an internal level of the deep neural
network.
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