12 United States Patent

Prabhu et al.

US010310945B2

US 10,310,945 B2
Jun. 4, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

DATA MANAGEMENT OF UNIX FILE
SYSTEMS

Applicant: NETAPP, INC., Sunnyvale, CA (US)

Inventors: Vasantha Prabhu, Bangalore (IN);
Nikhil Kaplingat, Bangalore (IN);
Girish Kumar, Bangalore (IN)

Assignee: NETAPP, INC., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 169 days.

Appl. No.: 15/141,382
Filed: Apr. 28, 2016

Prior Publication Data

US 2017/03135872 Al Nov. 2, 2017

Int. CIL.

GO6F 17/00 (2019.01)

GO6F 11/14 (2006.01)

GoO6F 16/11 (2019.01)

U.S. CL

CPC Go6l 1171435 (2013.01); GO6F 16/122

(2019.01); GO6F 2201/80 (2013.01); GO6F
2201/805 (2013.01)

Field of Classification Search

CPC ... GO6F 17/30; GO6F 11/1435; GO6F
17/30082; GO6F 16/122
USPC e, 70°7/600-899

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0184125 Al* 7/2008 Sulemman GO6F 3/06
715/734
2010/0293541 Al* 11/2010 Pall ..., GO6F 8/61
717/178

* cited by examiner

Primary Examiner — Isaac M Woo
(74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP

(57) ABSTRACT

Exemplary embodiments relate to techniques that allow for
file system support to be rapidly deployed for new or
updated operating system distributions. In some embodi-
ments, a management component 1s provided perform data
management on file systems. When a data management
operation on a file system 1s requested, an operation com-
ponent searches in a predetermined location for a named
module that implements certain types of operations. The
operation component then calls these operations (including
validate, build and deport operations for the file system) to
implement data management procedures 1n the file system.
Implementing support for a new operating system or file
system does not require that the management entity be

rebuilt. Upon release of a new operating system or file
system, a new named module can be written and placed 1n

the predetermined location where the operation module 1s
configured to search.

21 Claims, 13 Drawing Sheets

Operation Logic
600

602

£04

Receive Request 1o
Perform Operation

Search Predetermined
Lacation for
Implementation Module

Implementation Module
Found?

Nc
£08
Fail

§10
Parfarm Activity

812
Perform Operation(s}

Initialize

R

US 10,310,945 B2

Sheet 1 of 13

Jun. 4, 2019

U.S. Patent

41 _
A10)03I(]

0Ll
WwalsAg abeiqg

V1 ainbi4

SVN

Juiod junopy) |

707

¥0e}S afeJols JsoH
001
JSOH

g) ainbi4

0¢t
Wo)sAg abelg

NYS

. 90IN9(]

anoJSy SWNOA

SWNoA 1eaib o

WaJSAS 9ji4

44
¥oe1S abelols 1SoH

0ct
}SO0H

uoieolddy

US 10,310,945 B2

& 18peo uibnid Weuodwon jusuwsbe ue |y

T

: 70
|

= Jusuodwon
m uawsbeueiy
75

2 423

~ (TvH)

- 19ART UONoRISY JOSIABTA] ¥4 %M.IMV

m UIDUZ MOYHIOM JaAe uonoriisqy abeiqs
—

907 214
S|nPoJy uoneluswa|diu| Jusuodwion uonelsdp

{74
JusuodwionN Juswsheuey

002

JanJag Juswabeuepy Wajsks 9|14

U.S. Patent

02¢
walsAg abeing

U.S. Patent Jun. 4, 2019 Sheet 3 of 13 US 10,310,945 B2

Implementation Module
206

Discover Operation
310

Initialize Run Terminate
312 314 y 316

Quiesce Operation)
318
. . N
UnQuiesce Operation
320
. ™\
Get Metadata Operation
322
Validate Operation
324 Y,
[Build Operation A
226 Y.
Deport Operation A
228
Copy Operaton
230 Y,
Get Host Info Operation
332
" . N
Get Host Initiators Operation
334
Rescan Devices Operation
226 y.

Figure 3

US 10,310,945 B2

Sheet 4 of 13

Jun. 4, 2019

U.S. Patent

$ 81nD1

902

ajnpoly uonejuswajdw]

|dV ‘SpuBlIWO) SO

Y473
JoAe abe.o)g 1SOH

T4
9|l
IndinQ

154

(19518 d) 10001014 UONRIIUNWIWOY

FOC
Jusuodwon uolesadp
4117
JusuodLiod) jual
11474
ol
1nduj

9y
(uogesedald) (020014 UONBIAUNWIWOY

757

JusI|n Jusuodwol) Juswabeuep

civ
JRID VS

0lv

104 Aiug |4y uibnid

0€C
}5OH

¢ 9inbi4

US 10,310,945 B2

\/

Y42
19he" 8b210)S 1SOH

er)

y—

Qo

S

.,_m 907 Zir4

Y a|NP O\ LonelusWS|dW Jusuodwon uonesadp

=

7p

7IG
Jayeullo4 indnQ

N

y—

—

gl

<+ 075

m sl Jusuodwon) Juswabeuepy

—

0C
JUBUOAWION) Judsuuebeuey

t I S
m Z4% ¥4
~N o4 | 9|4
S indinQ Induy
==
/)

IS

Janewo4 Induy

U.S. Patent Jun. 4, 2019 Sheet 6 of 13 US 10,310,945 B2

Operation Logic
600

602

Recelve Request fo
Perform Operation

604
Search Predetermined
Location for
Implementation Module

606

Perform Activity

612
Perform Operation(s)

Initialize

614

US 10,310,945 B2

Sheet 7 of 13

Jun. 4, 2019

U.S. Patent

/] ainbi4

AL,..,......._.....-..__.._:.._:_q.n. m SRR AR AN S AL RS AR SRR B
4 4 L
' ___.. 3 T . R L
. 0 X 5 : x A ¥
_ : v : v . - . - g o K x ; - ; .u.w. - ;)
TS RN . RQTONE D BARY AURORUG |
+ - . - 1, ; B 3 " e AT " ; 3 -
T H . M : LW b » L0 . L S
- s X : ’ | » L
iy 4 K
LT TTT PR PRy R #...~...~.,..,..,..,..,..........{ru.?..hu....;.s.;.......#f_. SR R Y R TR__-.s..,..,..,.....,.f..,....e.ﬂ..h....s.;.4.4....1.##..}....h.

) :

ﬂ R T L 0 T 0 A L, e M

) L

T 5 3 N M L

B o -____.r .n.-H_.u.f M LN ..._..m.n__ ﬁ-n. ..H,..J._...uwmu..r.-r D

a .u.J..., . Tk g S

L VI B

M ,u R e fgéfffﬂ?s;;féi ' _m
-

T Ty T e e b T B T T e T R R T T T T T T T T e R T e R R R
e . L . "
D PRGN Rk o RO SR 3

.-I-._r.._r._r.-._rd-ar-r-r-rf.f.!fdirdn.f.__rjr-r-r_r.-r.rf.r.rd-.-._r.-._r-...__r__rr.._r.......r..r...r..r..r..r.._.._-r-r_-r

xS

-r.-r.a'.r

b A |_.|r.._..|....rJ..rJ...,.J..._.-.........._.||.._.|r.. ;.J...,.J.J.J.J..ﬁ.rnrpr:h,.ru;.rﬁ_r# -:-:-r_.|..r.|J..ra,.##J.;.;:rrnrnr-rju#ﬁu#ﬂ###nrrrrrnrrrrrn..,ru,...,...,.

SRS RS

d 4 ddddd ke kb ki bkl ddddd ek bk bk kbl ddddddddd kb kkbeddddde kbbbl
REL L EL LY S R E LR R L R L L LR L L

f.mfﬁ.w.. NG P PRSI LG |

s et

l'

__,.#.4‘.4'.*
J‘.f
R AT AL

1
A T A A A A A P A S A R R R i R

4 e e e -_.,.1....1*&
Ly)
4 -

..r..r:l:n.f.f.f.ffff;ﬂffnlffnl.

T o g g - !Jf!f;ffii]lfiffffgf.lfffr - i

airrrrrrrrrxrrrrrrrrr.-

i e e e e gy e o, B,y b, B e e, Bt e e e

VN SRS

.H‘.H‘!I.FH

"

80L
— uoljeladp
elepeldjp 19

i SRR VRRNERET

|

__,.. ey ﬁﬂﬁ@ ¥ AYGH fﬁﬂﬁﬂ

RS JARRGHR Yl SRR D
E ﬁm %....n.c e ...-..ﬂ;..,u AR H.u.uu :{? f.vu.fs.um. ;....wqﬂ
m

e

"'-J‘

........___ _.

Uit R RN #.@# WY PSRN x,,y THE i ,,ﬁﬁw ki

[T B ,.,w,,f._ﬁ Ry Ay R 5 Aoy

[y |

SRR P R SR E GRS I N N R

f i e e e e T T T e e e T e e T e e e e e et e T T T T T e e T e e e e e e e e et T e T T e T e e e T

- #JJJJJ‘J‘MJHJJJJJJWJJ

q#’

o AT

T J".J*'i"ﬂ'f-l"':'.l".l".l".l".l".l"f)'.l'-i-'-l".l".l".l".l".l".l".l".l".l"..l"'

SAAAEAEAELLE '|'.'.'."..".--lll'““‘.i--.ll'.l' TRELALALALELLS T’TILI LI LI LI 11 T T T T E T LIS L A LA A T T EE S EL AR

SRR SRR ASaANDEEY

S A A T A T e e T T e e e TR A R e

\a®_r®_r

LRI B, rn ave b _._.. ' z
T RS sty el Sl
Yo Teray Smved e 9 f SFEYSIN

ﬁ = ~
.___...r.........r...r...._............u....u....u_.__.q.._.qr.‘_.__.___...r...r..+.1......r..+.1.._1..__.|_.__.1r.1_.__.r...r...-.....r...r...r...r...-....................“.:1...1r...r...r...r......1.r...r1....1....1:..__.1.11_._..

._..._,..._......_....._,...f....rr..__._r.,_.__.. LR AN Irf?
L
%

L L R R L e

"‘.".“.".".“.*'."".."..“.."' Falalt

F

m.mﬁ:.w.mf&ﬁ LIRS AV S RARR IR B SEARE ,w

mffffffffffr B T T T T T S5 e T, o R e T, e, T, N N Y B T, e M Ty,

M

hffd

Jlx_r._r-r..rJ-J-J-J-}-tirf-r_f..r.f._r._rjnfnrit-r-r_fffd-...-.-...-J-J-J-J.._r._r._r._r.r e e M e e e T e T T T T T T e T e e e T e

._:,ﬁr b ISP .{..

1

N T E AT T T TN EH TR T E A TAREEFEEL N EHETSTEFEEE N LT T ETDETE TN T T T T TN TR T TN T E Bl EF o F T E AT N EEEFE AT EEEEEEE TN T T T T T T TN AT T

i‘;.-....-...._....J...J...J...Jr.-firirj_...-.._-..._-..._-...l...l....-:..riri.-rir-...-..._-..._-..._-... iy u....iuu....-..u....-..-. - _-..._-._-._-,...-.._-r.__...i-..__.'i...i.i.. T T T T T L B B B T T T R R B R R R R

N A W M

e T T e e T e e e T T e e e, L'%tmltt.tf{lq.ﬁ e J{r_....,r .__n...__ﬂ..._..__._._...ﬂ_.r...r..n..__n...ﬂ....r e T T T e e T e
-y
R BCREAY .?f.,."”uﬂ MRS 3 T
k)
k)
lu-u-u-u.u..u—.i.“-n- TR A O e m
: R o ~
- 1 Ay S L LAy]
AR RN B RN § 3
N Td 3
A AR AR A R A a
_ 3 e
g e e W
,, : uonesadp assanbun
_.__.rf LR T T S "M. l ol
)
b
. b
. oy By oyl oy oy Py ey iy eyl r..Jl..r..J!I....I.... _J._._{.. iiirff!ijj}ifr}r}!r}{rijjrﬁ
S R wm". s 5§ 3\\
k)
k)
i
f!bbffﬂffffffff’.’.’.féfr.._._..ur.._._.r.fﬂfffurffff.ﬂ.ﬂ.;lfﬁuu:fffffﬁ .u.-qﬂ.i’f._..r.fﬂndﬁl.ﬁ. .__..”."...r..r___rr.r.f.r..f._....r.f.ff.-r-...-h-h:r.fr.frfﬂ._...ﬂ....._-. ..r..r.__...._r.._r..__.._".-..”__.u-.h-..r.f.-r.rfff.!.!.ffﬂEr.FFr.fffﬂf..:ff.rF
) - .)
SRR RN RS R SRR G R Sy 3
)
%
Sy e i e e U R :Terf:-ﬂrf..r-fr.,....ff a...rfHHN._.r_.._._H......r._..,”...fa..farfu_.ﬁxwurff{rferffﬁ.fffff! b ffffff*
3 N o SILART AR ﬁw 3
k)
:
"..........._.+._.._.._........r...____.-_J_n___._n...,v..__._...__..._.._..__._.._.._.........._....._._.._._...-...._..__._..._r....__.._.__....__....__-......__.+__.._.___r..___.-_..._.___._n...,p..:._..-.r.-.......,.....-..i.....f.f.-f._.ﬂ._. w ”“
K &) ¥
R T g e T rmab 5 3
_.....u.?ﬁ?w,..? NI IS AR ARG 3
. by 2
it *
/.. e L L A A S A R e m
k)
r......-.._...._.. L L R T R, _,.“.
y h
..-..r L R Wy
Tevlivrierivierivarivin
*J...._..__...._..__.JJJJJJ..JJIJJJ#JJJ.JJJJJIJu...u._....j__....-.._r._...._r.r.r.r..__...__..rj_upj...___..._..__.-_...__..r..__...__.JJJJJJJJJJJJJ.:JJJJJI!JIJ wah“
.... A Ot 4
PR U ATS

uonesado adsaIny

e gt gty g e gt o)

FA174
uonessd J3A02sI(]

S A L RS R R_...-...l1l1l1lr.. P r__. AR e

SRR

Lt R R T B L L L b e b e e L e b e ke e, e b e b L L et e b b e L e e e b e e g e e ek e e L e b e b e e L L b e L L m ab e e L rf b el b r L L rL naab brb L eL e ab e p bLe m b e h e ebL, e m m ab el e r p L m aba re

TR T .’Irl LS B B B S ‘.r.ﬂ r.’l.’l.’l.‘r].rl,. ’.r‘r.hl.’l.] TR il.rl,. L E o e B R B S B LT B B ’l.’l.’l‘r.’l‘r.’l‘ﬂ“ H B T R T L PR R T T T L WU, T M S T PR R LR LR et
L 5 X, 4 L
i 3 4 i b R X
U E Y : S
¥ ...,nw N b m.fm v._.,..w,w : ¥ .mm.#m Mﬂumv.ww‘ﬂ ™, m 3 .mw# A .m.fv .MWWM.. LA m..u,_m.u D W
', ¥ . P . x . . _._Wu_" L 5 RN mw ; mmv
+ hy % 3) L
by 2 L 4 k 5 ¥
T Ty L e e e R __,.T. LR S TS F...,.....r.:.ar.l.ar.l.a.,...r.m. h AL L L _-r..._r.r...-....r-..F"u .._..._.n [T W VE RN S TR TE TR TEE VR AL TE PE AL vy S S T YL VL ST S PR TE TE R I W VE P FEPTIL A T B ."I

dresoesy

U.S. Patent

Jun. 4, 2019

T

Sheet 8 of 13

Connect and copy Restore

aaaaaaaaaaaaaaaaaa

"H.‘ﬁ"

US 10,310,945 B2

rﬂfﬂ?ﬁfffffﬂn‘w‘*ﬂ‘m’#‘fj‘fj‘fj‘l‘l‘l‘{ IR R A A fﬂﬂﬂﬂﬂﬁ*ﬂm - u--j
’ ¥, 4
: : F 3 ; ;i
F o : o L, . :I- F '3 :ﬁ
s . .I, i A 4 E ¥ I " _ i
’ X i, X . £, ¢ ‘ -~ '
’ = K .- L E i = .I"'I PR . j
f: ; F : /
5 Bl g ol e -"‘-“-“‘-’-"‘-"‘-“-“-“J-“-“-: ' F.'i' ' Iﬂlj m'n'ma"aa" A rﬂ-‘ I llf.-“'.l"'.l"'.l"'.l".l"-i" i T .-ij.
- N
" 4 ¥
,.r 2 K
¥ .]
el - A .
4 P‘f{"-**.» LA a:‘ﬁ?’f«.‘?‘ 4 -f
:: Rl il Ko -"':"'Z""'""""f’ - .'f."'.*."‘.-'f."."'.".".* Ml ki b]
[
+ ﬁ u
i K e it L L L e B e B B L e Ll j ;
53 R 4
R TR L R N AL ' Lo 1 %
A R R AR R me A ¢ T] .'!
R R R R R e e R AR i
4 '3 ¢ ‘w
H :“ - 1 . iy ?i-"- ¥ .; A - ., .
{5 BEEHGT D SRS AT i B Btk *% 3 :
2 X X
-E 'ﬂtlfﬁl1ﬁﬂﬂldﬁi‘cﬁd‘:ﬁrfﬂ"fFH"“'—H"-I'.H‘""‘""’&*I- aa'aa'a's'sa’s's's s sanaa'amaaaaa"sa’a .l,_.,_.,_';: j -:
s k
4 "
d .
Validate Host Stac : precoosmoesseons :=
' . E
4 .
r £ 3 r:
4 e a
- j 4 ﬁ
. d
O p e r a t 1 O n : ~_'! 'F“J"sTJJ:‘J:I:‘J:’J’IJ.-r.a'J'.l-'.-'J'J'J‘J‘JJJJJJJJJJJJJJJJJ HEEEGNAIFIIIPPPAL IR I BIE SIS DS ﬂ
. o ~
7 1 ¢ : - '
-‘ A4 F - a." Pl 7 r f } LR T T ."I .F
¥ ¥ N o ey
7 3 a LSt ﬂ-::’-f‘"“?’r-*ﬁ} Ly T _r‘;' #J % B0 B TSR e :
; 4 s
" ‘ F l‘- ?_‘ 5. . r -'d' . - r ‘!I n r - - .lr I.F
1 a AT f - B S ugs e W e e
; F X ?
i -j Eu-..n.n """" e e il ol A AP T L a1 P Lt i i o i ﬁffﬁffﬁ#&#&.—‘-‘-;ff: i
..'! !
_; a']
3 5 I
+ - [ix > : A
e e mRARAR TRt : :
. e -"'--"-‘-‘-‘-‘-"-"-"-“-'-"-'n'n'.n:‘s‘#'..r‘m}'#}" ..1-*##m.ﬁmaJﬂ'&lﬁé&lﬂ-}}lﬁh}h:ﬁ:ﬁ:ﬁ}}}a i
K | A
; k! 7
3 N **}’?F{} Le Ny f 4 4
4 wrat A ol !ﬁ v e - A
=‘H‘l'|_.l_-l_-l_-_J_J_J_-n_-r.1r AT Ay o b ol e e e e e e e o gt g e gt g gtk ek / i
a1 -
. | A
ﬂ T R0 0 0 e e s e g ot 5 4 e gl b o P T i
. ' !
:E E Hrteoy B s P ' 5 g
- A, ¥ . i l_.l‘" b ;
34T e »-.::-;f f?'f-;-*i.:t Sy AR HAG TS WA /
A W 4
A i‘ lr !" e s] o d A
Rescan Devi CES‘/_,,-»;-: bt i R i B 5";#%{5"5.:".;3 x ;
g 4 'd !
d &, -
. : {:ll:ll:ll:ll:llﬁ-:-:-:-:--J-Jr:m'.-'..'..'ulr:.:.:u-:.:.:.hr:u'J'J'J'.-'.u-'J'J'J';';'.-'.pﬁh}ikk}hﬁ;&;ﬁ.ﬁ;ﬁ.&#ﬂﬂ.ﬁwj '1: ;
4 |)
‘]
Operation -= ﬁ
W | F
i " 1
s Jrreme ety 1
¥ 5 s i
-3 (r 2 'y !
b . P RN ;
. r
ebeipreiippielelele :: :: i .?-F-?-'-"-"-'-"-"-","fffffﬁ‘f B R ar g gy pe gt g g P P i
A oot " 4
s ok o 1
i r] £ - m a- alom
: 3 L pie G " =7 .
4 d L LR 9 e o 1
. ' ' 4
:: 'j ' :':“'-""1"’."’."‘".““L"':"'l*‘::"':"':"-"."l":-":-"1"';';‘.‘.'.'.'.'.'."1"."".'.'1'.""."'.‘.‘.‘.ﬂﬂ‘;‘;‘;‘;‘;‘;“:"ﬁﬂ";‘:‘:ﬂﬁ" ;
-4 4 4
.: :: 2
] A
: : g T T T e T o T L e o o o 0 o S il O W S S S i b i b
3
)
’

+

o P P M e M P W M M o B P g T M R ™

Build Host Stack

Operation
714

o P B o P o B P B e, e, B, s B, A g,y i, P o B B T

Copy Files Operation

i $ '.-:'.-u:.-a-au.;:.-'.-'.-'.-'.-:.-:.-;-';,.JF.
i 4.3 L
r 4&####&#!##&###7"’
; r
i i ik e nminniant mkate sl al ol al ' T A A A A Ak e AR AR AR R R
:; : g % 7y b % i
. o . . N . . L
: 3§ R S DU VU BRI SR e
* LAY) ca i
Deport Host Stack i § Bl g, Sy W s, g
3 R B - o s ,
_ | R GG SO R SR R S .
O pe rat iO n 4 IE .i-rFFffffffffffffffﬁrffffffffffff’f'ffffffff!'-l"?-F'-F'-I"-l"'-I'"__'F'__-"_'f__F'_'J"__J"__{{{{{{{#.#IIIFIFII;F_-E{r_i'l'__-l'l'_ﬂﬂﬂtﬂﬂ{{{{ﬂﬂﬂﬁﬂﬂﬂfff-l':#:-ﬂ':-l':-i‘n‘n‘::_
g £
¢! ¥
7 1 S :i)
g Eﬁii :
TRTTTCYTITT. & . ok ot St
: ‘¥
' jE el Pt A B A A A 0 0 AN i o o
: r Tty
. - .;- el LT R ' ; '
: 1 AL EE I ROV RIAMG B a4 s g s
'E S) ":
: § 3 il o T SR g :
EE E E e e e I-l-I.-lLﬂkhi;.!.i.i.i.i.i.iﬂ.ﬁ.ﬁ.ﬂ-m-ﬂ-Mﬁ-.-l-..-l.-.-l.ﬂfffffﬁfﬂ.‘ﬂﬂdﬂdﬂ#ﬂ:’n’n’n’n&:
- F ¥
F F
Rescan Devices : -*
¢! R
4 LGRS QLR Dianlate ‘
i ".'.'.'.‘.""""'.'.".‘.',',','.'.'siﬂﬂz.'???;ﬂ-frrrrmJ--.-.n-s-r:-r???a-rrrf!!!rarrrwﬁ
Operation : :’*‘
%
p ;"".1"“ .'-*J’igir vl oA ,_.y_f;fﬁ.t;f ,«*’ :

720

Tra B
m.-:-}

-l_.}l'l'

L L L

-
o

oy S L T o T Tt B ot EvE o B s M o s v T L B T Ty L iy L T ooy "..“;’1.-;' "

al

hhﬁhk

P R s

: :
'y . ol ’

1 y . [
: WEAT sun
:‘I ' ! . -H.-f re ‘ji"‘l F
: s
P P R T PR 4

ffffff’f’f’f!’!’!’l’l’ffffl'f-I"-I"-I"-l"-l"-l"

Lt o Yl e l"'-l"".l""'.l"'.l""'.-t""f.i"".l"' WU

%4 sef Togs

QLR ST

’*ﬂ'ﬂ'ﬁfﬂ-‘rff#rrrrrrﬁrffffff#ﬁ‘###rrrrrrrrrrrﬂ-rrrr----rr.-rr-r-n-

______ f{iﬁﬁ” NS G

R

L rt b ol et ol Al A LA LR LR R R L A

DL
Yoy fags: f@?iﬂf & s E&f:if"

.

P e e e
C]

q-"-.-"q-":"-"u".n"-“'-"'.u"-"-r’-r’j".af
g 1;:“.“".“*;‘*;‘*;“*;“*.'-'*:*."'5“:"'?"'F##‘fﬂ*fﬁf’#ﬂfﬂﬂﬂﬂ‘r‘r‘ﬂwﬁ?’ﬁ e rr-r-rrdrr-r?

' "’*
A X g, 5
$ 1 Sy Y Ving Srors tlianal S serierns i T
.J."))
? ",. i _. ;l -l . oy K
§ T st 1 tm BYY A%H95%. :
i3 ;
J | |
F)
&
&
e
fuf

AT

W

- T

mmmmmmmmmmmmmmmmmmmmmmmmmm

.-F'

L

] #‘f

tu-lr-

o3 Gl Bis

-1."1."'&"1"1."1."‘1.‘“1"‘1"*

}
e

e

14 drddiwd

f A
i
£ - A
T N T a."'
"
i j-l"'l"'-i"-ﬂ"-l"m
¥ ’."1:.
¥
¥
] Rl A
¥ ¥ RN Y
z % ”J
2 rrrrrs st
£
)
)
*
gfff "":r" .
rﬂh‘rﬂ‘quﬁﬂ‘ .##-HJJJJJ j.r"r ;ﬂ’;;ﬂ*ﬂ*ﬂ*ﬂ*.{
o
’
?‘fffa'.-'.-'.-'.-".-".-'..'.r'fff.ﬂ'f:l
K
3 y
' 1 s - 5 - - . 1,
=-I . ? i; :‘
S LW L
v "
¥ .
ﬁ"frfi’i’ffl’"l‘f'l‘.ﬂ"f.ﬂl

Figure /B

rl 2
A Ir"‘-f‘.-".-"-f‘.f‘.f‘.f‘:“r“.!‘.?."-" e A A A A A A R A A A A A WA A A A A A, ,fﬂp-ﬂp-ﬂp-ﬂp-ﬂp-ﬂ.-,t? g
P b :
I, L L o -m - - 4 r -
3 Satiren B wauih S vy Vo LARRES Y Yo Tl :
3
] F o
rr: Pl 000,000,000, 330 1, 3 1 2 3030 0 ﬂ":":"ﬂ"ﬂ".*"-".:'-'-"4"-:"'4"'4"ﬂ'4"i";"'+*'d"-"'-i"1-"'-"'1"'rrffrffffrﬂ"rr-'rrffrrrr{:: :j
: 1
i 1
:}:;;;;;;;.‘.‘.‘.‘.‘.r.w* ” g
3 % ;
KF. A ; 4
:ﬁﬂﬂﬂﬂﬂ-ﬂ'ﬂ'ﬂ'lﬂﬂﬂ_ i
3 #--'-'-':':‘:Z-i-i-'-l'--'--'J'J'J'J-'--'-l"J'Jhhhhhhhh}kkkkkkﬂﬂ.nuutﬂﬂﬂ.ﬁ.ﬁﬁﬁﬁﬁﬁﬁ.ﬁ.ﬁ.ﬁ.ﬁ.ﬁffffff.ﬂgﬂ.ﬂg artartartart rt b oS S St ::
: K
| Csnnr wnd Gl LA fo e bt e :
3 L R W {'-5’ vt LS fs Yy Bont Gy : ¥
3 _. . H K]
_.'_i- " F' 45 ' r o 'r.' - ."
: ek Y Bt e § R .w?ﬁé”ﬁ R S {mc;; : 1
X i
R . . M
3 WG f;zi-f;z_..-{,- gk 3 e s R A A LR AT AL AT
- 4
i | i R ;
“ 1

PP LB LB EE LS8 L EEEEEETETSTEL AL L L L EEELLLLE E 8PP P A EA A AAA LSS E LA

Yy
q
3
o
]
Ty
Ty
T
Ty
Ty
b,
T
'I‘
'I‘
'I‘
'I‘
A
'I~
%
5
b
b
b
~':
b
*
.I.
b
A
™
™
)
'l.
'I.
'I.
"
'\
'\
"
N
N
%
%
:
)
b
3
3
%
b
b
N
"
"
"
"
"
'Iq
'I.
L
L
L
L]
|
N
%
%
%
y
5
s

ll‘l‘llll."Il'l"Ill'l":I:lll:-.:-:l:":h:"u:'vn:"':m:'n:ﬂ:ﬂ:ﬂcﬂ:wr:‘:n;-:n:-in:n;ll;!illi-.:w:n;'in'n'm'ln.'ﬂ;“' 1|..1l|..'-,.1|l|.. hhﬂmﬁﬁm Ayl P Fopy Pay o Py Png g g Py o P e T e g Wy i Py P Py P Ty Pt o T g T o Tt e i L, Ty, L Ty o e o e, E P g ey o Py g o e P L T L et et Y b "ot " e ke e e e e ke ™ e b e I b

F‘JJJJJJJJJJJJ_’."’.‘J.ﬁ

IR

SO,

U.S. Patent

Validate Host Stack
Operation

722

Deport Host Stack
Operation

724

Rescan Devices
Operation
726

Build Host Stack
Operation
728

WA

E

55%23 iy e

B W

Jun. 4, 2019

Sheet 9 of 13

w-Piace Resiors

5 5 7
4 # 4
a] iy
;i A pan st o S ey % 4
IE‘ .r.r.r-.'.‘.F-"-.-.. .. l'ﬂ"!'I.'!.FI-'r.J.J... ..'.-..-.'.'-..-...-.-..-.".-.-.'.-...-..-.-1.-.',‘.-...... ..ﬂ.ﬂ.:‘..'-'.‘:...' A _|.r.ﬂ.'1-1.1.'_'.‘:......1..1-.‘.'.'..1. ; : ﬂ
. s
" j ! ; :',
& o o] é """ - b/
¢ LT B e B8 Y T 78 it I : :3.
1 1 F“' <
1 f 4 . ! ﬂ]
oo e R T 4 k - K :
¢ amigats suassain .-'-'u’ﬁ:"i ?’-"f‘jﬁ Eokage. :
¢ .2 v
4 A A AN, - E E
4 2
. 3
:§ ?‘.‘.‘H“‘J‘J‘J‘““l‘l‘.‘ﬂ’ﬂ‘l‘l"#

'y

NS

EXFEEEE XN EEEEXY o

e
-'Rr

s’

E ﬁn‘q’n"a".ﬂ'#.ﬂ#ﬂn"#ﬂn’n‘..".-"..-’-‘J.-h"qh'n'.-'.-".-'JJ.-H‘J;H'J..'JJ..FJ.-H‘J-.'J..'JJ#JJ;FJHF-’JJJ#JJJJ;JJJJ#JJJJ{?.

P -l"."s

£y

Ao Ir.-ﬂr il T ¥ 4

L .J.ii:,::'ﬁ*ﬁ:ﬂ#ﬁ L R R T R AR :r-:;:-.xa,mf ZATEE

Ao t

L L4, e » Jf,u W+

; R e B T g F B, :
-

& 1‘5’.J'-l"-l‘-F-l".-l".-l"-Il'-.Il'.-1'-.ll'-l"-l"-F-l"-.-l"..l".-l"-.Il'-Il'-.I"-ll'-l"-l‘-.F'..l"..l".-l".-l"-Il'-.?'J-ll'-I‘.-l‘-l'L.-l"..l".-l"-Il'.-1'-.lfJ’-l"-.-l‘-F-.l"..l"-l".-l"-Il'-.I"-.l‘JJJJJJJJJJJJJJJJJJJJJJ-Fﬂ

'I:l

r.l

:

#‘JIJJJJJJJ.F.F!JJJJJ..-

; 5

"r Mﬁﬂm;jl

lll

U P R R R W %
T fm;,rw,@ ;;,:::: G AT DAY ?'fg.f:a:ﬁ‘ AR5
TG WA (ARG T ST 8 w; % f

h) .

f.?‘"|l"'1l"'.4"'-.!".l"'.ll"'.|l"'.!"'11"'f.nl"'.l"'.-l"'.l".l"'.!"'.|l"'.l"'.ff.ul"'.l".l"'..l".l"'.l"'.!"'.|I"'.|l"'f.ul"..l"'.l"'-.ll".l".l"'.!"'.|I"'f.f.I"ff.f'f.l".!"'.P‘".l"'.f.f.a"'..l"'..ll"-.ll".l"'.!"'.!"'11"'11"'.a\‘"fffffffffffffffffffffff.l’r

i e o Ll g o L ot o L gt gt gt A L T T b gt o o g gt i] M:I

‘u,;:.."u."-."-u:u:u:»u‘axxxmxhxx‘u‘xxximm&uﬁ
h‘n‘nﬁhﬂn"ﬂn‘n‘n‘h‘nﬂ‘ﬂ.

f-..iax
¥
'
3
:
!§
H
¥
¥
H
i
1'
I.

C ol ol o o o ol ol o ol ol ol ol o
o
5.

"-L

o,
Hrsmnn B BESEE e ::":E

pa.ﬁ-ﬁr.-#f-.-.-paamﬁr.-.ﬂ-pm-ﬁ-rrpmﬂ-m-m

oy

fm‘n‘n‘n‘n‘h‘h\
i
i A T e L e A e A e e e A e L

w

-

-
!

________________________ Likhar G utitttrg LA

i rin oip ik ok b vl _pie_pi pin i e o o kv i pie Fe N Ol ol o TP R e A I R R .ﬂln-nul-n-r-.-#Jm###ﬂﬁﬂﬂj#ﬂﬂ##.ﬁmﬂﬂ”.ﬁdl

S

rrfffrqr.r*ffff- ol i .n Py .-r.-r- e ﬁ-‘.ﬁ -r .-‘:-‘r i .-’-r- e aa

;* By AT g, Al DRy

.
. ‘\.n:u:*u‘u:'uﬁ"{t‘rrrﬂ.ﬁm;u“rrﬂnﬁu‘mﬂnu

4 Fmntings mataeiny

1
.i {.r'.r'.r'.r'.|r.fr-ﬂr..r.r.r'.r'.r'.r.rrfrrrr.r'.r'.r.r.rr-rr.r.r'r.r'.r'.r.rrrrrrrrrr-rfrrrrrrrrrrrr?.

Vi G55 oF Bt S W 10 B o

zarfm,mz:e%’ WA R ia-'wl'}’hciffé

|# r

e L L LT
"3*&11111*‘1"&1111111‘&1-‘1"&1

....... o -
I,
L
e A A e

N

r

N il st et L

.,
Losiruina LAATEsite s o by vhaiire:

rrr

:
w
7

e B o o o e e T o B 80 R 8 o o e o e o o o 0 R e P o o P e B L L B i e P P P o B P i 8 R R P L B R R,

_p".-".|I"'.-l".ui"-ui"qi".r\".ui".ul".-".-".-".ui"-l".-u-l"-ui".1".ui".ul".r".-"n".f"v’.-ul"-u-l".4".1".ul".|l".r".n"n'"J‘v"-ul"-u-l"»’d’ﬂ’:’.’fﬂ'ﬂ’#’#’»’-ﬁ"’fﬁ"'ﬂffﬂ’fﬁ’fﬁ} ,.F

ﬁﬁ} -".JJ;E'TE W Er?ga i"éﬁg.ﬁu ,-;‘,r:; r ":‘Fr fﬁ,ﬁ}{ﬁg{;

> .
LFEAFFRAFEEEFNARAAAFFFEENFFFFEEFFEEEAFFAFERFREEEFRNFEFFFERFNN JJ'JJ..‘JFJ.-'.-'.-'JJJ".:)

’."s.

e
.i*.*“.."‘..l"."'.i‘.i‘.i‘.i‘..i*.#.i*..*‘..*‘ J".I*J“.l*..l"".P'.FJ'!.F.FJ'J'.F'J'.F’.FJ*!JJ'J‘J‘.FJ*.FJ*!J* .r“'J'.I".I'"J*..I* [l ol R TR Nk o

E ’Q Shys s petiity syt

s
11111*.‘3.:‘:;1111111‘;11‘111111‘1‘.:1‘:;111111111‘&‘111

aa

»,

,.-:,
%
Y
"i\
,b«,
N
£
*ﬁ
:":‘u
&
m

i D e el T e L “ﬂiﬂﬂiﬂiiiﬂiﬂiﬂiﬂiﬂ!’iﬂﬂ.’iﬂiﬂiﬂiﬂiﬂ:{{{{{ﬂi T T e R e T R R S PR e S T

A
4 *__-,.-_..-_..-_.-_.-_..-_.,-_,-__-_.-_.;..-_..;..-_.-_..-_..-_.-__-_..-_.;.-_..-_.-_..-_..-_..-_.,-_.-_,._-__-,.;.-_.-_.-_..-_..-_.,-_,.-_.-_,._-.;.-_.-_..-_.;..-_.,-_,.-_..-_,._-.;.-_.;.-_.-_..-_.,-_,-_%* ’5
|'i') J:?.I‘ r‘
% ¥ T"if e Tt s o iy ;“". ;;‘e". '5.# S i 3.!. sl bl £ g
P W s, T ﬂ n S T ,/5::# AT oK JF‘J‘*:-.-‘ 4 5 g
E i , A
'y " S * " ran
;o TR B BRI R R B
g .o
'f f'f".‘l‘.".*‘."'f"."."_”_“"f'f"f‘f‘l‘"'f#iﬁ'ﬂﬂfﬂiﬂ!ﬂﬂff@?ﬁﬁf‘?@!ﬁ#ﬁff{ﬂ?ﬂ If:
¢
a f; il
1 ; ;%]
EE "I,d"p"'quff-'-"-"'-"'-"'.-"'.-"F-"J"-"-a"-"'-'"-'"-"".-"'FF-"-"-.-".-'".J".-"'-"'.-"'.-"Fq"'-"a‘-n".-'".-'"-"'.-"'.-fq"q"'-"-a'-"-"'-"'-'"-"'.-qu-"-"'q-"-".-"-'"-'"-"'.-quq"'."-fq"-".."Jffff-‘fff-ff-ﬂﬂfffffff-ry
' A ¥
‘
4 E ﬁ-“;‘.-".-".-".-l'.-*.n'.u'.:";".-'.-'.-'.-".-".-*J.u'.u".-h*.-'.-'.-'.-".-’JJJJ..-*.-F##JJJJJJJJ##.‘J-*JJJJJ-‘#.} :E
* Iﬂ *-'h o
+ v : s :
A Ao# ,?‘,;' . rf'.;.;- P ,{ r ; ?ﬁ.fu' *"JE.' t:ﬁ-,?r (A ;u.. 2
" *.: % ot AS ::"'" Ao “ 6 AR R 2 b
4 Ao ¥
:E -'; @JJJMHHMJJJ.‘MHHMJJJd##ﬁ;wﬂﬂﬁﬂﬂnhﬁiwﬁﬂﬁﬂmﬂﬁﬁﬁ 4
' Es o’
IJ- I;']
4 A o
i 4 x
4 P LI A LR EN b
1 Fy :
i] j'. 3
:i ' A A o ﬂ
4 7 7
i § j"‘.i"'."".-"'.-"".-"‘.-"".-'"Fffffffffffffff.-".-".-'.-’.-".-".-".-"".:"'."'."’.1; 2::
& Ao ?
s ow ..-.Tt. 3
¥ A Eg PR T' a3 T .
2 ¢ i st Bk BEIAL Ty :
. .; r 1"
‘ :
:i E {.-l".-l".ff.al'f.ﬂ'ifﬂlf.-l'ﬂll".ul"II.F.FIIIJIJIIIIIJIIIJIIIIIi'" :E
£ A 7
i " a
. hd o
:E ‘?J#JJJJJJJJ—F‘J#JJJJ; :ﬂ
s g j %
:E r'r;‘ ;rraraﬂ,uvm P e B MY ™ el S Y A ™ e e e Sl A w1 0 e o P e "W M M e e o e A W M R S A A S . E
i . % T4
: P %
! # . o " FA, "
: | L LRt 1R LREEG B Shptd Y T B 2
1 - ¥
P ¥ oA . i r T oo F' i
1 o X o C T o L L o, - I
; ¢ bnad wdh ik tbniny % SR 5 ¥R, X
' A . . tRo T " f"+ L bl
Iﬂ' I" i e 1 L . . Fl o
Id‘ T -ﬁ:.i-!r _'_'l' ' ala? ‘,*'I‘ 1 T o] ‘.-é #0 E AN ALY] ‘3 e, T -J' ol Fl B
3 L o b wf.lz?: LAY -:25.':"&" Syl ”"* 5 ﬁ‘i"{ﬁ FRERSG %ot 4
- Ao) ¥y
li Ir: i ..r..r‘..n"..-J‘Irfj'.r"}f}hfa‘fff_rx‘:f;ffffrr:x‘:ffffffrx.r.r..r"‘..l"..r‘..-..n‘.r..li'_ll'j'.r.J-J‘J‘IJ’IIFJ}TJJ‘J‘Jﬁf&‘:‘:ﬁ"i‘h‘ffffrIJ‘.#‘JJ"J‘J‘J‘J‘:J":I :_ﬁ
o’ A 4
.I 2
£ " ‘*"
M W s T WA £l #
' . u . - «ta g] o -4
. ok Aigntars subiiaty crreaiales : :
R R T O R e e N P rfffr'rffrrrffrfn; b
- #)
fffmrffjrrﬂrrrrr‘. !

Shahl

g iy Ty T Ty

'l-" “"".‘:"q-p‘.:‘ ':‘h
SRR R LR R Y
e W e b b e ke

F
i

F

Figure 7C

ol ok ok ok ok s e skl akakl ok ok ok

US 10,310,945 B2

rrr

FOF F N JF R R EE R OF U g T R R N NS NE N N

Efﬁﬁﬁfﬂ

LTI IS, ..’.p}-"a"a".-*’ AT

: : 2 ; :

: AN T

r L . % ' . '

z " : E i &-} 8 TR
' 1 -

r * !

¥ - ﬁ 2 *
Sk D PP BB F P PP ’.'r.l'.r.:f.r.r..f.r.r.r.-r.r.ﬂ..ﬂ..*.r..'..ﬂ"

o

b PR e

US 10,310,945 B2

Sheet 10 of 13

Jun. 4, 2019

U.S. Patent

/ 9inbi4

e U U R T

i Y T e e e T i e R i e e e e e
5
",
X ¢
n . .
. ; _ " DS RN ERS
Y H . ﬂ : :
w . ".." af & "” ’ bl
i] .
i u" ﬂ
AT R R RO R R R R R ..?J..J..ﬁ...ﬂnn..._.._..r.rffﬁ#f#faffffﬂiﬁrﬁr
3
5 5
vz g bomoy e L om - %... ...WM u
P PR RAE RRT UG G SRR K DRI TR

R T T R R R ..r._...urd-..r..r..r.._.-_..-...-_ ..r..FJrJrJrJrJrJrJ..d-.-n-p-rlr.f.f.f.fdrlrlrlrf.drdrdrdndr-p-..r.r.r _.F..-_fﬂ.ﬂffffﬂ.ﬂﬂﬂfﬂﬂﬂ.ﬂﬂfﬂ?}f}

FERPRRD OE A SRR/

*
/

774

— uoijelsdo
AIEIS 1SOH PlIng

g Do
Emﬂ m.ﬁ,ﬁﬁ %

R RS oy er”.wmﬁwﬁ;_, ,.,.,,m.mw,r

T e o e e T ey Ty B L e e T e A e T T P e M o e M A M e Yy

",..E,,iéw

b

™~ 4 Y4
uonelado

S3IIAS(] URISDY

ﬂ.._..,ﬁfw x......,._.

..............n

Pl gl _ple_ple it i g, g, gl gl e e e gk g g g g N, gl gl e e e s e e g p_pl s s gl gl gl e e e e }*.F.F.F.FW!!!!!J"J".F

#-nu....-_...._.aF.r.J.......J.......J..-_n;rrrrrrp:r

. A

l.l‘".n" o e e s b gl gl gl g ‘u*ffu*!!.*.ﬁ.ﬁ.ﬁ.ﬁ.ﬁ.ﬁ.ﬁ.ﬁwfffﬁff

RASEELEEELEL LT LN

T T o T, L e, e, T o, 0,0, ™™, T T e Ty
SRR e SRS BUD O a0 o Naldweg oy
SOHURY I TISIERE R

.._Jr...r...r...._J._a.._.._-..a...r.far........f...f.....r.r.r.r..._.............r............r,_....r..._r..r..ru___.ar.f.r.r..._.........r..r..._...._-..r..._f.._ﬂ.....ra.__f-r.r...r....-.r.r.r......r...__.....__.r..r.......r.f..r..ﬂfar-__..arurfffffffffffff#uﬂﬁﬂrfff:_

F AT E T A,

o
.

X
f.r.r.r..r.r.r.t.r..t.t.r.r

A S A e o A A A A A A A A A A e A A A A A A A A e A A A A o A A A A A

AR R O REREE
ffﬂrﬂﬂrr?;?;?kr??kr?r?k}}kr?fr?r???k??????kr?r#;??;?k??r????}k}}?kr?r???k????????k?rfﬁ??H
-y k o » ot L ot 1 H
ROTINGHIRS SRIRALT SIGR OF SRai0% i Sadueng
N :
: A At e A A
I S E RS 3
3 »
i e L e e e e S e e e B T e T T T S e R R R T L ."w._._._
. . -) p
PRI S O SSRGS Sty m
R SRR HURAY SOV A DIN
L
..a?f?f m
kel Ay gl A ._._.....E.[.r,.t...._fttt” T.E:....Tc.._.t...._ AL AL AL Ll e " Mk e A o o A o

MRITHIRRS 3

e e e S Ll o ol L o e it Ty B R By By oy ey ey e e Sy T i ¥ i B

{
.m SNENIINY Shne Bt AN

Syt B By e e, o sl sy oy ey sy s, sy sy e e B

sy sl

.-l".-".-".-e‘.-!‘.-!‘.-i".-i"J‘J‘JJJJ-i".-I".-I"ffffﬂ!’ffffJJJJJ’J’J’J‘J‘J‘J‘IIIIJ‘.-";"

e T T T T T T e S e ™ ffffffffﬁfﬁféé?fsfgffgﬂﬂ

SRR AR SR

W

b, 4
/

s o o o T M o Y My

a

l‘ ! ' -

R ﬂw R 0 BRI ey ”..m%m EERE e
b

T ” 0¢L
uolelado

OJUl 150H 195

LA

Rt

i s

e e

e T T T T, T e

]

w_p_pl gl T8 ple e i ke 7 7. gl e e o e _pl_pls_ple e g g e e o, g gl . e e g gk g g gl gl e ple e g ph ph, ¢

-, L LT

P _ph_ph_ph, o, e ﬁ

e T e e e,

..._......._..._._..._._....__.__..J...___._:r:r.__.r.__.......v,_r___r__...._.._.___.........................:...__....J...._r.__r:r:r:r___r__...__-n_...._._..._._..._._..._._..._._..._._...._..._.:r.___._J_.__.r__....__.v___r___m_x_____ﬂ_.__._.___.............._:.__....._._...._._.J..._......_._...._t_..-r._._r_._r_._rJJJ:.;.J:.:.:.JJ.J##JJJJJJJ:.}.:.

Aty h.,_mﬂ. .r &Wm.fmw TMMMEJHM

.l..r.._._.

o o of o o oo a o o el el o o o o o A A A i o

BIODNS

Laaloaloat at o aF o o aF gty

35;%
¥
e
Lt
i3

AryoB Y WO U

US 10,310,945 B2

Sheet 11 of 13

Jun. 4, 2019

U.S. Patent

Ve

Lttt A S S

il
o o P P PR B o

e e e o e e o o e ey o e e o e

-
P Ty

e e or oy e g e e re e ol e

ro1n

[T T T T . T
I

o P el e e e e o o T P P P P P O o e e e e e o e e e e

j”*“*““'“'ﬁ'*“}”“"l“"""“'"J"'"'"J"“"‘l R

Lt T L L g g
r"':"'l_3

Sl g T g o R S

|

b
by
Ny
» LR EERN D%
y Wﬁ.ﬂf..,..., @f Mr
! 5
r_....___ vy .ﬂ
f -

k "_.. n " M

b

FIOOICT SRR TR

il i

LRSS SIVINE PRI i GOSN

r.. i e I e B e T e e e oy O O O e e e o e o By e Iy e e B e e e e e e

rrrrrrrr

n..,
%
nfffffff’ffffrfffrfffff!

LR

/] ainbi4

e P M T M o, o N

APAIET SRVTONRS BHRIE 3t

i

S0 ANSEDD DANHD SO 1904

e e e N o e, M e i T e P s P T M, P o T T e e M e T T e e M T P s T !

ATAIDT SUNE BIORR G

I g T gl -y g gl T A R

m P U S S Ay

rrrrrrrrrrrrrrrrrr

3
g

Ty

U a8

-t_-Fdr.-.-_..r.__f.._r.-_._.._-rdr.f_-r.__rer_-r..__....J._._-r.__f...p_-.r.__f.-r_-FJ.........r.__f..r_-r.__f.-.._..rlr.._.r.fJp..r..r.__f.-.-...r.__f.._r_.f..fd.-_..rlr.-.-_Jrufurlrfdrjrfjrﬂ.lrdrlrfdrdhﬂrjrlb.rrlrﬂrﬂj;ﬂ

THARST OB POND SNY SHORR

ﬂ".’-ﬂ'"_’ﬂ'

TR DT SN S waEigEg T

.__r____rf_._.__.__.n_..__.r___r____r...F._..r_.._-..__.r_._.._._-rdr____r____r._.F...r_-__ur___.F___r.rr__.r____r._.r.._.r_-r___..M.r__..r____._E..ur__.r__FJ_._____r___.rdr__..rJurft.uf__..rFFJFJ-.-:Jr........?drluEéffff#ﬁffff#ﬂrﬁ?fgfﬂ?g

SRR QUK MM LSRG

: 3
E ¥
< 5 I
4 a . . 4
; ”..
£ 4
:
K, x
UONID
E - ¥
K, H
4 3

U.S. Patent Jun. 4, 2019 Sheet 12 of 13 US 10,310,945 B2

802
S 80
PROCESSING UNIT 804 | _ _OPERATING SYSTEM _ |
L 82
808 806 ' ' APPLICATIONS

334
SYSTEM : R [-_ %%
MEMORY 1 : L MODULES)
336
NON-VOL S ———— £2.20
N DATA :
A L N

VOLATILE _' _____

814
814 r‘__.___—___q/-

INTERFACE

INTERFACE

BUS

820 844
528 OPTICAL l MONITOR

INTERFACE DRIVE 299 938
846 DISK
I o EO.' I KEYBOARD

ADAPTOR 240
“Z WIREDWIRELESS) MOUSE
INPUT 858 854 848
DEVICE
INTERFACE WAN REMOTE

COMPUTER(S)
850

NETWORK
(WIREDMIRELESS) i
Figure 8

MEMORY/
STORAGE

US 10,310,945 B2

Sheet 13 of 13

Jun. 4, 2019

U.S. Patent

(S)3401S V.1VJ ¥3AY3S

0L6

SEEIVENE

v 06

906

AHOMINVHA NOLLVIINNININQD)

(S)IHOLS VIVAINTITO

806

(SIUNIITD |

¢06

US 10,310,945 B2

1

DATA MANAGEMENT OF UNIX FILE
SYSTEMS

BACKGROUND

A computer’s file system organizes data for storage and
retrieval. Diflerent types ol operating systems provide dif-
ferent types of file systems. In some families of operating
systems (e.g., the Windows® family of operating systems by
Microsolt® of Redmond, Wash.), diflerent versions of the
operating system have a relatively uniform standard for file
systems. In other families of operating systems, such as the
various versions ol operating systems based on the UNIX®
operating system, different types of file systems may be
used. For example, operating systems based on UNIX® may
utilize the XFS® file system, the B-Tree File System
(BTREFS), or the Extended File System (ext) family of file
systems (e.g., ext3, extd, etc.), among others.

This vaniation causes ditficulty for entities that support
operations on such file systems. For example, to provide
data management capabilities when a new UNIX®-based
distribution 1s released, a vendor may need to make changes
to the code of theirr management software. This may neces-
sitate that the software be completely rebuilt, an operation
that can take an extended period of time (e.g., about six
months). This rebuilding may need to be done each time a
new distribution is released i order to provide up-to-date
capabilities, which may require near-continuous updating of
the management soiftware.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1B depict examples of hosts interacting with
various types of storage systems.

FIG. 2 depicts an overview of an exemplary system
suitable for performing data management in different types
of file systems.

FIG. 3 depicts an exemplary implementation module
suitable for use with exemplary embodiments.

FIG. 4 depicts exemplary interactions between a host and
a file system management server.

FIG. 5 depicts exemplary operations performed by a {ile
system management Server.

FIG. 6 depicts an exemplary method for data management
in a file system.

FIGS. 7TA-TE depict exemplary file system activities
performable by combining one or more of the operations
depicted 1n FIGS. 5 and 6.

FIG. 8 depicts an exemplary computing device suitable
for use with exemplary embodiments.

FIG. 9 depicts an exemplary network environment suit-
able for use with exemplary embodiments.

DETAILED DESCRIPTION

Exemplary embodiments relate to techniques that allow
for file system support to be rapidly deployed for new or
updated operating system distributions (and/or updates to
the file system 1tself).

For instance, an entity may perform data management for
a lile system. One example of such a component 1s Snap-
Drive® for Unix® (SDU) by NetApp®, Inc., of Sunnyvale,
Calif. Within the management entity, an operation compo-
nent may be provided. When management of data 1n a file
system 1s requested, the operation component searches in a
predetermined location for a named module that implements

10

15

20

25

30

35

40

45

50

55

60

65

2

certain types of operations. The operation component then
calls these operations to implement data management 1n the
file system.

Although the operation component 1s a part of the man-
agement entity, implementing support for a new operating
system or file system does not require that the management
entity be rebuilt. Upon release of a new operating system or
file system, a new named module can be written and placed
in the predetermined location where the operation module 1s
configured to search.

Accordingly, new types of file system support can be
rapidly deployed by writing a new module for the operating
system and placing the module 1n the appropnate location.

Exemplary embodiments provide a modular, script-based
framework which allows newer operations/file systems/
volume managers/multipath/hypervisor/operating systems
to be dynamically added. Among other advantages, this may
facilitate quicker support of newer flavors of UNIX stack
currency. Exemplary embodiments provide flexible systems
that may automatically discover multiple possible layouts of
storage stacks on diflerent types of hosts (e.g., employing
different file system types, different communication proto-
cols such as FC/1SCSI, different types of volume manage-
ment such as LVM, systems utilizing a management pack
versus systems not utilizing a management pack, etc.).
Exemplary embodiments may execute a correct set ol data
management operations for these layouts 1n a single opera-
tion. Furthermore, by integrating with a centralized man-
agement component, exemplary embodiments may auto-
matically discover the file systems on a remote host from a
centralized place. This allows each layer of a storage stack
to be discovered along with underlying storage, thereby
detecting both supported and unsupported configurations at
any layer. In this fashion, file systems that are candidates for
management by the management component may be iden-
tified, and any {file systems that are not candidates may be
presented to a user or admimstrator (along with a reason as
to why the file system 1s unsupported).

Exemplary embodiments are next described with refer-
ence to the attached drawings. Although exemplary embodi-
ments may be described herein with respect to file systems
for UNIX®-based operating systems, one of ordinary skill in
the art will recognize that the techniques descried herein
may be applied to any type of file system.

File Systems

FIG. 1A depicts an example of a host 100 that commu-
nicates with a storage system 110 according to a network
attached storage (NAS) protocol. In this case, the host 100
organizes liles according to a host storage stack 102 com-
patible with NAS, 1 which files are mapped to a mount
point. The mount point corresponds to a particular director
114 1n a particular volume 112 of the storage system 110.

FIG. 1B depicts a second example of a host 120 commu-
nicating with a storage system 130 according to a Storage
Area Network (SAN) protocol. In this case, the host 120
organizes files according to a host storage stack 122, 1n
which files are mapped to a particular device within a
volume group of a logical volume of a file system. The
device maps to a logical unit number (LUN) 134 of a volume
132 1n the storage system 130.

As shown 1n these two examples, different hosts and
storage systems may orgamze files 1 different ways.
According to exemplary embodiments discussed herein, a
management component may perform data management
operations on the storage systems 110, 130. The manage-
ment component may perform actions such as discovering a
topology of files 1n a file system, taking consistent backups

US 10,310,945 B2

3

of the file system, restoring files and associated file systems,
and cloning file systems. In order to achieve this, the
management component may possess an ability to easily
navigate different types of host storage stacks 102, 122.
System Overview

FIG. 2 depicts an example of a system suitable for use
with exemplary embodiments. A file system management
server 200 serves as a point of contact between a host 230
and a storage system 220. It will be appreciated that the file
system management server 200 may perform data manage-
ment between multiple hosts 230 and storage systems 220.

A management component 202 of the file system man-
agement server 200 serves as a centralized application
manager that includes a storage abstract layer (SAL) 208 for
performing storage operations on the storage system 220 and
a hypervisor abstraction layer (HAL) 212 for performing
virtualization operations on a virtual machine hypervisor.

The host side also includes a host-side management
component 402 that works 1n conjunction with the server-
side management component 202 (shown in more detail 1n
FIG. 4). According to exemplary embodiments, the host-side
management component 402 may be mmplemented 1n a
scripting language, such as Perl. An engine 210 may interact
with the host 230 to backup, restore, and clone host-side
entities (e.g., data).

Among other things, the host-side management compo-
nent 402 (1n combination with the plugin 234) 1s responsible
for managing physical volumes, volume groups, logical
volumes, and file systems. To accomplish this, the host-side
management component 402 discovers on what type of
storage a given file 1s residing, 1identifies a file-to-file-system
topology, detects whether a file system 1s built on SAN- or
NAS-based storage, and 1dentifies export paths and junction
paths for a NAS and LUN paths for a SAN.

Furthermore, the host-side management component 402
may maintain consistency of data and of a file system. To
accomplish this, the management component may perform a
file system quiesce (sync) operation before performing
backup or snapshot operations. This serves to ensure that the
synced backup/snapshot may be used to clone and restore
the file system 1n order to revert the file system without loss
ol data.

The host-side management component 402 may also
restore a cloned host stack when underlying storage repre-
sented by the host stack 1s cloned. Moreover, the host-side
management component 402 may perform file system con-
sistency checks.

A plugin 234 (e.g., a UNIX-based plugin) handles host-
side complexities and communicates with the server-side
management component 202. This plugin 234 may be
deployed remotely from the file system management server
200 1n each host 230. Among other things, the host 230 may
support or provide resources for one or more applications
236 and/or databases 238, which may require access to data.
The applications 236 and/or databases 238 may access the
data stored on the storage system 220 through the plugin
234, which integrates with the server-side management
component 202 through a management component plugin
loader 232.

Optionally, a UNIX-based file system may reside on a
virtualized enfity (1.¢., an entity 1n which data 1s managed
based on virtual machine abstractions). The host-side man-
agement component 402 may also integrate with a virtual-
ization plugin associated with the HAL 212 in order to
support backup/restore/clone actions on file systems resid-
ing on virtualized entities.

10

15

20

25

30

35

40

45

50

55

60

65

4

According to exemplary embodiments, the host-side man-
agement component 402 may be application agnostic and
may accept file(s) as an input for specitying activity param-
cters (e.g., parameters for a backup/restore). The files can
belong to any application (such as Oracle, DB2, or could be
user’s data). SCU does translation of file to file system.
There are various flavors of UNIX file systems (such as ext3,
extd, xIs, btris, nis). In the case of SAN file systems, there
are additional entities that need to be traversed, such as
volume manager (Linux LVM). The volume manager can be
built on multipathing stack. (Linux native multipathing).

In order to support data management activities on new or
different types of file systems/operating systems, the host-
side management component 402 may employ an operation
component that consults an implementation module 206 for
the file system/operating system type. When the host-side
management component 402 receives a request to perform
an activity or operation with respect to the storage system
220 and/or host 230, the operation component 204 may
search 1n a predetermined location corresponding to the file
system/operating system type for a file-system-specific or
operating-system-specific implementation module 206. The
implementation module 206 specifies canonical operations
for each type of file system or operating system that can be
employed 1n combination to carry out various data manage-
ment activities. In order to support a new file system or
operating system, a new implementation module 206 may be
provided at a predetermined location corresponding to the
file system or operating system. When data management
requests are received for the new operating system, the
operation component 204 simply consults the predetermined
location, thereby obviating the need to completely rebuild
the host-side management component 402 1n order to sup-
port a new file system or operating system type.

An example of an operation module 206 1s shown 1n more
detail in FIG. 3.

Operations and the Operation Component

FIG. 3 depicts an exemplary operation module 206. The
operation module 206 includes logic or instructions for
carrying out different types of operations (e.g., a discover
operation 310, a quiesce operation 318, etc.). The operations
may be combined to perform various data management
activities (e.g., backup, restore, clone, etc.). In some
embodiments, the operations may be implemented as perl
classes.

The operations may be stateless and may be transparent to
the upper-level activity (e.g., backup/restore/clone) work-
flows. In other words, any plugin or application can combine
these operations in different manners to implement an upper-
level activity. The operations are agnostic as to the type of
file system, type of multipathing stack, and type of operating
system.

For example, a discover operation 310 identifies infor-
mation about 1dentified files, such as a list of file systems in
which the file are stored, and storage information describing
where the files are stored in the file systems. Exemplary
pseudocode for implementing a discover operation 310 1s
provided below:

Discover Operation
1. Obtain the list of files from plugin 234 to be discovered.
2. Get all the file systems on the host and put into
Mountlnio hashMap. (Mountlnfo contains the file sys-
tem mount point, type, options, storage entity etc.)
3. For each file
a. Check for the file existence
b. FileSystem containing the file 1s detected with the

help of Mountlnfo hashMap

US 10,310,945 B2

S

c. Determine the file system type with the help of
Mountlnfo hashMap
1. If file system 1s of type NAS, return export path

with the help of Mountlnfo
1. If file system 1s of type SAN
1. IT 1t 1s Logical volume
a. Obtain handle to the LVM using HostStorage/
LVM.pm

b. Query all the PVs for the logical volume and
add 1t to device list
2. If 1t 1s on native device
a. Add 1t to the device list
d. For each device
1. Detect the type
2. Load the device module handle based on the type

using HostStorage/Device.pm
3. Get LUN attributes from the device component.
4. Return discovered information.
a. List of file systems
b. For each file system 1t contains
1. List of files belonging to a file system
2. Storage information of a file system.

Another type of operation includes a quiesce operation
318. The quiesce operation 318 syncs a file system, for
example 1n preparation for backup or cloning. Exemplary
pseudocode for performing a quiesce operation 318 1s pro-
vided below:

Quiesce Operation

For each file system obtained in the mmput request:

a. Detect the type of the file system

b. Obtain the file system handle using HostStorage/FS.pm

¢. Perform Quiesce on the file system handle.

a. (redirect to the actual file system’s Quiesce 1mple-
mentation)

Other types of operations mnclude an Unquiesce operation
320, a Get Metadata operation 322, a Validate operation 324
(for validating a host stack), a Build Operation 326 (for
building a host stack), a Deport Operation 328 (for deporting,
a host stack), a Copy Operation 330, a Get Host Info
Operation 332, a Get Host Initiators Operation 334, and a
Rescan Devices Operation 336. Several of these operations
will be familiar to one of ordinary skill 1n the art, and thus
for the sake of brevity implementation details are omitted
here. However, the validate operation 324 and the build
operation 326 are specialized operations developed to sup-
port exemplary embodiments. Pseudocode for each of these
operations 1s provided below.

Validate Operation

ValidateHostStack Operation: This operation suggests a
restore mechanism to be performed without incurring
data loss.

As part of VHS request, Metadata for file systems are also
passed which was captured at the time of backup.

VHS operation builds two views (data structure) for a
given file system.

a. Backup-View—File system information as per
backup built from processing metadata

b. Current-View—File system information currently on
the host by discovering/querying the host.

VHS assumes In-place to be default restore method since
its faster, but any differences found, suggests Connect
and Copy (CAC) restore

Both the views are compared to detect the differences.
The algorithm 1s as follows:

a. First file system 1s checked for existence; 1f not
In-Place restore method 1s suggested.

10

15

20

25

30

35

40

45

50

55

60

65

6

b. All the new files that were added after the backup, All
files that were part of backup and not part of restore,
these files will be detected and reported as foreign
files. VHS detects/reports first 20 foreign files 1 a
breadth-first-search since the list can be too long. If
there foreign files, CAC restore 1s suggested.

c. File system types are checked, i1 there 1s a mismatch,
CAC restore 1s suggested.

d. IT FS 1s of NAS, export path and data path are
compared

¢. If FS 1s on SAN, device types are compared. SAN
can be on Raw device, Multipath device or Logical

volume built on volume group.
1. If both are Raw/MP device, then LUN paths of the

devices are compared

2. If both are LV devices, Volume group names and
UUID are compared.

3. If both VG name are same, All the physical
volumes and their respective lun paths are com-
pared. Any mismatch 1n the number of LUN’s or
LUN paths, CAC 1s suggested.

f. If FS 1s on LV, and there are other LV’s sharing the
same VG, CAC 1s suggested.

g, If other File systems 1s as part of restore scope and
share the VG, such file systems are detected, and 1n
such a case, 1 any of the ES restore method 1s CAC,
all FS belonging to the VG will have same restore
method

h. Recursive FS are also detected, and 1f any of the
child FS 1s of CAC, parent FS restore method waill
also be overwritten with CAC.

All the symbolic link files that were backed up, their links
to targets are stored 1n metadata. VHS verifies that all
links point to the same target and 1f not reports the
difference and reports the difference.

Based on the above comparisons, a restore method 1s
calculated and returned.

Build Operation

BuildHostStack operation: This operation builds a host
stack, using UNIX-based kemnel features. This opera-
tion 1s responsible for building the host side stack
entities after the storage side entities are restored/
cloned.

FS type 1s read from metadata passed.

a. If FS were of type NFS, data path, export path and
mount options are read from metadata and mount 1s
executed.

b. There 1s no direct way 1n Linux to obtain the device
given a LUN path. Hence the following steps are
performed for SAN file system.

a. All the devices are read from */sys/block’ and cap-

tured 1n internal data structure
b. Lun paths are detected for all the devices via SCSI
Inquiry
¢. Devices matching the LUN passed as part of request
are taken.
c. If FS were of Raw/Multipath/Raw-Partition/Multipath-
partition
a. Partition mappings are not created automatically
when the LUN 1s mapped to host, so partition
mappings are created 11 any, then the device 1s used
for mounting
b. If device was raw device, and at the time of restore
it 1s under multipath, such heterogeneous scenarios
are automatically handled
d. If FS were mounted on a logical volume,

US 10,310,945 B2

7

a. All the physical volumes, volume groups and logical
volumes are scanned.

b. In case of a clone, Cloned volume group name 1s
generated, all the devices detected are physical vol-
umes (PV), all PV’s are imported to cloned volume
group.

c. In case of In-place restore, Volume group name 1is
same as at the time of backup which 1s present in
metadata, once volume group 1s scanned, VG will be
imported by LVM subsystem.

d. Volume group will be mactive state, which will be
activated.

¢. Appropriate LV devices are calculated and these LV
devices are used for mounting.

¢. FS name 1n case of restore 1s as passed 1n 1input, In case

of clone/CAC restore, FS names are generated since 1t

1s a clone, and these FS directories are created and
mounted.

When providing a new implementation module 206 for a
new operating system or file system, each of the above-
described operations may be implemented 1n the module.
The operation component 204 may expect three procedures
to be implemented for each operation: an 1nitialize proce-
dure 312, a run procedure 314, and a terminate procedure
316. The mitialize procedure 312 mitializes the operation,
while the terminate procedure 316 de-initializes the opera-
tion. The run procedure 314 creates any host storage objects
used by the operation, and calls methods on the objects 1n
order to run the operation’s logic.

The operations may be called by the host 230, as shown
in FI1G. 4. The host’s plugin 234 implements the APIs used
by the management component 202 to perform backup/
restore/clone activities. The plugin 234 provides APIs to the
management component 202 so that any application may
perform file system management. To that end, the plugin 234
provides a plugin API entry point 410 callable by, for
example, an application, 1n order to perform {file system
management activities. The plugin 234 acts like a client to
the management component 202 and 1nteracts via mput files
420 and output files 424 (e.g., 1n the form of JSON files) to
send a request and receive a response.

The plugin 234 includes a SAL client 412 for interacting,
with the SAL 208 of the management component 202. The
SAL 208 represents the Storage Abstraction Layer, which
interacts with the storage system 220 to perform various
operations. Examples of operations performed by the SAL
208 include restoring files or LUNSs from a snapshot, cloning
volumes from a snapshot, mapping or unmapping a LUN
to/from a host and deleting cloned volumes as Representa-
tional State Transter (REST) services. The SAL 208 resides
in the management server 200.

The SAL client 412. acts as a REST client to the SAL 208.
This allows the system to utilize REST services for per-
forming storage operations. Exemplary sequences of REST
services use by the SAL client 412 and the SAL 208 are
shown 1n FIG. 7B (connect-and-copy restore) and FIG. 7C
(in-place restore).

The management component client 414 may include a
communication protocol 416 for preparing and transmitting
mput files 420 (e.g., a JSON preparation module) and a
communication protocol 418 for parsing output files 424
(e.g., a JSON parser).

At the host-side management component 402, the input
file 420 1s received and processed by the operation compo-
nent 204 with the assistance of a host storage layer 426 that
1ssues OS commands and API calls on behalf of the opera-
tion component 204.

10

15

20

25

30

35

40

45

50

55

60

65

8

More specifically, any subsystem (e.g. a UNIX subsys-
tem) that acts on a storage entity falls under the category of
host storage. The host storage layer 426 represents a col-
lection of packages related to host storage entities, such as
device entities, volume manager entities, operating system
entities, and file system entities. Each package provides
generic methods that abstracts out the operation carried out
on the component and hides the complexity inside that
package. The components may call native OS commands, or
custom binaries encapsulating OS APIs. FEach component
includes a method to load a flavor of the component by name
and return a handle to the caller.

The component related to the device entities provides
APIs for operating on any kind of device. On UNIX, a
device may be of type native, multipath, partition on native,
partition on multipath, or logical volume.

The APIs provided by this component include APIs for:

1. Detecting the type of the device

2. Detect a major/minor number of the device

3. Getting LUN attributes of the device

4. Applying permissions on the device (via udev on linux)

5. Discovering all devices on a system.

The component related to volume managers provides
APIs for operating on any kind of volume manager. Various
flavors of volume managers include Linux LVM, VXVM, etc.
The APIs provided by this component include APIs for:

1. Obtaining physical volumes of a volume group

2. Obtaiming logical volumes of a volume group

3. Obtaining information of a volume group such as

number of PVs, number of [Vs, UUID, etc volume
manager attributes.

4. Discovering all volume groups on the system.

The component related to operating systems provides
APIs for getting information from any OS flavor. Examples
of OS flavors include Linux, AIX, Solaris etc. The APIs
provided by this component include APIs for:

1. Mounting {ile systems

2. Obtaimning information about file system persistence.

3. Getting an absolute path of a file

The component relating to file systems provides APIs for
the manageability of any type of FS. Various types of file
systems include ext3, ext4, xis, nis, etc. The APIs provided
by this component include APIs for performing the follow-
ing operations:

1. Quiesce

2. UnQuiesce

3. Deport

4. Build

5. File system consistency

A result of the operation(s) described above 1s packaged
into the output file 424 and transmitted to the host 230.

The various parts of the host-side management compo-
nent 402 are shown 1n more detail 1n FIG. 5. The mput file
420 1s recerved by a management component client 510 that
1s 1n communication with the host 230. The management
component client 510 provides the mput of the mput file 420
to an mput formatter 512, which extracts the operations
specified 1n the mput file 420 and provides them to the
operation component 204,

The operation component 204 1s responsible the reading
the operation name in the input file 420. The operation
component 204 checks whether a corresponding class exists
for the specified operation (e.g., 1n an appropriate 1mple-
mentation module 206), and instantiates the class by loading
the implementation module 206 (or portion of the module
206) that matches the operation name in a predetermined
directory. The operation component 204 returns the opera-

US 10,310,945 B2

9

tion object, which may be i1dentified in the output file 424.
The operation component provides the operation object or
the 1dentity of the operation object to an output formatter,
which generates the output file 424 and passes it to the
management component client 510. The management com-
ponent client 510 communicates with the host 230 through
the parser 418.

If no appropriate implementation module 206 exists, the
operation component 204 returns an error.

In order to add a new operation to the host-side manage-
ment component 402, an implementation component 206
(¢.g., a perl module) may be created having the name of the
new operation. The component may implement the above-
described 1nitialize, run, and terminate methods for the
operation. The resulting component may be placed in an
operations directory of the host-side management compo-
nent 402.

Exemplary Method

FIG. 6 depicts exemplary operation logic 600 implement-
ing a method for performing an operation with respect to a
file system. In some embodiments, the operation logic 600
may be implemented as 1nstructions stored on a non-transi-
tory computer-readable medium.

At block 602, a system may receive a request to perform
an operation. The operation may be a management operation
performed with respect to a file system. For example, the
request may be received by a communications interface of
the file system management server 200 and presented to the
management component 202. Among other possibilities, the
operation may be a validate operation, a build operation, or
a deport operation (as well as other types of operations
previously described, for example 1n connection with FIG.
3). The request may specily, or may be otherwise associated
with, a particular type of file system and/or operating
system.

Alternatively or in addition, the system may receive a
request to perform an activity at step 602. An activity
represents an action performed with respect to the file
system which 1s implemented by combiming two or more of
the operations 1n the implementation module 206. Examples
ol activities include backing up the file system, performing
a connect-and-copy restore of the file system, performing an
in-place restore of the file system, performing a clone-from-
backup of the file system, or performing a deletion of a clone
of the file system. The system may maintain a list of
activities that can be implemented by combining operations,
and each entry 1n the list may include a list of the operations
(and the order of operations) to be performed. Because the
operations are canonical, a single list of activities may be
used to implement activities on a variety of different {ile
systems/operating systems.

At block 604, the system may search in a predetermined
location for an implementation module corresponding to the
operation. The predetermined location may be, for example,
a file or directory including the type of the file system
(and/or the type of the operating system) on which the
operation 1s requested to be performed. As previously
described, the implementation module may include instruc-
tions for implementing particular aspects of the operation
(e.g., an mnitialize subroutine, a run subroutine, and a termi-
nate subroutine).

At block 606, the system may determine whether an
implementation module was located at the predetermined
location. If not, then at step 608 the system may report a
tailure back to the original requestor.

If the determination at block 606 1s “yes” (i.e., an 1mple-
mentation module was found), then at blocks 610-612, the

10

15

20

25

30

35

40

45

50

55

60

65

10

system may perform the requested activity and/or operation.
If the original request was for an operation, then at block 612
the system may retrieve the operation’s implementation
from the implementation module and respectively run the
operation’s 1nitialize (block 614), run (block 616), and
terminate (block 618) subroutines. If the orniginal request
was for an activity, then at block 610 the system may retrieve
the list of operations that implement the activity and may
iteratively perform block 612 for each of the operations that
implement the activity.

Examples of activities are discussed in more detail below
with respect to FIGS. 7A-7E. In addition to operations
implemented 1n the implementation module, other activities
may be performed by the management component (1includ-
ing the storage abstraction layer, or SAL). In this example
and the examples depicted 1n FIGS. 7A-7E, some of these
activities are not expressly depicted or described, because
they do not necessarily rely on {file-system or operating-
system specific procedures. For example, the management
component may be capable of performing mapping or

cloning operations 1n some circumstances without making
file-system-specific calls. Thus, although FIGS. 7TA-7E are
labeled with a number of specific operations such as “build
host stack™ and “rescan devices,” other steps may also be
present which do not necessarily rely on operations imple-
mented 1n the implementation module.

Once the activity and/or operation has been performed,
processing may end at block 620.

Combining Operations to Support File System Activities

As noted above, complex activities may be implemented
by combining operations in particular orders. FIGS. 7TA-7E
depict various activities and the operations that make up
cach activity.

FIG. 7A depicts an example of a backup activity. The
backup activity of FIG. 7A 1s implemented by performing a
discover operation 702, a quiesce operation 704, an unqui-
esce operation 706, and a get metadata operation 708.
Between the quiesce operation 704 and the unquiesce opera-
tion 706, the system may take a snapshot of the identified
data. Exemplary pseudocode for implementing a backup
activity 1s provided below:

1. Management Component passes list of files to be

discovered.

2. Translate file to file systems and to underlying storage
system entities.

3. Return the file to file system bucketing and storage
topology of each file system to Management Compo-
nent.

a. Export paths of mount points 1n the case of NFS.

b. Lun Paths 1n the case of SAN.

c. Consistency group(s), a bunch of entities to be
snapped together.

4. Sync and Freeze file systems.

. SAL Takes snapshots of the underlying storage system
entities.
. Unireeze (thaw) the file systems.

7. Obtain metadata of the file systems and return to
Management Component for persisting the metadata
information.

The system may similarly implement a restore from
backup activity by having the management component 402
select a restore operation. Subsequently, the system may
perform a Validate Host Stack operation 710, Rescan
Devices Operation 712, Build Host Stack Operation 714,
Copy Files Operation 716, Deport Host Stack Operation 718
(examples of which are shown 1 FIGS. 7B and 7C.)

Lh

o)

US 10,310,945 B2

11

Exemplary pseudocode for implementing a restore-from-
backup activity 1s provided below:

1. User selects the backup and associated application

entities to be restored 1n SMCore.

2. SCU obtains the list of files to be restored and the

metadata associated with the backup.

3. Determine the file systems to be restored

4. Determine the restore mechanism for each file system

using SCU core. (ValidateHostStack)

1. If there 1s no change in current stack when compared
to backup, In-Place restore 1s chosen.

1. If there 1s at least one change, then “connect and
copy’’ restore 1s chosen.

FIG. 7B depicts an example of a connect-and-copy restore
(as used 1n step 4.1, above). A connect-and-copy restore
activity may be implemented by performing a validate host
stack operation 710, a rescan devices operation 712, a build
host stack operation 714, a copy files operation 716, a deport
host stack operation 718, and a rescan devices operation
720. Exemplary pseudocode for performing a connect-and-
copy restore 1s provided below:

1. Compute the LUNSs to be cloned from the file systems

to be cloned

2. Clone and Map the underlying cloned LUNSs to the host

using SAL

3. Rescan HBA

4. Discover underlying cloned LUNSs on the host and build

the host side stack which includes importing disk
group, starting host volumes and mounting file systems
on the cloned LUNSs.

5. Copy the files from cloned file systems to the original

file systems.

6. Deactivate the clone host stack which includes un-

mounting file system, stopping host volumes and
deporting disk groups, removing devices and rescan-

ning SCSI bus.

7. UnMap the cloned LUNs and delete the cloned vol-

umes on the storage using SAL.

FI1G. 7C depicts an example of an in-place restore (as used
in step 4.1, above). An in-place restore activity may be
implemented by performing a validate host stack operation
722, a deport host stack operation 724, a rescan devices
operation 726, and a build host stack operation 728. Exem-
plary pseudocode for performing a connect-and-copy restore
1s provided below:

1. Translate the host side entities to underlying storage

system entities.

2. Deactivate the host side stack which includes un-

mounting file system, stopping host volumes and
deporting disk groups, removing devices and rescan-

ning SCSI bus.
. UnMap the underlying LUNs using SAL
. Compute the LUNSs to be restored
. Restore the LUNs on the storage using SAL
. Map the underlying LUNSs to the host using SAL
. Rescan HBA
. Discover underlying LUNs on the host and activate the
host side stack which includes importing disk group,
starting host volumes and mounting file systems.
FIG. 7D depicts an example of a clone-from-backup
activity. A clone-from-backup activity may be implemented
by performing a get host info operation 730, a rescan devices
operation 732, and a build host stack operation 734. Exem-
plary pseudocode for performing a clone-from-backup
activity 1s provided below:
1. SMCore obtains the host details such as IP address/
initiators through SCU.

0 ~1 N h B WD

10

15

20

25

30

35

40

45

50

55

60

65

12

2. Creation of cloned storage entities and mapping those
entities to the host 1s done by SAL.

3. Obtains the metadata associated with the backup and
the clone storage information from SMCore

4. Discover underlying cloned LUNSs on the host (rescan
HBA)

5. Build the host side stack which includes importing disk
group, activating host volumes and mounting file sys-
tems on the cloned L UN:S.

6. Returns mapping of source to clone file systems back
to SMCore.

When the system 1s finished using a clone of a file system,
the clone may be deleted using a procedure such as the one
depicted 1n FIG. 7E
Computer-Related Embodiments

The above-described methods may be embodied as
istructions on a computer readable medium or as part of a
computing architecture. FI1G. 8 illustrates an embodiment of
an exemplary computing architecture 800 suitable for imple-
menting various embodiments as previously described. In
one embodiment, the computing architecture 800 may com-
prise¢ or be implemented as part of an electronic device.
Examples of an electronic device may include those
described with reference to FIG. 8, among others. The
embodiments are not limited 1n this context.

As used 1n this application, the terms “system” and
“component” are intended to refer to a computer-related
entity, either hardware, a combination of hardware and
soltware, software, or software 1n execution, examples of
which are provided by the exemplary computing architec-
ture 800. For example, a component can be, but 1s not
limited to being, a process running on a pProcessor, a pro-
cessor, a hard disk drive, multiple storage drives (of optical
and/or magnetic storage medium), an object, an executable,
a thread of execution, a program, and/or a computer. By way
of 1llustration, both an application running on a server and
the server can be a component. One or more components can
reside within a process and/or thread of execution, and a
component can be localized on one computer and/or dis-
tributed between two or more computers. Further, compo-
nents may be communicatively coupled to each other by
various types of communications media to coordinate opera-
tions. The coordination may involve the uni-directional or
bi-directional exchange of information. For instance, the
components may communicate mnformation in the form of
signals communicated over the communications media. The
information can be implemented as signals allocated to
various signal lines. In such allocations, each message 1s a
signal. Further embodiments, however, may alternatively
employ data messages. Such data messages may be sent
across various connections. Exemplary connections include
parallel interfaces, serial interfaces, and bus interfaces.

The computing architecture 800 includes various com-
mon computing elements, such as one or more processors,
multi-core processors, co-processors, memory units, chip-
sets, controllers, peripherals, interfaces, oscillators, timing
devices, video cards, audio cards, multimedia input/output
(I/0) components, power supplies, and so forth. The
embodiments, however, are not limited to implementation
by the computing architecture 800.

As shown i FIG. 8, the computing architecture 800
comprises a processing unit 804, a system memory 806 and
a system bus 808. The processing unit 804 can be any of
various commercially available processors, mncluding with-
out limitation an AMD® Athlon®, Duron® and Opteron®
processors; ARM® application, embedded and secure pro-
cessors; IBM® and Motorola® DragonBall® and Pow-

US 10,310,945 B2

13

erPC® processors; IBM and Sony® Cell processors; Intel®
Celeron®, Core (2) Duo®, Itanium®, Pentium®, Xeon®,
and XScale® processors; and similar processors. Dual
microprocessors, multi-core processors, and other multi-
processor architectures may also be employed as the pro-
cessing unit 804.

The system bus 808 provides an interface for system
components 1ncluding, but not limited to, the system
memory 806 to the processing unit 804. The system bus 808
can be any of several types of bus structure that may further
interconnect to a memory bus (with or without a memory
controller), a peripheral bus, and a local bus using any of a
variety of commercially available bus architectures. Inter-
face adapters may connect to the system bus 808 via a slot
architecture. Example slot architectures may include without
limitation Accelerated Graphics Port (AGP), Card Bus,
(Extended) Industry Standard Architecture ((E)ISA), Micro
Channel Architecture (MCA), NuBus, Peripheral Compo-
nent Interconnect (Extended) (PCI(X)), PCI Express, Per-
sonal Computer Memory Card International Association
(PCMCIA), and the like.

The computing architecture 800 may comprise or imple-
ment various articles of manufacture. An article of manu-
facture may comprise a computer-readable storage medium
to store logic. Examples of a computer-readable storage
medium may include any tangible media capable of storing,
clectronic data, including volatile memory or non-volatile
memory, removable or non-removable memory, erasable or
non-erasable memory, writeable or re-writeable memory,
and so forth. Examples of logic may include executable
computer program instructions implemented using any suit-
able type of code, such as source code, compiled code,
interpreted code, executable code, static code, dynamic
code, object-oriented code, visual code, and the like.
Embodiments may also be at least partly implemented as
instructions contained in or on a non-transitory computer-
readable medium, which may be read and executed by one
or more processors to enable performance of the operations
described herein.

The system memory 806 may include various types of
computer-readable storage media 1n the form of one or more
higher speed memory units, such as read-only memory

(ROM), random-access memory (RAM), dynamic RAM
(DRAM), Double-Data-Rate DRAM (DDRAM), synchro-
nous DRAM (SDRAM), static RAM (SRAM), program-
mable ROM (PROM), cerasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash memory, polymer memory such as ferroelec-
tric polymer memory, ovonic memory, phase change or
terroelectric memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, an array of
devices such as Redundant Array of Independent Disks
(RAID) drives, solid state memory devices (e.g., USB
memory, solid state drives (SSD) and any other type of
storage media suitable for storing mformation. In the 1llus-
trated embodiment shown 1n FIG. 8, the system memory 806
can 1nclude non-volatile memory 810 and/or volatile
memory 812. A basic input/output system (BIOS) can be
stored 1n the non-volatile memory 810.

The computer 802 may include various types of com-
puter-readable storage media 1n the form of one or more
lower speed memory units, including an internal (or exter-
nal) hard disk drive (HDD) 814, a magnetic tloppy disk
drive (FDD) 816 to read from or write to a removable
magnetic disk 818, and an optical disk drive 820 to read
from or write to a removable optical disk 822 (e.g., a

CD-ROM or DVD). The HDD 814, FDD 816 and optical

10

15

20

25

30

35

40

45

50

55

60

65

14

disk drive 820 can be connected to the system bus 808 by a
HDD interface 824, an FDD interface 826 and an optical
drive interface 828, respectively. The HDD interface 824 for
external drive implementations can include at least one or
both of Umversal Serial Bus (USB) and IEEE 694 interface

technologies.
The drives may include traditional hard drives (HDDs)
and/or flash-based drives. The drives may be all traditional
HDDs, all flash drives, or a combination of HDDs and flash
drives.

The drnives and associated computer-readable media pro-
vide volatile and/or nonvolatile storage of data, data struc-
tures, computer-executable instructions, and so forth. For
example, a number of program modules can be stored in the
drives and memory units 810, 812, including an operating
system 830, one or more application programs 832, other
program modules 834, and program data 836. In one
embodiment, the one or more application programs 832,
other program modules 834, and program data 836 can
include, for example, the various applications and/or com-
ponents of the system 30.

A user can enter commands and information into the
computer 802 through one or more wire/wireless 1nput
devices, for example, a keyboard 838 and a pointing device,
such as a mouse 840. Other mput devices may include
microphones, nfra-red (IR) remote controls, radio-ire-
quency (RF) remote controls, game pads, stylus pens, card
readers, dongles, finger print readers, gloves, graphics tab-
lets, joysticks, keyboards, retina readers, touch screens (e.g.,
capacitive, resistive, etc.), trackballs, trackpads, sensors,
styluses, and the like. These and other mmput devices are
often connected to the processing unit 504 through an 1mnput
device interface 842 that 1s coupled to the system bus 808,
but can be connected by other interfaces such as a parallel
port, IEEE 694 serial port, a game port, a USB port, an IR
interface, and so forth.

A monitor 844 or other type of display device 1s also
connected to the system bus 808 via an interface, such as a
video adaptor 846. The monitor 844 may be internal or
external to the computer 802. In addition to the monitor 844,
a computer typically includes other peripheral output
devices, such as speakers, printers, and so forth.

The computer 802 may operate 1n a networked environ-
ment using logical connections via wire and/or wireless
communications to one or more remote computers, such as
a remote computer 848. The remote computer 848 can be a
workstation, a server computer, a router, a personal com-
puter, portable computer, microprocessor-based entertain-
ment appliance, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the computer 802, although, for pur-
poses ol brevity, only a memory/storage device 850 1s
illustrated. The logical connections depicted include wire/
wireless connectivity to a local area network (LAN) 852
and/or larger networks, for example, a wide area network
(WAN) 854. Such LAN and WAN networking environments
are commonplace in oflices and compames, and facilitate
enterprise-wide computer networks, such as intranets, all of
which may connect to a global communications network, for
example, the Internet.

When used in a LAN networking environment, the com-
puter 802 1s connected to the LAN 8352 through a wire and/or
wireless communication network interface or adaptor 856.
The adaptor 856 can facilitate wire and/or wireless commu-
nications to the LAN 852, which may also include a wireless
access point disposed thereon for communicating with the
wireless functionality of the adaptor 856.

US 10,310,945 B2

15

When used 1n a WAN networking environment, the com-
puter 802 can include a modem 858, or i1s connected to a
communications server on the WAN 854, or has other means
for establishing communications over the WAN 854, such as
by way of the Internet. The modem 8358, which can be
internal or external and a wire and/or wireless device,
connects to the system bus 808 via the input device interface
842. In a networked environment, program modules
depicted relative to the computer 802, or portions thereof,
can be stored in the remote memory/storage device 850. It
will be appreciated that the network connections shown are
exemplary and other means of establishing a communica-
tions link between the computers can be used.

The computer 802 1s operable to communicate with wire
and wireless devices or entities using the IEEE 802 family
ol standards, such as wireless devices operatively dlsposed
in wireless communication (e.g., IEEE 802.13 over-the-air
modulation techniques). This includes at least Wi-F1 (or
Wireless Fidelity), WiMax, and Bluetooth™ wireless tech-
nologies, among others. Thus, the communication can be a
predefined structure as with a conventional network or
simply an ad hoc communication between at least two
devices. Wi-F1 networks use radio technologies called IEEE
802.13x (a, b, g, n, etc.) to provide secure, reliable, fast
wireless connectivity. A Wi-F1 network can be used to
connect computers to each other, to the Internet, and to wire
networks (which use IEEE 802.3-related media and func-
tions).

FIG. 9 illustrates a block diagram of an exemplary com-
munications architecture 900 suitable for 1mplementing
various embodiments as previously described. The commu-
nications architecture 900 includes various common com-
munications elements, such as a transmitter, receiver, trans-
ceiver, radio, network interface, baseband processor,
antenna, amplifiers, filters, power supplies, and so forth. The
embodiments, however, are not limited to implementation
by the communications architecture 900.

As shown 1n FIG. 9, the communications architecture 900
comprises includes one or more clients 902 and servers 904.
The clients 902 may implement the client device 14 shown
in FIG. 1. The servers 604 may implement the server device
104 shown in FIG. 1A. The clients 902 and the servers 904
are operatively connected to one or more respective client
data stores 908 and server data stores 910 that can be
employed to store information local to the respective clients
902 and servers 904, such as cookies and/or associated
contextual information.

The clients 902 and the servers 904 may communicate
information between each other using a communication
framework 906. The communications framework 906 may
implement any well-known communications techniques and
protocols. The communications framework 906 may be
implemented as a packet-switched network (e.g., public
networks such as the Internet, private networks such as an
enterprise ntranet, and so forth), a circuit-switched network
(e.g., the public switched telephone network), or a combi-
nation of a packet-switched network and a circuit-switched
network (with suitable gateways and translators).

The communications framework 906 may implement
various network interfaces arranged to accept, communi-
cate, and connect to a communications network. A network
interface may be regarded as a specialized form of an 1mput
output interface. Network interfaces may employ connection
protocols including without limitation direct connect, Eth-
ernet (e.g., thick, thin, twisted pair 10/100/1000 Base T, and
the like), token ring, wireless network interfaces, cellular
network 1interfaces, IEFE 802.11a-x network interfaces,

10

15

20

25

30

35

40

45

50

55

60

65

16

IFEE 802.16 network interfaces, IEEE 802.20 network
interfaces, and the like. Further, multiple network interfaces
may be used to engage with various communications net-
work types. For example, multiple network interfaces may
be employed to allow for the communication over broadcast,
multicast, and unicast networks. Should processing require-
ments dictate a greater amount speed and capacity, distrib-
uted network controller architectures may similarly be
employed to pool, load balance, and otherwise increase the
communicative bandwidth required by clients 902 and the
servers 904. A communications network may be any one and
the combination of wired and/or wireless networks including,
without limitation a direct interconnection, a secured custom
connection, a private network (e.g., an enterprise intranet),
a public network (e.g., the Internet), a Personal Area Net-
work (PAN), a Local Area Network (LAN), a Metropolitan
Area Network (MAN), an Operating Missions as Nodes on

the Internet (OMNI), a Wide Area Network (WAN), a

wireless network, a cellular network, and other communi-
cations networks.
General Notes on Terminology

Some embodiments may be described using the expres-
sion “‘one embodiment” or “an embodiment” along with
their derivatives. These terms mean that a particular feature,
structure, or characteristic described in connection with the
embodiment 1s included in at least one embodiment. The
appearances of the phrase “in one embodiment™ 1n various
places 1n the specification are not necessarily all referring to
the same embodiment. Further, some embodiments may be
described using the expression “coupled” and “connected”
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are
in direct physical or electrical contact with each other. The
term “coupled,” however, may also mean that two or more
clements are not in direct contact with each other, but yet
still co-operate or interact with each other.

With general reference to notations and nomenclature
used herein, the detailed descriptions herein may be pre-
sented 1n terms of program procedures executed on a com-
puter or network of computers. These procedural descrip-

tions and representations are used by those skilled in the art
to most effectively convey the substance of their work to
others skilled in the art.

A procedure 1s here, and generally, conceived to be a
self-consistent sequence of operations leading to a desired
result. These operations are those requiring physical
mampulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical,
magnetic or optical signals capable of being stored, trans-
terred, combined, compared, and otherwise manipulated. It
proves convenient at times, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like. It should be
noted, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are
merely convenient labels applied to those quantities.

Further, the mamipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator 1s neces-
sary, or desirable 1n most cases, in any of the operations
described herein, which form part of one or more embodi-
ments. Rather, the operations are machine operations. Usetul

US 10,310,945 B2

17

machines for performing operations of various embodiments
include general purpose digital computers or similar
devices.

Various embodiments also relate to apparatus or systems
for performing these operations. This apparatus may be
specially constructed for the required purpose or i1t may
comprise a general purpose computer as selectively acti-
vated or reconfigured by a computer program stored 1n the
computer. The procedures presented herein are not inher-
ently related to a particular computer or other apparatus.
Various general purpose machines may be used with pro-
grams written in accordance with the teachings herein, or 1t
may prove convenient to construct more specialized appa-
ratus to perform the required method steps. The required
structure for a variety of these machines will appear from the
description given.

It 1s emphasized that the Abstract of the Disclosure 1s
provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It 1s submitted with the understand-
ing that 1t will not be used to 1nterpret or limit the scope or
meaning of the claims. In addition, 1n the foregoing Detailed
Description, 1t can be seen that various features are grouped
together 1n a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure 1s not to be
interpreted as reflecting an intention that the claimed
embodiments require more features than are expressly
recited 1n each claim. Rather, as the following claims retlect,
inventive subject matter lies 1n less than all features of a
single disclosed embodiment. Thus the following claims are
hereby incorporated 1nto the Detailed Description, with each
claim standing on 1ts own as a separate embodiment. In the
appended claims, the terms “including” and “in which™ are
used as the plain-English equivalents of the respective terms
“comprising” and “wherein,” respectively. Moreover, the
terms ““first,” “second,” “third,” and so forth, are used
merely as labels, and are not intended to impose numerical
requirements on their objects.

What has been described above includes examples of the
disclosed architecture. It 1s, of course, not possible to
describe every conceivable combination of components and/
or methodologies, but one of ordinary skill in the art may
recognize that many further combinations and permutations
are possible. Accordingly, the novel architecture 1s intended
to embrace all such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.

The invention claimed 1s:

1. A method comprising:

receiving by a processor a request for a file system

implemented by an operating system ol a computing
device with access to data stored by a storage system;
wherein the request 1s for a storage service associated
with the data;

retrieving by the processor, mstructions from a predeter-

mined location corresponding to a file system type that
varies based on a protocol used by the computing
device to communicate with the storage system and an
operating system type to execute an operation for the
request; wherein predetermined locations store a plu-
rality of instructions corresponding to file system and
operating system types for executing storage service
related operations; and

executing the operation based on the retrieved nstructions

using a plugin interfacing with the storage system for a
storage related function and an application plugin inter-
facing with an application that accesses the data;

wherein when the operation 1s a validate operation a

restore type operation 1s selected based on the file

10

15

20

25

30

35

40

45

50

55

60

65

18

system type; wherein a first restore type operation 1s
selected when a current state of the file system and a
backup state of the file system are the same and a
second restore type operation 1s selected when the
current state and the backup state are different.

2. The method of claim 1, wherein the operating system
1s a UNIX®-based operating system.

3. The method of claim 1, wherein when the operation 1s
a build operation, then the instructions are used to generate
a host side stack after a storage data unit has been restored
using the plugin for the storage system.

4. The method of claam 1, wherein the restore type
operation 1s selected from one of a connect-and-copy restore
of the file system, and an in-place restore of the file system.

5. The method of claim 1, wherein the operation 1mple-
ments an mnitialization procedure, a run procedure, and a
terminate procedure.

6. The method of claim 1, wherein for a new type of
operating system, new instructions are stored specific to the
new operating system type at a predetermined location
without rebuilding a management component that performs
the operation.

7. The method of claim 1, wherein a management device
executes the plugin for interfacing with the storage system
and manages the application plugin of the computing device.

8. A non-transitory machine-readable storage medium
having stored thereon instructions for performing a method,
comprising machine executable code which when executed
by at least one machine, causes the machine to:

recerve a request for a file system implemented by an

operating system ol a computing device with access to
data stored by a storage system; wherein the request 1s
for a storage service associated with the data;
retrieve instructions from a predetermined location cor-
responding to a file system type that varies based on a
protocol used by the computing device to communicate
with the storage system and an operating system type to
execute an operation for the request; wherein predeter-
mined locations store a plurality of instructions corre-
sponding to file system and operating system types for
executing storage service related operations; and
execute the operation based on the retrieved instructions
using a plugin interfacing with the storage system for a
storage related function and an application plugin inter-
facing with an application that accesses the data;

wherein when the operation 1s a validate operation a

restore type operation 1s selected based on the file
system type; wherein a first restore type operation 1s
selected when a current state of the file system and a
backup state of the file system are the same and a
second restore type operation 1s selected when the
current state and the backup state are diflerent.

9. The non-transitory storage medium of claim 8, wherein
when the operation 1s a build operation, then the instructions
are used to generate a host side stack after a storage data unit
has been restored using the plugin for the storage system.

10. The non-transitory storage medium of claim 8,
wherein the restore type operation 1s selected from one of a
connect-and-copy restore of the file system, and an in-place
restore of the file system.

11. The non-transitory storage medium of claim 8,
wherein the operation implements an 1nitialization proce-
dure, a run procedure, and a terminate procedure.

12. The non-transitory storage medium of claim 8,
wherein for a new type of operating system, new nstructions
are stored specific to the new operating system type at a

US 10,310,945 B2

19

predetermined location without rebuilding a management
component that performs the operation.

13. The non-transitory storage medium of claim 8,
wherein a management device executes the plugin for inter-
facing with the storage system and manages the application
plugin of the computing device.

14. The non-transitory storage medium of claim 8,
wherein the operating system 1s a UNIX®-based operating,
system.

15. A system comprising:

a memory containing machine readable medium compris-
ing machine executable code having stored thereon
instructions; and a processor module coupled to the
memory, the processor module configured to execute
the machine executable code to:

receive a request for a file system implemented by an
operating system of a computing device with access to
data stored by a storage system; wherein the request 1s
for a storage service associated with the data;

retrieve instructions from a predetermined location cor-
responding to a file system type that varies based on a
protocol used by the computing device to communicate
with the storage system and an operating system type to
execute an operation for the request; wherein predeter-
mined locations store a plurality of instructions corre-
sponding to file system and operating system types for
executing storage service related operations; and

execute the operation based on the retrieved instructions
using a plugin interfacing with the storage system for a
storage related function and an application plugin inter-
facing with an application that accesses the data;

5

10

15

20

25

30

20

wherein when the operation 1s a validate operation a
restore type operation 1s selected based on the file
system type; wherein a first restore type operation 1s
selected when a current state of the file system and a
backup state of the file system are the same and a
second restore type operation 1s selected when the
current state and the backup state are diflerent.

16. The system of claim 15, wherein when the operation
1s a build operation, then the instructions are used to
generate a host side stack after a storage data unit has been
restored using the plugin for the storage system.

17. The system of claim 15, wherein the restore type
operation 1s selected from one of a connect-and-copy restore
of the file system, and an in-place restore of the file system.

18. The system of claim 15, wherein the operation imple-
ments an mnitialization procedure, a run procedure, and a
terminate procedure.

19. The system of claim 15, wherein for a new type of
operating system, new 1nstructions are stored specific to the
new operating system type at a predetermined location
without rebuilding a management component that performs
the operation.

20. The system of claim 15, wherein a management
device executes the plugin for interfacing with the storage
system and manages the application plugin of the computing
device.

21. The system of claim 15, wherein the operating system
1s a UNIX®-based operating system.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

