US010297047B2

a2y United States Patent 10) Patent No.: US 10,297,047 B2

Surti et al. 45) Date of Patent: May 21, 2019
(54) INTERLEAVED MULTISAMPLE RENDER (58) Field of Classification Search
TARGETS FOR LOSSLESS COMPRESSION CPC combination set(s) only.
See application file for complete search history.

(71) Applicant: Intel Corporation, Santa Clara, CA

(US) (56) References Cited

U.S. PATENT DOCUMENTS

(72) Inventors: Prasoonkumar Surti, Folsom, CA

US): Abhishek R. Appu. El Dorado 9,912,957 B1* 3/2018 Surttccoooven. HO4N 19/436
; ppu,
Hills, CA (US) 2006/0103658 Al1* 5/20060 Liao ..coooovvvvinnnnnn, G09G 5/022
; 345/545
: . 2014/0176541 Al1* 6/2014 Surttoooooeeennnen GO06T 15/503
(73) Assignee: Intel Corporation, Santa Clara, CA HHH 345/420
(US) 2016/0035129 Al* 2/2016 BolZ ...ccoccvveer.... GO6T 15/005
345/420
(*) Notice: Subject to any disclaimer, the term of this 2016/0062947 Al 3/2016 Chetlur et al.
patent is extended or adjusted under 35 2016/0133029 Al* 5/2016 Akenine-Moller GO6T 9/00
345/593
U.5.C. 154(b) by 0 days. 2017/0272722 Al* 9/2017 Salvi .cocovveec..... HO4N 13/0018
(21) Appl. No.: 15/493,261 (Continued)
(22) Filed: Apr. 21, 2017 OTHER PUBLICATIONS
: S Goodfellow, et al. “Adaptive Computation and Machine Learning
(63) Prior Publication Data Series”, Book, Nov. 18, 2016, pp. 98-165, Chapter 5, The MIT
US 2018/0308211 Al Oct. 25, 2018 Press, Cambridge, MA.

(Continued)
(51) Imt. CL

G06T 120 (2006.01) Primary Examiner — Wesner Sajous

G061 1/60 (2006.01) (74) Attorney, Agent, or Firm — Jallery Watson

GO6T 11/00 (2006.01) Mendonsa & Hamailton LLP

GO06T 5/00 (2006.01)

GO6T 11/40 (2006.01)) . %BSTRACT .

GO6T 9/00 (2006.01) One embodlmenF Prowdes for a genem‘l-purpose' graphlcs

G09G 5/02 (2006.01) processor comprising a hardware‘ graphics re‘ndf..,—j-ru.lg pipe-

G09G 5/39 (2006.01) line configured to perform multisample anti-aliasing, the

HO4N 1/60 (2006.01) har@ware graphjcs rendgring pipeline including pixel pro-
(52) U.S. CL cessing logic to dft,—‘-tem}me color (}ata for multlple-: sample

cpC GO6T 9/00 (2013.01): GO6T 1/20 locations of each pixel in a set of pixels and to contiguously

(2013.01); GO6T 5/002 (2013.01); GO6T pack the color data for the multiple sample locations of each

11/001 (2013.01); GO6T 11/40 (2013.01); pixel for storage to a multisample render target.
GooT 2210/52 (2013.01) 20 Claims, 33 Drawing Sheets

DETERMINE A SET OF SAMPLE COLOR VALUES
ASSOCIATED WITH INDIVIDUAL PIXELS OF A SCENE
1002

l

GENERATE A COMPRESSED SUBSET OF THE SET OF
SAMPLE COLOR VALUES INCLUDING DISTINCT
COLOR VALUES FOR EACH PIXEL
1004

I

INTERLEAVE THE COMPRESSED SUBSET OF THE SET
OF SAMPLE COLOR VALUES FOR EACH PIXEL INTO
A SINGLE MEMORY PLANE
1006

I

APPLY LOSSLESS COLOR COMPRESSION TO THE SET
OF SAMPLE COLOR VALUES WITHIN THE SINGLE
MEMORY PLANE

1008

I

STORE THE SINGLE MEMORY PLANE TO A MULTI-
SAMPLE RENDER TARGET
1010

US 10,297,047 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0345186 Al1l* 11/2017 Seilercooooovvinin, GO6T 9/00

OTHER PUBLICATIONS

Ross, et al. “Intel Processor Graphics: Architecture & Program-
ming”’, Power Point Presentation, Aug. 2015, 78 pages, Intel Cor-

poration, Santa Clara, CA.

Shane Cook, “CUDA Programming”, Book, 2013, pp. 37-52, Chap-
ter 3, Elsevier Inc., Amsterdam Netherlands.

Nicholas Wilt, “The CUDA Handbook; A Comprehensive Guide to
GPU Programming”, Book, Jun. 22, 2013, pp. 41-57, Addison-
Wesley Professional, Boston, MA.

Stephen Junking, “The Compute Architecture of Intel Processor
Graphics Gen9”, paper, Aug. 14, 2015, 22 pages, Version 1.0, Intel
Corporation, Santa Clara, CA.

* cited by examiner

U.S. Patent May 21, 2019 Sheet 1 of 33 US 10,297,047 B2

100

Wireless

Network

Adapter
110

Network
Adapier
118

/O Switch Add-ln
* 116 L Device(s)
Display - 120
Device(s) ' :

110A

;;;;;;;;;;;;;;;;;;;;;;;;;;;

system
Storage
114

/0 Hub

Input
Device(s) —
10R

/3 Subsystem

{Communication
Link
106

W AN RRR O WUY AR R RN WA AR W

Memory

: é ; sy stem
 Parallel Processor{(s) ~ y
. 19 7 oo g ; Hub

""‘""‘"’“ 105

Memory
104

Wl

Ly | | il e WP Lo o
.
= d rrerrrrrr++hkatk h n n dd rd wr

--

Link
113

Dhsplay
Device(s)
110B

Processor{s} | } |
102 Processing

subsystem
101

el

U.S. Patent May 21, 2019 Sheet 2 of 33 US 10,297,047 B2

Parallel Processor Memory 222

Parallel
Processor

200

________.._.. /

Partztmn
Unat
220A

r

Partltmn Partition
Unit Unit
2208 220N

Memery Interface 218

Memory Crossbar 216

Cluster
2148

Processing Array 212

Scheduler 210

Front End Hdst Interface
208 206

Parallel Processmg Unit 202

r

Memory Hub
105

FIG. 2A

U.S. Patent

To/From
Memory Unit
224

Frame buffer

Interface
223

Partition Unit
220

May 21, 2019

.2 Cache
221

To/From
Memory

Crossbar
216

FI1G. 2B

Sheet 3 of 33

ROP
226

US 10,297,047 B2

U.S. Patent May 21, 2019 Sheet 4 of 33 US 10,297,047 B2

To
Memory Crossbar
216 and/or
other Processing
Clusters

Data Crossbar
240

PreROP
MMU 242
245

To/From
A Graphics
Crossbar _

216 Multiprocessor

L1 Cache
2438
Processing Pipeline Manager
Cluster 232

214

To/From
Scheduler
210

FIG. 2C

U.S. Patent May 21, 2019 Sheet 5 of 33 US 10,297,047 B2

Memory and Cache Interconnect 268

LLoad/Store

Unait
266

Address
Mapping Instruction Unit
256 _
234

From

Pipeline Manager
232

FI1G. 2D

U.S. Patent May 21, 2019 Sheet 6 of 33 US 10,297,047 B2

Graphics Multiprocessor 32

interconnect Fabric 37

L.oad/Store GPGPU
Ut i {ore

340A

GPGPU | GPGRU
{ore
3378

GPGRU
{_ore
3365

 GPGPU |

Core

rdfrrFrdd g rrrrrarrrrrrarrrtrrerrkFFrrfr FTTFEEPTT Frrarrrrddinrbkb¥frrdnrrrrrarrrrrrarr btb*rrrirbbtrdfdrrrrrrarrrrrarrr FitfrFbtddrarrrdrarrFbFrrarbFrdddrrr F+fdrFFrrrar FFrxraarrrranrrbFbr¥d4drr Frrrnarrr FtrrarttbrbdirrFrFrdifrrTrrrrarT FTrTrTonrFbroT

Register File 334A Register File 3348

.
++
.

Instruction Umit 3328

Ionstruction Unit 332A

aa

aa

nnn

FI1G. 3A

U.S. Patent May 21, 2019 Sheet 7 of 33 US 10,297,047 B2

fotd

Graphics Multiprocessor

T m = ET1EEEETTEEETTEEEE

interconnect Fabric 352

4 4 L L4 JdJd bk Ldd P L ES DI L LELIDIPFLLAIPF L LA DI E LA Jd AL EdJddEEED P L LD DI L LI I I LELLED I DI LELIS D JPF L LI AP E LI DI DL ELDI TP LA J TP L EI J d L ELIT P L LA I P L ED I TP L LA JdJ b EI JJ P L EDJ I L LD I I L L Edd L b EJdJdJdE LI A JF L LI AP ELI I I P LA Jd.F b Ldd P E LI JdJdE L EJ I Jd L Ed dd b E LD Jd P E LI J I L LD DI ELEJ

Shared Memory 362

F 4+ &2 F 4+ F& o " o & &

r F* 4 ar F*d s rcrr kFrdoax bt darerd 24 e kb FEd dr k2 ddo b FEdar b4 a0rr Frd o b FEd A FEdd e B FE2d o bddda b bkbdrsrrerrrdrre b FErcra B Fddosr Fddd=FFE+dabkFdryresardy+sdrrbEdar bk FFdar b bFEdagrrrrerb®+d ek F2d v F2*d+de b Fdd o bkddacerrrde b Fdddr bt ddar bFdAd s bddarr brd e B FEd8r FE 4o rr

T

Texture Umi{sy 360, Texture Unit{s) 3608

v 4 s s FrramnrTraan

™

)
¢

ache Memory 35§

L

Lt T I I T T R T o T T T e T T P i T T T e e i T T e T e I i T T I T T T T T T e T T I I L T T N T R T R T I T T T T e et T T I L T T T O N B

Execution Resources 3306A Ixecution Resources 3568

m g rd s sr ¥4 s s g1 d e sy rds T T T TS L ETTTE S FTTTEEETTER

Texture Unit{s) 360C Texiure Unit{s) 3601

4 ® & 4+ . m ® m 4 2} 8 8 fp 4 % &8 p L 4 B8 B 4 L o S B p o+ hod b fpoht o+ B8 §h bbb fpi st S F pbAS S p oot LS B4 L} 8 S f 4 &R EE S G & EpESAG 4 =8 f L L} 8 S L} RSP 4 h &8P A & B b &g &8P L 4 BB N L LS BB A BN B AL F S b+t b b ks bt ot~ B ok ko b bt h b &Ll p ot AL EEE 4} & AP SEE E RS L L LS E S L L} N E A LA EE P A A EEE A L4

=« m = Frea s s s Ts s nsToT

-

Cache Memory 3588

" " "7 . r-rm @ ®LSEEEF-EESEFT71EEETIEESETLE S SN LFrEEELSsEEEFTE S EETEESEETITENEETTE EEES-JI N EEFLTEEFTTEEETTEE L L rEE S LSS EEELLTEEF-sEEE ST EEE S LESESESLEESES FEEEFrEEEFTITEEETLTE S S ELrEEELSEER

P YT TEETTITEEFTTEEFTYTFETTTF S FTTTEETTTEETTTFSFTYTENTYTTESTTTTESTTIF~SFTYTTENTYTTTFPLFTAANFFPFTI1EFFTYAFFFYAFFFYTEIFFTNFFFYAEFFT7FFFT7ETTYT AP FTTEEFTTTEETTTYTESTYTELTTTIEEFTTEETTTTNATT T FPFPYTTNATYTTTFEPFFPTTTAEFPTYTAFFPTTTATYTTTEFTTYTANLFC

" aT ¥ re s n

P

ssecution Resources 3

“xecution Resources 35

v+ 4 =m sy Tr vy s T TE e T Tre s srrrssrFrs s FroTrsssTrTrsssTTEETT

4 " ®m L . % 5 ®m 8 4% &84 &% &8 8 & 48 @ 4 4+ L 8 B p o &8 8 B -4 2 8 @ p o+ 4+ 8 8 WA & 28 B p b 48 B p & &t &+ @ L 4 L 4L B % B L &8 8 p & dd b Lt pd d b b pot i B8 8 fp A} RSP SAE EEERELLE b 4+ 4+ m @ ® 2 . mm S 241 %F &8 f4 i &8 8 4 4L 4@ @ 4 4+ 4+ @ B p ot & 4 8 B 4+ 4 48 B p o L @ @ B 4 L 4+ 8 B p o+ 4 8 8 B 4 &%l B 4 L+ LB B B 4+ i S L b fod 4 b L poid b it S PLF RS PSS EE S A LR

Instruction Cache 35

4 8 B & & 4 B B B & & B B B B & Jd B B B ok ko B B ok ko 8 B &k 8 8 8 B &S B B B & 8 B B Bk ok S B B b okok 8 8 b ok ok S B 5 & &S 8 B B4 E S B B & B § B B &k ko 8 Bk oko 8 8 B &JE S N L] S E S N LS S N Bk LS B B kok g % NN A 8 N Bk ok S N N A Ak E S E S S EEE B & ko 8 B okokod 8 B Nk H N EA] EEEE | BN E Bk ok BB kokg BN Bk ok S N B A &S NN Lok NS NN &k J N NN A &S EEL{EEEEJ EEEE LN R

Ll B L D . L I T O O . R O R T P I I B P L P I B L I . I N L O T T L I T O . T T T I O R R O B L DL R D L I o I R I R N T L T I O L D]

ru sy rraarryraarryraarrrraaTrbkbragarrdrpgg-tbFbrrarrrryraarkrsarkFryrrsaarrrsgTrrrssnbkdygrryry @Y rFrrFIEYTYTTrTIITTYYrTITYTTYTTYYENTYTYYAN N F YA rFAETYTrFYASNTTYFYYOEAFFYFYFFAaYFYYFOP"QORO@FF Fraoarbd s s Fras kb FryrrarryrrryraarbFriarkrs s nrrraarrrrar bdraagr by ar kd gk rrr

F & & J4 F b A 4 & 4 b 4 & & J 3 p & & i d B b bk b g b & 4 d d & & b A J A b A b'd A A b g &t d ok b ok d g F kof o 4 & poh ok B b o ofoodf g b b b i A g b A os B b A ok A b d b d bk d b pob ok dod dod b B g b od o b b b &b b otk d b d Aok b bk dod bof okt b b bk o g kot p i S Lo pohd g b od fododod pob kb b bt oi g p ook ddod b i bk dodd b bk dod bk b b b ko] bbb d it ddd gdod ok dd bododdod b d B bLoidod 8 g podog o 4k b obof 4k bbb dd b ok odgd ko b d hod okt B kLo podod g bk ot B g ik kb odod d dd

rT=s s " m°E =@ E"T71EEETLSsEEEESrE SN FTT A S FTTEEETTEEEELSrE B S LFrE S SLLTEEFTS-E S E ST EEEELEEESESEEEEFrLTTEEFTIEE R

m ma S 4 EmE L Lsm N N L i EESELdL T E NS4 L EE S4B NS L L E S N L LB EEJ L L SN N4 LR ES A4 AN S L LR ESL LT E S S L LRSS N4 E RS S L L EE N SR LN E4LL LS N4 LB NN L L R ES 4 dLL S B4 AR N N4 d i S N4 L L B S N AL L R E NS4 E RS S4 T EES S 4 SRS S SR ES4 L iSRS S L E E NS L 4R N N4 LT LS4 LR BN 44 E NN L4 R NS4 b B ES S L i E NS SR RS 4 dd A B L4 R RN NS L EELELLEE

1G. 3B

US 10,297,047 B2

May 21, 2019 Sheet 8 of 33

U.S. Patent

" E FTTWEEFTYE SN FTYTY AN FTY R EETEEELTW N R FTEoRTW

+ + 4+ Fd d + 4 b d o hdF A A AT RS A R

IOSSOD0L]

L AIOWoW

FFd ++FF+++ FF+4+2 570 44+ 445 5% 44+ +EF8 4+ 4+ Fd

" R A m N R4 4 4 BN R LR

T T T

a2

L P el S - ol L -, P, L . -

++ £ A =+ + =2 k"Lt

A4

= rr s arr ko rvrdr w1+ FesgrrrhsrrtktesrrkFesrrkFossrr ke rFd ke dor

] - -

i -3

* r v F n

* r v F

4 -+ F

L

= m rr h s v rr s rvyr bk ks rrr s rvrr ko drtkFassF+r ks

Lé

AJOWUSTA] D

4 2 @ m W 4 4 & N B 4 4 g B E L i N E N 4 8 B pEg§ & 4 N E L 4 8 E § 4 i B E E 4l EpE ERLL EE R L

[
4 4 & F A 4 + &

m 4 & & L Jd R E L d] Eoaom

* 4+ F 44+ FFd S+ ke Ad kR d o Fd ok Rd+F
.oy & o

{1 - s s r7TTaEETTHEETTEYETTTAESFTTEEETT

+ m g 4 & 8 N 4 A M p Ny oA E E N 4 & FE R 4 oA EE L oam =i om [

0¥
IOSSID0L]
2I07)-THIA

F

¥

il

" moaoaw

+ F F /A d 4+ F A A+ FFAAFFrdAdAdF A dF R A

"= oaoa

= o4 P

"= oaa

-y oa

" m 4 L m § W B L AN A4 4 AN 4 .m L NN R4 LA N EELEE LR EE

B ® m . a g B4 4 p N B L s A N R4 fOF R R4 LE N R

IOSSAD0LT
SRLO M L H I Y|

R NN

+ + + -+ ++F 1 PRt

N 4 & A § N 4 m N NN 4 &a

+

F w5 v*rr s rr+

oo

5 4 =

L I e B T T I T . T e I O

+
-
w

£

*Frm d b d o h DA Al R

ez
3

AJOUUDIA

[1di}

L e I R e R e e L L O L O L T N

" " 71 m®EE 414 @88 Ti:iEEELTEEETFTTEE S ST EE ST E R T

Y OPY

Foa b+ dmd 5 dFnd +ddbFd+ s bd o+ Fd A d A rd A Ed A

o oa b

+ o+ m

0%
w ATOUWUD A

L oa o

IOSSO001]

oA oa

a4 o2
" m 4 - i 4 4 4 4 ®E 8 L 4 a8 B L L - 5 E S 44 B 8 Ll B E N L AL B J L i EEE

T m ® *TEEETTHESE®TTHESESE %S B E LT EEE LT EEE T E A TN

111

5
RIOWHW WHLSAS

i
;
;
:
;
X
:
;
§
:
:
}
:
:
&

US 10,297,047 B2

s G&T LGP
S % e A
{SYOUSEy POIBUY FOSSOTOL]

A

Y51

{S)ouaeny

» 8

L e

e

2y N

dCov
{sjoyor))

Sheet 9 of 33

W [EP DNISSHDOUA
v 36} SOTHAVED

8v
TINDN X300

[T+
LADN LA LN

SRR

waw (€ DNISSHO0Ud
346 SHHIVED | 37T
m NOLLVYOHLNI

HO9p 2103 F

.

[= L e] M1 KT WA DN B ﬂ

May 21, 2019

EELE RN LN L O R W W WS T e M T LR N M ML R R R W LS AL M T W WD L M e W W LLE S e R T L W

TR M el WL oFa M U e LR WM oM TPL Fefal R RS DU M PR Fafled MW e M N e PR AT LU WU o M TR SR LA W e MR R TefaF WL N W M PR MR R e

“ e w C HOLYVIHTIDOV w
IR T I | <3 (syoyoey | !
| owaw (€] DNISSHIOEd € —_— = “
“ ALN] m_ “ MR !
o ; _ m
GP m ” THGF o107y ¢
ERED § PN v o~ S - | foe e mr mm mm mm mm ame wmm im .l.lu
BORIDIAIDY S01ydnIn ” Oby bOb SHE 20UIAYO)
| :
S oo mx mm om0 PG G O mx W0 W Om o AW WM Kon km on ot W W WG DO b o WX oo ma D bor mw ax me mm em oo oo mr mr N M0 W0 B o mm wm wm o oM e A Me MO GO Do X A M Mo me O T me M Mo ke o oe ax e w0 oo o)

U.S. Patent

US 10,297,047 B2

May 21, 2019 Sheet 10 of 33

U.S. Patent

rr

e e b ok I e i i e e)

w M
: 3
w N m
m ONISSI 0 ”
H SOIHAVED ”
w ”
.m : M
1 ® f
- i
m . — N
“ R 3 % 3
f Qe ONISSHIONd |
“ SOTHIVED M
. i
w ”
w e
_m TTh N M
NN DNESSI
w0 SOIHIVED :
St

3
i
: ST ”
; ﬂ@.ﬁﬁwmw JIY m_u_wmmmwmm@ “
3

$

Oy v

T
AIOTUIN WSISA

h

ﬁ;;;s;sat;ss;;:;;s;;;g;s;;; ;;;;;s;a;:;sssa
QY —
(S}oysey poseyq L0V
S e JOBRIT0I A

WE EFEFT FE1 IEl WY TEE O NT O FET N X} 'Y THE WY FE O WW R Ml THYE TR O ONT O EE PR O r'EE FE MY OO T O FE Y O OTEE O fTE O Y ONT O FET MM TRl e T

T E—T
aliini g “

g

— w

(9T w

S g m

§

s1o1818s Sy 800

87¥ R |
LINDIN 1¥3180)

{001 21073

[vy
LINOW LIN]

NOILVEDALNI
HOLVAF TIOV
VToF
(S)eyoe
37
ALNI

O STEY S0USISYO

el reFs whe W et M Pt Pee W e ey M Pew fee Wt et WMe S Mebe P e et BFeM Py MU Tl wMer dFe N Bk MME T WY e e et M etk W e TP e fe'm el T weet

U.S. Patent May 21, 2019 Sheet 11 of 33 US 10,297,047 B2

S : PEEEE TTmTmEEEmEmmmEmm ;
: Apphication 480 o Application 2
E i ’ !
¥ - :
: GPU Invocation 481 : GPU Invocation ;
: : -
: : -

aaa

Apphicanion Effective Address

S'pzice 487 i T T e . T ““:
R PO Virtual Address Space 4482 :
i
f
I ,
: Process Element 483 E : :
; ; ’
: ;
E % . A Ry N
, :) Segment/Page Tables ;
§ - i
; ; - Ty é
" 1 Work Descriptor (WD) |+ | 485 E
: 484 i : :
: ' : ; :
§ :
! E b e o o o e o A .
Son ;

Accelerator Integration Shce
496

.
.
4
4
4
- . 1
T L] [
I : . A TR R e ke kb e S R
4 F Yy
. a... - - . A
ACNCANCNCNTRN . ¥
" F
L] []
L] oy
. .

WD - | - :

Fotch Regpisters interrupt MGMT | ective
a1 445 447 o 4
44 § = INT : Address

q97 | | 44
Context MGMT é

4438

Save/Restore

rr

F1G. 4D

Ay DIdA

G b UOIIBIN0MY SodeIn

SIS TY OAEN

b

US 10,297,047 B2

B

b LA 1X31U0))
AU

6V
ENY -

0 Y94 A

TINDIN o

45314
O[S BOIBISORIY I0TRIS 303

rr

Sheet 12 of 33

g o P o o o= e o o o o oo

2 £ 4 { 1 m

: — : : m P o

; m@w : _ : “ rav m
N “ B M O%F ” “ (A0 FOIHIOSa(T HOM '
= m JUSLISIH §S9001g NeItecehy m 1 |
L : N ¥ SIS e _]

- : : : O J/HIOTLIT, : | CRE JUOUED[SS000K] |

T : : : : MR |
ﬂ P g ooudg ssaIppy. ! ” ; ” e 5ot

S : , | STH 00Bdg _ 7T aoeds ssomppy
~ L moyJoswasdiyy , p SEPISRES 8P SOBAS SSPEV
> o ; SSOIPPY [BBINA SO o 2ATBSEH voneoTddy

THE ALCUUSIA] WIDISAK P oo

967
FTOSIAISUARY

K

uonesddy |

U.S. Patent
5

US 10,297,047 B2

May 21, 2019 Sheet 13 of 33

U.S. Patent

Av DIA

AZCTUDIA
poljilly
iiiiiiiiiiiiiiiiiiiiiiiii ”........iii!iiimiiiiiiiiidiiiiii........ii
— — w N m — m —
¢ CLv LY 747 M 0P M O
AT AFOLUSIA] AJOUWIBIN § AJIOWBIA ¢+ AIOUIDN + AIOWOW
|) | w : ien | w ,_ o
{1dis (3t {idP) [1di3 p AOSER00CAd ¢ HOBRR00MY

T =
+++

f } - : ; i ; : m :

o FEE | Logrer S w IR (2 I I R 7

| ooy || | cowmnyn) || . | souoroyoy | ' oousleyo) || | oousIyOD |

S E.: SN I O O L 1= S O A SVC 1 SR I T SN SN P O Y BC S

” ; M : M : w ; H M

; 1 ! i :

- TECT TN - TGEEFTIAN | |} DCTP A W 96T INN ;| | VGEF AN M
iy 71 iy 01t JOSS900I I
Nds NdD 14O Ndo 310 TN

U.S. Patent May 21, 2019 Sheet 14 of 33 US 10,297,047 B2

Graphics
Pipeline _
500 Memory

| 528

" Tessellation Control Processing Unit _§_Q__8

Primitivsemble

Instruction Stream
and Parameters

FIG. 5

U.S. Patent May 21, 2019 Sheet 15 of 33 US 10,297,047 B2

D
-

SHARED

RESOURCES
620

GRAPHICS MULTIPROCESSOR RASTéE;;UZER
CLUSTER . 621
610A
SAMPLER
622

CACHE

CONTROLLER
623
RENDER CACHE
624
GRAPHICS MULTIPROCESSOR '
CLUSTER COMPRESSION/
6108 DECOMPRESSION

628

629
L3 CACHE
630

FIG. 6

U.S. Patent May 21, 2019 Sheet 16 of 33 US 10,297,047 B2

FI1G. 7

U.S. Patent May 21, 2019 Sheet 17 of 33 US 10,297,047 B2

304A 8048

DD
wlolm]w
oa oo
olalnln

804C 804D

FIG. 8A

S14A 8148

o w s e e m]
olalalo]w]n]n]n

814C 814D

U.S. Patent May 21, 2019 Sheet 18 of 33 US 10,297,047 B2

900

GRAPHICS
PIPELINE

920
MEMORY

VERTEX
PROCESSOR
921

Compression
Metadata

PIXEL 202

PROCESSOR
922

MSAA
Render

Target
912

CACHE
CONTROLLER
923

CACHE
924
DECOMF’RESSION
926 l

COMPRESSION
928

FIG. 9

U.S. Patent May 21, 2019 Sheet 19 of 33 US 10,297,047 B2

DETERMINE A SET OF SAMPLE COLOR VALUES
ASSOCIATED WITH INDIVIDUAL PIXELS OF A SCENE
1002

GENERATE A COMPRESSED SUBSET OF THE SET OF
SAMPLE COLOR VALUES INCLUDING DISTINCT
COLOR VALUES FOR EACH PIXEL
1004

INTERLEAVE THE COMPRESSED SUBSET OF THE SET
OF SAMPLE COLOR VALUES FOR EACH PIXEL INTO

A SINGLE MEMORY PLANE
1006

APPLY LOSSLESS COLOR COMPRESSION TO THE SET
OF SAMPLE COLOR VALUES WITHIN THE SINGLE
MEMORY PLANE
1008

STORE THE SINGLE MEMORY PLANE TO A MULTI-
SAMPLE RENDER TARGET

1010

FIG. 10

U.S. Patent

GRAPHICS

1108

| EXTERNAL
| GRAPHICS
 PROCESSOR
| 12

o S S Sy P S aEEEs .

DATA STORAGE
DEVICE
1124

WIRELESS
TRANSCEIVER
1126

FIRMWARE
INTERFACE

1128

1100

PROCESSOR(S)

May 21, 2019

CACHE
1104

Sheet 20 of 33

PROCESSOR CORE(S)

REGISTER

FILE
1106

MEMORY
| CONTROLLER
|

HUB
1116

10
CONTROLLER
HUB

1130

NETWORK
CONTROLLER
1134

l DATA - 1122

US 10,297,047 B2

1107

_/F’ROCESSOR(S)

1102

MEMORY DEVICE - 1120

INSTRUCTIONS - 1121

LEGACY IO
CONTROLLER
1140

USB CONTROLLER(S)
1142

| KEYBOARD
| /MOUSE - 1144 |

AUDIO CONTROLLER
1146

F1G. 11

US 10,297,047 B2

May 21, 2019 Sheet 21 of 33

U.S. Patent

el

A4 TIOHLINOD
AY 1dSIQ

912}
(S)LINN

d4TIOHINOD
shd

vicl
a3 T1041NOO
AHONEN

0Ll

4400
INJOV NJLSAS

¢l DIA

80¢1
HOSS300¥d SOIHAVHDO

¢lcl - ONIM
0021 - (S)LINN FHOVD Q3HUVHS

r———

\ Nvoci | | V02l
| (SIUNN | T o | | (S)LINN
L 3HOVO || FHOVO
NZ0Z) 3800 | vZ0Z1 340D

EEEEL

8lzl
J1NAON AHOWZN
(3003894

00<1 40SS300dd

€1 'Ol —

J0IA3(0
AV 1dSId

US 10,297,047 B2

3 iiiiiiiiiiiiiiiiiiiiiiiiiiii
e,
- |
S _
@ |
& _
‘_nl_,u |
— |
= |
& |
i
_ 90¢] || 7067
= INION3 | |
S 93009 INFEdId NILSAS-GNS INTEdd [1] 3NIONZ | | HTIONINOD
~ 03aIA viaan | vIGIn/ae g |!| g AVIdSIC
~ _. 0L€}
= AN INIONI

- ONISSZO0¥d SOIHAVHO

00t}
d0SS3008d SOIHAVHD

U.S. Patent

US 10,297,047 B2

May 21, 2019 Sheet 23 of 33

U.S. Patent

Pl OId

3
|
|
|
|
|

|

|

“ (S)3HOVO — F———

| GZPl ﬂ | grep |

| _ 075l l o <1 INIM3dId K=

| | NOILYOINNINWOD ool K= 152! | wvigan |]

_ | avasriaine N 990 1T vy 00 I

| sraql ATNVHS E SOIHdV¥O |
H1VI |

| ” <—>

| cevl l < — |

| HITdINYS P |

| as

| <l

_

| a314INN |

| |

OLTL
INIONT ONISSTD0Ud SOIHAVHD

AlOWs\
0.

€yl

HINVIULS
aNYININOD

US 10,297,047 B2

May 21, 2019 Sheet 24 of 33

U.S. Patent

N
"_ | Nv9SI _“ NZ9GL |

I
S
| S¥TIdNVS) sn3

|l NO9GT-00-ENS

| NOZST 1

] NwSGL) NeSGl | |
S
|} | SHINAVS | SN3 {

005} \

d0SSS3004d
SOIHdVHO

VPOl
S 1dAVS

V0941 - 4400-dNS

V0ZS1
S30UNOSIY AFYUVHS

VPaGl
S 1dNVS

v0Gsl 3400-8NS

eest
X4W

0€Sl
J0A

/€G] - ANIONT VIQIN

9¢sl
ANIMN3dId
AYLINO3D

pESL
(N3 INOY
O3dIA

€091
HINVIHLS
ANVAINOD

b0S1
ON3-LNO¥4
3ANI1ddId

A
=
G)
=
l....—
M
X
O
O
P
L
O
|—

¢0S}

US 10,297,047 B2

May 21, 2019 Sheet 25 of 33

U.S. Patent

7191
1¥0d Viva

¢191
JHOVO V.V

0191
SERETAS

91 DIA
g es—
- e | 08001 | 800V
N3 n3
I
E—
_ | Dsogr
N3

9091

AHOVO NOILONYLSNI

v091 ¢09}
¥3HOLVdSIA | HOSS300Yd
AVIYHL H3aVHS

0091
Q1901 NOILNOIX

US 10,297,047 B2

May 21, 2019 Sheet 26 of 33

U.S. Patent

gv/1 - Wien [o|feied —» nxxx&vo mbﬁmnooao
SHI] - SNOBUBJIRISIN —> XOCKR] _‘owonmnooao

P71 - [0JU0D) MOj{ —» X000 L 00 =9p0odo
00=9poado

B e i M S il

_.IIIIIIIIII

L1 DId

Ov.l
1002040 3d02d0

chvloeco | et | wa VS0 | ary
LOYS | 00¥S | 1S3A | T0Y.LNOD | X3ANI |3a00d0|

0€LL

—]

NOILONYLSNI LOVAWOD 118-19

“ 917 e
\ 200N §534d0AV/S5300V A0 1)

¢ccll | 0cLL | 8LZ1
L34S | 004S | 1S40

OLLl

gLzl

4Z15-04X4

B
J04LINOO 1400340

NOILONHLSNI 1i19-8¢1

00L1

S1VINEO4 NOLLONAULSNI 40SS3004d SIOIHdVID

U.S. Patent May 21, 2019 Sheet 27 of 33 US 10,297,047 B2

GRAPHICS PROCESSOR

1800 MEDIA PIPELINE

\ 1830
DISPLAY ENGINE

| COMMAND
"1 STREAMER
GRAPHICS | 1a02

PIPELINE |
1820

MEDIA Y}
ENGINE |)]
1837 /1

T P, R
Ll

1807 HSPLAY

CONTROLLER |
1843 5

P BN RRRMG RMOM MM MLAET RN AN RN DRLAG DR T

FETCHER

1 331 E 35{}

aaa

" VERTEX
| SHADER
1807

IS AMPLERS

1854 JITEXTURE
| CACHE
1858

L L T R] -

EXECUTION
UNITS
18528

SHADER
1811

L] rl
aaa

RCONNECT

TESSELLATOR]

1813

RENDER
CACHE

RING INT

THREAD DISPATCHER

HASTERS
DEPTH
1873

3
CACHE |
1875 |

(" DOMAIN
el SHADER

1817

L iH
CACRHE

aaaaaaaaaaaaaaaaaaaaaa

/ GECMETRY)
SHADER |

W e R -
““HMM*““HHMM“WHHMH,

i S i EEE BT Dok i EED DD Mk aEE nor O GEED B mE O i T b EEF O ODEE rEE INE O EE D e DT DR i Jimh sy EEw s Saw o
W I I T oo e Sl ek Sl i k)

RENDER QUTPUT
PIFELINE

o
1870

STREAM
MU

LJ‘UF

iy unr Fimrek Mt WU W W e e e s ureiy e Py

o ok D oy EEn EER Exl e

[P

AR

Ii’“‘{} b T
D e

F1G. 18

U.S. Patent May 21, 2019 Sheet 28 of 33 US 10,297,047 B2

FIG 1 9 A GRAPHICS PROCESSOR COMMAND FORMAT
1900

OPCODE | SUB-OPCODE| DATA | COMMAND SIZE |
1902 1904 1805 1906 1908]

FI(G. 1OB GRAPHICS PROCESSOR COMMAND SEQUENCE

1910
C T PIPELNEFLUSH |
| 1912 |
T TPIPELINE SELECT |
| 1913 |

hmm“ A (URRNREN URRURNRRRNY WESS——

© PIPELINECONTROL
1914

RETURN BUFFER STATE
1916
182~ 1920 Vadia 22
- Pipeline?

3D PIPELINE STATE
1930

MEDIA F’IPLINE STATE
1940

3D PRIMITIVE
1932

MEDIAOBJECT
194

EXECUTE
1934

mm—
1944

U.S. Patent May 21, 2019 Sheet 29 of 33 US 10,297,047 B2

DATA PROCESSING SYSTEM -2000

3D GRAPHICS APPLICATION

EXECUTABLE INSTRUCTIONS
2014

SHADER INSTRUCTIONS
2012

GRAPHICS
OBJECTS

2016

S
2020

VEMORY USER MODE réﬁéggmcs DRIVER SHADER e

SHADER COMPILER 2024 .

2027
0S KERNEL MODE FUNCTIONS
KERNEL MODE GRAPHICS 2028
DR!VER -

GRAPHICS
PROCESSOR PROCESSOR

GENERAL

PURPOSE CORE(s)
) 2030

2034

F1G. 20

US 10,297,047 B2

May 21, 2019 Sheet 30 of 33

U.S. Patent

1¢ DId

091¢
NOILOJINNQOO
SSTTAIM
0612 EIAYASE. 0L ALITIOVA NOIS3A

NOILJANNOD

IO STz
ANz NDIS3A 13ATT

(VIVa N9IS3Q H¥IJISNVHL ¥31SIHIY
| IVIISAHd ¥O 1aH) —
300N IHYMONYH e
T3A0W NOILYTINWIS
Z .

G91¢

Ovi
AJOWEN

ALV J1LVTOIA-NON

NOILVOld8v4

001 ¢ - INJWNdO 13A30 3400 dl

011C

NOLLY'INNIS
FHVMLA0S

U.S. Patent May 21, 2019 Sheet 31 of 33 US 10,297,047 B2

SOC
INTEGRATED CIRCUIT
2200

~

APPLICATION GRAPHICS
PROCESSOR(s) PROCESSOR

2209 2210

IMAGE
PROCESSOR
2219

VIDEO
PROCESSOR
2220

USB UART SPI/SDIO DISPLAY
2225 2230 2235 2245
— _
| SECURITY |

|
MEMORY MIP! HDMI

| ENGINE | |
L 2270 | 2263 2255 I 2250

FI1G. 22

U.S. Patent May 21, 2019 Sheet 32 of 33 US 10,297,047 B2

GRAPHICS PROCESSOR
2310

VERTEX PROCESSOR
2309

FRAGMENT | | FRAGMENT - FRAGMENT |
PROCESSOR | | PROCESSOR | === | PROCESSOR |
2315 | BM5C | BN

" FRAGMENT | | FRAGMENT ' FRAGMENT |
, |1 FRAGMENT - FRAGMENT |
| PROCESSOR | | PROCESSOR | em e | PROCESSOR |
23158 | 1 2315D | 21N |

| INTERCONNECT |
| 23308 |

INTERCONNECT
2330A

FIG. 23

U.S. Patent May 21, 2019 Sheet 33 of 33 US 10,297,047 B2

GRAPHICS PROCESSOR
2410

INTER-CORE TASK-MANAGER
(e.q., THREAD DISPATCHER)
2409

r— — " — = = — — = = =
SHADER | | SHADER | | SHADER 1 SHADER |
CORE | CORE |y CORE | ow e | CORE |
2415A | 2415C 1| 2415E | | 2415N-1 |
- ™ ™
1 SHADER | | SHADER | | SHADER ¢ 1 SHADER |
| CORE 1| CORE || CORE | e | CORE |
| 2415B || 2418D || 2415F | | 2415N |

TILING UNIT
2418

T) == - = = == === L
CACHE | CACHE I
2325A : 23258 :

T T T T S m—m m— —m— ————— "
INTERCONNECT : INTERCONNECT |
2330A : 2330B :

FIG. 24

US 10,297,047 B2

1

INTERLEAVED MULTISAMPLE RENDER
TARGETS FOR LOSSLESS COMPRESSION

FIELD OF INVENTION

This mvention relates generally to data processing and
more particularly to data processing via a general-purpose
graphics processing unit.

BACKGROUND OF THE DESCRIPTION

Current parallel graphics data processing includes sys-
tems and methods developed to perform specific operations
on graphics data such as, for example, linear interpolation,
tessellation, rasterization, texture mapping, depth testing,
etc. Traditionally, graphics processors used fixed function
computational units to process graphics data; however, more
recently, portions of graphics processors have been made
programmable, enabling such processors to support a wider
variety ol operations for processing vertex and fragment
data.

To further increase performance, graphics processors
typically implement processing techniques such as pipelin-
ing that attempt to process, 1n parallel, as much graphics data
as possible throughout the different parts of the graphics
pipeline. Parallel graphics processors with single instruc-
tion, multiple thread (SIMT) architectures are designed to
maximize the amount of parallel processing in the graphics
pipeline. In an SIMT architecture, groups of parallel threads
attempt to execute program instructions synchronously

together as often as possible to i1ncrease processing efli-
ciency. A general overview of software and hardware for
SIMT architectures can be found in Shane Cook, CUDA
Programming, Chapter 3, pages 37-51 (2013) and/or Nicho-
las Wilt, CUDA Handbook, A Comprehensive Guide to GPU
Programming, Sections 2.6.2 to 3.1.2 (June 2013).

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention are described refer-
ence to various embodiments, some of which are 1llustrated
in the appended drawings. It 1s to be noted, however, that the
appended drawings illustrate only typical embodiments and
are therefore not to be considered limiting of 1ts scope, for
the invention may admait to other equally effective embodi-
ments.

FIG. 1 1s a block diagram illustrating a computer system
configured to implement one or more aspects of the embodi-
ments described herein;

FIG. 2A-2D 1illustrate parallel processor components,
according to an embodiment;

FIG. 3A-3B are block diagrams of graphics multiproces-
sors, according to embodiments;

FIG. 4A-4F 1llustrate an exemplary architecture in which
a plurality of GPUs are communicatively coupled to a
plurality of multi-core processors;

FIG. 5 1s a conceptual diagram of a graphics processing
pipeline, according to an embodiment;

FIG. 6 1s a block diagram of a GPGPU, according to an
embodiment;

FIG. 7 illustrates an exemplary memory layout for a
multisample render target;

FIG. 8A-8B illustrate interleaved memory layouts,
according to embodiments;

FI1G. 9 1s a block diagram of a graphics processing system,
according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 1s a flow diagram 1illustrating a process of storing,
pixel data to a multisample render target, according to an

embodiment;

FIG. 11 1s a block diagram of a processing system,
according to an embodiment;

FIG. 12 1s a block diagram of a processor according to an
embodiment;

FIG. 13 1s a block diagram of a graphics processor,
according to an embodiment;

FIG. 14 1s a block diagram of a graphics processing
engine ol a graphics processor i accordance with some
embodiments:

FIG. 15 1s a block diagram of a graphics processor
provided by an additional embodiment;

FIG. 16 illustrates thread execution logic including an
array ol processing elements employed i some embodi-
ments;

FIG. 17 1s a block diagram 1llustrating a graphics proces-
sor instruction formats according to some embodiments;

FIG. 18 1s a block diagram of a graphics processor
according to another embodiment;

FIG. 19A-19B 1llustrate a graphics processor command
format and command sequence, according to some embodi-
ments;

FIG. 20 illustrates exemplary graphics software architec-
ture for a data processing system according to some embodi-
ments;

FIG. 21 1s a block diagram illustrating an IP core devel-
opment system, according to an embodiment;

FIG. 22 1s a block diagram illustrating an exemplary
system on a chip mtegrated circuit, according to an embodi-
ment;

FIG. 23 1s a block diagram 1illustrating an additional
graphics processor, according to an embodiment; and

FIG. 24 1s a block diagram illustrating an additional
exemplary graphics processor of a system on a chip inte-
grated circuit, according to an embodiment.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding. How-
ever, 1t will be apparent to one of skill 1n the art that the
embodiments described herein may be practiced without one
or more of these specific details. In other instances, well-
known features have not been described to avoid obscuring
the details of the present embodiments.

In some embodiments, a graphics processing unit (GPU)
1s communicatively coupled to host/processor cores to accel-
crate graphics operations, machine-learning operations, pat-
tern analysis operations, and various general purpose GPU
(GPGPU) functions. The GPU may be communicatively
coupled to the host processor/cores over a bus or another
interconnect (e.g., a high-speed interconnect such as PCle or
NVLink). In other embodiments, the GPU may be integrated
on the same package or chip as the cores and communica-
tively coupled to the cores over an internal processor bus/
interconnect (1.e., internal to the package or chip). Regard-
less of the manner 1n which the GPU 1s connected, the
processor cores may allocate work to the GPU 1n the form
of sequences of commands/instructions contained in a work
descriptor. The GPU then uses dedicated circuitry/logic for
clliciently processing these commands/instructions.

In general, graphics rendering may generate an 1mage or
images from model data using a wide range of computer
implemented techniques. In some graphics rendering imple-
mentations an image may be rendered using rasterization by

US 10,297,047 B2

3

sampling different functions such as, for example, a visibil-
ity function and/or a shading function. In general, the
samples for a visibility function may be termed visibility
samples and the samples for a shading function may be
termed shading samples. When implementing techniques
such as multi-sampling anti-aliasing (MSAA), multiple vis-
ibility samples may be used per. Rendering to a multisample
render target that stores multiple samples per pixels 1s more
bandwidth mtensive than using a simple sample. To restrain
bandwidth consumption, various forms ol compression can
be used. When lossless color compression techniques are
implemented for a multisample render target, storing the
samples 1n an interleaved manner can increase the efliciency
of such techniques 1 comparison to planar techniques of
storing sample data.

System Overview

FIG. 1 1s a block diagram illustrating a computing system
100 configured to implement one or more aspects of the
embodiments described herein. The computing system 100
includes a processing subsystem 101 having one or more
processor(s) 102 and a system memory 104 communicating,
via an mterconnection path that may include a memory hub
105. The memory hub 105 may be a separate component
within a chipset component or may be integrated within the
one or more processor(s) 102. The memory hub 105 couples
with an I/O subsystem 111 via a communication link 106.
The I/0 subsystem 111 includes an I/O hub 107 that can
enable the computing system 100 to recerve mput from one
or more input device(s) 108. Additionally, the I/O hub 107
can enable a display controller, which may be included in the
one or more processor(s) 102, to provide outputs to one or
more display device(s) 110A. In one embodiment the one or
more display device(s) 110A coupled with the I/O hub 107
can include a local, 1internal, or embedded display device.

In one embodiment the processing subsystem 101
includes one or more parallel processor(s) 112 coupled to
memory hub 105 via a bus or other communication link 113.
The communication link 113 may be one of any number of
standards based communication link technologies or proto-
cols, such as, but not limited to PCI Express, or may be a
vendor specific communications interface or communica-
tions fabric. In one embodiment the one or more parallel
processor(s) 112 form a computationally focused parallel or
vector processing system that can include a large number of
processing cores and/or processing clusters, such as a many
integrated core (MIC) processor. In one embodiment the one
or more parallel processor(s) 112 form a graphics processing
subsystem that can output pixels to one of the one or more
display device(s) 110A coupled via the I/O Hub 107. The
one or more parallel processor(s) 112 can also include a
display controller and display interface (not shown) to
enable a direct connection to one or more display device(s)
110B.

Within the I/O subsystem 111, a system storage unit 114
can connect to the I/0 hub 107 to provide a storage mecha-
nism for the computing system 100. An I/O switch 116 can
be used to provide an interface mechanism to enable con-
nections between the 1/O hub 107 and other components,
such as a network adapter 118 and/or wireless network
adapter 119 that may be integrated into the platform, and
various other devices that can be added via one or more
add-in device(s) 120. The network adapter 118 can be an
Ethernet adapter or another wired network adapter. The
wireless network adapter 119 can include one or more of a
Wi-Fi, Bluetooth, near field communication (NFC), or other
network device that includes one or more wireless radios.

10

15

20

25

30

35

40

45

50

55

60

65

4

The computing system 100 can include other components
not explicitly shown, including USB or other port connec-
tions, optical storage drives, video capture devices, and the
like, may also be connected to the I/O hub 107. Communi-
cation paths interconnecting the various components 1n FIG.
1 may be implemented using any suitable protocols, such as
PCI (Peripheral Component Interconnect) based protocols
(e.g., PCI-Express), or any other bus or point-to-point com-
munication interfaces and/or protocol(s), such as the NV-
Link high-speed interconnect, or interconnect protocols
known 1n the art.

In one embodiment, the one or more parallel processor(s)
112 icorporate circuitry optimized for graphics and video
processing, including, for example, video output circuitry,
and constitutes a graphics processing unit (GPU). In another
embodiment, the one or more parallel processor(s) 112
incorporate circuitry optimized for general purpose process-
ing, while preserving the underlying computational archi-
tecture, described 1n greater detail herein. In yet another
embodiment, components of the computing system 100 may
be integrated with one or more other system elements on a
single integrated circuit. For example, the one or more
parallel processor(s), 112 memory hub 1035, processor(s)
102, and IO hub 107 can be integrated 1nto a system on chip
(SoC) integrated circuit. Alternatively, the components of
the computing system 100 can be integrated into a single
package to form a system 1n package (SIP) configuration. In
one embodiment at least a portion of the components of the
computing system 100 can be integrated into a multi-chip
module (MCM), which can be interconnected with other
multi-chip modules into a modular computing system.

It will be appreciated that the computing system 100
shown herein 1s 1llustrative and that variations and modifi-
cations are possible. The connection topology, including the
number and arrangement of bridges, the number of proces-
sor(s) 102, and the number of parallel processor(s) 112, may
be modified as desired. For instance, in some embodiments,
system memory 104 i1s connected to the processor(s) 102
directly rather than through a bridge, while other devices
communicate with system memory 104 via the memory hub
105 and the processor(s) 102. In other alternative topologies,
the parallel processor(s) 112 are connected to the I/O hub
107 or directly to one of the one or more processor(s) 102,
rather than to the memory hub 103. In other embodiments,
the I/O hub 107 and memory hub 105 may be integrated into
a single chip. Large embodiments may include two or more
sets of processor(s) 102 attached via multiple sockets, which
can couple with two or more instances ol the parallel
processor(s) 112. Some of the particular components shown
herein are optional and may not be included 1n all 1mple-
mentations of the computing system 100. For example, any
number of add-in cards or peripherals may be supported, or
some components may be eliminated.

FIG. 2A 1llustrates a parallel processor 200, according to
an embodiment. The various components of the parallel
processor 200 may be implemented using one or more
integrated circuit devices, such as programmable processors,
application specific integrated circuits (ASICs), or field
programmable gate arrays (FPGA). The illustrated parallel
processor 200 1s a variant of the one or more parallel
processor(s) 112 shown in FIG. 1, according to an embodi-
ment.

In one embodiment the parallel processor 200 includes a
parallel processing unit 202. The parallel processing umit
includes an I/O unit 204 that enables communication with
other devices, including other instances of the parallel
processing umt 202. The /O unit 204 may be directly

US 10,297,047 B2

S

connected to other devices. In one embodiment the I/O unit
204 connects with other devices via the use of a hub or
switch interface, such as memory hub 105. The connections
between the memory hub 105 and the I/O unit 204 form a
communication link 113. Within the parallel processing unit 5
202, the I/O unit 204 connects with a host interface 206 and
a memory crossbar 216, where the host interface 206
receives commands directed to performing processing
operations and the memory crossbar 216 recerves commands
directed to performing memory operations. 10

When the host mterface 206 receives a command bufler
via the I/O unit 204, the host interface 206 can direct work
operations to perform those commands to a front end 208. In
one embodiment the front end 208 couples with a scheduler
210, which 1s configured to distribute commands or other 15
work 1tems to a processing cluster array 212. In one embodi-
ment the scheduler 210 ensures that the processing cluster
array 212 1s properly configured and 1n a valid state before
tasks are distributed to the processing clusters of the pro-
cessing cluster array 212. 20

The processing cluster array 212 can include up to “N”
processing clusters (e.g., cluster 214A, cluster 214B,
through cluster 214N). Each cluster 214A-214N of the
processing cluster array 212 1s capable of executing a large
number (e.g., thousands) of concurrent threads, where each 25
thread 1s an instance of a program.

In one embodiment, different clusters 214A-214N can be
allocated for processing different types of programs or for
performing different types of computations. The scheduler
210 can allocate work to the clusters 214A-214N of the 30
processing cluster array 212 using various scheduling and/or
work distribution algorithms, which may vary depending on
the workload arising for each type of program or computa-
tion. The scheduling can be handled dynamically by the
scheduler 210, or can be assisted in part by compiler logic 35
during compilation of program logic configured for execu-
tion by the processing cluster array 212.

The processing cluster array 212 can be configured to
perform various types of parallel processing operations. In
one embodiment the processing cluster array 212 1s config- 40
ured to perform general-purpose parallel compute opera-
tions. For example, the processing cluster array 212 can
include logic to execute processing tasks including but not
limited to, linear and nonlinear data transforms, filtering of
video and/or audio data, and/or modeling operations (e.g., 45
applying laws of physics to determine position, velocity and
other attributes of objects).

In one embodiment the processing cluster array 212 1s
configured to perform parallel graphics processing opera-
tions. In embodiments 1n which the parallel processor 200 1s 50
configured to perform graphics processing operations, the
processing cluster array 212 can include additional logic to
support the execution of such graphics processing opera-
tions, including, but not limited to texture sampling logic to
perform texture operations, as well as tessellation logic and 55
other vertex processing logic. Additionally, the processing
cluster array 212 can be configured to execute graphics
processing related shader programs such as, but not limited
to vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. The parallel processing unit 202 can 60
transier data from system memory via the I/O unit 204 for
processing. During processing the transierred data can be
stored to on-chip memory (e.g., parallel processor memory
222) during processing, then written back to system
memory. 65

In one embodiment, when the parallel processing unit 202
1s used to perform graphics processing, the scheduler 210

6

can be configured to divide the processing workload into
approximately equal sized tasks, to better enable distribution
of the graphics processing operations to multiple clusters
214A-214N of the processing cluster array 212. In some
embodiments, portions of the processing cluster array 212
can be configured to perform different types of processing.
For example a first portion may be configured to perform
vertex shading and topology generation, a second portion
may be configured to perform tessellation and geometry
shading, and a third portion may be configured to perform
pixel shading or other screen space operations, to produce a
rendered 1mage for display. Intermediate data produced by
one or more of the clusters 214A-214N may be stored 1n
buflers to allow the intermediate data to be transmitted
between clusters 214A-214N for further processing.

During operation, the processing cluster array 212 can
receive processing tasks to be executed via the scheduler
210, which receives commands defining processing tasks
from front end 208. For graphics processing operations,
processing tasks can include 1indices of data to be processed,
¢.g., surlace (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands
defining how the data 1s to be processed (e.g., what program
1s to be executed). The scheduler 210 may be configured to
fetch the indices corresponding to the tasks or may receive
the indices from the front end 208. The front end 208 can be
configured to ensure the processing cluster array 212 1is
configured to a valid state before the workload specified by
incoming command buflers (e.g., batch-builers, push bui-
fers, etc.) 1s 1mtiated.

Each of the one or more instances of the parallel process-
ing unit 202 can couple with parallel processor memory 222.
The parallel processor memory 222 can be accessed via the
memory crossbar 216, which can receive memory requests
from the processing cluster array 212 as well as the I/O unit
204. The memory crossbar 216 can access the parallel
processor memory 222 via a memory interface 218. The
memory interface 218 can include multiple partition units
(c.g., partition unit 220A, partition unmit 220B, through
partition unit 220N) that are each directly coupled to a
portion (e.g., memory unit) of parallel processor memory
222. The number of partition units 220A-220N generally
equals the number of memory units, such that a first partition
unmit 220A has a corresponding first memory unit 224 A, a
second partition unit 220B has a corresponding memory unit
2248, and an Nth partition unit 220N has a corresponding
Nth memory unit 224N. In other embodiments, the number
of partition umts 220A-220N may not equal the number of
memory devices.

In various embodiments, the memory units 224A-224N
can include various types of memory devices, including
dynamic random access memory (DRAM) or graphics ran-
dom access memory, such as synchronous graphics random
access memory (SGRAM), including graphics double data
rate (GDDR) memory. In one embodiment, the memory
unmts 224A-224N may also include 3D stacked memory,
including but not limited to high bandwidth memory
(HBM). Persons skilled in the art will appreciate that the
specific implementation of the memory units 224A-224N
can vary, and can be selected from one of various conven-
tional designs. Render targets, such as frame buiflers or
texture maps may be stored across the memory units 224 A-
224N, allowing partition units 220A-220N to write portions
ol each render target in parallel to efliciently use the avail-
able bandwidth of parallel processor memory 222. In some
embodiments, a local instance of the parallel processor

US 10,297,047 B2

7

memory 222 may be excluded 1n favor of a unified memory
design that utilizes system memory 1n conjunction with local
cache memory.

In one embodiment, any one of the clusters 214 A-214N of
the processing cluster array 212 can process data to be
written to any ol the memory units 224A-224N within
parallel processor memory 222. The memory crossbar 216
can be configured to route the output of each cluster 214 A-
214N to the input of any partition unmit 220A-220N or to
another cluster 214A-214N {for further processing. Each
cluster 214A-214N can communicate with the memory
interface 218 through the memory crossbar 216 to read from
or write to various external memory devices. In one embodi-
ment the memory crossbar 216 has a connection to the
memory interface 218 to communicate with the I/0 unit 204,
as well as a connection to a local instance of the parallel
processor memory 222, enabling the processing units within
the different processing clusters 214A-214N to communi-
cate with system memory or other memory that 1s not local
to the parallel processing unmit 202. In one embodiment the
memory crossbar 216 can use virtual channels to separate
traflic streams between the clusters 214A-214N and the
partition units 220A-220N.

While a single instance of the parallel processing unit 202
1s 1llustrated within the parallel processor 200, any number
of instances of the parallel processing unit 202 can be
included. For example, multiple instances of the parallel
processing unit 202 can be provided on a single add-in card,
or multiple add-1n cards can be interconnected. The different
instances of the parallel processing unit 202 can be config-
ured to inter-operate even 1f the different instances have
different numbers of processing cores, different amounts of
local parallel processor memory, and/or other configuration
differences. For example and i one embodiment, some
instances ol the parallel processing unit 202 can include
higher precision floating point units relative to other
istances. Systems incorporating one or more instances of
the parallel processing unit 202 or the parallel processor 200
can be implemented 1n a variety of configurations and form
factors, including but not limited to desktop, laptop, or
handheld personal computers, servers, workstations, game
consoles, and/or embedded systems.

FIG. 2B 1s a block diagram of a partition unit 220,
according to an embodiment. In one embodiment the parti-
tion unit 220 1s an instance of one of the partition units
220A-220N of FIG. 2A. As illustrated, the partition unit 220
includes an 1.2 cache 221, a frame bufler interface 225, and
a ROP 226 (raster operations unit). The L2 cache 221 1s a
read/write cache that 1s configured to perform load and store
operations recerved from the memory crossbar 216 and ROP
226. Read misses and urgent write-back requests are output
by L2 cache 221 to frame bufler interface 225 for process-
ing. Dirty updates can also be sent to the frame bufler via the
frame bufller mterface 225 for opportunistic processing. In
one embodiment the frame bufler interface 225 interfaces
with one of the memory units 1n parallel processor memory,
such as the memory units 224A-224N of FIG. 2A (e.g.,
within parallel processor memory 222).

In graphics applications, the ROP 226 1s a processing unit
that performs raster operations such as stencil, z test, blend-
ing, and the like, and outputs pixel data as processed
graphics data for storage in graphics memory. In some
embodiments, ROP 226 may be configured to compress z or
color data that 1s written to memory and decompress z or
color data that 1s read from memory. In some embodiments,
the ROP 226 1s included within each processing cluster (e.g.,

cluster 214A-214N of FIG. 2) instead of within the partition

5

10

15

20

25

30

35

40

45

50

55

60

65

8

unmt 220. In such embodiment, read and write requests for
pixel data are transmitted over the memory crossbar 216
instead of pixel fragment data.

The processed graphics data may be displayed on display
device, such as one of the one or more display device(s) 110
of FIG. 1, routed for further processing by the processor(s)
102, or routed for further processing by one of the process-
ing entities within the parallel processor 200 of FIG. 2A.

FIG. 2C 1s a block diagram of a processing cluster 214
within a parallel processing unit, according to an embodi-
ment. In one embodiment the processing cluster 1s an
instance of one of the processing clusters 214A-214N of
FIG. 2. The processing cluster 214 can be configured to
execute many threads in parallel, where the term ““thread”
refers to an 1nstance of a particular program executing on a
particular set of mput data. In some embodiments, single-
istruction, multiple-data (SIMD) 1nstruction 1ssue tech-
niques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techmiques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to 1ssue
instructions to a set of processing engines within each one of
the processing clusters. Unlike a SIMD execution regime,
where all processing engines typically execute identical
mstructions, SIMT execution allows diflerent threads to
more readily follow divergent execution paths through a
given thread program. Persons skilled in the art will under-
stand that a SIMD processing regime represents a functional
subset of an SIMT processing regime.

Operation of the processing cluster 214 can be controlled
via a pipeline manager 232 that distributes processing tasks
to SIMT parallel processors. The pipeline manager 232
receives mstructions from the scheduler 210 of FIG. 2A and
manages execution ol those instructions via a graphics
multiprocessor 234 and/or a texture umt 236. The 1llustrated
graphics multiprocessor 234 1s an exemplary instance of an
SIMT parallel processor. However, various types of SIMT
parallel processors of differing architectures may be
included within the processing cluster 214. One or more
instances of the graphics multiprocessor 234 can be included
within a processing cluster 214. The graphics multiprocessor
234 can process data and a data crossbar 240 can be used to
distribute the processed data to one of multiple possible
destinations, including other shader units. The pipeline
manager 232 can facilitate the distribution of processed data
by specilying destinations for processed data to be distrib-
uted via the data crossbar 240.

Each graphics multiprocessor 234 within the processing
cluster 214 can include an 1dentical set of functional execu-
tion logic (e.g., arithmetic logic units, load-store units, etc.),
which may be pipelined, allowing a new instruction to be
1ssued before a previous nstruction has finished. Any com-
bination of functional execution logic may be provided. In
one embodiment, the functional logic supports a variety of
operations including integer and floating point arithmetic
(e.g., addition and multiplication), comparison operations,
Boolean operations (AND, OR, XOR), bit-shifting, and
computation of various algebraic functions (e.g., planar
interpolation, trigonometric, exponential, and logarithmic
functions, etc.); and the same functional-umt hardware can
be leveraged to perform different operations.

The series of 1nstructions transmitted to the processing
cluster 214 constitutes a thread, as previously defined herein,
and the collection of a certain number of concurrently
executing threads across the parallel processing engines (not

US 10,297,047 B2

9

shown) within an graphics multiprocessor 234 1s referred to
herein as a thread group. As used herein, a thread group
refers to a group of threads concurrently executing the same
program on different input data, with one thread of the group
being assigned to a different processing engine within a
graphics multiprocessor 234. A thread group may include
tewer threads than the number of processing engines within
the graphics multiprocessor 234, 1n which case some pro-
cessing engines will be 1dle during cycles when that thread
group 1s being processed. A thread group may also include
more threads than the number of processing engines within
the graphics multiprocessor 234, 1n which case processing,
will take place over consecutive clock cycles. Each graphics
multiprocessor 234 can support up to G thread groups
concurrently. Additionally, a plurality of related thread
groups may be active (1n different phases of execution) at the
same time within a graphics multiprocessor 234.

In one embodiment the graphics multiprocessor 234
includes an 1internal cache memory to perform load and store
operations. In one embodiment, the graphics multiprocessor
234 can forego an internal cache and use a cache memory
(e.g., L1 cache 308) within the processing cluster 214. Each
graphics multiprocessor 234 also has access to L2 caches
within the partition units (e.g., partition units 220A-220N of
FIG. 2) that are shared among all processing clusters 214
and may be used to transfer data between threads. The
graphics multiprocessor 234 may also access ofl-chip global
memory, which can include one or more of local parallel
processor memory and/or system memory. Any memory
external to the parallel processing umt 202 may be used as
global memory. Embodiments 1n which the processing clus-
ter 214 includes multiple instances of the graphics multi-
processor 234 can share common instructions and data,
which may be stored in the L1 cache 308.

Each processing cluster 214 may include an MMU 245
(memory management unit) that 1s configured to map virtual
addresses into physical addresses. In other embodiments,
one or more istances of the MMU 245 may reside within
the memory interface 218 of FIG. 2. The MMU 2435 includes
a set of page table entries (PTEs) used to map a virtual
address to a physical address of a tile and optionally a cache
line index. The MMU 245 may include address translation
lookaside buflers (TLB) or caches that may reside within the
graphics multiprocessor 234 or the L1 cache or processing
cluster 214. The physical address 1s processed to distribute
surface data access locality to allow eflicient request inter-
leaving among partition units. The cache line index may be
used to determine whether or not a request for a cache line
1s a hit or miss.

In graphics and computing applications, a processing
cluster 214 may be configured such that each graphics
multiprocessor 234 1s coupled to a texture unit 236 for
performing texture mapping operations, €.g., determining,
texture sample positions, reading texture data, and filtering,
the texture data. Texture data 1s read from an internal texture
.1 cache (not shown) or in some embodiments from the L1
cache within graphics multiprocessor 234 and 1s fetched
from an L2 cache, local parallel processor memory, or
system memory, as needed. Fach graphics multiprocessor
234 outputs processed tasks to the data crossbar 240 to
provide the processed task to another processing cluster 214
for further processing or to store the processed task i an L2
cache, local parallel processor memory, or system memory
via the memory crossbar 216. A preROP 242 (pre-raster
operations unit) 1s configured to receive data from graphics
multiprocessor 234, direct data to ROP units, which may be
located with partition units as described herein (e.g., parti-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion units 220A-220N of FI1G. 2). The preROP 242 unit can
perform optimizations for color blending, orgamze pixel
color data, and perform address translations.

It will be appreciated that the core architecture described
herein 1s 1llustrative and that variations and modifications
are possible. Any number of processing units, €.g., graphics
multiprocessor 234, texture units 236, preROPs 242, etc.,
may be included within a processing cluster 214. Further,
while only one processing cluster 214 1s shown, a parallel
processing unit as described herein may include any number
ol 1nstances of the processing cluster 214. In one embodi-
ment, each processing cluster 214 can be configured to
operate independently of other processing clusters 214 using
separate and distinct processing units, L1 caches, etc.

FIG. 2D shows a graphics multiprocessor 234, according,
to one embodiment. In such embodiment the graphics mul-
tiprocessor 234 couples with the pipeline manager 232 of the
processing cluster 214. The graphics multiprocessor 234 has
an execution pipeline including but not limited to an mstruc-
tion cache 252, an nstruction unit 254, an address mapping
unit 256, a register file 258, one or more general purpose
graphics processing unit (GPGPU) cores 262, and one or
more load/store unmits 266. The GPGPU cores 262 and
load/store units 266 are coupled with cache memory 272 and
shared memory 270 via a memory and cache interconnect
268.

In one embodiment, the instruction cache 252 receives a
stream of 1nstructions to execute from the pipeline manager
232. The nstructions are cached in the 1nstruction cache 252
and dispatched for execution by the mstruction unit 254. The
istruction unit 254 can dispatch instructions as thread
groups (e.g., warps), with each thread of the thread group
assigned to a different execution unit within GPGPU core
262. An instruction can access any of a local, shared, or
global address space by specilying an address within a
unified address space. The address mapping unit 256 can be
used to translate addresses 1n the unified address space nto
a distinct memory address that can be accessed by the
load/store units 266.

The register file 258 provides a set of registers for the
functional units of the graphics multiprocessor 234. The
register file 258 provides temporary storage for operands
connected to the data paths of the functional units (e.g.,
GPGPU cores 262, load/store units 266) of the graphics
multiprocessor 234. In one embodiment, the register file 2358
1s divided between each of the functional units such that
cach functional unit 1s allocated a dedicated portion of the
register file 258. In one embodiment, the register file 238 1s
divided between the diflerent warps being executed by the
graphics multiprocessor 234.

The GPGPU cores 262 can each include floating point
units (FPUs) and/or integer arithmetic logic units (ALUs)
that are used to execute instructions of the graphics multi-
processor 234. The GPGPU cores 262 can be similar in
architecture or can differ in architecture, according to
embodiments. For example and 1n one embodiment, a first
portion of the GPGPU cores 262 include a single precision
FPU and an integer ALU while a second portion of the
GPGPU cores include a double precision FPU. In one
embodiment the FPUs can implement the IEEE 754-2008
standard for floating point arithmetic or enable variable
precision floating point arithmetic. The graphics multipro-
cessor 234 can additionally include one or more fixed
function or special function units to perform specific func-
tions such as copy rectangle or pixel blending operations. In
one embodiment one or more of the GPGPU cores can also
include fixed or special function logic,

US 10,297,047 B2

11

The memory and cache mterconnect 268 1s an 1ntercon-
nect network that connects each of the functional units of the

graphics multiprocessor 324 to the register file 258 and to

the shared memory 270. In one embodiment, the memory
and cache interconnect 268 1s a crossbar interconnect that
allows the load/store unit 266 to implement load and store
operations between the shared memory 270 and the register
file 258. In one embodiment the shared memory 270 can be
used to enable communication between threads that execute

on the functional units. The cache memory 272 can be used
as a data cache for example, to cache texture data commu-
nicated between the functional units and the texture unit 236.

FIG. 3A-3B illustrate additional graphics multiproces-
sors, according to embodiments. The illustrated graphics
multiprocessors 325, 350 are variants of the graphics mul-
tiprocessor 234 of FIG. 2C. The illustrated graphics multi-
processors 325, 350 can be configured as a streaming
multiprocessor (SM) capable of simultaneous execution of a
large number of execution threads.

FIG. 3A shows a graphics multiprocessor 325 according
to an additional embodiment. The graphics multiprocessor
325 includes multiple additional instances of execution
resource units relative to the graphics multiprocessor 234 of
FIG. 2D. For example, the graphics multiprocessor 323 can
include multiple instances of the instruction unit 332A-
332B, register file 334A-334B, and texture unit(s) 344 A-
344B. The graphics multiprocessor 325 also includes mul-

tiple sets of graphics or compute execution units (e.g.,
GPGPU core 336A-336B, GPGPU core 337A-337B,

GPGPU core 338A-338B) and multiple sets of load/store
units 340A-340B. In one embodiment the execution
resource units have a common instruction cache 330, texture
and/or data cache memory 342, and shared memory 346.
The various components can communicate via an intercon-
nect fabric 327. In one embodiment the interconnect fabric
327 includes one or more crossbar switches to enable
communication between the various components of the
graphics multiprocessor 323.

FIG. 3B shows a graphics multiprocessor 350 according
to an additional embodiment. The graphics processor
includes multiple sets of execution resources 356A-356D,
where each set of execution resource includes multiple
instruction units, register files, GPGPU cores, and load store
units, as illustrated 1in FIG. 2D and FIG. 3A. The execution
resources 356A-356D can work in concert with texture
unit(s) 360A-360D for texture operations, while sharing an
instruction cache 354, and shared memory 362. In one
embodiment the execution resources 356 A-356D can share
an 1nstruction cache 354 and shared memory 362, as well as
multiple 1nstances of a texture and/or data cache memory
358A-358B. The various components can communicate via
an mterconnect fabric 352 similar to the iterconnect fabric
327 of FIG. 3A.

Persons skilled 1n the art will understand that the archi-
tecture described 1n FIG. 1, 2A-2D, and 3A-3B are descrip-
tive and not limiting as to the scope of the present embodi-
ments. Thus, the techmiques described herein may be
implemented on any properly configured processing unit,
including, without limitation, one or more mobile applica-
tion processors, one or more desktop or server central
processing units (CPUs) including multi-core CPUs, one or
more parallel processing units, such as the parallel process-
ing umt 202 of FIG. 2, as well as one or more graphics
processors or special purpose processing units, without
departure from the scope of the embodiments described
herein.

10

15

20

25

30

35

40

45

50

55

60

65

12

In some embodiments a parallel processor or GPGPU as
described herein 1s communicatively coupled to host/pro-
cessor cores to accelerate graphics operations, machine-
learning operations, pattern analysis operations, and various
general purpose GPU (GPGPU) functions. The GPU may be
communicatively coupled to the host processor/cores over a
bus or other interconnect (e.g., a high speed interconnect
such as PCle or NVLink). In other embodiments, the GPU
may be mtegrated on the same package or chip as the cores
and communicatively coupled to the cores over an internal
processor bus/interconnect (i.e., internal to the package or
chip). Regardless of the manner in which the GPU 1s
connected, the processor cores may allocate work to the
GPU 1n the form of sequences of commands/instructions
contained 1n a work descriptor. The GPU then uses dedicated
circuitry/logic for efliciently processing these commands/
instructions.

Techniques for GPU to Host Processor Interconnection

FIG. 4A 1llustrates an exemplary architecture 1n which a
plurality of GPUs 410-413 are communicatively coupled to
a plurality of multi-core processors 405-406 over high-speed
links 440A-440D (e.g., buses, point-to-point 1interconnects,
etc.). In one embodiment, the high-speed links 440A-440D
support a communication throughput of 4 GB/s, 30 GB/s, 80
GB/s or higher, depending on the implementation. Various
interconnect protocols may be used including, but not lim-
ited to, PCle 4.0 or 5.0 and NVLink 2.0. However, the
underlying principles of the invention are not limited to any
particular communication protocol or throughput.

In addition, 1n one embodiment, two or more of the GPUs
410-413 are interconnected over high-speed links 442A-
4428, which may be implemented using the same or dii-
ferent protocols/links than those used for high-speed links
440A-440D. Similarly, two or more of the multi-core pro-
cessors 405-406 may be connected over high speed link 443
which may be symmetric multi-processor (SMP) buses
operating at 20 GB/s, 30 GB/s, 120 GB/s or higher. Alter-
natively, all commumication between the various system
components shown 1n FIG. 4A may be accomplished using
the same protocols/links (e.g., over a common interconnec-
tion fabric). As mentioned, however, the underlying prin-
ciples of the invention are not limited to any particular type
ol interconnect technology.

In one embodiment, each multi-core processor 405-406 1s
communicatively coupled to a processor memory 401-402,
via memory interconnects 430A-430B, respectively, and
cach GPU 410-413 i1s communicatively coupled to GPU
memory 420-423 over GPU memory interconnects 450A-
450D, respectively. The memory interconnects 430A-4308
and 450A-450D may utilize the same or different memory
access technologies. By way of example, and not limitation,
the processor memories 401-402 and GPU memories 420-

423 may be volatile memories such as dynamic random
access memories (DRAMs) (including stacked DRAMSs),

Graphics DDR SDRAM (GDDR) (e.g., GDDRS5, GDDRG6),
or High Bandwidth Memory (HBM) and/or may be non-
volatile memories such as 3D XPoint or Nano-Ram. In one
embodiment, some portion of the memories may be volatile
memory and another portion may be non-volatile memory
(e.g., using a two-level memory (2LLM) hierarchy).

As described below, although the various multi-core pro-
cessors 405-406 and GPUs 410-413 may be physically
coupled to a particular memory 401-402, 420-423, respec-
tively, a unified memory architecture may be implemented in
which the same virtual system address space (also referred
to as the “eflective address™ space) 1s distributed among all
of the various physical memories. For example, processor

US 10,297,047 B2

13

memories 401-402 may each comprise 64 GB of the system
memory address space and GPU memories 420-423 may
cach comprise 32 GB of the system memory address space
(resulting 1n a total of 256 GB addressable memory in this
example).

FIG. 4B illustrates additional details for an interconnec-
tion between a multi-core processor 407 and a graphics
acceleration module 446 1n accordance with one embodi-
ment. The graphics acceleration module 446 may include
one or more GPU chips integrated on a line card which 1s
coupled to the processor 407 via the high-speed link 440.
Alternatively, the graphics acceleration module 446 may be
integrated on the same package or chip as the processor 407.

The illustrated processor 407 includes a plurality of cores

460A-460D, each with a translation lookaside bufler 461 A-
461D and one or more caches 462A-462D. The cores may
include various other components for executing instructions
and processing data which are not illustrated to avoid
obscuring the underlying principles of the invention (e.g.,
instruction fetch units, branch prediction units, decoders,
execution umts, reorder buflers, etc.). The caches 462A-
462D may comprise level 1 (IL1) and level 2 (IL2) caches. In
addition, one or more shared caches 456 may be included 1n
the caching hierarchy and shared by sets of the cores
460A-460D. For example, one embodiment of the processor
407 includes 24 cores, each with 1its own L1 cache, twelve
shared 1.2 caches, and twelve shared 1.3 caches. In this
embodiment, one of the .2 and L3 caches are shared by two
adjacent cores. The processor 407 and the graphics accel-
erator integration module 446 connect with system memory
441, which may include processor memories 401-402.

Coherency 1s maintained for data and instructions stored
in the various caches 462A-462D, 456 and system memory
441 via inter-core communication over a coherence bus 464.
For example, each cache may have cache coherency logic/
circuitry associated therewith to communicate to over the
coherence bus 464 in response to detected reads or writes to
particular cache lines. In one implementation, a cache
snooping protocol 1s implemented over the coherence bus
464 to snoop cache accesses. Cache snooping/coherency
techniques are well understood by those of skill in the art
and will not be described in detail here to avoid obscuring
the underlying principles of the mvention.

In one embodiment, a proxy circuit 425 commumnicatively
couples the graphics acceleration module 446 to the coher-
ence bus 464, allowing the graphics acceleration module
446 to participate 1n the cache coherence protocol as a peer
of the cores. In particular, an interface 435 provides con-

nectivity to the proxy circuit 4235 over high-speed link 440
(e.g., a PCle bus, NVLink, etc.) and an interface 437
connects the graphics acceleration module 446 to the high-
speed link 440.

In one implementation, an accelerator integration circuit
436 provides cache management, memory access, context
management, and interrupt management services on behalf
of a plurality of graphics processing engines 431, 432, N of
the graphics acceleration module 446. The graphics process-
ing engines 431, 432, N may each comprise a separate
graphics processing umt (GPU). Alternatively, the graphics
processing engines 431, 432, N may comprise diflerent
types ol graphics processing engines within a GPU such as
graphics execution units, media processing engines (e.g.,
video encoders/decoders), samplers, and blit engines. In
other words, the graphics acceleration module may be a
GPU with a plurality of graphics processing engines 431-

10

15

20

25

30

35

40

45

50

55

60

65

14

432, N or the graphics processing engines 431-432, N may
be 1mndividual GPUs integrated on a common package, line
card, or chip.

In one embodiment, the accelerator integration circuit 436
includes a memory management unit (MMU) 439 for per-
forming various memory management functions such as
virtual-to-physical memory translations (also referred to as
cllective-to-real memory translations) and memory access
protocols for accessing system memory 441. The MMU 439
may also iclude a translation lookaside bufler (TLB) (not
shown) for caching the virtual/eflective to physical/real
address translations. In one implementation, a cache 438
stores commands and data for eflicient access by the graph-
ics processing engines 431-432, N. In one embodiment, the
data stored 1n cache 438 and graphics memories 433-434, M
1s kept coherent with the core caches 462A-462D, 456 and
system memory 411. As mentioned, this may be accom-
plished via proxy circuit 425 which takes part 1n the cache
coherency mechamism on behalf of cache 438 and graphics
memories 433-434, M (e.g., sending updates to the cache
438 related to modifications/accesses of cache lines on
processor caches 462A-462D, 456 and recerving updates
from the cache 438).

A set of registers 445 store context data for threads
executed by the graphics processing engines 431-432, N and
a context management circuit 448 manages the thread con-
texts. For example, the context management circuit 448 may
perform save and restore operations to save and restore
contexts of the various threads during contexts switches
(e.g., where a first thread 1s saved and a second thread 1s
stored so that the second thread can be execute by a graphics
processing engine). For example, on a context switch, the
context management circuit 448 may store current register
values to a designated region 1n memory (e.g., identified by
a context pointer). It may then restore the register values
when returning to the context. In one embodiment, an
interrupt management circuit 447 receives and processes
interrupts recerved from system devices.

In one implementation, virtual/eflective addresses from a
graphics processing engine 431 are translated to real/physi-
cal addresses in system memory 411 by the MMU 439. One
embodiment of the accelerator integration circuit 436 sup-
ports multiple (e.g., 4, 8, 16) graphics accelerator modules
446 and/or other accelerator devices. The graphics accelera-
tor module 446 may be dedicated to a single application
executed on the processor 407 or may be shared between
multiple applications. In one embodiment, a virtualized
graphics execution environment 1s presented in which the
resources of the graphics processing engines 431-432, N are
shared with multiple applications or wvirtual machines
(VMs). The resources may be subdivided into “slices” which
are allocated to different VMs and/or applications based on
the processing requirements and priorities associated with
the VMs and/or applications.

Thus, the accelerator integration circuit acts as a bridge to
the system for the graphics acceleration module 446 and
provides address translation and system memory cache
services. In addition, the accelerator integration circuit 436
may provide virtualization facilities for the host processor to
manage virtualization of the graphics processing engines,
interrupts, and memory management.

Because hardware resources of the graphics processing
engines 431-432, N are mapped explicitly to the real address
space seen by the host processor 407, any host processor can
address these resources directly using an effective address
value. One function of the accelerator integration circuit
436, 1n one embodiment, 1s the physical separation of the

US 10,297,047 B2

15

graphics processing engines 431-432, N so that they appear
to the system as independent units.

As mentioned, in the 1llustrated embodiment, one or more
graphics memories 433-434, M are coupled to each of the
graphics processing engines 431-432, N, respectively. The
graphics memories 433-434, M store instructions and data
being processed by each of the graphics processing engines
431-432, N. The graphics memories 433-434, M may be
volatile memories such as DRAMs (including stacked
DRAMs), GDDR memory (e.g., GDDRS5, GDDR6), or
HBM, and/or may be non-volatile memories such as 3D
XPoint or Nano-Ram.

In one embodiment, to reduce data traflic over the high-
speed link 440, biasing techmiques are used to ensure that the
data stored 1n graphics memories 433-434, M 1s data which
will be used most frequently by the graphics processing
engines 431-432, N and preferably not used by the cores
460A-460D (at least not frequently). Similarly, the biasing
mechanism attempts to keep data needed by the cores (and
preferably not the graphics processing engines 431-432, N)
within the caches 462A-462D, 456 of the cores and system
memory 411.

FIG. 4C illustrates another embodiment in which the
accelerator integration circuit 436 1s integrated within the
processor 407. In this embodiment, the graphics processing,
engines 431-432, N communicate directly over the high-
speed link 440 to the accelerator integration circuit 436 via
interface 437 and interface 435 (which, again, may be utilize
any form of bus or interface protocol). The accelerator
integration circuit 436 may perform the same operations as
those described with respect to FIG. 4B, but potentially at a
higher throughput given its close proximity to the coherency
bus 464 and caches 462A-462D, 456.

One embodiment supports diflerent programming models
including a dedicated-process programming model (no
graphics acceleration module virtualization) and shared pro-
gramming models (with virtualization). The latter may
include programming models which are controlled by the
accelerator integration circuit 436 and programming models
which are controlled by the graphics acceleration module
446.

In one embodiment of the dedicated process model,
graphics processing engines 431-432, N are dedicated to a
single application or process under a single operating sys-
tem. The single application can funnel other application
requests to the graphics engines 431-432, N, providing
virtualization within a VM/partition.

In the dedicated-process programming models, the graph-
ics processing engines 431-432, N, may be shared by
multiple VM/application partitions. The shared models
require a system hypervisor to virtualize the graphics pro-
cessing engines 431-432, N to allow access by each oper-
ating system. For single-partition systems without a hyper-
visor, the graphics processing engines 431-432, N are owned
by the operating system. In both cases, the operating system
can virtualize the graphics processing engines 431-432, N to
provide access to each process or application.

For the shared programming model, the graphics accel-
cration module 446 or an individual graphics processing
engine 431-432, N selects a process element using a process
handle. In one embodiment, process elements are stored in
system memory 411 and are addressable using the effective
address to real address translation techniques described
herein. The process handle may be an implementation-
specific value provided to the host process when registering
its context with the graphics processing engine 431-432, N
(that 1s, calling system software to add the process element

10

15

20

25

30

35

40

45

50

55

60

65

16

to the process element linked list). The lower 16-bits of the
process handle may be the oflset of the process element
within the process element linked list.

FIG. 4D 1illustrates an exemplary accelerator integration
slice 490. As used herein, a “slice” comprises a specified
portion of the processing resources of the accelerator inte-
gration circuit 436. Application eflective address space 482
within system memory 411 stores process elements 483. In
one embodiment, the process elements 483 are stored 1n
response to GPU invocations 481 from applications 480
executed on the processor 407. A process element 483
contains the process state for the corresponding application
480. A work descriptor (WD) 484 contained 1n the process
clement 483 can be a single job requested by an application
or may contain a pointer to a queue of jobs. In the latter case,
the WD 484 1s a pointer to the job request queue in the
application’s address space 482.

The graphics acceleration module 446 and/or the indi-
vidual graphics processing engines 431-432, N can be
shared by all or a subset of the processes 1n the system.
Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 484 to a
graphics acceleration module 446 to start a job 1n a virtu-
alized environment.

In one implementation, the dedicated-process program-
ming model 1s 1mplementation-specific. In this model, a
single process owns the graphics acceleration module 446 or
an idividual graphics processing engine 431. Because the
graphics acceleration module 446 1s owned by a single
process, the hypervisor mitializes the accelerator integration
circuit 436 for the owning partition and the operating system
initializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration
module 446 1s assigned.

In operation, a WD fetch unit 491 i1n the accelerator
integration slice 490 {fetches the next WD 484 which
includes an indication of the work to be done by one of the
graphics processing engines ol the graphics acceleration
module 446. Data from the WD 484 may be stored in
registers 445 and used by the MMU 439, interrupt manage-
ment circuit 447 and/or context management circuit 448 as
illustrated. For example, one embodiment of the MMU 439
includes segment/page walk circuitry for accessing segment/
page tables 486 within the OS virtual address space 485. The
interrupt management circuit 447 may process interrupt
events 492 received from the graphics acceleration module
446. When performing graphics operations, an eflective
address 493 generated by a graphics processing engine
431-432, N 1s translated to a real address by the MMU 439.

In one embodiment, the same set of registers 445 are
duplicated for each graphics processing engine 431-432, N
and/or graphics acceleration module 446 and may be ini-
tialized by the hypervisor or operating system. Each of these
duplicated registers may be included 1n an accelerator inte-
gration slice 490. Exemplary registers that may be mitialized
by the hypervisor are shown in Table 1.

TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer
Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limit

State Register
Logical Partition ID

L [SR U T SN S T N T

US 10,297,047 B2

17

TABLE 1-continued

Hypervisor Initialized Registers

8 Real address (RA) Hypervisor Accelerator Utilization Record Pointer
9 Storage Description Register

Exemplary registers that may be initialized by the oper-
ating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

Process and Thread Identification

Effective Address (EA) Context Save/Restore Pointer
Virtual Address (VA) Accelerator Utilization Record Pointer
Virtual Address (VA) Storage Segment Table Pointer

Authority Mask
Work descriptor

Sy A s) B

In one embodiment, each WD 484 1s specific to a par-
ticular graphics acceleration module 446 and/or graphics
processing engine 431-432, N. It contains all the information
a graphics processing engine 431-432, N requires to do 1ts
work or 1t can be a pointer to a memory location where the
application has set up a command queue of work to be
completed.

FIG. 4F 1llustrates additional details for one embodiment
of a shared model. This embodiment includes a hypervisor
real address space 498 in which a process element list 499
1s stored. The hypervisor real address space 498 1s accessible
via a hypervisor 496 which virtualizes the graphics accel-
eration module engines for the operating system 493.

The shared programming models allow for all or a subset
of processes from all or a subset of partitions in the system

to use a graphics acceleration module 446. There are two
programming models where the graphics acceleration mod-
ule 446 1s shared by multiple processes and partitions:
time-sliced shared and graphics directed shared.

In this model, the system hypervisor 496 owns the graph-
ics acceleration module 446 and makes 1ts function available
to all operating systems 495. For a graphics acceleration
module 446 to support virtualization by the system hyper-
visor 496, the graphics acceleration module 446 may adhere
to the following requirements: 1) An application’s job
request must be autonomous (that 1s, the state does not need
to be maintained between jobs), or the graphics acceleration
module 446 must provide a context save and restore mecha-
nism. 2) An application’s job request 1s guaranteed by the
graphics acceleration module 446 to complete 1n a specified
amount of time, including any translation faults, or the
graphics acceleration module 446 provides the ability to
preempt the processing of the job. 3) The graphics accel-
cration module 446 must be guaranteed fairness between
processes when operating in the directed shared program-
ming model.

In one embodiment, for the shared model, the application
480 1s required to make an operating system 495 system call
with a graphics acceleration module 446 type, a work
descriptor (WD), an authority mask register (AMR) value,
and a context save/restore area pointer (CSRP). The graphics
acceleration module 446 type describes the targeted accel-
eration function for the system call. The graphics accelera-
tion module 446 type may be a system-specific value. The
WD 1s formatted specifically for the graphics acceleration
module 446 and can be 1n the form of a graphics acceleration
module 446 command, an eflective address pointer to a

5

10

15

20

25

30

35

40

45

50

55

60

65

18

user-defined structure, an eflective address pointer to a
queue of commands, or any other data structure to describe
the work to be done by the graphics acceleration module
446. In one embodiment, the AMR value 1s the AMR state
to use for the current process. The value passed to the
operating system 1s similar to an application setting the
AMR. If the accelerator integration circuit 436 and graphics
acceleration module 446 1implementations do not support a
User Authornity Mask Override Register (UAMOR), the

operating system may apply the current UAMOR value to
the AMR value before passing the AMR 1n the hypervisor
call. The hypervisor 496 may optionally apply the current
Authority Mask Override Register (AMOR) value before
placing the AMR into the process clement 483. In one
embodiment, the CSRP 1s one of the registers 445 containing
the effective address of an area 1n the application’s address
space 482 for the graphics acceleration module 446 to save
and restore the context state. This pointer 1s optional if no
state 1s required to be saved between jobs or when a job 1s
preempted. The context save/restore areca may be pinned
system memory.

Upon recerving the system call, the operating system 495
may verily that the application 480 has registered and been
given the authority to use the graphics acceleration module
446. The operating system 495 then calls the hypervisor 496
with the imnformation shown 1n Table 3.

TABLE 3

OS to Hypervisor Call Parameters

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record poimnter (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

L

S e L T Y

Upon receiving the hypervisor call, the hypervisor 496
verifies that the operating system 495 has registered and
been given the authority to use the graphics acceleration
module 446. The hypervisor 496 then puts the process
clement 483 into the process element linked list for the
corresponding graphics acceleration module 446 type. The
process element may include the information shown in Table

4.

TABLE 4

Process Element Information

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

Interrupt vector table, derived from the hypervisor call parameters.
A state register (SR) value

A logical partition ID (LPID)
A real address (RA) hypervisor accelerator utilization record pointer
The Storage Descriptor Register (SDR)

o — O O 00 ~1 Oy D

In one embodiment, the hypervisor initializes a plurality
ol accelerator integration slice 490 registers 445.

As 1llustrated 1in FIG. 4F, one embodiment of the inven-
tion employs a unified memory addressable via a common

US 10,297,047 B2

19

virtual memory address space used to access the physical
processor memories 401-402 and GPU memories 420-423.
In this implementation, operations executed on the GPUs
410-413 utilize the same virtual/effective memory address
space to access the processors memories 401-402 and vice
versa, thereby simplilying programmability. In one embodi-
ment, a first portion of the virtual/eflective address space 1s
allocated to the processor memory 401, a second portion to
the second processor memory 402, a third portion to the
GPU memory 420, and so on. The entire virtual/effective
memory space (sometimes referred to as the eflective
address space) 1s thereby distributed across each of the
processor memories 401-402 and GPU memories 420-423,
allowing any processor or GPU to access any physical
memory with a virtual address mapped to that memory.

In one embodiment, bias/coherence management circuitry
494 A-494E within one or more of the MMUSs 439A-439E
ensures cache coherence between the caches of the host
processors (e.g., 405) and the GPUs 410-413 and imple-
ments biasing techniques indicating the physical memories
in which certain types of data should be stored. While
multiple mstances of bias/coherence management circuitry
494A-494E are 1llustrated in FIG. 4F, the bias/coherence
circuitry may be implemented within the MMU of one or
more host processors 405 and/or within the accelerator
integration circuit 436.

One embodiment allows GPU-attached memory 420-423
to be mapped as part of system memory, and accessed using,
shared virtual memory (SVM) technology, but without sui-
fering the typical performance drawbacks associated with
tull system cache coherence. The ability to GPU-attached
memory 420-423 to be accessed as system memory without
onerous cache coherence overhead provides a beneficial
operating environment for GPU oflload. This arrangement
allows the host processor 405 software to setup operands
and access computation results, without the overhead of
tradition I/O DMA data copies. Such traditional copies
involve driver calls, interrupts and memory mapped I/O
(MMIQO) accesses that are all ineflicient relative to simple
memory accesses. At the same time, the ability to access
GPU attached memory 420-423 without cache coherence
overheads can be critical to the execution time of an
offloaded computation. In cases with substantial streaming
write memory traflic, for example, cache coherence over-
head can sigmificantly reduce the eflective write bandwidth
seen by a GPU 410-413. The efliciency of operand setup, the
elliciency of results access, and the efliciency of GPU
computation all play a role 1n determiming the effectiveness
of GPU ofiload.

In one implementation, the selection of between GPU bias
and host processor bias 1s driven by a bias tracker data
structure. A bias table may be used, for example, which may
be a page-granular structure (1.e., controlled at the granu-
larity of a memory page) that includes 1 or 2 bits per
GPU-attached memory page. The bias table may be imple-
mented 1 a stolen memory range of one or more GPU-
attached memories 420-423, with or without a bias cache in
the GPU 410-413 (e.g., to cache frequently/recently used
entries of the bias table). Alternatively, the entire bias table
may be maintained within the GPU.

In one implementation, the bias table entry associated
with each access to the GPU-attached memory 420-423 1s
accessed prior the actual access to the GPU memory, causing
the following operations. First, local requests from the GPU
410-413 that find their page in GPU bias are forwarded
directly to a corresponding GPU memory 420-423. Local
requests from the GPU that find their page in host bias are

10

15

20

25

30

35

40

45

50

55

60

65

20

forwarded to the processor 405 (e.g., over a high-speed link
as discussed above). In one embodiment, requests from the
processor 405 that find the requested page 1n host processor
bias complete the request like a normal memory read.
Alternatively, requests directed to a GPU-biased page may
be forwarded to the GPU 410-413. The GPU may then
transition the page to a host processor bias 1f 1t i1s not
currently using the page.

The bias state of a page can be changed either by a
software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely
hardware-based mechanism.

One mechanism for changing the bias state employs an
API call (e.g. OpenCL), which, 1n turn, calls the GPU’s
device driver which, in turn, sends a message (or enqueues
a command descriptor) to the GPU directing 1t to change the
bias state and, for some transitions, perform a cache flushing
operation 1n the host. The cache flushing operation 1is
required for a transition from host processor 405 bias to
GPU baas, but 1s not required for the opposite transition.

In one embodiment, cache coherency 1s maintained by
temporarily rendering GPU-biased pages uncacheable by
the host processor 405. To access these pages, the processor
405 may request access from the GPU 410 which may or
may not grant access right away, depending on the 1imple-
mentation. Thus, to reduce communication between the
processor 405 and GPU 410 1t 1s beneficial to ensure that
GPU-biased pages are those which are required by the GPU
but not the host processor 405 and vice versa.

Graphics Processing Pipeline

FIG. § 1s a conceptual diagram of a graphics processing
pipeline 500, according to an embodiment. In one embodi-
ment a graphics processor can implement the illustrated
graphics processing pipeline 500. The graphics processor
can be included within the parallel processing subsystems as
described herein, such as the parallel processor 200 of FIG.
2, which, 1n one embodiment, 1s a variant of the parallel
processor(s) 112 of FIG. 1. The various parallel processing
systems can implement the graphics processing pipeline 500
via one or more instances ol the parallel processing unit
(e.g., parallel processing unit 202 of FIG. 2) as described
herein. For example, a shader umit (e.g., graphics multipro-
cessor 234 of FIG. 3) may be configured to perform the
functions of one or more of a vertex processing unit 504, a
tessellation control processing unit 508, a tessellation evalu-
ation processing unit 512, a geometry processing unit 516,
and a fragment/pixel processing unit 524. The functions of
data assembler 502, primitive assemblers 506, 514, 518,
tessellation unit 510, rasterizer 522, and raster operations
unit 526 may also be performed by other processing engines
within a processing cluster (e.g., processing cluster 214 of
FIG. 3) and a corresponding partition unit (e.g., partition
umt 220A-220N of FIG. 2). Alternately, the graphics pro-
cessing pipeline 500 may be implemented using dedicated
processing units for one or more functions. In one embodi-
ment, one or more portions of the graphics processing
pipeline 500 can be performed in by a parallel processing
logic within a general purpose processor (e.g., CPU). In one
embodiment, one or more portions of the graphics process-
ing pipeline 500 can access on-chip memory (e.g., parallel
processor memory 222 as 1n FIG. 2) via a memory interface
528, which may be an instance of the memory interface 218
of FIG. 2.

In one embodiment the data assembler 502 1s a processing,
unit that collects vertex data for high-order surfaces, primi-
tives, etc., and outputs the vertex data, including the vertex
attributes, to the vertex processing unit 504. The vertex

US 10,297,047 B2

21

processing unit 504 1s a programmable execution unit that 1s
configured to execute vertex shader programs, lighting and
transforming vertex data as specified by the vertex shader
programs. For example, vertex processing unit 504 may be
programmed to transform the vertex data from an object-
based coordinate representation (object space) to an alter-
natively based coordinate system such as world space or
normalized device coordinates (NDC) space. Vertex pro-
cessing unit 504 may read data that 1s stored in cache, local
or system memory for use 1n processing the vertex data.

A first 1mstance of a primitive assembler 506 receives
vertex attributes from the vertex processing unit 504, read-
ing stored vertex attributes as needed, and constructs graph-
ics primitives for processing by tessellation control process-
ing unit 508, where the graphics primitives include triangles,
line segments, points, patches, and so forth, as supported by
various graphics processing application programming inter-
taces (APIs).

The tessellation control processing unit 508 treats the
input vertices as control points for a geometric patch and
transiforms these control points from the patch’s input rep-
resentation, often called the patch’s basis, into a represen-
tation suitable for etlicient surface evaluation by the tessel-
lation evaluation processing umt 512. The tessellation
control processing unit 508 also computes tessellation fac-
tors for edges of geometric patches. A tessellation factor
applies to a single edge and quantifies a view-dependent
level of detail associated with the edge. A tessellation unit
510 1s configured to receive the tessellation factors for edges
of a patch and to tessellate the patch into multiple geometric
primitives such as line, triangle, or quadrlateral primitives,
which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri-
butes for each vertex associated with the geometric primi-
tives.

A second instance of a primitive assembler 514 receives
vertex attributes from the tessellation evaluation processing,
unit 512, reading stored vertex attributes as needed, and
constructs graphics primitives for processing by the geom-
etry processing unit 316. The geometry processing unit 516
1s a programmable execution unit that 1s configured to
execute geometry shader programs, transforming graphics
primitives received from primitive assembler 514 as speci-
fied by the geometry shader programs. For example, the
geometry processing unit 516 may be programmed to sub-
divide the graphics primitives into one or more new graphics
primitives and calculate parameters, such as plane equation
coellicients, that are used to rasterize the new graphics
primitives.

In some embodiments the geometry processing unit 516
may also add or delete elements 1n the geometry stream.
Geometry processing unit 516 outputs the parameters and
vertices specilying new graphics primitives to primitive
assembler 518, which receives the parameters and vertices
from the geometry processing unit 516, reading stored
vertex attributes, as needed, and constructs graphics primi-
tives for processing by a viewport scale, cull, and clip unit
520. The geometry processing unit 316 may read data that 1s
stored 1n parallel processor memory or system memory for
use in processing the geometry data. The viewport scale,
cull, and clip umt 520 performs clipping, culling, and
viewport scaling and outputs processed graphics primitives
to a rasterizer 522.

The rasterizer 522 scan converts the new graphics primi-
tives and outputs fragment and coverage data to the frag-

10

15

20

25

30

35

40

45

50

55

60

65

22

ment/pixel processing unit 524. Additionally, the rasterizer
522 may be configured to perform z culling and other
z-based optimizations.

The fragment/pixel processing unit 524 1s a program-
mable execution unit that 1s configured to execute fragment
shader programs or pixel shader programs. The fragment/
pixel processing unit 524 transforming fragments or pixels
received Irom rasterizer 522, as specified by the fragment or
pixel shader programs. For example, the fragment/pixel
processing umt 524 may be programmed to perform opera-
tions such as perspective correction, texture mapping, shad-
ing, blending, and the like, to produce shaded fragments or
pixels that are output to raster operations unit 526. The
fragment/pixel processing unit 524 may read data that 1s
stored 1n parallel processor memory or system memory for
use 1n processing the fragment data. Fragment or pixel
shader programs may be configured to shade at the sample,
pixel, tile, or other granularnty, depending on the pro-
grammed sampling rate.

The raster operations unit 526 1s a processing unit that
performs raster operations, such as stencil, z test, blending,
and the like, and outputs pixel data as processed graphics
data for storage 1n graphics memory. The processed graphics
data may be stored in graphics memory, e.g., parallel pro-
cessor memory 222 as in FIG. 2, and/or system memory 104
as 1n FIG. 1, for display on one of the one or more display
device(s) 110 or for further processing by one of the one or
more processor(s) 102 or parallel processor(s) 112. In some
embodiments the raster operations unit 326 1s configured to
compress Z or color data that 1s written to memory and
decompress z or color data that 1s read from memory.
Additional Exemplary GPGPU Multiprocessor and Shared
Resources

FIG. 6 1s a block diagram of a GPGPU 600, according to
an embodiment. The GPGPU 600 includes compression/
decompression umt 628, which according to various
embodiments, can compress or decompress various types
and formats of data at various points along the graphics
processor rendering pipeline. The GPGPU 600 includes one
or more graphics multiprocessor clusters 610A-610B that
may be configured to perform computations to enable vari-
ous graphics processing operations. While two graphics
multiprocessor clusters 610A-610B are 1llustrated, embodi-
ments are not so limited, as a variable number of processing
clusters may be included.

Each of the graphics multiprocessor clusters 610A-6108
includes graphics processing and computational logic, such
as the logic illustrated 1n FIG. 3B. In one embodiment the
graphics multiprocessor clusters 610A-610B share a set of
shared resources 620. The GPGPU 600 additionally includes
an .3 cache 630 which can cache memory transactions
between caches within the shared resources 620 and a last
level cache or system memory. The L3 cache 630 connects
with the shared resources 620 via a memory bus 629. In one
embodiment the memory bus 629 1s a fabric interconnect
that couples the L3 cache 630 with the shared resources 620
and the graphics multiprocessor clusters 610A-610B.

In one embodiment the shared resources 620 1nclude a
rasterizer 621, a sampler 622, a cache controller 623, a
render cache 624, and compression/decompression unit 628.
The rasterizer 621 analyzes data representing a geometric
object to be rendered by traversing, or walking, a primitive
and generating pixel data for each pixel that 1s part of a
geometric primitive to be rendered. The GPGPU 600 can
also 1include a more advanced and/or configurable rasterizer
or may additionally include ray tracing acceleration logic to
accelerate ray tracing or hybrid rasterization. In one embodi-

US 10,297,047 B2

23

ment the rasterizer 621 1s a tile-based rasterizer, 1n which
pixels are rendered on the granularity of an image space grid
of pixels. Tile-based rasterization can be performed on data
stored 1n tile caches to reduce the number of off-chip
mMemory accesses.

The sampler 622 provides texture sampling for 3D opera-

tions and media sampling for media operations. The sampler
622 can access render target data stored 1n the render cache

624, for example, when dynamically rendered textures are 1n

use, or when the graphics processor otherwise has an opera-
tional need to sample data from a render target.

The render cache 624 stores render target data to be
displayed via display engine or to be used to render subse-
quent 1mages for display. Data generated by the graphics
multiprocessor clusters 610A-6108B can be written to the
render cache 624, where such data may be readily accessed
by other graphics processor components, such as the display
engine or the sampler 622. Memory within the render cache
1s divided into cache lines. The size of the cache lines can
vary among embodiments. One embodiment provides for
68-byte cache lines, while another embodiment provides for
64-byte cache lines. In one embodiment the render cache
624 can be configured as a multisample render cache and can
store multiple samples of color data per-pixel.

In one embodiment the render cache 624 1s controlled by
a cache controller 623. The cache controller 623 manages
cache line allocation for data to be stored in the render cache
624 and maintains status information for the cache lines of
the render cache 624. Components within the graphics
processor core can query the cache controller 623 to deter-
mine 1i data for a particular pixel or group of pixels 1s stored
in the render cache 624 to determine which cache lines store
such data. In one embodiment the cache controller 623 1s
also 1nvolved 1n maintaining cache coherence between the
render cache 624 and other caches 1n the graphics processor.
In one embodiment the render cache 624 1s fully associative
(c.g., m-way set associative).

A compression boundary for compressed data can be
configured such that data 1s compressed or decompressed
before transiting a specific boundary in the memory hierar-
chy. For example, data can be stored in a render cache 624
in a compressed format or can be decompressed before
being written to the render cache 624. In one embodiment a
compression operation can be performed by the compres-
sion/decompression unit 628 to compress the data that 1s
evicted from the render cache 624 before the data 1s written
to the L3 cache 630 and/or system memory via the memory
bus 629. Whether data 1s stored in a compressed or uncom-
pressed format at a given location in memory may be
determined based on whether graphics processor compo-
nents that will consume the data from a given memory unit
support reading data 1n a compressed format.

In one embodiment, tile-based compression 1s used, in
which pixel data for an NxM tile 1s pixels 1s stored in cache
or 1n memory in a compressed state. Various tile sizes may
be used, including but not limited to an 8x4 tile or a 4x4 tile
ol pixels. Accompanying compressed data 1s compression
metadata which maintains a compression status for a given
cache line or tile. The compression metadata can include one
or more bits per tile, cache line, cache block, etc., to indicate
status such as compressed or uncompressed, or to indicate a
particular form of compression that 1s 1n use. In many
lossless compression implementations, 1f the input data
cannot be compressed to the desired compression ratio
without data loss, the data may be output or stored 1n an
uncompressed state.

10

15

20

25

30

35

40

45

50

55

60

65

24

Many different compression techniques can be applied to
data generated by the GPU, such as color data, depth (e.g.,
7)) data, or other buflers written or otherwise output via the
GPU. In addition to GPU generated data, the GPU consumes
some static data during the rendering operations. This static
data 1s read-only data from the GPU perspective and
includes, but 1s not limited to static texture buflers, vertex
buflers, constant buffers, uniform buffers, or other static or
constant input buftlers to the GPU. The static read-only data
may also be constant data used by a compute shader or other
general purpose parallel computation logic within the GPU.
Memory surfaces containing such data can be compressed
once and used 1n multiple frames or multiple shader
instances 1f the data can be compressed without data loss.
Metadata can be associated with the compressed data to
indicate a compression status (e.g., compressed or uncom-
pressed) for the data. When a static (e.g., read only) resource
1s bound to a GPU pipeline, the corresponding meta-data 1s
also bound. In one embodiment the metadata binding 1is
performed via a bindless resource scheme. In one embodi-
ment the metadata can be bound via legacy resource binding.
Compression and decompression of the data can be per-
formed on the fly and in real time, reducing the memory
bandwidth required to load and store static or read-only data
streams.

Multisample Anti-Aliasing on a GPGPU

The pixel output from the rendering of geometric primi-
tives may result 1n distortion artifacts known as aliasing.
Alasing can result whenever a high-resolution 1mage 1s
represented at a lower resolution. Anti-aliasing removes
signal components that have a higher frequency than can
properly be resolved via the rendered samples. In the spe-
cific case of triangle rasterization, aliasing can result 1s
jagged edges 1n rendered 1mages. Anti-aliasing improves the
appearance ol rendered edges by smoothing the rendered
results. The specific case of multisampling anti-aliasing,
multiple locations are sampled for every pixel. Each sample
represents a potential output color for the pixels. If a triangle
to be rasterized covers multiple sample locations within a
pixel, a shading computation 1s performed for the samples
and the results are combined to generate an output color for
the pixel.

FIG. 7 illustrates an exemplary memory layout for a
multisample render target. A multisample render target can
store multiple samples output for each pixel. In some
existing multisample render target implementations, pixels
can be represented 1n a planar format, 1n which each set of
samples 1s stored 1 a separate memory plane. FIG. 7
illustrates 4xMSAA 1 which four samples are used per
pixel. A 3x3 pixel tile 702 of mine pixels (A-I) 1s represented.

While a 3x3 pixel tile 702 of nine pixels 1s 1llustrated, the
pixel tile 702 may include any number of pixels. For
example and 1n one embodiment the pixel tile 702 may be
an 8x4 pixel tile including 32 pixels. Each set of samples for
the tile can be stored in a separate plane (e.g., planes
704A-704D). In one embodiment the number of plane that
are allocated 1s determined by the number of distinct colors
associated with the various samples. For example, if the four
samples have four different color values, four color plane are
used. If a single value 1s present for all samples, only a single
value 1s stored in a single plane. Before a final image 1s
output, an MSAA resolve operation 1s performed on the tile
in which the color values for each sample of a pixel are
combined. If only a single value 1s stored for a pixel, the
resolve operation uses the single value. In one embodiment,
i multiple different color values are stored for differing
samples for a pixel, the color values may be averaged.

US 10,297,047 B2

25

Using a planar format, color data compression can be
performed on the pixel data within a plane but not across
planes. However, embodiments described herein have been
adapted to store the MSAA samples in an interleaved
manner. Due to the spatial locality of the diflerent samples,
the colors for each sample, 1f not 1dentical, are likely similar.
Accordingly, i the samples are stored in an interleaved
format the compression efliciency may be 31gn1ﬁcantly
increased due to the increased efliciency realized via com-
pression of similar color pixel values.

FIG. 8A-8B illustrate interleaved memory layouts,
according to embodiments. Multiple memory layouts are
provided for multisample render targets storing four samples
for four pixels 804A-804D, 814A-814D. The render targets
are stored in an interleaved format, such that the render
targets are stored in a single, large surface, where each
sample of each pixel 1s stored 1n a packed format. Thus, for
4xMSAA a single plane 1s used that 1s at most 4x the size
of the planar surface so that the total potential memory
consumption 1s the same relative to a planar format. How-
ever, because pixel data compression can be applied across
all surfaces it 1s possible that only one color value will be
stored for multiple pixels or multiple tiles of pixels, as each
sample may have the same color and multiple pixels within
a tile may have the same or a similar color.

The specific pixel/sample layout can vary based on the
tiling arrangement, with FIG. 8 A and FIG. 8B illustrating,
alternate memory layouts for differing tile arrangements. In
FIG. 8A, each sample for a pixel 804A-804D 1s stored 1n a
tiled format, such that for each pixel A-D, a tile of samples
(e.g., A0-A3 for pixel A) 1s stored in memory. In FIG. 8B,
a packed pixel format 1s illustrated 1n which the samples
defining each pixel 814A-814D are stored linearly 1n
memory.

In either of the illustrated memory layouts of FI1G. 8A-8B,
an additional multisample render target compression tech-
nique can be applied in which duplicate color values are
removed.

FI1G. 9 1s a block diagram of a graphics processing system
900, according to an embodiment. The graphics processing
system can be implemented using graphics processing logic,
such as the graphics processor 600 as in FIG. 6. As 1llus-
trated, the graphics processing system 900 includes a graph-
ics pipeline 920 including vertex processor 921, a pixel
processor 922, a cache controller 923, and a cache 924. In
one embodiment the cache 924 1s a render target cache that
includes or 1s associated with decompression 926 and com-
pression 928 logic. The graphics pipeline 920 can couple to
a memory 910, which can include a higher level of cache
memory, local memory, system memory, or other memory in
which a surface for use by the graphics processor may be
stored.

In one embodiment the graphics pipeline 920 can allocate
space for an MSAA render target 912 1n memory 910. The
pixel processor 922 can render the multiple samples for each
pixel to the MSAA render target 912. As the sample data 1s
written, the pixel processor can store the sample data in the
cache 924. The sample data can be compressed via com-
pression 928 logic before the samples are stored to the
MSAA render target 912 1n memory. When the MSAA
render target 912 1s read from memory, the data can be
decompressed via decompression 926 logic.

The compression 928 logic can attempt lossless compres-
sion on the data for the MSAA render target 912 via a
lossless color compression algorithm, such as a delta color
compression algorithm or another lossless compression
algorithm suitable for compressing color data. Additionally,

10

15

20

25

30

35

40

45

50

55

60

65

26

the compression 928 logic can perform multi-sample com-
pression to remove duplicate color values from the set of
samples, such that, for example, only distinct sample color
values are stored for each pixel. The multi-sample compres-
sion and the lossless compression can be performed as
distinct operations. For example, multi-sample compression
to remove duplicate samples can be performed before loss-
less compression of the color data to be stored 1n the MSAA
render target 912. In one embodiment the pixel processor
922 can be configured with multisample compression logic
such that only unique sample color values are output for a
pixel.

In one embodiment, compression metadata 902 for the
MSAA render target 912 1s stored 1n memory to indicate the
compression status for one or more portions (e.g., tiles) of
the MSAA render target 912. In one embodiment if the
compression 928 logic can compress a data tile of the
MSAA render target 912 without loss of data, the data tile 1s
stored 1n memory 1n a compressed format and the compres-
sion metadata 902 for the tile 1s updated to indicate that the
tile 1s compressed. Additionally, the compression metadata
902 can also be used to map stored color data to multiple
samples of a pixel. If the compression 928 logic 1s not able
to compress a data tile of the MSAA render target 912
without loss, then uncompressed data of the tile 1s stored in
memory 910 and one or more metadata flags or bits can be
set to indicate that the data 1s uncompressed. Thus, the
MSAA render target 912 can have some data tiles that are
compressed and some that are uncompressed.

In one embodiment a separate compression control sur-
face 1s maintained that tracks compression metadata 902 for
various blocks of data 1n the memory 910. The compression
control surface can be a block of memory that 1s stored 1n
any memory location accessible to the graphics pipeline
920. The compression control surface can store metadata for
multiple blocks of memory, indicating whether each block 1s
compressed or uncompressed, as well as any other informa-
tion that may be relevant for managing this data. In one
embodiment the cache controller 923 can access the com-
pression control surface to determine whether cached data
associated with a block of memory should be compressed
before evicting cached data associated with that block of
memory. Other portions of a graphics processor can access
the compression metadata 902 in the control surface before
accessing various chunks of data stored 1n memory 910.

FIG. 10 15 a flow diagram illustrating a process of storing
pixel data to a multisample render target, according to an
embodiment. In one embodiment at least a portion of the
process can be performed by hardware logic within raster-
1zer hardware, such as the rasterizer 621 of FIG. 6. The
rasterizer can determine sample coverage for input geometry
and call shading logic such as a pixel shader or fragment
shader, to determine the color values for the covered
samples. The pixel shader or fragment shader can process a
shader program and perform mathematical operations for the
shader program via compute units within a graphics multi-
processor cluster as described herein. In one embodiment the
rasterizer 1s a tile-based rasterizer that performs rasterization
for a scene on a tile-by-tile basis. In such embodiment,
shading operations for each tile can also be performed on a
tile-by-tile basis. However, the techniques described herein
are not limited to tile-based rendering techniques and can be
applied generally to multisample rendering.

In one embodiment the rasterizer and shader logic can
determine a set of sample color values associated with
individual pixels of a scene, as shown at block 1002.
Compression logic such as the compression/decompression

US 10,297,047 B2

27

unit 628 of FIG. 6 or the compression 928 logic of FIG. 9
can be used to generate a compressed subset of the set of
sample color values, as shown at block 1004. The com-
pressed subset of the set of sample color values can also be
directly generated by the shader units of the pixel processor.
The compressed subset of the set of sample color values can
include a distinct color values for each pixel. The pixel
processor can write the compressed subset of the set of
sample color values for each pixel by interleaving the
sample value into the plane, as shown at block 1006. The
interleaving can include packing the samples for each pixel
such that the sample color values for each pixel are stored
contiguously.

Compression logic can then apply lossless color compres-
sion to the set of sample color values within the single
memory plane, as shown at block 1008. Various lossless
compression techniques can be applied by the compression
logic. In one embodiment delta compression can be applied
to reduce the amount of memory required to store multiple
similar color samples of each pixel. In one embodiment the
lossless compression can be performed on a tile-by-tile
basis. Once the lossless compression has been applied to the
memory plane, the rendering pipeline, for example, via the
compression module, can store the single memory plane to
a multi-sample render target, as shown at block 1010.
Additional Exemplary Graphics Processing System

Details of the embodiments described above can be
incorporated within graphics processing systems and
devices described below. The graphics processing system
and devices of FIG. 11 through FIG. 24 illustrate alternative
systems and graphics processing hardware that can 1mple-
ment any and all of the techniques described above.
Additionally Exemplary System Overview

FIG. 11 1s a block diagram of a processing system 1100,
according to an embodiment. In various embodiments the
system 1100 1ncludes one or more processors 1102 and one
or more graphics processors 1108, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 1102 or processor cores 1107. In one embodiment,
the system 1100 1s a processing platform incorporated within
a system-on-a-chip (SoC) integrated circuit for use 1n
mobile, handheld, or embedded devices.

An embodiment of system 1100 can include, or be incor-
porated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 1100 1s a
mobile phone, smart phone, tablet computing device or
mobile Internet device. Data processing system 1100 can
also include, couple with, or be mtegrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 1100
1s a television or set top box device having one or more
processors 1102 and a graphical interface generated by one
or more graphics processors 1108.

In some embodiments, the one or more processors 1102
cach include one or more processor cores 1107 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 1107 1s configured to process a
specific mstruction set 1109. In some embodiments, instruc-
tion set 1109 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 1107 may each process a different

10

15

20

25

30

35

40

45

50

55

60

65

28

istruction set 1109, which may include mstructions to
facilitate the emulation of other instruction sets. Processor
core 1107 may also include other processing devices, such
a Digital Signal Processor (DSP).

In some embodiments, the processor 1102 includes cache
memory 1104. Depending on the architecture, the processor
1102 can have a single internal cache or multiple levels of
internal cache. In some embodiments, the cache memory 1s
shared among various components of the processor 1102. In
some embodiments, the processor 1102 also uses an external
cache (e.g., a Level-3 (L3) cache or Last Level Cache
(LLC)) (not shown), which may be shared among processor
cores 1107 using known cache coherency techniques. A
register file 1106 1s additionally included 1n processor 1102
which may include different types of registers for storing
different types of data (e.g., integer registers, tloating point
registers, status registers, and an instruction pointer regis-
ter). Some registers may be general-purpose registers, while
other registers may be specific to the design of the processor
1102.

In some embodiments, processor 1102 1s coupled with a
processor bus 1110 to transmit communication signals such
as address, data, or control signals between processor 1102
and other components 1 system 1100. In one embodiment
the system 1100 uses an exemplary ‘hub’ system architec-
ture, including a memory controller hub 1116 and an Input
Output (I/0) controller hub 1130. A memory controller hub
1116 facilitates communication between a memory device
and other components of system 1100, while an I/O Con-
troller Hub (ICH) 1130 provides connections to I/O devices
via a local I/O bus. In one embodiment, the logic of the
memory controller hub 1116 1s integrated within the pro-
CESSOL.

Memory device 1120 can be a dynamic random access
memory (DRAM) device, a static random access memory
(SRAM) device, flash memory device, phase-change
memory device, or some other memory device having
suitable performance to serve as process memory. In one
embodiment the memory device 1120 can operate as system
memory for the system 1100, to store data 1122 and 1nstruc-
tions 1121 for use when the one or more processors 1102
executes an application or process. Memory controller hub
1116 also couples with an optional external graphics pro-
cessor 1112, which may communicate with the one or more
graphics processors 1108 in processors 1102 to perform
graphics and media operations.

In some embodiments, ICH 1130 enables peripherals to
connect to memory device 1120 and processor 1102 via a
high-speed I/O bus. The 1/O peripherals include, but are not
limited to, an audio controller 1146, a firmware interface
1128, a wireless transceiver 1126 (e.g., Wi-F1, Bluetooth), a
data storage device 1124 (e.g., hard disk drive, flash
memory, etc.), and a legacy 1/0O controller 1140 for coupling
legacy (e.g., Personal System 2 (PS/2)) devices to the
system. One or more Universal Serial Bus (USB) controllers
1142 connect mput devices, such as keyboard and mouse
1144 combinations. A network controller 1134 may also
couple with ICH 1130. In some embodiments, a high-
performance network controller (not shown) couples with
processor bus 1110. It will be appreciated that the system
1100 shown 1s exemplary and not limiting, as other types of
data processing systems that are diflerently configured may
also be used. For example, the I/O controller hub 1130 may
be integrated within the one or more processor 1102, or the
memory controller hub 1116 and I/O controller hub 1130
may be integrated into a discreet external graphics proces-
sor, such as the external graphics processor 1112.

US 10,297,047 B2

29

FIG. 12 1s a block diagram of an embodiment of a
processor 1200 having one or more processor cores 1202A-
1202N, an mtegrated memory controller 1214, and an inte-
grated graphics processor 1208. Those elements of FIG. 12
having the same reference numbers (or names) as the
clements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 1200 can include addi-
tional cores up to and including additional core 1202N
represented by the dashed lined boxes. Each of processor
cores 1202A-1202N 1includes one or more internal cache
units 1204A-1204N. In some embodiments each processor

core also has access to one or more shared cached units
1206.

The internal cache units 1204 A-1204N and shared cache
units 1206 represent a cache memory hierarchy within the
processor 1200. The cache memory hierarchy may include at
least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (L2), Level 3 (LL3), Level 4 (1.4),
or other levels of cache, where the highest level of cache
before external memory 1s classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 1206 and 1204A-1204N.

In some embodiments, processor 1200 may also include
a set of one or more bus controller units 1216 and a system
agent core 1210. The one or more bus controller units 1216
manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 1210 provides management
functionality for the various processor components. In some
embodiments, system agent core 1210 includes one or more
integrated memory controllers 1214 to manage access to
various external memory devices (not shown).

In some embodiments, one or more of the processor cores
1202A-1202N 1include support for simultaneous multi-
threading. In such embodiment, the system agent core 1210
includes components for coordinating and operating cores
1202A-1202N during multi-threaded processing. System
agent core 1210 may additionally include a power control
unit (PCU), which includes logic and components to regu-
late the power state of processor cores 1202A-1202N and
graphics processor 1208.

In some embodiments, processor 1200 additionally
includes graphics processor 1208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 1208 couples with the set of shared cache units
1206, and the system agent core 1210, including the one or
more mtegrated memory controllers 1214. In some embodi-
ments, a display controller 1211 1s coupled with the graphics
processor 1208 to drive graphics processor output to one or
more coupled displays. In some embodiments, display con-
troller 1211 may be a separate module coupled with the
graphics processor via at least one interconnect, or may be
integrated within the graphics processor 1208 or system
agent core 1210.

In some embodiments, a ring-based interconnect unit
1212 1s used to couple the internal components of the
processor 1200. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known 1n the art. In some embodiments, graph-
ics processor 1208 couples with the ring-based 1nterconnect
1212 via an I/O link 1213.

The exemplary 1/O link 1213 represents at least one of
multiple varieties of I/O interconnects, icluding an on
package I/O interconnect which facilitates communication

10

15

20

25

30

35

40

45

50

55

60

65

30

between various processor components and a high-perfor-
mance embedded memory module 1218, such as an eDRAM
module. In some embodiments, each of the processor cores
1202A-1202N and graphics processor 1208 use embedded
memory modules 1218 as a shared Last Level Cache.

In some embodiments, processor cores 1202A-1202N are
homogenous cores executing the same nstruction set archi-
tecture. In another embodiment, processor cores 1202A-
1202N are heterogeneous 1n terms of instruction set archi-
tecture (ISA), where one or more of processor cores 1202A-
1202N execute a first instruction set, while at least one of the
other cores executes a subset of the first instruction set or a
different instruction set. In one embodiment processor cores
1202A-1202N are heterogeneous 1n terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. Additionally, processor
1200 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, 1n addi-
tion to other components.

FIG. 13 1s a block diagram of a graphics processor 1300,
which may be a discrete graphics processing unit, or may be
a graphics processor integrated with a plurality of processing
cores. In some embodiments, the graphics processor com-
municates via a memory mapped 1/0O interface to registers
on the graphics processor and with commands placed nto
the processor memory. In some embodiments, graphics
processor 1300 includes a memory interface 1314 to access
memory. Memory interface 1314 can be an interface to local
memory, one or more internal caches, one or more shared
external caches, and/or to system memory.

In some embodiments, graphics processor 1300 also
includes a display controller 1302 to drive display output
data to a display device 1320. Display controller 1302
includes hardware for one or more overlay planes for the
display and composition of multiple layers of video or user
interface elements. In some embodiments, graphics proces-
sor 1300 includes a video codec engine 1306 to encode,
decode, or transcode media to, from, or between one or more
media encoding formats, including, but not limited to Mov-
ing Picture Experts Group (MPEG) formats such as MPEG-
2, Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/V(C-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

In some embodiments, graphics processor 1300 includes
a block mmage transfer (BLIT) engine 1304 to perform
two-dimensional (2D) rasterizer operations including, for
example, bit-boundary block transfers. However, in one
embodiment, 2D graphics operations are performed using
one or more components ol graphics processing engine
(GPE) 1310. In some embodiments, GPE 1310 1s a compute
engine for performing graphics operations, including three-
dimensional (3D) graphics operations and media operations.

In some embodiments, GPE 310 includes a 3D pipeline
1312 for performing 3D operations, such as rendering three-
dimensional 1mages and scenes using processing functions
that act upon 3D primitive shapes (e.g., rectangle, triangle,
etc.). The 3D pipeline 1312 includes programmable and
fixed function elements that perform various tasks within the
clement and/or spawn execution threads to a 3D/Media
sub-system 1315. While 3D pipeline 1312 can be used to
perform media operations, an embodiment of GPE 1310 also
includes a media pipeline 1316 that 1s specifically used to
perform media operations, such as video post-processing
and 1mage enhancement.

US 10,297,047 B2

31

In some embodiments, media pipeline 1316 includes fixed
function or programmable logic units to perform one or
more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
cration 1n place of, or on behalf of video codec engine 1306.
In some embodiments, media pipeline 1316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 1315. The spawned threads
perform computations for the media operations on one or
more graphics execution umts included mm 3D/Media sub-
system 1315.

In some embodiments, 3D/Media sub-system 1315
includes logic for executing threads spawned by 3D pipeline
1312 and media pipeline 1316. In one embodiment, the
pipelines send thread execution requests to 3D/Media sub-
system 1315, which includes thread dispatch logic for arbi-
trating and dispatching the various requests to available
thread execution resources. The execution resources include
an array of graphics execution units to process the 3D and
media threads. In some embodiments, 3D/Media sub-system
1315 includes one or more internal caches for thread instruc-
tions and data. In some embodiments, the subsystem also
includes shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

Additional Exemplary Graphics Processing Engine

FIG. 14 1s a block diagram of a graphics processing
engine 1410 of a graphics processor in accordance with
some embodiments. In one embodiment, the graphics pro-
cessing engine (GPE) 1410 1s a version of the GPE 1310
shown 1 FIG. 13. Elements of FIG. 14 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function 1n any manner similar
to that described elsewhere herein, but are not limited to
such. For example, the 3D pipeline 1312 and media pipeline
1316 of FIG. 13 are 1llustrated. The media pipeline 1316 1s
optional 1n some embodiments of the GPE 1410 and may not
be explicitly included within the GPE 1410. For example
and 1n at least one embodiment, a separate media and/or
image processor 1s coupled to the GPE 1410.

In some embodiments, GPE 1410 couples with or
includes a command streamer 1403, which provides a com-
mand stream to the 3D pipeline 1312 and/or media pipelines
1316. In some embodiments, command streamer 1403 1s
coupled with memory, which can be system memory, or one
or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 1403
receives commands from the memory and sends the com-
mands to 3D pipeline 1312 and/or media pipeline 1316. The
commands are directives fetched from a ring builer, which
stores commands for the 3D pipeline 1312 and media
pipeline 1316. In one embodiment, the ring bufler can
additionally include batch command buflers storing batches
of multiple commands. The commands for the 3D pipeline
1312 can also include references to data stored 1n memory,
such as but not limited to vertex and geometry data for the
3D pipeline 1312 and/or image data and memory objects for
the media pipeline 1316. The 3D pipeline 1312 and media
pipeline 1316 process the commands and data by performing
operations via logic within the respective pipelines or by
dispatching one or more execution threads to a graphics core
array 1414.

In various embodiments the 3D pipeline 1312 can execute
one or more shader programs, such as vertex shaders,
geometry shaders, pixel shaders, fragment shaders, compute
shaders, or other shader programs, by processing the instruc-
tions and dispatching execution threads to the graphics core

10

15

20

25

30

35

40

45

50

55

60

65

32

array 1414. The graphics core array 1414 provides a unified
block of execution resources. Multi-purpose execution logic
(e.g., execution units) within the graphic core array 1414
includes support for various 3D API shader languages and
can execute multiple simultaneous execution threads asso-
ciated with multiple shaders.

In some embodiments the graphics core array 1414 also
includes execution logic to perform media functions, such as
video and/or 1mage processing. In one embodiment, the
execution units additionally include general-purpose logic
that 1s programmable to perform parallel general purpose
computational operations, 1n addition to graphics processing
operations. The general purpose logic can perform process-
ing operations in parallel or 1in conjunction with general
purpose logic within the processor core(s) 1107 of FIG. 11
or core 1202A-1202N as in FIG. 12.

Output data generated by threads executing on the graph-

ics core array 1414 can output data to memory 1n a unified
return builer (URB) 1418. The URB 1418 can store data for
multiple threads. In some embodiments the URB 1418 may
be used to send data between different threads executing on
the graphics core array 1414. In some embodiments the
URB 1418 may additionally be used for synchromization
between threads on the graphics core array and fixed func-
tion logic within the shared function logic 1420.

In some embodiments, graphics core array 1414 1s scal-
able, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 1410. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

The graphics core array 1414 couples with shared func-
tion logic 1420 that includes multiple resources that are
shared between the graphics cores 1n the graphics core array.
The shared functions within the shared function logic 1420
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 1414. In
various embodiments, shared function logic 1420 includes
but 1s not limited to sampler 1421, math 1422, and inter-
thread communication (ITC) 1423 logic. Additionally, some
embodiments implement one or more cache(s) 1425 within
the shared function logic 1420. A shared function 1s 1mple-
mented where the demand for a given specialized function
1s insuilicient for inclusion within the graphics core array
1414. Instead a single mstantiation of that specialized func-
tion 1s 1mplemented as a stand-alone entity 1n the shared
function logic 1420 and shared among the execution
resources within the graphics core array 1414. The precise
set of functions that are shared between the graphics core
array 1414 and included within the graphics core array 1414
varies between embodiments.

FIG. 15 1s a block diagram of another embodiment of a
graphics processor 1500. Elements of FIG. 15 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

In some embodiments, graphics processor 1500 includes
a ring 1nterconnect 1502, a pipeline front-end 1504, a media
engine 1537, and graphics cores 1580A-1580N. In some
embodiments, ring interconnect 1502 couples the graphics
processor to other processing units, including other graphics
Processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor 1s one of many
processors integrated within a multi-core processing system.

US 10,297,047 B2

33

In some embodiments, graphics processor 1500 receives
batches of commands via ring interconnect 1502. The
incoming commands are interpreted by a command streamer
1503 1n the pipeline front-end 1504. In some embodiments,
graphics processor 1500 includes scalable execution logic to
perform 3D geometry processing and media processing via
the graphics core(s) 1580A-1580N. For 3D geometry pro-
cessing commands, command streamer 1503 supplies com-
mands to geometry pipeline 1536. For at least some media
processing commands, command streamer 1503 supplies the
commands to a video front-end 1534, which couples with a
media engine 1537. In some embodiments, media engine
1537 includes a Video Quality Engine (VQE) 1530 for video
and 1mage post-processing and a multi-format encode/de-
code (MFX) 1533 engine to provide hardware-accelerated
media data encode and decode. In some embodiments,
geometry pipeline 1536 and media engine 1537 ecach gen-
erate execution threads for the thread execution resources
provided by at least one graphics core 1580A.

In some embodiments, graphics processor 1500 includes
scalable thread execution resources featuring modular cores
1580A-1580N (sometimes referred to as core slices), each
having multiple sub-cores 1550A-550N, 1560A-1560N
(sometimes referred to as core sub-slices). In some embodi-
ments, graphics processor 1500 can have any number of
graphics cores 1580A through 1580N. In some embodi-
ments, graphics processor 1500 includes a graphics core
1580A having at least a first sub-core 1550A and a second
sub-core 1560A. In other embodiments, the graphics pro-
cessor 15 a low power processor with a single sub-core (e.g.,
1550A). In some embodiments, graphics processor 1500
includes multiple graphics cores 1580A-1580N, each
including a set of first sub-cores 1550A-1550N and a set of
second sub-cores 1560A-1560N. Each sub-core in the set of
first sub-cores 1550A-1550N 1ncludes at least a first set of
execution units 15352A-1552N and media/texture samplers
1554 A-1554N. Each sub-core in the set of second sub-cores
1560A-1560N includes at least a second set of execution
units 1562A-1562N and samplers 1564A-1564N. In some
embodiments, each sub-core 1550A-1550N, 1560A-1560N
shares a set of shared resources 1570A-1570N. In some
embodiments, the shared resources include shared cache
memory and pixel operation logic. Other shared resources
may also be included i the various embodiments of the
graphics processor.

Additional Exemplary Execution Units

FIG. 16 illustrates thread execution logic 1600 including
an array of processing elements employed in some embodi-
ments of a GPE. Flements of FIG. 16 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function 1n any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, thread execution logic 1600
includes a shader processor 1602, a thread dispatcher 1604,
instruction cache 1606, a scalable execution unit array
including a plurality of execution units 1608 A-1608N, a
sampler 1610, a data cache 1612, and a data port 1614. In
one embodiment the scalable execution umit array can
dynamically scale by enabling or disabling one or more
execution units (e.g., any of execution unit 1608A, 16088,
1608C, 1608D, through 1608N-1 and 1608IN) based on the
computational requirements of a workload. In one embodi-
ment the included components are interconnected via an
interconnect fabric that links to each of the components. In
some embodiments, thread execution logic 1600 includes
one or more connections to memory, such as system memory

10

15

20

25

30

35

40

45

50

55

60

65

34

or cache memory, through one or more of instruction cache
1606, data port 1614, sampler 1610, and execution units
1608A-1608N. In some embodiments, each execution unit
(e.g. 1608A) 1s a stand-alone programmable general purpose
computational unit that i1s capable of executing multiple
simultaneous hardware threads while processing multiple
data elements in parallel for each thread. In various embodi-
ments, the array of execution units 1608 A-1608N 1s scalable
to mclude any number individual execution units.

In some embodiments, the execution units 1608 A-1608N
are primarily used to execute shader programs. A shader
processor 1602 can process the various shader programs and
dispatch execution threads associated with the shader pro-
grams via a thread dispatcher 1604. In one embodiment the
thread dispatcher includes logic to arbitrate thread 1nitiation
requests from the graphics and media pipelines and 1nstan-
tiate the requested threads on one or more execution unit in
the execution units 1608 A-1608N. For example, the geom-
ctry pipeline (e.g., 1536 of FIG. 15) can dispatch vertex,
tessellation, or geometry shaders to the thread execution
logic 1600 (FIG. 16) for processing. In some embodiments,
thread dispatcher 1604 can also process runtime thread
spawning requests from the executing shader programs.

In some embodiments, the execution units 1608 A-1608N
support an instruction set that includes native support for
many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Bach of the execution units 1608A-1608N is capable of
multi-1ssue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an eflicient execu-
tion environment in the face of higher latency memory
accesses. Hach hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution 1s multi-issue per clock
to pipelines capable of mteger, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 1608A-1608N causes a waiting thread to
sleep until the requested data has been returned. While the
waiting thread 1s sleeping, hardware resources may be
devoted to processing other threads. For example, during a
delay associated with a vertex shader operation, an execu-
tion unit can perform operations for a pixel shader, fragment
shader, or another type of shader program, including a
different vertex shader.

Each execution unit i execution units 1608A-1608N
operates on arrays of data elements. The number of data
elements 1s the “execution size,” or the number of channels
for the nstruction. An execution channel 1s a logical unit of
execution for data element access, masking, and flow control
within instructions. The number of channels may be inde-
pendent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units
1608 A-1608N support integer and floating-point data types.

The execution unit mstruction set includes SIMD 1nstruc-
tions. The various data elements can be stored as a packed
data type 1n a register and the execution unit will process the
various elements based on the data size of the elements. For
example, when operating on a 256-bit wide vector, the 256

US 10,297,047 B2

35

bits of the vector are stored in a register and the execution
unit operates on the vector as four separate 64-bit packed

data elements (Quad-Word (QW) size data elements), eight
separate 32-bit packed data elements (Double Word (DW)
size data eclements), sixteen separate 16-bit packed data
clements (Word (W) size data eclements), or thirty-two
separate 8-bit data elements (byte (B) size data elements).
However, different vector widths and register sizes are
possible.

One or more internal mnstruction caches (e.g., 1606) are
included 1n the thread execution logic 1600 to cache thread
instructions for the execution units. In some embodiments,
one or more data caches (e.g., 1612) are included to cache
thread data during thread execution. In some embodiments,
a sampler 1610 1s included to provide texture sampling for
3D operations and media sampling for media operations. In
some embodiments, sampler 1610 includes specialized tex-
ture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

During execution, the graphics and media pipelines send
thread initiation requests to thread execution logic 1600 via
thread spawming and dispatch logic. Once a group of geo-
metric objects has been processed and rasterized into pixel
data, pixel processor logic (e.g., pixel shader logic, fragment
shader logic, etc.) within the shader processor 1602 1s
invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buflers,
depth butlers, stencil builers, etc.). In some embodiments, a
pixel shader or fragment shader calculates the values of the
various vertex attributes that are to be interpolated across the
rasterized object. In some embodiments, pixel processor
logic within the shader processor 1602 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. To execute the shader program,
the shader processor 1602 dispatches threads to an execution
unit (e.g., 1608A) via thread dispatcher 1604. In some
embodiments, pixel shader 1602 uses texture sampling logic
in the sampler 1610 to access texture data in texture maps
stored 1n memory. Arithmetic operations on the texture data
and the mput geometry data compute pixel color data for
cach geometric fragment, or discards one or more pixels
from further processing.

In some embodiments, the data port 1614 provides a
memory access mechanism for the thread execution logic
1600 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 1614 includes or couples to one or more cache
memories (e.g., data cache 1612) to cache data for memory
access via the data port.

FI1G. 17 15 a block diagram illustrating a graphics proces-
sor 1nstruction formats 1700 according to some embodi-
ments. In one or more embodiment, the graphics processor
execution units support an mstruction set having instructions
in multiple formats. The solid lined boxes illustrate the
components that are generally included 1n an execution unit
instruction, while the dashed lines include components that
are optional or that are only included 1n a sub-set of the
instructions. In some embodiments, instruction format 1700
described and illustrated are macro-instructions, in that they
are instructions supplied to the execution unit, as opposed to
micro-operations resulting from instruction decode once the
instruction 1s processed.

In some embodiments, the graphics processor execution
units natively support instructions i a 128-bit instruction
format 1710. A 64-bit compacted instruction format 1730 1s
available for some 1nstructions based on the selected mstruc-

10

15

20

25

30

35

40

45

50

55

60

65

36

tion, instruction options, and number of operands. The
native 128-bit instruction format 710 provides access to all
instruction options, while some options and operations are
restricted 1n the 64-bit format 1730. The native instructions
available 1n the 64-bit format 1730 vary by embodiment. In
some embodiments, the instruction 1s compacted in part
using a set of index values 1 an index field 1713. The
execution unit hardware references a set of compaction
tables based on the index values and uses the compaction
table outputs to reconstruct a native imstruction 1n the 128-bit
instruction format 1710.

For each format, instruction opcode 1712 defines the
operation that the execution unit 1s to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, istruction
control field 1714 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit 1nstruction format 1710 an exec-size field 1716
limits the number of data channels that will be executed 1n
parallel. In some embodiments, exec-size field 1716 1s not
available for use 1n the 64-bit compact instruction format
1730.

Some execution umt instructions have up to three oper-
ands including two source operands, src0 1720, srcl 1722,
and one destination 1718. In some embodiments, the execu-
tion units support dual destination istructions, where one of
the destinations 1s 1mplied. Data manipulation instructions
can have a third source operand (e.g., SRC2 1724), where
the instruction opcode 1712 determines the number of
source operands. An instruction’s last source operand can be
an 1mmediate (e.g., hard-coded) value passed with the
istruction.

In some embodiments, the 128-bit instruction format
1710 includes an access/address mode field 1726 specifying,
for example, whether direct register addressing mode or
indirect register addressing mode 1s used. When direct
register addressing mode 1s used, the register address of one
or more operands 1s directly provided by bits in the instruc-
tion.

In some embodiments, the 128-bit instruction format
1710 includes an access/address mode field 1726, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode 1s used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the mstruction operands. For example,
when 1n a first mode, the istruction may use byte-aligned
addressing for source and destination operands and when 1n
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

In one embodiment, the address mode portion of the
access/address mode field 1726 determines whether the
istruction 1s to use direct or indirect addressing. When
direct register addressing mode 1s used bits 1n the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode 1s used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field 1n the mnstruction.

US 10,297,047 B2

37

In some embodiments instructions are grouped based on
opcode 1712 bit-fields to simplity Opcode decode 1740. For
an 8-bit opcode, bits 4, 5, and 6 allow the execution unit to
determine the type of opcode. The precise opcode grouping
shown 1s merely an example. In some embodiments, a move
and logic opcode group 1742 includes data movement and
logic instructions (e.g., move (mov), compare (cmp)). In
some embodiments, move and logic group 1742 shares the
five most significant bits (MSB), where move (mov) mstruc-
tions are 1n the form of 0000xxxxb and logic nstructions are
in the form of 0001xxxxb. A flow control mstruction group
1744 (e.g., call, jump (Jmp)) includes instructions in the
form of 0010xxxxb (e.g., 0x20). A miscellaneous instruction
group 1746 1ncludes a mix of instructions, including syn-
chronization instructions (e.g., wait, send) in the form of
0011xxxxb (e.g., 0x30). A parallel math instruction group
1748 includes component-wise arithmetic mstructions (e.g.,
add, multiply (mul)) 1n the form of 0100xxxxb (e.g., 0x40).

The parallel math group 1748 performs the arithmetic opera-
tions 1n parallel across data channels. The vector math group
1750 includes arithmetic mnstructions (e.g., dp4) in the form
of 0101xxxxb (e.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector oper-
ands.

Additional Exemplary Graphics Pipeline

FIG. 18 1s a block diagram of another embodiment of a
graphics processor 1800. Elements of FIG. 18 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

In some embodiments, graphics processor 1800 includes
a graphics pipeline 1820, a media pipeline 1830, a display
engine 1840, thread execution logic 1850, and a render
output pipeline 1870. In some embodiments, graphics pro-
cessor 1800 1s a graphics processor within a multi-core
processing system that includes one or more general purpose
processing cores. The graphics processor 1s controlled by
register writes to one or more control registers (not shown)
or via commands 1ssued to graphics processor 1800 via a
ring interconnect 1802. In some embodiments, ring inter-
connect 1802 couples graphics processor 1800 to other
processing components, such as other graphics processors or
general-purpose processors. Commands from ring intercon-
nect 1802 are interpreted by a command streamer 1803,
which supplies instructions to individual components of
graphics pipeline 1820 or media pipeline 1830.

In some embodiments, command streamer 1803 directs
the operation of a vertex fetcher 1803 that reads vertex data
from memory and executes vertex-processing commands
provided by command streamer 1803. In some embodi-
ments, vertex fetcher 18035 provides vertex data to a vertex
shader 1807, which performs coordinate space transforma-
tion and lighting operations to each vertex. In some embodi-
ments, vertex fetcher 1805 and vertex shader 1807 execute
vertex-processing 1nstructions by dispatching execution
threads to execution units 1852A-1852B via a thread dis-
patcher 1831.

In some embodiments, execution units 1852A-18528 are
an array ol vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 1852A-1852B have an attached L1
cache 1851 that 1s specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that 1s partitioned to
contain data and instructions in different partitions.

10

15

20

25

30

35

40

45

50

55

60

65

38

In some embodiments, graphics pipeline 1820 includes
tessellation components to perform hardware-accelerated
tessellation of 3D objects. In some embodiments, a pro-
grammable hull shader 811 configures the tessellation opera-
tions. A programmable domain shader 817 provides back-
end evaluation of tessellation output. A tessellator 1813
operates at the direction of hull shader 1811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that 1s provided
as mput to graphics pipeline 1820. In some embodiments, 1f
tessellation 1s not used, tessellation components (e.g., hull
shader 1811, tessellator 1813, and domain shader 1817) can
be bypassed.

In some embodiments, complete geometric objects can be
processed by a geometry shader 1819 via one or more
threads dispatched to execution units 1852A-1852B, or can
proceed directly to the clipper 1829. In some embodiments,
the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as 1n previous
stages of the graphics pipeline. It the tessellation 1s disabled
the geometry shader 1819 receives mput from the vertex
shader 1807. In some embodiments, gecometry shader 1819
1s programmable by a geometry shader program to perform
geometry tessellation 1f the tessellation units are disabled.

Belore rasterization, a clipper 1829 processes vertex data.
The clipper 1829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 1873 1n the render output pipeline 1870 dis-
patches pixel shaders to convert the geometric objects mnto
their per pixel representations. In some embodiments, pixel
shader logic 1s included 1n thread execution logic 1850. In
some embodiments, an application can bypass the rasterizer
and depth test component 1873 and access un-rasterized
vertex data via a stream out unit 1823.

The graphics processor 1800 has an interconnect bus,
interconnect fabric, or some other interconnect mechanism
that allows data and message passing amongst the major
components of the processor. In some embodiments, execu-
tion units 1852A-1852B and associated cache(s) 1851, tex-
ture and media sampler 1854, and texture/sampler cache
1858 interconnect via a data port 1856 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
1854, caches 1851, 1858 and execution units 1852A-18528
cach have separate memory access paths.

In some embodiments, render output pipeline 1870 con-
tains a rasterizer and depth test component 1873 that con-
verts vertex-based objects 1nto an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
1878 and depth cache 1879 are also available 1n some
embodiments. A pixel operations component 1877 performs
pixel-based operations on the data, though 1n some
instances, pixel operations associated with 2D operations
(e.g. bit block 1mage transiers with blending) are performed
by the 2D engine 1841, or substituted at display time by the
display controller 1843 using overlay display planes. In
some embodiments, a shared [.3 cache 1875 1s available to
all graphics components, allowing the sharing of data with-
out the use of main system memory.

In some embodiments, graphics processor media pipeline
1830 includes a media engine 1837 and a video front-end
1834. In some embodiments, video front-end 1834 receives
pipeline commands from the command streamer 1803. In
some embodiments, media pipeline 1830 1includes a separate

US 10,297,047 B2

39

command streamer. In some embodiments, video {front-end
1834 processes media commands before sending the com-
mand to the media engine 1837. In some embodiments,
media engine 1837 includes thread spawning functionality
to spawn threads for dispatch to thread execution logic 1850
via thread dispatcher 1831.

In some embodiments, graphics processor 1800 includes
a display engine 1840. In some embodiments, display engine
1840 1s external to processor 1800 and couples with the
graphics processor via the ring interconnect 1802, or some
other interconnect bus or fabric. In some embodiments,
display engine 1840 includes a 2D engine 1841 and a display
controller 1843. In some embodiments, display engine 1840
contains special purpose logic capable of operating inde-
pendently of the 3D pipeline. In some embodiments, display
controller 1843 couples with a display device (not shown),
which may be a system integrated display device, as 1n a
laptop computer, or an external display device attached via
a display device connector.

In some embodiments, graphics pipeline 1820 and media
pipeline 1830 are configurable to perform operations based
on multiple graphics and media programming interfaces and
are not specific to any one application programming inter-
tace (API). In some embodiments, driver software for the
graphics processor translates API calls that are specific to a
particular graphics or media library into commands that can
be processed by the graphics processor. In some embodi-
ments, support 1s provided for the Open Graphics Library
(OpenGL), Open Computing Language (OpenCL), and/or
Vulkan graphics and compute API, all from the Khronos
Group. In some embodiments, support may also be provided
for the Direct3D library from the Microsoft Corporation. In
some embodiments, a combination of these libraries may be
supported. Support may also be provided for the Open
Source Computer Vision Library (OpenCV). A future API
with a compatible 3D pipeline would also be supported i1 a
mapping can be made from the pipeline of the future API to
the pipeline of the graphics processor.

Exemplary Graphics Pipeline Programming

FIG. 19A 1s a block diagram illustrating a graphics
processor command format 1900 according to some embodi-
ments. FIG. 19B 1s a block diagram illustrating a graphics
processor command sequence 1910 according to an embodi-
ment. The solid lined boxes in FIG. 19A illustrate the
components that are generally included in a graphics com-
mand while the dashed lines include components that are
optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 1900 of FIG. 19A includes data fields to 1dentity a
target client 1902 of the command, a command operation
code (opcode) 1904, and the relevant data 1906 for the
command. A sub-opcode 1905 and a command size 1908 are
also mncluded 1n some commands.

In some embodiments, client 1902 specifies the client unit
of the graphics device that processes the command data. In
some embodiments, a graphics processor command parser
examines the client field of each command to condition the
turther processing of the command and route the command
data to the appropnate client unit. In some embodiments, the
graphics processor client units include a memory interface
unit, a render unit, a 2D unit, a 3D unit, and a media unit.
Each client unit has a corresponding processing pipeline that
processes the commands. Once the command 1s received by
the client unit, the client unit reads the opcode 1904 and, it
present, sub-opcode 1905 to determine the operation to
perform. The client unit performs the command using infor-
mation in data field 1906. For some commands an explicit

10

15

20

25

30

35

40

45

50

55

60

65

40

command size 1908 1s expected to specily the size of the
command. In some embodiments, the command parser auto-
matically determines the size of at least some of the com-
mands based on the command opcode. In some embodi-
ments commands are aligned via multiples of a double word.

The flow diagram i FIG. 19B shows an exemplary
graphics processor command sequence 1910. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence 1s shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be i1ssued as batch of commands 1n a
command sequence, such that the graphics processor will
process the sequence of commands 1n at least partially
concurrence.

In some embodiments, the graphics processor command
sequence 1910 may begin with a pipeline flush command
1912 to cause any active graphics pipeline to complete the
currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 1922 and the media pipeline
1924 do not operate concurrently. The pipeline flush 1s
performed to cause the active graphics pipeline to complete
any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that 1s
marked ‘dirty” can be flushed to memory. In some embodi-
ments, pipeline tlush command 1912 can be used for pipe-
line synchronization or before placing the graphics proces-
sor 1nto a low power state.

In some embodiments, a pipeline select command 1913 1s
used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 1913 1s required
only once within an execution context before 1ssuing pipe-
line commands unless the context 1s to 1ssue commands for
both pipelines. In some embodiments, a pipeline tlush
command 1912 1s required immediately before a pipeline
switch via the pipeline select command 1913.

In some embodiments, a pipeline control command 1914
configures a graphics pipeline for operation and is used to
program the 3D pipeline 1922 and the media pipeline 1924.
In some embodiments, pipeline control command 1914
configures the pipeline state for the active pipeline. In one
embodiment, the pipeline control command 1914 is used for
pipeline synchronization and to clear data from one or more
cache memories within the active pipeline before processing
a batch of commands.

In some embodiments, return bufier state commands 1916
are used to configure a set of return butlers for the respective
pipelines to write data. Some pipeline operations require the
allocation, selection, or configuration of one or more return
buflers into which the operations write intermediate data
during processing. In some embodiments, the graphics pro-
cessor also uses one or more return buflers to store output
data and to perform cross thread communication. In some
embodiments, the return bufler state 1916 includes selecting
the size and number of return builers to use for a set of
pipeline operations.

The remaining commands 1 the command sequence
differ based on the active pipeline for operations. Based on
a pipeline determination 1920, the command sequence 1s
tailored to the 3D pipeline 1922 beginning with the 3D

US 10,297,047 B2

41

pipeline state 1930 or the media pipeline 1924 beginning at
the media pipeline state 1940.

The commands to configure the 3D pipeline state 1930
include 3D state setting commands for vertex buller state,
vertex element state, constant color state, depth bufler state,
and other state variables that are to be configured betfore 3D
primitive commands are processed. The values of these
commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 1930 commands are also able to selectively disable or
bypass certain pipeline elements 11 those elements will not
be used.

In some embodiments, 3D primitive 1932 command 1s
used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 1932
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 1932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buflers. In some embodiments, 3D primitive 1932
command 1s used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 1922 dispatches shader execution threads to graph-
1CS processor execution units.

In some embodiments, 3D pipeline 1922 1s triggered via
an execute 1934 command or event. In some embodiments,
a register write triggers command execution. In some
embodiments execution 1s triggered via a ‘go’ or ‘kick’
command 1n the command sequence. In one embodiment,
command execution 1s triggered using a pipeline synchro-
nization command to flush the command sequence through
the graphics pipeline. The 3D pipeline will perform geom-
etry processing for the 3D primitives. Once operations are
complete, the resulting geometric objects are rasterized and
the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.

In some embodiments, the graphics processor command
sequence 1910 follows the media pipeline 1924 path when
performing media operations. In general, the specific use
and manner of programming for the media pipeline 1924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be ofifloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or 1n part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor 1s used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

In some embodiments, media pipeline 1924 1s configured
in a similar manner as the 3D pipeline 1922. A set of
commands to configure the media pipeline state 1940 are
dispatched or placed into a command queue before the
media object commands 1942. In some embodiments, com-
mands for the media pipeline state 1940 include data to
configure the media pipeline elements that will be used to
process the media objects. This 1includes data to configure
the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 1940 also
support the use of one or more pointers to “indirect” state
clements that contain a batch of state settings.

10

15

20

25

30

35

40

45

50

55

60

65

42

In some embodiments, media object commands 1942
supply pointers to media objects for processing by the media
pipeline. The media objects include memory bufllers con-
taining video data to be processed. In some embodiments, all
media pipeline states must be valid before 1ssuing a media
object command 1942. Once the pipeline state 1s configured
and media object commands 1942 are queued, the media
pipeline 1924 1s triggered via an execute command 1944 or
an equivalent execute event (e.g., register write). Output
from media pipeline 1924 may then be post processed by
operations provided by the 3D pipeline 1922 or the media
pipeline 1924. In some embodiments, GPGPU operations
are configured and executed 1n a similar manner as media
operations.

Exemplary Graphics Software Architecture

FIG. 20 illustrates exemplary graphics software architec-
ture for a data processing system 2000 according to some
embodiments. In some embodiments, software architecture
includes a 3D graphics application 2010, an operating sys-
tem 2020, and at least one processor 2030. In some embodi-
ments, processor 2030 includes a graphics processor 2032
and one or more general-purpose processor core(s) 2034.
The graphics application 2010 and operating system 2020
cach execute 1 the system memory 2050 of the data
processing system.

In some embodiments, 3D graphics application 2010
contains one or more shader programs including shader
instructions 2012. The shader language instructions may be
in a high-level shader language, such as the High Level
Shader Language (HLSL) or the OpenGL Shader Language
(GLSL). The application also includes executable instruc-
tions 2014 1n a machine language suitable for execution by
the general-purpose processor core 2034. The application
also mcludes graphics objects 2016 defined by vertex data.

In some embodiments, operating system 2020 1s a Micro-
solt® Windows® operating system Ifrom the Microsoit
Corporation, a proprictary UNIX-like operating system, or
an open source UNIX-like operating system using a variant

of the Linux kernel. The operating system 2020 can support
a graphics API 2022 such as the Direct3D API, the OpenGL

API, or the Vulkan API. When the Direct3D API 1s 1n use,
the operating system 2020 uses a front-end shader compiler
2024 to compile any shader instructions 2012 in HLSL nto
a lower-level shader language. The compilation may be a
just-in-time (JI'T) compilation or the application can perform
shader pre-compilation. In some embodiments, high-level
shaders are compiled into low-level shaders during the
compilation of the 3D graphics application 2010. In some
embodiments, the shader instructions 2012 are provided 1n
an intermediate form, such as a version of the Standard
Portable Intermediate Representation (SPIR) used by the
Vulkan API.

In some embodiments, user mode graphics driver 2026
contains a back-end shader compiler 2027 to convert the
shader instructions 2012 into a hardware specific represen-
tation. When the OpenGL API is 1n use, shader instructions
2012 1n the GLSL high-level language are passed to a user
mode graphics driver 2026 for compilation. In some
embodiments, user mode graphics driver 2026 uses operat-
ing system kernel mode functions 2028 to communicate
with a kernel mode graphics driver 2029. In some embodi-
ments, kernel mode graphics driver 2029 communicates
with graphics processor 2032 to dispatch commands and
instructions.

Exemplary IP Core Implementations

One or more aspects of at least one embodiment may be

implemented by representative code stored on a machine-

US 10,297,047 B2

43

readable medium which represents and/or defines logic
within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described 1n asso-
ciation with any of the embodiments described herein.

FIG. 21 1s a block diagram 1llustrating an IP core devel-
opment system 2100 that may be used to manufacture an
integrated circuit to perform operations according to an
embodiment. The IP core development system 2100 may be
used to generate modular, re-usable designs that can be
incorporated mnto a larger design or used to construct an
entire mtegrated circuit (e.g., an SOC integrated circuit). A
design facility 2130 can generate a software simulation 2110
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 2110 can be used to
design, test, and verily the behavior of the IP core using a
simulation model 2112. The simulation model 2112 may
include functional, behavioral, and/or timing simulations. A
register transier level (RTL) design 2115 can then be created
or synthesized from the simulation model 2112. The RTL
design 2115 i1s an abstraction of the behavior of the inte-
grated circuit that models the tlow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 2115, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the mitial design and simula-
tion may vary.

The RTL design 2115 or equivalent may be further
synthesized by the design facility into a hardware model
2120, which may be 1n a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verity the IP
core design. The IP core design can be stored for delivery to
a 3" party fabrication facility 2165 using non-volatile
memory 2140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 2150 or wireless connection 2160. The fabrica-
tion facility 2165 may then fabricate an integrated circuit
that 1s based at least in part on the IP core design. The
tabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

FIG. 22-24 1llustrated exemplary integrated circuits and
associated graphics processors that may be fabricated using
one or more IP cores, according to various embodiments
described herein. In addition to what 1s illustrated, other
logic and circuits may be included, including additional
graphics processors/cores, peripheral interface controllers,
or general purpose processor cores.

FIG. 22 1s a block diagram illustrating an exemplary
system on a chip integrated circuit 2200 that may be
tabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 2200 includes

10

15

20

25

30

35

40

45

50

55

60

65

44

one or more application processor(s) 22035 (e.g., CPUs), at
least one graphics processor 2210, and may additionally
include an 1mage processor 2215 and/or a video processor
2220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 2200
includes peripheral or bus logic including a USB controller
2225, UART controller 2230, an SPI/SDIO controller 2235,
and an I°S/I°C controller 2240. Additionally, the integrated
circuit can include a display device 2245 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 2250 and a mobile industry processor interface
(MIPI) display interface 2255. Storage may be provided by
a flash memory subsystem 2260 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 2265 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 2270.

FIG. 23 1s a block diagram illustrating an exemplary
graphics processor 2310 of a system on a chip integrated
circuit that may be fabricated using one or more IP cores,
according to an embodiment. Graphics processor 2310 can
be a vaniant of the graphics processor 2210 of FIG. 22.
Graphics processor 2310 includes a vertex processor 2305
and one or more fragment processor(s) 2315A-23135N (e.g.,
2315A, 2315B, 2315C, 2315D, through 2315N-1, and
2315N). Graphics processor 2310 can execute difierent
shader programs via separate logic, such that the vertex
processor 2305 1s optimized to execute operations for vertex
shader programs, while the one or more Iragment
processor(s) 2315A-2315N execute fragment (e.g., pixel)
shading operations for fragment or pixel shader programs.
The vertex processor 23035 performs the vertex processing
stage of the 3D graphics pipeline and generates primitives
and vertex data. The fragment processor(s) 2315A-2315N
use the primitive and vertex data generated by the vertex
processor 2305 to produce a framebuiler that 1s displayed on
a display device. In one embodiment, the Ifragment
processor(s) 2315A-2315N are optimized to execute frag-
ment shader programs as provided for 1n the OpenGL API,
which may be used to perform similar operations as a pixel
shader program as provided for in the Direct 3D API.

Graphics processor 2310 additionally includes one or
more memory management units (MMUSs) 2320A-2320B,
cache(s) 2325A-23258, and circuit interconnect(s) 2330A-
2330B. The one or more MMU(s) 2320A-2320B provide for
virtual to physical address mapping for graphics processor
2310, including for the vertex processor 23035 and/or frag-
ment processor(s) 2315A-2315N, which may reference ver-
tex or image/texture data stored in memory, 1 addition to
vertex or image/texture data stored in the one or more
cache(s) 2325A-23258. In one embodiment the one or more
MMU(s) 2320A-2320B may be synchromized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
2205, image processor 2215, and/or video processor 2220 of
FIG. 22, such that each processor 2205-2220 can participate
in a shared or unified virtual memory system. The one or
more circuit mnterconnect(s) 2330A-2330B enable graphics
processor 2310 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

FIG. 24 1s a block diagram illustrating an additional
exemplary graphics processor 2410 of a system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment. Graphics processor
2410 can be a varniant of the graphics processor 2210 of FIG.
22. Graphics processor 2410 includes the one or more

US 10,297,047 B2

45

MMU(s) 2320A-2320B, cache(s) 2325A-2325B, and circuit
interconnect(s) 2330A-2330B of the integrated circuit 2300
of FIG. 23.

Graphics processor 2410 includes one or more shader
core(s) 2415A-2415N (e.g., 2415A, 24158, 2415C, 2415D,
2415E, 2415F, through 2415N-1, and 24135N), which pro-
vides for a unified shader core architecture in which a single
core or type or core can execute all types of programmable
shader code, including shader program code to implement
vertex shaders, fragment shaders, and/or compute shaders.
The exact number of shader cores present can vary among
embodiments and implementations. Additionally, graphics
processor 2410 includes an inter-core task manager 2405,
which acts as a thread dispatcher to dispatch execution
threads to one or more shader cores 2415A-2415N and a
tiling unit 2418 to accelerate tiling operations for tile-based
rendering, in which rendering operations for a scene are
subdivided 1n 1mage space, for example to exploit local
spatial coherence within a scene or to optimize use of
internal caches.

The following clauses and/or examples pertain to specific
embodiments or examples thereof. Specifics in the examples
may be used anywhere 1n one or more embodiments. The
various features of the different embodiments or examples
may be variously combined with some features included and
others excluded to suit a variety of different applications.
Examples may include subject matter such as a method,
means for performing acts of the method, at least one
machine-readable medium including 1nstructions that, when
performed by a machine cause the machine to perform acts
of the method, or of an apparatus or system according to
embodiments and examples described herein. Various com-
ponents can be a means for performing the operations or
functions described.

One embodiment provides for a general-purpose graphics
processor including a hardware graphics rendering pipeline
configured to perform multisample anti-aliasing on rendered
data. The hardware graphics rendering pipeline can include
rasterizer logic to generate sample data for a scene and pixel
processing logic to determine color data for multiple sample
locations for a set of pixels and store the multiple sample
locations for the set of pixels 1n an interleaved format to a
multisample render target.

One embodiment provides for a method of storing color
data to a multisample render target, the method comprising
determining a set of sample color values associated with
individual pixels of a scene, generating a compressed subset
of the set of sample color values including distinct color
values for each pixel, interleaving the compressed subset of
the set of sample color values for each pixel into a single
memory plane, applying lossless compression to the set of
sample color values within the single memory plane, and
storing the single memory plane to a multisample render
target.

One embodiment provides for a data processing system
comprising a non-transitory machine-readable medium to
store instructions for execution by one or more processors of
the data processing system, a memory module to store a
multisample render target, and a general-purpose graphics
processing unit (GPGPU) including a hardware graphics
rendering pipeline configured to perform multisample anti-
aliasing. The hardware graphics rendering pipeline can
include pixel processing logic to determine color data for
multiple sample locations of each pixel in a set of pixels and
to contiguously pack the color data for the multiple sample
locations of each pixel for storage to a multisample render
target.

10

15

20

25

30

35

40

45

50

55

60

65

46

The embodiments described herein refer to specific con-
figurations of hardware, such as application specific inte-
grated circuits (ASICs), configured to perform certain opera-
tions or having a predetermined Ifunctionality. Such
clectronic devices typically include a set of one or more
processors coupled to one or more other components, such
as one or more storage devices (non-transitory machine-
readable storage media), user mput/output devices (e.g., a
keyboard, a touchscreen, and/or a display), and network
connections. The coupling of the set of processors and other
components 1s typically through one or more busses and
bridges (also termed as bus controllers). The storage device
and signals carrying the network tratlic respectively repre-
sent one or more machine-readable storage media and
machine-readable communication media. Thus, the storage
devices of a given electronic device typically store code
and/or data for execution on the set of one or more proces-
sors of that electronic device.

Of course, one or more parts ol an embodiment may be
implemented using different combinations of soitware, firm-
ware, and/or hardware. Throughout this detailed description,
for the purposes of explanation, numerous specific details
were set forth 1n order to provide a thorough understanding
of the present invention. It will be apparent, however, to one
skilled 1n the art that the embodiments may be practiced
without some of these specific details. In certain instances,
well-known structures and functions were not described in
claborate detail to avoid obscuring the mventive subject
matter of the embodiments. Accordingly, the scope and spirit
of the invention should be judged 1n terms of the claims that
follow.

What 1s claimed 1s:

1. A general-purpose graphics processor comprising:

a hardware graphics rendering pipeline configured to
perform multisample anti-aliasing, the hardware graph-
ics rendering pipeline including a pixel processing unit,
the pixel processing unit to determine color data for
multiple sample locations of each pixel 1n a set of pixels
and to contiguously pack the color data for the multiple
sample locations of each pixel for storage to a memory
configured to store multiple sample locations for each
pixel 1n the set of pixels.

2. The general-purpose graphics processor as in claim 1,
additionally comprising a rasterizer to generate sample data
for pixels of a scene.

3. The general-purpose graphics processor as 1n claim 1,
wherein the pixel processing umit i1s to store only unique
color values for the multiple sample locations of each pixel.

4. The general-purpose graphics processor as 1n claim 1,
additionally including a compression unit to remove dupli-
cate color values for the multiple sample locations of each
pixel.

5. The general-purpose graphics processor as in claim 4,
wherein the compression unit 1s additionally to perform
lossless compression on color data before the color data 1s
stored to the memory.

6. The general-purpose graphics processor as in claim 5,
wherein the pixel processing unit 1s to interleave packed
color data for each pixel and interleaved packed color data
1s to be stored to the memory.

7. The general-purpose graphics processor as 1n claim 6,
wherein the compression unit 1s to perform the lossless
compression on the interleaved packed color data.

8. The general-purpose graphics processor as 1n claim 7,
wherein the compression unit 1s to write the interleaved
packed color data to memory.

US 10,297,047 B2

47

9. The general-purpose graphics processor as in claim 8,

wherein the packed color data 1s written to a single memory
lane.

’ 10. The general-purpose graphics processor as 1n claim 1,

wherein the set of pixels 1s a tile of pixels.

11. A method to store color data generated by a graphics
processing unit to a memory configured to store multiple
sample locations per pixel, the method comprising:

determining, within a hardware graphics rendering pipe-

line of the graphics processing unit, a set of sample
color values associated with individual pixels of a
scene;

generating a compressed subset of the set of sample color

values including distinct color values for each pixel;
interleaving the compressed subset of the set of sample
color values for each pixel into a single memory plane;
applying lossless compression to the set of sample color
values within the single memory plane; and

storing the single memory plane to a memory configured

to store multiple sample locations per pixel.

12. The method of claim 11, wherein determining the set
of sample color values associated with individual pixels of
a scene includes determining a color value for multiple
sample locations within a pixel.

13. The method of claim 12, wherein generating a com-
pressed subset of the set of sample color values includes
removing duplicate color values associated with the multiple
sample locations within the pixel.

14. The method of claim 12, wherein generating a com-
pressed subset of the set of sample color values includes
storing only unique color values associated with the multiple
sample locations within the pixel.

15. The method of claim 11, wheremn interleaving the
compressed subset of the set of sample color values for each

10

15

20

25

30

48

pixel into a single memory plane includes contiguously
writing unique color values for the set of sample color values
for multiple pixels within a cache line of a render cache.

16. The method as in claim 15, wherein applying lossless
compression to the set of sample color values within the
single memory plane includes compressing color data stored
in the cache line of the render cache and writing compressed
color data to an address associated with the single memory
plane.

17. A data processing system comprising:

a memory module configurable to store multiple sample

locations for each pixel in a set of pixels; and

a general-purpose graphics processing unit (GPGPU)

including a hardware graphics rendering pipeline con-
figured to perform multisample anti-aliasing, wherein
the hardware graphics rendering pipeline includes a
pixel processing unit to determine color data for mul-
tiple sample locations of each pixel 1n the set of pixels
and to contiguously pack the color data for the multiple
sample locations of each pixel for storage to the
memory module.

18. The data processing system as in claim 17, wherein
the GPGPU additionally includes a compression unit to
perform lossless compression on color data before the color
data 1s stored to memory module.

19. The data processing system as in claim 18, wherein
the pixel processing unit of the GPGPU 1s to interleave
packed color data for each pixel and interleaved packed
color data 1s to be stored to the memory module.

20. The data processing system as in claim 19, wherein
the compression unit 1s to perform the lossless compression
on the mterleaved packed color data.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

