12 United States Patent

Kang et al.

US010296304B2

US 10,296,304 B2
May 21, 2019

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR ANALYZING
DATA BASED ON BLOCK

(71) Applicant: NHN Entertainment Corporation,
Seongnam-s1 (KR)

(72) Inventors: Dong Min Kang, Seongnam-si (KR);
Young Il Cho, Seongnam-s1 (KR);
Chanwoo Yang, Scongnam-s1 (KR);
Kyeong Won Seo, Seongnam-si (KR);
Sol Kim, Seongnam-si (KR)

(73) Assignee: NHN Entertainment Corporation,
Seongnam-s1 (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

(21) Appl. No.: 15/964,127

(22) Filed: Apr. 27, 2018

(65) Prior Publication Data
US 2018/0314499 Al Nov. 1, 2018

(30) Foreign Application Priority Data
Apr. 28, 2017 (KR) .o, 10-2017-0055403

(51) Int. CL
GOGF 8/41
GO6F 8/30
GOGF 8/34
GO6F 8/33

(52) U.S. CL
CPC oo GO6F 8/34 (2013.01); GO6F 8/31
(2013.01); GOGF 8/33 (2013.01); GO6F 8/433
(2013.01)

(2018.01
(2018.01
(2018.01
(2018.01

L N e

(58) Field of Classification Search

None
See application file for complete search history.

170

(56) References Cited
U.S. PATENT DOCUMENTS

5,586,020 A * 12/1996 Isozaki GOG6F 8/42

717/143

90,335,911 B1* 5/2016 Ellot GO6F 17/30572

10,025,571 B1* 7/2018 Bouloscoeenne, GOO6F 8/443
(Continued)

FOREIGN PATENT DOCUMENTS

JP HI11-353164 12/1999
JP 2004-355066 12/2004
(Continued)

OTHER PUBLICATTONS

Japanese Oflice Action dated Feb. 26, 2019 i1ssued 1n Japanese
Patent Application No. 2018-078448.

Primary Examiner — Isaac T Tecklu

(74) Attorney, Agent, or Firm — H.C. Park & Associates,
PLC

(57) ABSTRACT

A computer-implemented data analysis method including
the steps of: providing a block for each group, in which the
blocks are mapped to have diflerent shapes from each other,
and the groups are classified based on an attribute of a
programming language-based function and 1nstruction; pro-
viding a user interface for recerving the block selected by a
user; generating a data analysis flow based on a user creation
block that 1s generated when the selected blocks are com-
bined 1n the user interface; transforming the data analysis
flow to a programming language-based data analysis code
through a language transtorm engine; and performing a data
analysis based on the transformed data analysis code.

14 Claims, 13 Drawing Sheets

<

——160

——150

o=

140

US 10,296,304 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2006/0230393 Al1l* 10/2006 Dohccoeeeviinin, GO6F 8/43
717/137
2008/0159633 Al1* 7/2008 van Eikeren GO6F 17/211
382/209
2010/0042981 Al1* 2/2010 Dreyercooouen... GO6F 8/456
717/146
2013/0081002 Al1* 3/2013 Kalman GO6F 11/3604
717/132
2013/0219372 Al1* 8/2013 Li .ovveviiiiiiniiiinn GO6F 8/443
717/128
2015/0121349 Al1* 4/2015 Abadi GO6F 8/433
717/132
2015/0261881 Al1* 9/2015 Wensel GO6F 17/30958
707/798
2016/0350133 Al1* 12/2016 Imarccoooeerriinnnnenn, GO6F 8/33
2017/0147301 Al1* 5/2017 Rongccooeevvvnnnen, GO6F 8/433

FOREIGN PATENT DOCUMENTS

JP 2010244110
JP 2014-186508
KR 10-2015-0069424

* cited by examiner

10/2010
10/2014
6/2015

US 10,296,304 B2

May 21, 2019 Sheet 1 of 13

U.S. Patent

FIG. 1

—— 160

——150

Ay

170

130

120

110

US 10,296,304 B2

May 21, 2019 Sheet 2 of 13

U.S. Patent

I S

g|npow
UOIIBOIUNW WO

———

tCC
v

GGG

AIOWBA ~17

0Ll

1055930.4 ..___Tlll._

30BLIoIUl O] _

¢

JETNELS

05t

N
I

3NPOW

Gle 1(_ 8dIA8p O/

UOIIBIIUNWWON

e

¢lé

108520014

30B}I8IU O]

(
p1e

AIOWSN

_,\:m

e K |

90IA3D 2IUO0J}09|T

0Ll

U.S. Patent May 21, 2019 Sheet 3 of 13 US 10,296,304 B2

FIG. 3

212

Processor

Block provider 310
Flow generator 320

330

l Data analyzer }/\.J 340

U.S. Patent May 21, 2019 Sheet 4 of 13 US 10,296,304 B2

FIG. 4

(st)
l

Classify functions and instructions into plurality of groups
based on corresponding attribute, and provide blocks that 410
are mapped In different shapes for the respective groups

Provide user interface for receiving user selection 490
In association with provided blocks

l

Generate data analysis flow based on user creation block 430
generated by combining blocks selected through user interface

=

Transform generated data analysis flow to programming
language—based data analysis code through language 440
transform engine

Perform data analysis based on transtormed
| 45()
data analysis code

|
=D

U.S. Patent

510

May 21, 2019 Sheet 5 of 13

FIG. SA

515

US 10,296,304 B2

flle name

o1 1--——--~

513~

iID il

{ gather l f result value (kkv | C "value"

transform
|f [\g
512%%/9/ &‘ R

satisfies condition

514

loading 1

\

in data [matchingv

C. "regex pattem’ line only filters

save J :
file right satisfies the following [kkv] 644 | file only ﬁlters!

satisfying the following condition

line only filters

U.S. Patent May 21, 2019 Sheet 6 of 13 US 10,296,304 B2

F1G. 5B

DITMUIMY

IrighLi _ ‘Jetc/passwd” |if it is possible to import data
L if result value | kk @ satisfies condition
in data __regex pattem” ||

file right satisfies the fotlowing| KKV [[;J 044 | file only filters

satisfying the following condition|kkv |C "value" |line only filters

US 10,296,304 B2

May 21, 2019 Sheet 7 of 13

U.S. Patent

dnoib 9yl

19sn 9l
& 191 1InSaJ UOIINJ8X8 UoIonisul
SJUBJUOD Bll} A

elep Loduw; 0} a|qissod 1 3 J

Emc

\

S19]l]

\

\
,

AUO mci ON[EA, U

AN

SI8)|1} AjUO aulj

Ujaned xabal

[aBuiyoreW

/ mm,m
/ N 1L LS
129t N\ 938 TE!
il
' 19
170+ | SJUBIUOD B | J uayy
__ N " 1
AN
70 n O v 3419
\] eweua
019

V9 Ol

U.S. Patent May 21, 2019 Sheet 8 of 13 US 10,296,304 B2

FIG. 6B

622

[fi_le contents | —~— 021

if
then

— 620

IRIRES

@

Y

I qifile contents v| "letc/login.defs" |if it is possible to import data

then | in data matching v]C, ""PASS_MIN_LEN]Iine only filters

saves intermediate result by now l

A

using line divider L, "\t" |divides column and then,d 2 lnd column only

M e ——————

'

if S if result valuel > v}{: 7 |satisfies condition

then result [PASSED v]display ~—630

iy
else result PASSED V| display
—

¥ _
result |PASSED v | display

else

U.S. Patent May 21, 2019 Sheet 9 of 13 US 10,296,304 B2

FIG. 7A
load(710) 711 e
right v | "/etc/passwd’ |if it is possible to import data

v right
file contents
Instruction execution result

flle user
‘ | file group
filtering
| 701 722
grep(720)) 2
in data "regex pattern' ine only filters ‘
e v matching
not—-matching
. if(730)
/\/
f [i right
then

else (\J

N

U.S. Patent May 21, 2019 Sheet 10 of 13 US 10,296,304 B2

FIG. 7B

* cut(740)

using line divider [f, A\ Idivides column and then, E: 1 st column only filters

gather
. we(750)

l count number of lines of gata]

. bel(760)

|
v SUM
MIN
MAX
AVQG

. save(770)

P

esult | PASSED | display

e

US 10,296,304 B2

May 21, 2019 Sheet 11 of 13

U.S. Patent

SISAjeue
Bleq

0E8

e

-

9009

ele(]

~

SISAfeue

/

0c8

auIbus

Liojsuel]
afenfue

(018)400]q UoIe8Id IS

fe|dsip[a G3SSYd]Hnse!

. |
Ae|dsip{a G3SSyd|Hnse. 3s|9

%_Qm_c_w ommmé_ Jjnsel usy]

uopuoo salisties| 0 J[a < Jenjen jynsel !
BIED JO SOUl| JO Jaguwinu Junod
- gl W

i siejly Ao suy |, 1-=Hp8ioo, 3 |4 Bulyojew | eyep ul

S18][1) AjUO auj

08"qIyoeIoTWeRd,

MOU AQ 1NS8. 8]BIPA LLIISJUI SOABS

s191} Aluo mc:_ 1sinbaixg/ piomssed, A Buyojew| elep ul

A Buiyoreuw| ejep ul

ejep yodwi o} ajqissod sy |, SIBPUIBO}/D18/,

A SJUBJUOD 3l

V8 Ol

U.S. Patent May 21, 2019 Sheet 12 of 13 US 10,296,304 B2

FIG. 8B

dft, df2 = load_result(sglContext, result_type = 'fileContent’, target_filename = base64.b64

>>> start 20121
def process_satisfied_20121(dataframe):
di1 = dataframe
df1, df2 = filter_line_match_pattern(dataframe = df1, pattern = 'pam_cracklib.so')
df1, df2 = filter_line_match_pattern(dataframe = df1, pattern = "“password $*requisite')
df1 = mark_resultstring{dataframe = df1)
df1, df2 = filter_line_match_pattern{dataframe = df1, pattern = "retry'}
df1, df2 = count_lines(dataframe = df1)
df1, df2 = decide_by_logical{dataframe = df1, func = 'gt', value = 0, value_type = 'int')

£

i

|

|

#>>> start 11012 |
def process_satisfied_11012(dataframe): |
di1 = dataframe |
df1 = score_rule(dataframe = df1, result = True)
|

save({dataframe = df1)
process_satisfied_11012(dataframe = df1)
def process_unsatisfied_11012(dataframe):

df1 = dataframe

df1 = score_rule(dataframe = df1, result = False)

save(dataframe = df1)
process_unsatisfied_11012(dataframe = df2)
#<<<Lend 11012

process_satisfied_20121(dataframe = df1)

def process_unsatisfied_20121(dataframe):
df1 = dataframe
df1 = score_rule(dataframe = df1, result = True)
save(dataframe =df1)

process_unsatisfied_20121(dataframe = df2)
<L end 20121

Data analysis code(830)

U.S. Patent May 21, 2019 Sheet 13 of 13 US 10,296,304 B2

FIG. 9

Start

Store user creation block—based data analysis

910— flow In association with corresponding data file

Mg
™
Irivrive hirfrie riveivt:

il
.

Modify data analysis flowH~—922

PR VNS N Wb

vl e il el el i ieieivir i il it st e el Wit e

C T TTTTTITTTTTToTToTT
? PfOViC!G data 1E,:L~_,923
____anaysisresult

US 10,296,304 B2

1

METHOD AND SYSTEM FOR ANALYZING
DATA BASED ON BLOCK

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the priority from and benefit of
Korean Patent Application No. 10-2017-0055403, filed on
Apr. 28, 2017, which 1s hereby incorporated by reference for
all purposes as 1f fully set forth herein.

BACKGROUND
Field

Exemplary embodiments of the invention relate generally
to a technology for analyzing secure data based on a
programming language.

Discussion of the Background

With the development of high-performance portable
devices, such as tablets and smartphones, 1n addition to
personal computers (PCs), an increasingly large number of
persons use mobile access to enjoy mobile shopping, brows-
ing, checking e-mails, and the like, in addition to internet
access via a desktop PC. With increasing popularity of such
portable devices and development of mobile internet tech-
nology, large amount of data present on the internet may be
collected through a web robot, a web crawler, a spider, and
the like. Collected big data may be analyzed and used as
desired.

A conventional data analysis system may analyze big data
based on a data analysis code that 1s generated using a
programming language, such as Scala, Python, etc. While a
user that has learned or familiar with a programming lan-
guage, such as Scala, Python, etc., may generate a data
analysis code, however, a user that has not learned or
unfamiliar with the corresponding programming language
may not easily generate a data analysis code, and thus, one
user may not intuitively understand a data analysis flow
generated by another user. Accordingly, 1t may be dithicult to
maintain and repair the data analysis flow. As such, there 1s
a need for a data analysis technology that enables a user who
has not learned or unfamiliar with a particular programming,
language, such as Scala, Python, etc., to easily control or
modily a data analysis tlow of a specific data file.

The above mnformation disclosed in this Background
section 1s only for understanding of the background of the
inventive concepts, and, therefore, 1t may contain informa-
tion that does not constitute prior art.

SUMMARY

Exemplary embodiments of the invention provide a sys-
tem and a method capable of assisting a user to easily control
or modily a data analysis flow.

Additional features of the mventive concepts will be set
forth 1n the description which follows, and 1n part will be
apparent from the description, or may be learned by practice
of the mventive concepts.

An exemplary embodiment of the present invention pro-
vides a computer-implemented data analysis method 1nclud-
ing the steps of: providing a block for each group, 1n which
the blocks are mapped to have diflerent shapes from each
other, and the groups are classified based on an attribute of
a programming language-based function and instruction;

10

15

20

25

30

35

40

45

50

55

60

65

2

providing a user interface for receiving the block selected by
a user; generating a data analysis flow based on a user
creation block that 1s generated when the selected blocks are
combined 1n the user interface; transforming the data analy-
s1s flow to a programming language-based data analysis
code through a language transiform engine; and performing
a data analysis based on the transtormed data analysis code.

The block may be mapped to one of “source”, “trans-
form™, “filtering”, “gathering”, and “sink™ groups.

The step of providing the block may include providing
attribute information of the block by displaying the attribute
information on the corresponding block.

The step of providing the user interface may include
providing an information mput box on the block, through
which an 1item 1s selected by the user among a plurality of
items predetermined based on attributes of a function and
istruction of the corresponding to the block, and storing an
indicator associated with the selected item.

The data analysis code may be transformed according to
a language selected by the user among multi-paradigm
programming languages.

The user creation block may include a combination of
blocks dragged and dropped to a second area corresponding
to the user interface from the blocks displayed on a first area
ol a screen.

The data analysis flow may be stored 1n association with
a corresponding data file to be shared with another user that
loads the data file.

Another exemplary embodiment of the present invention
provides a computer-implemented data analysis system
including a block provider configured to provide a block for
cach group, in which the blocks are mapped to have different
shapes from each other, and the groups are classified based
on an attribute of a programming language-based function
and instruction, and to provide a user interface for receiving
the block selected by a user, a tlow generator configured to
generate a data analysis flow based on a user creation block
that 1s generated when the selected blocks are combined in
the user interface, a code transformer conﬁgured to trans-
form the data analysis flow to a programming language-
based data analysis code through a language transform
engine, and a data analyzer configured to perform a data
analysis based on the transformed data analysis code.

The block may be mapped to one of “source”,
form”, “filtering”, “gathering”, and “sink™ groups.

The block provider may be configured to provide attribute
information of the block by displaying the attribute infor-
mation on the corresponding block.

The block provider may be configured to provide an
information mput box on the block, through which an 1tem
1s selected by the user among a plurality of 1items predeter-
mined based on attributes of a function and 1nstruction of the
corresponding to the block, and to store an indicator asso-
ciated with the selected item.

The data analysis flow may be transformed according to
a language selected by the user among multi-paradigm
programming languages.

The user creation block may include a combination of
blocks dragged and dropped to a second area corresponding
to the user interface from the blocks displayed on a first area
ol a screen.

The data analysis flow may be configured to be stored in
association with a corresponding data file to be shared with
another user that loads the data file.

Another exemplary embodiment of the present invention
provides a non-transitory computer-readable recording
medium storing istructions that, when executed by a pro-

frans-

US 10,296,304 B2

3

cessor, cause the processor to perform a data analysis
method 1n conjunction with an electronic device configured
as a computer, the method 1ncluding the steps of: providing
a block for each group, in which the blocks are mapped to
have different shapes from each other, and the groups are
classified based on an attribute of a programming language-
based function and instruction; providing a user interface for
receiving the block selected by a user; generating a data
analysis flow based on a user creation block that 1s generated
when the selected blocks are combined in the user interface;
transforming the data analysis flow to a programming lan-
guage-based data analysis code through a language trans-
form engine; and performing a data analysis based on the
transformed data analysis code.

The block may be mapped to one of *“source”,
form™, “filtering”, “gathering”, and *“sink™ groups.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further

explanation of the mvention as claimed.

frans-

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are mcluded to pro-
vide a further understanding of the invention and are incor-
porated 1 and constitute a part of this specification, illustrate
exemplary embodiments of the invention, and together with
the description serve to explain the mventive concepts.

FIG. 1 1llustrates a network environment according to an
exemplary embodiment.

FI1G. 2 1s a block diagram 1llustrating a configuration of an
clectronic device and a server according to an exemplary
embodiment.

FIG. 3 1s a block diagram illustrating a processor of an
clectronic device according to an exemplary embodiment.

FIG. 4 1s a flowchart illustrating a data analysis method
according to an exemplary embodiment.

FIG. SA and FIG. 5B illustrate blocks predefined for each
group according to exemplary embodiments.

FIG. 6 A and FIG. 6B illustrate an operation of generating
a data analysis flow by combining blocks according to
exemplary embodiments.

FIG. 7A and FIG. 7B illustrate blocks having various
visualized shapes and items designated for each block
according to exemplary embodiments.

FIG. 8A and FIG. 8B illustrate transforming a block-
based data analysis tlow to a data analysis code according to
an exemplary embodiment.

FIG. 9 1s a flowchart 1llustrating an operation of sharing
a data analysis flow with another user according to an
exemplary embodiment.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1n order to
provide a thorough understanding of various exemplary
embodiments or implementations of the invention. As used
herein “embodiments” and “implementations™ are inter-
changeable words that are non-limiting examples of devices
or methods employing one or more of the inventive concepts
disclosed herein. It 1s apparent, however, that various exem-
plary embodiments may be practiced without these specific
details or with one or more equivalent arrangements. In
other 1instances, well-known structures and devices are
shown 1n block diagram form 1n order to avoid unnecessarily
obscuring various exemplary embodiments. Further, various

10

15

20

25

30

35

40

45

50

55

60

65

4

exemplary embodiments may be different, but do not have
to be exclusive. For example, specific shapes, configura-
tions, and characteristics of an exemplary embodiment may
be used or implemented 1n another exemplary embodiment
without departing from the inventive concepts.

Unless otherwise specified, the illustrated exemplary
embodiments are to be understood as providing exemplary
features of varying detaill of some ways in which the
inventive concepts may be implemented 1n practice. There-
fore, unless otherwise specified, the features, components,
modules, layers, films, panels, regions, and/or aspects, etc.
(herematter individually or collectively referred to as “ele-
ments™”), of the various embodiments may be otherwise
combined, separated, interchanged, and/or rearranged with-
out departing from the inventive concepts.

The use of cross-hatching and/or shading in the accom-
panying drawings 1s generally provided to clarify boundaries
between adjacent elements. As such, neither the presence
nor the absence of cross-hatching or shading conveys or
indicates any preference or requirement for particular mate-
rials, material properties, dimensions, proportions, common-
alities between 1illustrated elements, and/or any other char-
acteristic, attribute, property, etc., of the elements, unless
specified. Further, 1n the accompanying drawings, the size
and relative sizes of elements may be exaggerated for clarity
and/or descriptive purposes. When an exemplary embodi-
ment may be implemented differently, a specific process
order may be performed differently from the described order.
For example, two consecutively described processes may be
performed substantially at the same time or performed in an
order opposite to the described order. Also, like reference
numerals denote like elements.

When an element, such as a layer, 1s referred to as being
“on,” “connected to,” or “coupled to” another element or
layer, 1t may be directly on, connected to, or coupled to the
other element or layer or intervening elements or layers may
be present. When, however, an element or layer 1s referred
to as being “directly on,” “directly connected to,” or
“directly coupled to” another element or layer, there are no
intervening elements or layers present. To this end, the term
“connected” may refer to physical, electrical, and/or fluid
connection, with or without intervening elements. Further,
the D1-axis, the D2-axi1s, and the D3-axis are not limited to
three axes of a rectangular coordinate system, such as the x,
y, and z-axes, and may be interpreted 1n a broader sense. For
example, the D1-axis, the D2-axis, and the D3-axis may be
perpendicular to one another, or may represent diflerent
directions that are not perpendicular to one another. For the
purposes of this disclosure, “at least one of X, Y, and Z”” and
“at least one selected from the group consisting of X, Y, and
/” may be construed as X only, Y only, Z only, or any
combination of two or more of X, Y, and Z, such as, for
instance, XYZ, XYY, YZ, and Z7. As used herein, the term
“and/or” includes any and all combinations of one or more
of the associated listed items.

Although the terms “first,” “second,” etc. may be used
herein to describe various types of elements, these elements
should not be limited by these terms. These terms are used
to distinguish one element from another element. Thus, a
first element discussed below could be termed a second
clement without departing from the teachings of the disclo-
sure.

Spatially relative terms, such as “beneath,” “below,”
“under,” “lower,” “above,” “upper,” “over,” “higher,” “side”
(e.g., as 1n “sidewall”), and the like, may be used herein for
descriptive purposes, and, thereby, to describe one elements
relationship to another element(s) as illustrated in the draw-

US 10,296,304 B2

S

ings. Spatially relative terms are intended to encompass
different orientations of an apparatus in use, operation,
and/or manufacture in addition to the orientation depicted 1n
the drawings. For example, 11 the apparatus 1n the drawings
1s turned over, elements described as “below” or “beneath”
other elements or features would then be oriented “above”

the other elements or features. Thus, the exemplary term
“below” can encompass both an ornientation of above and
below. Furthermore, the apparatus may be otherwise ori-
ented (e.g., rotated 90 degrees or at other orientations), and,
as such, the spatially relative descriptors used herein inter-
preted accordingly.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments and 1s not intended to be limat-
ing. As used herein, the singular forms, “a,” “an,” and “the”
are mtended to include the plural forms as well, unless the
context clearly indicates otherwise. Moreover, the terms
“comprises,” “comprising,” “includes,” and/or “including,”
when used 1n this specification, specily the presence of
stated features, integers, steps, operations, elements, com-
ponents, and/or groups thereof, but do not preclude the
presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof. It 1s also noted that, as used herein, the terms
“substantially,” “about,” and other similar terms, are used as
terms of approximation and not as terms of degree, and, as
such, are utilized to account for inherent deviations 1n
measured, calculated, and/or provided values that would be
recognized by one of ordinary skill in the art.

As customary 1n the field, some exemplary embodiments
are described and 1llustrated in the accompanying drawings
in terms of functional blocks, units, and/or modules. Those
skilled 1n the art will appreciate that these blocks, units,
and/or modules are physically implemented by electronic (or
optical) circuits, such as logic circuits, discrete components,
microprocessors, hard-wired circuits, memory elements,
wiring connections, and the like, which may be formed
using semiconductor-based fabrication techniques or other
manufacturing technologies. In the case of the blocks, units,
and/or modules being implemented by microprocessors or
other similar hardware, they may be programmed and con-
trolled using software (e.g., microcode) to perform various
functions discussed herein and may optionally be driven by
firmware and/or software. It 1s also contemplated that each
block, unit, and/or module may be implemented by dedi-
cated hardware, or as a combination of dedicated hardware
to perform some functions and a processor (€.g., one or more
programmed microprocessors and associated circuitry) to
perform other functions. Also, each block, unit, and/or
module of some exemplary embodiments may be physically
separated 1nto two or more interacting and discrete blocks,
units, and/or modules without departing from the scope of
the mventive concepts. Further, the blocks, umits, and/or
modules of some exemplary embodiments may be physi-
cally combined into more complex blocks, units, and/or
modules without departing from the scope of the inventive
concepts.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this disclosure 1s a part. Terms, such as those defined
in commonly used dictionaries, should be interpreted as
having a meaning that 1s consistent with their meaning in the
context of the relevant art and should not be interpreted 1n
an 1dealized or overly formal sense, unless expressly so
defined herein.

e Y 4

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1 1s a diagram 1illustrating a network environment
according to an exemplary embodiment. Referring to FIG. 1,
the network environment may include a plurality of elec-
tronic devices 110, 120, 130, and 140, a plurality of servers
150 and 160, and a network 170. FIG. 1 1s provided as an

example only, and thus, the mmventive concepts are not
limited to a number of electronic devices and/or a number of
SErvers.

Each of the plurality of electronic devices 110, 120, 130,
and 140 may be a fixed terminal or a mobile device that 1s
configured as a computer device. For example, the electronic
devices 110, 120, 130, and 140 may be a smartphone, a
mobile phone, a navigation, a computer, a laptop computer,
a digital broadcasting terminal, a personal digital assistant
(PDA), a portable multimedia player (PMP), a tablet per-
sonal computer (PC), and the like. The electronic device 110
may communicate with other electronic devices 120, 130,
and 140, and/or the servers 150 and 160 over the network
170 via wired or wireless communication.

The mmventive concepts are not limited to a particular
communication scheme. For example, the communication
scheme may include a communication method that uses a
near field communication between devices, as well as a
communication method using a communication network, for
example, a mobile communication network, the wireless
internet, a broadcasting network, etc., which may be
included 1n the network 170. The network 170 may include
at least one of network topologies that include networks,
such as a personal area network (PAN), a local area network
(LAN), a campus area network (CAN), a metropolitan area
network (MAN), a wide area network (WAN), a broadband
network (BBN), an internet, and the like. Also, the network
170 may include at least one of network topologies that
include a bus network, a star network, a ring network, a
mesh network, a star-bus network, a tree or hierarchical
network, and the like. However, the inventive concepts are
not limited thereto, and may include various other network
topologies.

Each of the servers 150 and 160 may be configured as a
computer apparatus or a plurality ol computer apparatuses
that provide 1nstructions, codes, files, contents, services, and
the like, through communication with the electromc devices
110, 120, 130, and 140 over the network 170.

FIG. 2 1s a block diagram 1illustrating a configuration of an
clectronic device and a server according to an exemplary
embodiment. FIG. 2 illustrates a configuration of the elec-
tronic device 110 as an example of a single electronic device
and a configuration of the server 150 as an example of a
single server. The same or similar components may be
applicable to other electronic devices 120, 130, and/or 140,
and the server 160.

Referring to FIG. 2, the electronic device 110 may include
a memory 211, a processor 212, a communication module
213, and an mput/output (I/O) interface 214. The server 150
may include a memory 221, a processor 222, a communi-
cation module 223, and an I/O intertace 224. The memory
211 and 221 may include a permanent mass storage device,
such as random access memory (RAM), read only memory
(ROM), and a disk drive, as a non-transitory computer-
readable storage medium. Also, an operating system (OS) or
at least one program code, for example, a code for an
application for block-based data analysis or a browser
installed and executed on the electronic device 110, etc.,
may be stored in the memory 211 and 221. Such software
components may be loaded from another non-transitory
computer-readable storage medium separate from the
memory 211 and 221 using a drive mechanism. The other

US 10,296,304 B2

7

non-transitory computer-readable storage medium may
include, for example, a floppy drive, a disk, a tape, a

DVD/CD-ROM drive, a memory card, etc. According to an

exemplary embodiment, software components may be
loaded to the memory 211 and 221 through the communi-
cation module 213 and 223, instead of, or in addition to, the
non-transitory computer-readable storage medium. For
example, at least one program may be loaded to the memory
211 and 221 based on a program, such as an application
installed by files provided over the network 170 from
developers or a file distribution system, such as the server
160, which provides an installation file of the application.

The processor 212 and 222 may process computer-read-
able 1nstructions of a computer program by performing basic
arithmetic operations, logic operations, and I/O operations.
The computer-readable instructions may be provided from
the memory 211 and 221 or the communication module 213
and 223 to the processor 212 and 222. For example, the
processor 212 and 222 may execute received instructions in
response to the program code stored 1n the storage device,
such as the memory 211 and 222.

The communication module 213 and 223 may provide a
communication between the electronic device 110 and the
server 150 over the network 170, and a communication with
another electronic device, for example, the electronic device
120 or another server 160. For example, the processor 212
of the electronic device 110 may transfer a request, such as
a request for a data analysis service, which may be generated
based on a program code stored 1n the storage device, such
as the memory 211, to the server 150 over the network 170
under control of the commumication module 213. In this
manner, a control signal, an 1nstruction, content, a file, etc.,
provided under the control of the processor 222 of the server
150 may be received at the electronic device 110 through the
communication module 213 of the electronic device 110 via
the communication module 223 and the network 170. For
example, a control signal, an instruction, etc., of the server
150 received through the communication module 213 may
be transierred to the processor 212 or the memory 211, and
content, a file, etc., may be stored in a storage medium of the

clectronic device 110.

The I/O iterface 214 and 224 may be a device used to
interface with an I/O device 215. For example, an 1put
device may include a keyboard, a mouse, etc., and an output
device may include a device, such as a display for displaying
a communication session of the application. As another
example, the I/O nterface 214 may be a device to interface
with an apparatus having an integrated input/output func-
tion, such as a touch screen. In detail, when processing
instructions of the computer program loaded to the memory
211, the processor 212 of the electronic device 110 may
display a service screen using data provided from the server
150 or the electronic device 120, or may display content on
a display through the I/O interface 214.

According to another exemplary embodiment, the elec-
tronic device 110 and the server 150 may include a greater
or lesser number of components than those shown 1n FIG. 2.
For example, the electronic device 110 may include at least
a portion of the I/O device 215, or may further include
components, such as a transceiver, a global positioning
system (GPS) module, a camera, a variety of sensors, a
database, and the like. In detail, 1f the electronic device 110
1s a smartphone, the electronic device 110 may further
include various components, for example, an accelerometer
SeNsSor, a gyro sensor, a camera, various types ol physical

10

15

20

25

30

35

40

45

50

55

60

65

8

buttons, a button using a touch panel, an I/O port, a vibrator
for wvibration, etc., which are generally included in the
smartphone.

A data analysis system according to an exemplary
embodiment may be applicable to an apparatus executing an
application. That 1s, a block-based data analysis method
according to exemplary embodiments may be applicable to
any type ol apparatuses, in-house computer servers, and
servers that provide a big data or secure data analysis
service, or the like that i1s mstalled with an application.

For example, the server 150 may receive information
associated with a data analysis tlow, which 1s generated by
combining blocks selected by a user among blocks displayed
on a screen of the electronic device 110, from an application
of the electronic device 110. The server 150 may transform
the data analysis flow to a data analysis code through a
language transiform engine based on the received iforma-
tion associated with the data analysis flow to perform data
analysis. The server 150 may provide a data analysis result
to the electronic device 110 through the application, and
control a data analysis result to be displayed on the screen
of the electronic device 110.

Herematter, a data analysis according to an exemplary
embodiment performed on the server 150 by combining
blocks and generating a data analysis flow, 1n response to
executing a corresponding program code or application 1n
the electronic device 110 stored with the program code or the
application providing a data analysis will be described 1n
more detail.

FIG. 3 1s a block diagram illustrating a processor of an
clectronic device according to an exemplary embodiment,
and FIG. 4 15 a flowchart illustrating a data analysis method
according to an exemplary embodiment.

A data analysis system according to an exemplary
embodiment may be configured 1n the electronic device 110.
Referring to FIG. 3, the processor 212 included in the
clectronic device 110 may include a block provider 310, a
flow generator 320, a code transformer 330, and a data
analyzer 340 as components. The processor 212 and the
components of the processor 212 may control the electronic
device 110 to perform steps 410 through 450 of the data
analysis method 1illustrated in FIG. 4. Here, the processor
212 and the components of the processor 212 may execute
an instruction according to a code of at least one program
and a code of an OS included in the memory 211. Here, the
components of the processor 212 may be representations of
different functions performed by the processor 212 1n
response to a control instruction provided from the program
code stored 1n the electronic device 110. For example, the
code transformer 330 may be a functional representation of
an operation performed by the processor 212, such as
transforming a user creation block-based data analysis flow
to a programming language-based data analysis code in
response to the control instruction.

The electronic device 110 may load a program code
storing a file of a program for the data analysis method on
the memory 211, which may be downloaded from the server
150. For example, when a program or an application for a
data analysis service 1s executed at the electronic device 110,
the program code may be loaded to the memory 211 from the
file of the program under the control of the OS. In addition,
blocks having various predetermined shapes may be dis-
played on the data analysis system, such as a screen of the
clectronic device 110, for generating a data analysis flow.

Referring to FIG. 4, 1n step 410, when a program or an
application for a data analysis service 1s executed, the block
provider 310 may provide blocks that are mapped 1n differ-

US 10,296,304 B2

9

ent shapes for a plurality of groups which are pre-classified
according to programming language-based functions and
unique function of 1nstructions.

For example, the programming language-based functions
and 1nstructions including operators may be classified into
one of “loading”, “transform™, “filtering”, “gathering”, and
“save” groups. Here, “loading” may represent a group that
includes an instruction and a function of reading a corre-
sponding file with the memory 211 of the electronic device
110 1n order to edit or modily mnformation, such as contents
included in the corresponding file among data files. For
example, 1n the programming language “Scala”, “load” may
be classified into a source group. Fach of “transform”,
“filtering™, and “gather” may represent a group that includes
an instruction and a function of generating and modifying
information of a file to be generated or that has been loaded.
“Save” may represent a group that includes an instruction
and a function of saving a generated {file or a modified file,
such as an edited file. For example, in the programming
language “Scala”, “save” may be classified into a sink
group. Blocks predefined in various shapes may be mapped
for the respective groups. For example, 1dentifier informa-
tion of a group and an indicator indicating a function or an
instruction that belongs to each group may be matched,
stored, and maintained in a database. Here, 1dentifier infor-
mation of a group and an indicator indicating a block that 1s
mapped to the corresponding group may also be matched,
stored, and maintained in the database.

In step 420, the block provider 310 may provide a user
interface for recerving a user selection in association with
the provided blocks.

For example, the block provider 310 may control blocks
that are predefined for each group to be displayed on a first
area ol the screen. The block provider 310 may control a
block selected by the user through the user interface, among,
the blocks displayed on the first area, to be displayed on a
second area predefined on the screen. For example, when a
specific group 1s selected by the user among a plurality of
groups, blocks corresponding to the selected specific group
may be displayed on the first area. At least one block
selected by the user may be moved from the first area and
displayed on the second area by, for example, a drag-and-
drop scheme.

In step 430, the flow generator 320 may generate a data
analysis flow based on a user creation block generated by
combining blocks selected through the user interface.

For example, the flow generator 320 may assemble blocks
dragged from the first area of the screen and dropped on the
second area of the screen 1n all directions. A block edition
function, such as duplicate, delete, etc., may be provided to
at least one block among the assembled blocks. In response
to selecting display information corresponding to “save”, the
flow generator 320 may determine that a user creation block
1s completed and may generate the completed user creation
block as a data analysis flow.

In step 440, the code transformer 330 may transform the
generated data analysis flow to a programming language-
based data analysis code through a language transform
engine.

Here, the code transformer 330 may transform the data
analysis flow to the data analysis code based on a type of a
programming language selected by the user. For example,
when the programming language “Scala” 1s selected by the
user, the code transformer 330 may transform a data analysis
flow represented 1n a form of assembled blocks 1nto a Scala
based code by utilizing functions, istructions, and operators
corresponding to the respective blocks. As another example,

10

15

20

25

30

35

40

45

50

55

60

65

10

when the programming language “Python” 1s selected by the
user, the code transformer 330 may transform a data analysis
flow represented in a form of assembled blocks nto a
Python-based code by utilizing functions, instructions, and
operators corresponding to the respective blocks. In addi-
tion, the code transiformer 330 may transform the data
analysis tlow to codes based on various programming lan-
guages. o perform a code transformation to a selected
programming language, a programming language may be
selected by the user on an 1n1tial screen at a time of executing
an application, or generating/reading a file or a program
code.

In step 450, the data analyzer 340 may perform a data
analysis based on the transformed data analysis code. The
data analyzer 340 may provide the result of analysis to the
user by displaying the analysis result on the screen, and may
store and maintain the analysis result 1n association with a
corresponding file.

FIGS. 5A and 5B illustrate blocks predefined for each
group according to exemplary embodiments.

According to an exemplary embodiment, blocks pre-
defined for each group may be displayed on a screen 510 by
cach block as shown in FIG. 5A, or all of the blocks may be
displayed on a single screen 320 as shown in FIG. 5B.
Referring to the screens 510 and 520, an information mput
box 515 for mputting a name of a file to be generated, or a
name of a loaded file may be displayed at an upper end of
the screens 510 and 520.

Referring to the screen 510, when display mnformation 511
corresponding to a group “transform” 1s selected, a block
corresponding to a function, an instruction, and an operator
that belong to the group “transform” may be displayed.
Here, the selected group may be displayed 1n different color
to be distinguished from other unselected groups. When
display information 513 corresponding to a group “gather”
1s selected, a block corresponding to a function, an nstruc-
tion, and an operator that belong to the group “gather” may
be displayed. Likewise, when display information 312 cor-
responding to a group “filtering” 1s selected, a block corre-
sponding to a function, an instruction, and an operator that
belong to the group “filtering” may be displayed.

For example, a block including a characters string of “if
then”, a block including a character string of “if then else”,
and a block including a character string of “grep” (that
indicates “general regular expression parser’ and 1s an
abbreviation of “globally search files for the occurrence of
a string of characters that matches a specific pattern™) may
be displayed on the screen 510. The character string “if then”™
may indicate an attribute, that 1s, a function associated with
a function and an instruction corresponding to each block
may be displayed on a corresponding block. Each block may
include at least one information mmput box for iputting
information, such as a text, a number, etc., and selecting a
predefined 1tem based on an attribute of a function and an
instruction corresponding to a block. For example, when
information corresponding to a specific character string or a
specific line 1s to be filtered based on information included
in a loaded file, an mnformation mput box 514 for mputting
the corresponding character string or line may be inserted
and disposed on the block corresponding to “grep.”

In addition to the groups “‘transform”, “filtering”, and
“gather”, display information indicating groups “loading”
and “save” may be further included 1n an area 516, on which
display information indicating each group i1s displayed.
When displaying information corresponding to the group
“loading™ 1s selected, a file, an instruction execution result,
a right, etc., may be loaded. When displaying information

US 10,296,304 B2

11

corresponding to the group “save” 1s selected, a data analysis
flow represented by a user creation block generated by
combining blocks may be saved.

FIGS. 6A and 6B illustrate an operation of generating a
data analysis flow by combining blocks according to exem-
plary embodiments.

Referring to FIG. 6A, a block including a character string,
indicating a function to be controlled by a user may be
selected from the blocks displayed on a first area 610 of a
screen, and the selected block may be dragged and dropped
from the first area 610 to a second area 620.

For example, to obtain results of whether a value satisfies
a specific condition 1n a specific file, for example, to verily
whether a right of data mput for secure analysis, such as a
log-1n account, 1s correct, a block 612 including a character
string of “1f 1t 1s possible to import ‘right’” may be dragged
and dropped from the first area 610 to the second area 620.
Also, a block 611 including a character string of “if then
clse” may be dragged and dropped from the first area 610 to
the second area 620. Here, since a block 622 1s dropped
adjacent to a block 621 displayed on the second area 620, the
flow generator 320 may control the block 621 and the block
622 to be assembled. “Right” may be set as default and 1s
displayed on an information input box of the block 612
associated with file loading on the first area 610. However,
in the case of importing file contents, the item displayed on
the information mput box may be changed with the file
contents, and the file contents may be selected on the
information input box. For example, 1n response to selecting
the information mput box in which “right” 1s 1nput, select-
able 1tems may be displayed in a form of a list. A single item,
for example, “file contents” 613 selected from the selectable
items may be displayed on the information input box of the
corresponding block. Here, the change of an 1tem may be
executed on the first area 610. Once the corresponding block
1s moved to the second area 620, the item change may be
executed on the second area 620. In the case of inputting a
specific condition, a specific character string, number, etc.,
for filtering, a block 614 for mputting a desired character
string may be inserted mto a block having a different
attribute. For example, the block 614 may be inserted into a
block corresponding to a function “grep”, which 1s an
attribute.

Once a block combination 1s completed with respect to
blocks that are selected by the user from the blocks dis-
played on the first area 610 and moved on the second area
620, a data analysis flow intuitively showing a connection
relationship between combined blocks based on a user
creation block may be generated as shown on a screen 630
illustrated 1n FIG. 6B. Accordingly, even it the user 1is
unfamiliar with a programming language corresponding to a
data analysis code of which a loaded file 1s written, a data
analysis flow requesting results about information that the
user desires to verily from the corresponding file may be
generated.

FIGS. 7A and 7B illustrate blocks visualized 1n various
shapes and 1tems designated for each block according to
exemplary embodiments.

FIGS. 7A and 7B illustrate an exemplary graphics user
interface (GUI) of a block 1n which a function, an 1nstruc-
tion, etc., of a programming language 1s mapped and blocks
mapped for each group to which a unit function belongs.

For example, the respective unit functions may be clas-
sified mto groups of “source”, “transform”, “fliltering”,
“gather”, “sink™, and the like, based on a unique function,
that 1s, an attribute of a corresponding unit function, and a
block may be mapped for each group. Here, a block may

10

15

20

25

30

35

40

45

50

55

60

65

12

include an imformation iput box for selecting a specific item
among 1tems predefined based on an attribute of a function,
and an instruction corresponding the block or mputting a
condition, and may include a character string indicating a
function performed by the corresponding block.

For example, unit functions may include “load” 710,
“orep” 720, “11” 730, “cut” 740, “wc” 750, “bc™ 760, “save”
770, and the like. The following Table 1 may represent unit
functions and groups to which the corresponding functions
belong, respectively.

TABLE 1
Group Unit
(classification) function Aftribute (description)
source load read data (import)
transform sed replace a word of sentence
transform sort sort a plurality of sentences
filtering cut select a specific column
filtering grep, 1f select data based on a pattern or a value
gather wc/be acquire a value of line/column (sum,
max, min, avg)
sink save save data

Referring to FIGS. 7A and 7B, a plurality of items
associated with an attribute “1import” may be predefined for
the function “load” that belongs to the group “source™. For

example, 1tems “right”, “file contents™, “instruction execu-

tion result”, “file user”, and *“file group” may be pre-matched
to 1dentifier information of the block 710 corresponding to
the unit function “load.” Here, the item “‘right” may be
predefined as a default of the block corresponding to the unit
function “load” 710, and 1s displayed on an information
input box of the block displayed on a first area. In response
to selecting the information input box to change the item, the
remaining items, for example, “file contents”, “instruction
execution result”, “file user”, and “file group,” as well as the
item “right” may be provided in a list form. In this case, an
item selected from the list may be displayed on an infor-
mation input box 711 inserted within the block. Here, a
block 712 for inputting “file name”, “file user”, etc., for
example, may be inserted into the block. A character string
of “1if 1t 1s possible to import data” corresponding to a unique
function, that 1s, an attribute of the group “load” 710 may be
displayed on the corresponding block.

The umit functions, “grep”, “11”, “cut”, etc., may belong to
the group “filtering”. A plurality of items associated with an
attribute of searching a file for a specific character string
may be predefined for the unit function “grep”. For example,
items “‘matching’, “not-matching”, etc., may be pre-
matched to identifier information of the block 720 corre-
sponding to the unit function “grep.” Here, an information
input box 721 for selecting an 1tem and an information mput
box 722 for mputting a “matching” or “not-matching”
specific character string may be inserted and displayed on
the block 720.

The unit functions, “wc”, “bc”, etc., may belong to the
group “gather”. In the block 760 corresponding to the unit
function “bc”, operators, for example, SUM, MIN, MAX,
and AV (@, associated with a unique function executed by the
function “bc” may be predefined as items.

The unit function “save” may belong to the group “save”.
The block 770 corresponding to the unit function “save”
may be used to save and display results of an operator
executed on the data file read, that 1s, imported through the
group “source’ based on the groups “transtorm™, “filtering”,

and/or “gather”.

US 10,296,304 B2

13

Once a single combination set of one of the groups
“transform™, “filtering”, and *“‘gather”, the group *“‘source”,
and the group “sink™ 1s completed, the completed user
creation block may be generated as a data analysis flow.

FIG. 8 A illustrates transforming a block-based data analy-
s1s flow to a data analysis code according to an exemplary
embodiment.

Referring to FIG. 8A, once a user creation block 810 1s
completed by combining blocks, a user creation block-based
data analysis flow may be transiformed to a data analysis
code 830 interpretable with a programming language used to
perform a data analysis through a language transform engine
820. For example, a different shape and/or color may be
designated for each of the blocks based on an attribute of a
function and an instruction indicated by a corresponding
block. The code transformer 330 of FIG. 3 may determine
functions and instructions indicated by horizontally and
vertically connected blocks based on blocks corresponding,
to groups “source” and “sink” from the user creation block,
in which the plurality of blocks 1s combined through the
language transform engine 820, extract an item and a
condition designated for each block, and generate the data
analysis code 830 1llustrated 1n FIG. 8B. An analysis result
performed based on the data analysis code 830 may be
displayed on a screen, and may be matched to the corre-
sponding file and data analysis flow and be stored i1n a
storage. The data analysis flow may be shared with other
users.

FIG. 9 1s a flowchart 1llustrating an operation of sharing
a data analysis flow with another user according to an
exemplary embodiment.

Referring to FI1G. 9, at step 910, the data analyzer 340 may
store and maintain a user creation block-based data analysis
flow 1n association with a corresponding data file. For
example, a name of a loaded data file and a name of a
generated block file may be matched and stored.

In step 920, the generated data analysis flow may be
shared with other users over a network.

In step 921, the data analysis flow may be retrieved using
a name of a block file and displayed on a screen. For
example, a data analysis flow loaded on a screen of an
clectronic device of another user may be displayed 1n a form
of the user creation block 810 shown in FIG. 8A, 1n which
blocks are combined.

In step 922, although the other user 1s unfamiliar with a
programming language used for a data analysis of the data
analysis flow, the other user may modily the data analysis
flow by adding or deleting a block to or from the loaded data
analysis tlow, or by changing a condition.

For example, 11 a condition 1s added to the data analysis
flow corresponding to the user creation block 810, that 1s, 1f
a character string matching file contents 1s added, the added
condition may be applied by adding a block related to “grep”
from a first area to a corresponding portion of a second area,
or by duplicating a block related to “grep” on the second
areca and adding the duplicated block to the corresponding
portion and mnputting a character string 1n the added block,
which may generate a user creation block for a data analysis.

As another example, 1f a condition associated with a result
value 1s to be modified, a corresponding data analysis flow
may be modified by inputting a condition value to be
modified 1into an information mput box associated with the
result value in the data analysis flow corresponding to the
loaded user creation block 810. The data analysis tlow stored
in association with the corresponding file may be updated
with the modified data analysis flow.

10

15

20

25

30

35

40

45

50

55

60

65

14

In step 923, the modified data analysis tlow may be
transformed to a data analysis code through a language
transform engine. A data analysis result performed based on
the transformed data analysis code may be displayed on the
screen.

According to exemplary embodiments, since a data analy-
s1s flow generated by combining blocks 1s stored and shared
in association with a corresponding file, a member of a
collaboration team associated with the corresponding file
may easily modily the data analysis flow although the
member 1s unfamiliar with a corresponding programming
language.

The systems or apparatuses described herein may be
implemented using hardware components, software compo-
nents, and/or a combination thereof. For example, the appa-
ratuses and the components described herein may be imple-
mented using one or more general-purpose or special
purpose computers, such as, for example, a processor, a
controller, an arithmetic logic unit (ALU), a digital signal
processor, a microcomputer, a field programmable gate array
(FPGA), a programmable logic unit (PLU), a microproces-
sor, or any other device capable of responding to and
executing nstructions 1n a defined manner. The processing
device may run an operating system (OS) and one or more
software applications that run on the OS. The processing
device also may access, store, manipulate, process, and
create data 1n response to execution of the software. For
purpose of simplicity, the description of a processing device
1s used as singular; however, one skilled in the art will be
appreciated that a processing device may include multiple
processing clements and/or multiple types of processing
clements. For example, a processing device may include
multiple processors or a processor and a controller. In
addition, different processing configurations are possible,
such as parallel processors.

The software also may be distributed over network
coupled computer systems so that the software 1s stored and
executed 1n a distributed fashion. The software and data may
be stored by one or more computer readable recording
mediums.

The methods according to the above-described example
embodiments may be recorded in non-transitory computer-
readable media including program instructions to implement
various operations of the above-described example embodi-
ments. The media may also include, alone or 1n combination
with the program 1nstructions, data files, data structures, and
the like. The program instructions recorded on the media
may be those specially designed and constructed for the
purposes of example embodiments, or they may be of the
kind well-known and available to those having skill 1n the
computer soltware arts. Examples of non-transitory com-
puter-readable media include magnetic media such as hard
disks, tloppy disks, and magnetic tapes; optical media such
as CD-ROM discs, and DVDs; magneto-optical media such
as floptical disks; and hardware devices that are specially
configured to store and perform program instructions, such
as read-only memory (ROM), random access memory
(RAM), tlash memory, and the like. Examples of program
instructions include both machine code, such as produced by
a compiler, and files contaiming higher level code that may
be executed by the computer using an interpreter. The
above-described devices may be configured to act as one or
more soltware modules 1n order to perform the operations of
the above-described example embodiments, or vice versa.

According to exemplary embodiments, since a data analy-
s1s flow 1s represented in blocks having predetermined
various shapes, even a user having not learned or unfamiliar

US 10,296,304 B2

15

with a particular programming language, such as Scala,
Python, a structured query language (SQL), etc., may easily
generate a data analysis flow that the user desires to control
or modily in association with a specific data file.

Also, according to exemplary embodiments, since a data
analysis flow generated by another user 1s provided 1n a form
of various blocks of different combined with one another,
even a user unfamiliar with a corresponding programming
language may intuitively understand a meaning of the data
analysis flow. For example, by representing a data analysis
flow about a data file being shared for collaboration between
different teams 1n a local network, such as a company
security analysis and the like, the data file may be easily
edited and controlled when the different blocks are
assembled as described above.

Although certain exemplary embodiments and implemen-
tations have been described herein, other embodiments and
modifications will be apparent from this description.
Accordingly, the imnventive concepts are not limited to such
embodiments, but rather to the broader scope of the
appended claims and various obvious modifications and
equivalent arrangements as would be apparent to a person of
ordinary skill in the art.

What 1s claimed 1s:
1. A computer-implemented data analysis method com-
prising:
providing a block for each group, wherein the blocks are
mapped to have different shapes from each other, and
the groups are classified based on an attribute of a
programming language-based function and instruction;

providing a user interface for recerving the block selected
by a user;

generating a data analysis flow based on a user creation

block that 1s generated when the selected blocks are
combined 1n the user interface;

transforming the data analysis flow to a programming

language-based data analysis code through a language
transform engine; and

performing a data analysis based on the transformed data

analysis code, wherein the data analysis code is trans-
formed according to a language selected by the user
among multi-paradigm programming languages.

2. The method of claim 1, wherein the block 1s mapped to
one of “source”, gathering”, and
“sink™ groups.

3. The method of claim 1, wherein providing the block
comprises providing attribute imnformation of the block by
displaying the attribute information on the corresponding
block.

4. The method of claim 1, wherein providing the user
interface comprises:

providing an information input box on the block, through

which an 1tem 1s selected by the user among a plurality

of items predetermined based on attributes of a function

and instruction of the corresponding to the block; and
storing an indicator associated with the selected item.

5. The method of claim 1, wherein the user creation block
comprises a combination of blocks dragged and dropped to
a second area corresponding to the user interface from the
blocks displayed on a first area of a screen.

6. The method of claim 1, wherein the data analysis tlow
1s stored 1n association with a corresponding data file to be
shared with another user that loads the data file.

7. A computer-implemented data analysis system com-
prising:

a MICroprocessor;

s 1

transform”, “filtering”,

10

15

20

25

30

35

40

45

50

55

60

65

16

a memory storing microprocessor executable instructions,
that when executed by the microprocessor causes the
system to: provide a block for each group, wherein the
blocks are mapped to have different shapes from each
other, and the groups are classified based on an attribute
of a programming language-based function and 1nstruc-
tion, and to provide a user interface for receiving the
block selected by a user;

generate a data analysis flow based on a user creation
block that 1s generated when the selected blocks are
combined 1n the user interface;

transform the data analysis flow to a programming lan-
guage-based data analysis code through a language
transform engine; and

perform a data analysis based on the transformed data
analysis code, wherein the data analysis code 1s trans-
formed according to a language selected by the user
among multi-paradigm programming languages.

8. The data analysis system of claim 7, wherein the block
1s mapped to one of “source”, “transform™, “filtering”,
“gathering”’, and “sink™ groups.

9. The data analysis system of claim 7, wherein the block
provider 1s configured to provide attribute information of the
block by displaying the attribute information on the corre-
sponding block.

10. The data analysis system of claim 7, wherein the block
provider 1s configured to provide an mformation mput box
on the block, through which an 1tem 1s selected by the user
among a plurality of items predetermined based on attributes
of a function and instruction of the corresponding to the
block, and to store an indicator associated with the selected
item.

11. The data analysis system of claim 7, wherein the user
creation block comprises a combination of blocks dragged
and dropped to a second area corresponding to the user
interface from the blocks displayed on a first area of a
screen.

12. The data analysis system of claim 7, wherein the data
analysis flow 1s configured to be stored 1n association with
a corresponding data file to be shared with another user that
loads the data file.

13. A non-transitory computer-readable recording
medium storing istructions that, when executed by a pro-
cessor, cause the processor to perform a data analysis
method 1n conjunction with an electronic device configured
as a computer, the method comprising:

providing a block for each group, wherein the blocks are
mapped to have different shapes from each other, and
the groups are classified based on an attribute of a
programming language-based function and instruction;

providing a user interface for receiving the block selected
by a user;

generating a data analysis tlow based on a user creation
block that 1s generated when the selected blocks are
combined 1n the user interface;

transforming the data analysis flow to a programming
language-based data analysis code through a language
transform engine; and

performing a data analysis based on the transformed data
analysis code, wherein the data analysis code 1s trans-
formed according to a language selected by the user
among multi-paradigm programming languages.

14. The non-transitory computer-readable recording

medium of claim 13, wherein the block 1s mapped to one of

transtorm™, “filtering”, “gathering”, and “sink”

22 4

“source”,
groups.

	Front Page
	Drawings
	Specification
	Claims

