12 United States Patent

Kennedy et al.

US010284585B1

US 10,284,585 B1
May 7, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(1)

(52)

(58)

TREE ROTATION IN RANDOM
CLASSIFICATION FORESTS TO IMPROVE
EFFICACY

Applicant: Symantec Corporation, Mountain
View, CA (US)

Inventors: Mark Kennedy, Gardena, CA (US);
Andrew B. Gardner, Roswell, GA

(US)

Assignee: Symantec Corporation, Mountain
View, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 105 days.

Appl. No.: 15/279,142
Filed: Sep. 28, 2016

Related U.S. Application Data

Continuation of application No. 15/193,653, filed on
Jun. 27, 2016.

Int. CIL.

GO6F 16721 (2019.01)

GO6F 16722 (2019.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... HO4L 63/1425 (2013.01); GO6F 16/214

(2019.01); GO6F 16/2246 (2019.01)
Field of Classification Search

CPC ...l HO4L 63/1425; GO6F 17/303; GO6F
17/30327
USPC e 726/23

See application file for complete search history.

160 \‘

Device 13

User Interface 145

Update Module 130

Computing Device

 E—
Ruandom Foresl Update Module 730
f33

(56) References Cited

U.S. PATENT DOCUMENTS

9,690,938 Bl 6/2017 Saxe et al.
2006/0179019 Al* 8/2006 Bradski GO6N 99/005
706/20
2009/0281981 Al* 11/2009 Chenc...... GO6K 9/6282
706/56
2013/0191915 Al* 7/2013 Antonakakis HO4L 63/14
726/23

OTHER PUBLICATTIONS

http://www.sciencedirect.com/science/article/pi1/
S0167865512001274, Dynamic Random Forests.

* cited by examiner

Primary Lxaminer — Jason K Gee

Assistant Examiner — Angela R Holmes
(74) Attorney, Agent, or Firm — Holland & Hart LLP

(57) ABSTRACT

Methods and apparatus for optimizing computer detection of
malware using pattern recognition by refreshing random
classification forests are described. In one embodiment, one
or more selected trees of a random forest on a computing
system may be replaced by one or more new trees. As new
categorized data becomes available, one or more new trees
may be generated using the new categorized data. Once the
one or more new trees are available, the performance of the
one or more new trees may be compared to the performance
of the trees in the current random forest. Based on this
comparison, one or more trees ol the random forest may be
selected to be replaced by one or more of the new trees.

18 Claims, 11 Drawing Sheets

Scrver 11}

I

Database {.2f)

=

\V,

123

Catecorized Data 135

Random Forest Data

S—

US 10,284,585 B1

Sheet 1 of 11

May 7, 2019

U.S. Patent

0Fl
pIE(] 152J0,] Wwopuey

L L L L L L

Oc1 aseqeie(

OET ampo agepdpny

["OId

$C1
201A9¢] Swindwo)

T smpo 21epdny

18010, wopuey

OT7 uonedpddy

CF [20ELI2NU] Ia8[)

CTOHJ ad1a3(g

H 001

U.S. Patent

May 7, 2019 Sheet 2 of 11

Update Module /30-g

Data Module 203

Tree Generator Module 270

Forest Generator Module 275

Performance Module 225

L]

Update Generator Module 230

Sl et i it i

Calculation Module 2335

US 10,284,585 B1

01 BIe(t UBa[D 01 Bie(] aIemepy

{ Ble(] Ueal)) 1 Ble(q a248MIBIA

US 10,284,585 B1

6 BIB(T BRI 6 Bie(] AR

cve(q uedyy | O BIB(] LILM[BN

Q BIB(] QIBMIBIA]

(7€ e1u(] JO 1osqns wiopuey pHy | Q vIB(] UL

/ BIB(] BRI L BIe(] QTCARIA

Sheet 3 of 11

L BIe(] Ueaf) | BIB(] 2HUMICIN

¢ vyB(] UL G RIB(] QIBMIRIA

il

L 7§ Bie(] JO 12:gnS§ Wopley puodas

b Bie(] ued|j P Bl SBABIN

¢ vlR(QIRMRIA

¢ Lledq vesH

May 7, 2019

C RIB(] UBa]) L BIE(] IEMfRIN

7 BiB(Ues|) 7 BB JIBMIBA

7 BIu(] wes|) t BIR(Y QIBMIBIA]

T 2IB(T UR3D [€1e(] 9B AAJRIN

(75 21e(] JO 1385GNS wiopury 18414

TOT wye(pRzuIodaie)) Jo WS

OO¢ ~

U.S. Patent

US 10,284,585 B1

Sheet 4 of 11

May 7, 2019

U.S. Patent

$it1e

(7€ 21008
0UIPLITO))

W

/¢ SPON JeoTg

075 93025
A2UBPIUO)

C-81E PPON J897

(7§ 93034
AJUBPIFUO))

7=

$T¢ SPON JE97]

N-(fE 921}

¢

¢

y OIAd

(7 £ 21008
J0UIPLIUO)

07T 21095
QAUBPIIUON)

G § 23034
AJUIPIIUO))

COLE 9]

W-CTE opoN Jeory

C-571& SPON 4827}

[~$ ¢ PPON J8971

W

§1¢ FPON Jeo']

(5 9I03S

AJUIPLIUOD)

(-5 18 PPON §897]

(C £ 8I03G
B2UP LU

Bl

3

1

€ 182103 wopury

M-:.

§7¢ PPON JBoT]

[~07E Q934],

U.S. Patent

May 7, 2019

fdentity
First Set of
Data

505

Crenerate
Random
FHorest

Calculate
First
Conviction

Threshold

fdentify
Second Set
of Data

Calculate
Second
Conviction
Threshold

510

~5153

Sheet 5 of 11

105-a

Random Forest and First

~535

Conviction Threshold

Second Conviction Threshold

" 540

FIG. 5

US 10,284,585 B1

340

Client
Device

Implement
Random
Forest with |
First
Conviction
Threshotd

525

implement
Random
Forest with
Sccond
Conviction
Threshold

545

U.S. Patent May 7, 2019 Sheet 6 of 11 US 10,284,585 B1

B e e T T i e T T e T it e T e e i i e P CRCiaTar R 503
Building, by a server, a first random forest based at least in part on a first] /
set of categorized data, the first random forest comprising N trees
1 610
Generating, by the server, an imndependent {re¢ based at least in partona |
second set of categorized data
Geunerating, by the server, a second random forest, the second random | 645
forest comprising the independent tree and N-1 trees from the first
random forest
620
Compariag, by the server, a performance of the first random forest to a
performance of the second random forest
625

Sending, by the server, the independent tree to a client device based at

least 1n part on the comparing

FIG. 6

U.S. Patent May 7, 2019 Sheet 7 of 11 US 10,284,585 B1

710
Build an original random forest by generating N random trees based at '
least in part on the fraining data

-713

No

720
Generate an independent tree based at least in part on the '
new categorized data

725
Generate a plurality of unique random forests comprising the
imndependent tree and N-1 trees of the original random forest

730
Compare performances of unigue random forests and
the original random forest

- 733

" Original forest
performs best?

v No 740

[dentify a selected tree from original random forest

745

Replace the selected tree with the independent tree

Continue using the original random forest

U.S. Patent May 7, 2019 Sheet 8 of 11 US 10,284,585 B1

300 1

305 Build a random forest based at least in part on a first set of categorized data

810

513

920 Calculate a segond random forest control value for the -random forest based at
least in part on the second set of categorized data

FIG. 8

U.S. Patent May 7, 2019 Sheet 9 of 11 US 10,284,585 B1

905
910
075 Calculate a second threshold of conviction based on running at least a subset of
3 | 5 |
the second set of known malware tiles and clean files through the random forest
Q20 ~ send the second threshold of conviction to the client device
925 Implement the second threshold of conviction in the random forest previously
J | . . .
sent to and implemented on the client device
930
No Yes
Unknown File Clean?
| Categorize the unknown fileas | 935 Categorize the unknown file as 940
a malware file 4 | a clean file '

FiG. 9

US 10,284,585 B1

Sheet 10 of 11

May 7, 2019

U.S. Patent

01 OIAd

201A3(]

dsh

0801 0L01
DOBIINU]

388101G

30BJINY]

JIOMIAN a5/}

GEOT | - 0cot
20BIINIUY _ REFRICRURIT G

oIpOY O/1

TO1
WIISAG
ryeadg

J2{]OI1H07)

$807

0901
I3[{0JI1U0)D)
10542

301A2(]

m 4481
| 13jjou0) 12depvy
L ndyg Aejdsi(

~ SO0

G101

| 08T ampo 21epdn |

| §i104
AJOWIR A WDISAY

JOSSAN0IG
[BIU3)

N

0001

U.S. Patent May 7, 2019 Sheet 11 of 11 US 10,284,585 Bl

11001

Device

{125-q-1

Intetligent
Storage Array
1145

Server [{20-a

Clhient

Update Module /30-¢

SAN
Fabric
1140

Network ¢
1130

Device Device
1125-b-1 [133-m

FIG. 11

US 10,284,585 Bl

1

TREE ROTATION IN RANDOM
CLASSIFICATION FORESTS TO IMPROVE
EFFICACY

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 15/193,653, filed on Jun. 27, 2016 and titled
“RETUNING OF RANDOM CLASSIFICATION FOR-

ESTS TO IMPROVE EFFICACY”, which 1s incorporated
by reference, 1n 1ts entirety, into the present application.

BACKGROUND

Advancements in media delivery systems and data-related
technologies continue to increase at a rapid pace. Increasing,
demand for accessible data has influenced the advances
made to data-related technologies. Computer systems have
increasingly become an integral part of data creation, data
usage, and data storage. Computer systems may be used to
carry out several data-related functions. The wide-spread
access to data has been accelerated by the increased use of
computer networks, including the Internet and cloud net-
working.

The wide-spread use of computers, however, has come
with the increased cost and continued spread of computer
viruses and malware. As computing devices and mobile
computing devices become more ubiquitous throughout the
world, malware creators are given an increased number of
computer systems to infect. In addition, malware creators
are continually devising new ways to infect computer sys-
tems with new types of malware.

SUMMARY

According to at least one embodiment, a method for
optimizing computer detection of malware using pattern
recognition by refreshing random classification forests 1s
described. In one embodiment, the method may include
building a random forest with two or more binary decision
trees based at least 1n part on a first set of categorized data,
sending the random forest to a client device with a first
random {forest control value, i1dentifying a second set of
categorized data different from the first set of categorized
data, calculating a second random forest control value based
on the second set of categorized data and sending the second
random forest control value to the client device.

In some embodiments, the method may include imple-
menting the second random forest control value in the
random {forest on the client device in place of the first
random forest control value and performing a security action
based at least 1n part on the second random forest control
value. In some cases, the method may include calculating a
first set of confidence scores based at least 1n part on the first
set of categorized data, and calculating a second set of
confidence scores based at least 1n part on the second set of
categorized data. In some cases, the first random {forest
control value may include at least one of the first set of
confidence scores and a first threshold of conviction. Like-
wise, 1n some cases, the second random forest control value
may include at least one of the second set of confidence
scores and a second threshold of conviction.

In some embodiments, the method may 1nclude associat-
ing a random subset of the first set of categorized data with
one of the binary decision trees of the random forest and
running the random subset of the first set of categorized data

10

15

20

25

30

35

40

45

50

55

60

65

2

down the associated binary decision trees of the random
forest. In some cases, the first set of categorized data may
include malware files and clean files. In some embodiments,
the random subset of the first set of categorized data may
include a random selection of at least one of the malware
files and at least one of the clean files. In some cases, a
number ol malware files 1 the random subset equaling a
number of clean {files 1n the random subset.

In some embodiments, calculating the first or second set
of confidence scores may include calculating a confidence
score for each leaf node of the random forest based at least
in part on data from the first set of categorized data or the
second set of categorized data being ran through the random
forest. In some cases, calculating the first threshold of
conviction for the random forest may be based at least 1n part
on an aggregate of the first set of confidence scores, and
calculating the second threshold of conviction may be based
at least 1n part on an aggregate ol the second set of
confidence scores.

In some embodiments, calculating the first or second
thresholds of conviction may include calculating true posi-
tive and false positive rates for each leaf node of the random
forest 1n conjunction with the first or second set of catego-
rized data being ran through the random forest, generating a
receiver operating characteristic (ROC) curve based on the
calculated true positive and false positive rates of each leaf
node, and selecting a value along the ROC curve. In some
cases, the first set of categorized data may include a first set
of known malware files and known clean files, and the
second set of categorized data may include a second set of
known malware files and known clean files separate from
the first set of known malware files and known clean files.

A computing device configured for optimizing computer
detection of malware using pattern recognition by refreshing
random classification forests 1s also described. The comput-
ing device may include a processor and memory 1n elec-
tronic communication with the processor. The memory may
store computer executable mnstructions that when executed
by the processor cause the processor to perform the steps of
building a random forest with two or more binary decision
trees based at least 1n part on a first set of categorized data,
sending the random forest to a client device with a first
random forest control value, i1dentifying a second set of
categorized data diflerent from the first set of categorized
data, calculating a second random forest control value based
on the second set of categorized data and sending the second
random forest control value to the client device.

A non-transitory computer-readable storage medium stor-
ing computer executable instructions 1s also described.
When the structions are executed by a processor, the
execution of the instructions may cause the processor to
perform the steps of building a random forest with two or
more binary decision trees based at least 1n part on a first set
ol categorized data, sending the random forest to a client
device with a first random forest control value, 1dentifying
a second set of categorized data different from the first set of
categorized data, calculating a second random forest control
value based on the second set of categorized data and
sending the second random forest control value to the client
device.

According to at least one embodiment, a method for
optimizing computer detection of malware using pattern
recognition by refreshing random classification forests 1s
described. In one embodiment, a first random forest based at
least 1n part on a first set of categorized data may be
generated by a server. The first random forest may include
N trees. An independent tree based at least in part on a

US 10,284,585 Bl

3

second set of categorized data may be generated by the
server. A second random forest may be generated by the
server. The second random forest may include the indepen-
dent tree and N-1 trees from the first random forest. A
performance of the first random forest may be compared to
a performance of the second random forest by the server.
The independent tree may be sent to a client device based at
least 1in part on the comparing by the server.

In some embodiments, the first random forest may be sent
to the client device belore generating the second random
forest. Each tree of the first and second random forests may
include N binary decision trees each with one or more leaf
nodes. In some embodiments, a first receiver operating
characteristic of the first random forest may be determined
based on running at least a first random subset of the second
set of categorized data down the first random forest. A
second receiver operating characteristic of the second ran-
dom forest may be determined based on running at least a
second random subset of the second set of categorized data
down the second random forest. The first receiver operating
characteristics of the first random forest may be compared to
the second receiver operating characteristics of the second
random forest. comparing the first receiver operating char-
acteristics of the first random forest to the second receiver
operating characteristics of the second random forest. It may
be determined to send the independent tree to the client
device based at least 1n part on the first and second receiver
operating characteristics indicating the second random for-
est outperforms the first random forest.

In some embodiments, the independent tree may be sent
to the client device by the server. The client device may be
instructed by the server to remove a selected tree from {first
random forest on the client device. The client device may be
instructed by the server to implement the independent tree 1n
the first random forest on the client device in place of the
selected tree removed from the first random forest. In some
embodiments, the first set of categorized data may include a
first set of known malware files and a first set of known clean
files. In some embodiments, the second set of categorized
data may include a second set of known malware files and
a second set of known clean files, the second set of catego-
rized data may be different from the first set of categorized
data. In some embodiments, the method may 1nclude per-
forming a security action at the client device based on the
first and second sets of categorized data.

A computing device configured for optimizing computer
detection ol malware using pattern recognition by refreshing
random classification forests 1s also described. The comput-
ing device may include a processor and memory 1n elec-
tronic communication with the processor. The memory may
store computer executable instructions that when executed
by the processor cause the processor to perform the steps of
building, by a server, a first random forest based at least in
part on a {irst set of categorized data, the first random forest
including N trees, generating, by the server, an independent
tree based at least 1n part on a second set of categorized data,
generating, by the server, a second random forest, the second
random forest including the independent tree and N-1 trees
from the first random forest, comparing, by the server, a
performance of the first random forest to a performance of
the second random {forest, and sending, by the server, the
independent tree to a client device based at least in part on
the comparing.

A non-transitory computer-readable storage medium stor-
ing computer executable instructions i1s also described.
When the mstructions are executed by a processor, the
execution of the instructions may cause the processor to

10

15

20

25

30

35

40

45

50

55

60

65

4

perform the steps of building, by a server, a {irst random
forest based at least 1n part on a first set of categorized data,
the first random forest including N trees, generating, by the
server, an independent tree based at least 1n part on a second
set of categorized data, generating, by the server, a second
random {forest, the second random forest including the
independent tree and N-1 trees from the first random forest,
comparing, by the server, a performance of the first random
forest to a performance of the second random {forest, and
sending, by the server, the independent tree to a client device
based at least in part on the comparing. In some embodi-
ments, the non-transitory computer-readable storage
medium includes nstructions executable by the processor to
instruct the client device to perform a security action based
on the first and second sets of categorized data.

Features from any of the above-mentioned embodiments
may be used in combination with one another 1n accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description
in conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings 1llustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings
demonstrate and explain various principles of the instant
disclosure.

FIG. 1 15 a block diagram illustrating one embodiment of
an environment in which the present systems and methods
may be implemented;

FIG. 2 1s a block diagram illustrating one example of an
update module;

FIG. 3 1s a block diagram illustrating one example of a
random subset of a set of categorized data;

FIG. 4 1s a block diagram illustrating one example of a
random forest:;

FIG. 5 shows a diagram of a device communication chart
in accordance with various aspects of this disclosure;

FIG. 6 1s a flow diagram illustrating one embodiment of
a method of refreshing random forests;

FIG. 7 1s a flow diagram 1llustrating another embodiment
of a method of refreshing random forests;

FIG. 8 15 a flow diagram 1llustrating another embodiment
of a method of refreshing random forests;

FIG. 9 15 a flow diagram 1llustrating another embodiment
of a method of refreshing random forests;

FIG. 10 15 a block diagram of a computer system suitable
for implementing the present systems and methods; and

FIG. 11 1s a block diagram of a computer system suitable
for implementing the present systems and methods.

While the embodiments described herein are susceptible
to various modifications and alternative forms, specific
embodiments have been shown by way of example 1n the
drawings and will be described 1n detail herein. However,
the exemplary embodiments described herein are not
intended to be limited to the particular forms disclosed.
Rather, the instant disclosure covers all modifications,
equivalents, and alternatives falling within the scope of the
appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The systems and methods described herein relate to
refreshing random {forests. More specifically, the systems

US 10,284,585 Bl

S

and methods described herein relate to refreshing random
forests 1n relation to malware detection.

A random {forest 1s machine-learming technique for clas-
sifying data. A random forest includes multiple decision
trees configured to classily or sort data. By collecting
multiple trees into a random forest, the random forest may
correct for any individual tree’s errors in classification. A
random forest, and 1ts trees, are created using supervised
machine learning techniques. Decision trees are formed
based on a known set of categorized data, sometimes called
training data.

Malware detection programs or applications may use
random forests to 1dentily malware present on a computing,
device. Malware refers to software programs designed to
damage or do other unwanted actions on a computer system.
Common examples of malware may include viruses, wormes,
trojan horses, and spyware.

Over time, however, the random forest may become less
ellective at categorizing and/or sorting data (e.g., identifying
malware on a computing system). Creators of malware are
continually creating new types of malware, leveraging new
ways to exploit computing systems, or developing new
techniques to disguise malware. Because of the ever-chang-
ing nature of some data spaces, the ability of random forest
to classity and sort data may decay over time. For example,
a random forest may not be capable of detecting a new or
novel malware threat that has emerged after the random
forest was created.

In addition, 1t may be diflicult to update random forests to
account for the new malware threats. As new malware
threats emerge, malware detection entities may update their
data and their processes used to 1dentily malware. Malware
detection programs are deployed on millions of computing
systems. Random forests may comprise many trees, and,
consequently, a random forest may be a large file. Because
of the file size of random forests, users of malware detection,
generally, do not prefer to have their computing system
processing power monopolized by frequent large updates to
theirr malware detection program. As such, methods and
apparatus for refreshing a random {forest in a malware
detection program using smaller, incremental updates are
discussed.

In some examples, one or more selected trees of a random
forest on a computing system may be replaced by one or
more new trees. As new categorized data regarding new
malware threats becomes available, one or more new trees
may be generated using the new categorized data. Once the
one or more new trees are available, the performance of the
one or more new trees may be compared to the performance
of the trees in the current random {forest. Based on this
comparison, one or more trees ol the random forest may be
selected to be replaced by one or more of the new trees.

In yet other examples, methods and apparatus for refresh-
ing random forests may include updating the confidence
scores of the trees of the random forest 1n addition to or as
an alternative to replacing selected trees of the random forest
with new trees.

Random {forests or classification forests used to detect
malware may decay over time as the data used to create the
random forest ages. Replacing an entire random forest 1s an
expensive operation due to limitations on malware definition
update sizes. By using current categorized data to update
aspects of an existing random forest, a currently imple-
mented random forest may remain eflective until it 1s
replaced. For example, by updating the confidence scores of
terminal nodes and the conviction threshold, the utilization
period of an existing random forest may be prolonged. In

10

15

20

25

30

35

40

45

50

55

60

65

6

some cases, updating the confidence scores and/or convic-
tion threshold of a random forest may enable the existing
random forest to approximate the eflicacy of a newly grown
random forest at a fraction of the updating costs.

In one embodiment, a first set of categorized data that
includes definitions for malware and clean data may be used
to build and train a random forest. Subsequent to deploying
the random forest to one or more client devices, a new set
of definitions for malware and clean data may be received as
a second set of categorized data. In one embodiment, the first
set of categorized data with updated classifications and the
second set of categorized data may be run down the original
random forest. A new confidence score may be determined
for one or more terminal nodes of the random forest. Based
on the new confidence scores, a new threshold of conviction
may be determined 1n accordance with a desired true posi-
tive to false positive rate. The updated node confidence
scores and/or conviction threshold may then be sent to and
implemented on the client devices. Sending only the updated
confidence scores and/or conviction threshold to the clients
1s a relatively small and quick update compared to building
and sending an entirely new random forest to clients.

FIG. 1 1s a block diagram illustrating one embodiment of
an environment 100 in which the present systems and
methods may be implemented. In some embodiments, the
systems and methods described herein may be performed on
a device (e.g., device 105) and/or a server (e.g., server 110).
As depicted, the environment 100 may include a device 105,
a server 110, and a computing device 125 communicatively
coupled via a network 115.

The device 105 may be any device that utilizes a random
forest to classity or sort data. For example, the device 105
may use a random forest to i1dentily and detect malware
present on the device 105. In some configurations, the
device 105 may include a user interface 145, an application
150, and an update module 130. The user interface 145 may
include any number of mput/output devices such as, for
example, a mouse, keyboard, audio speakers, a display, a
touchscreen, or other ways to interact with a user. The
application 150 may be installed on the computing device
125 1n order to allow a user to interface with a function of
the device 105, the update module 130, and/or the server
110. The application 150 may include a random forest 155
and may be embodied as any application that utilizes the
random forest 155. In some embodiments, the application
150 may be embodied as a malware detection application.
The update module 130 1s configured to communicate with
the server 110 to determine whether the application 150 may
need new or additional information to operate. For
examples, the update module 130 may be configured to
receive updates to the random forest 155. Although the
components of the device 105 are depicted as being internal
to the device 105, 1t 1s understood that one or more of the
components may be external to the device 105 and connect
to device 105 through wired and/or wireless connections.
The device 105 may include any combination of mobile
devices, smart phones, personal computing devices, com-
puters, laptops, desktops, servers, media content set top
boxes, satellite set top boxes, cable set top boxes, DVRs,
personal video recorders (PVRs), etc.

The server 110 may be any computing system that gen-
erates, manages, or stores a random forest to classily or sort
data. In some embodiments, the server 110 generates, man-
ages, or stores, random forests for a plurality of other
computing systems such as, for example, the device 105 or
the computing device 125. In the illustrative embodiment,
the server 110 includes an update module 130 configured to

US 10,284,585 Bl

7

refresh the random forests deployed on the device 105 and
the computing device 125. Examples of the server 110 may
include any combination of a data server, a cloud server, a
server associated with an automation service provider, proxy
server, mail server, web server, application server, database
server, communications server, file server, home server,
mobile server, name server, etc.

The update module 130 may enable the server 110 to
generate decision trees, generate random forests, compare
the performance of different trees and/or the performance of
different random forests, and generate updates to the trees
and/or random forests. In some embodiments, the update
module 130 may be configured to perform the systems and
methods described herein in conjunction with the device 105
and/or the computing device 123. Further details regarding
the update module 130 are discussed below with reference
to FIG. 2.

In some embodiments, server 110 may be coupled to a
database 120. Database 120 may be internal or external to
the server 110. The database 120 may include categorized
data 135 and random forest data 140. The categorized data
135 may be a set of known data that may be used to discover
potentially predictive relationships between the data. In
some embodiments, the categorized data 135 may be ground
truth data indicative of information provided by direction
observations. The random forest data 140 may be any data
related to any number of random forests used by the update
module 130. For example, the random forest data 140 may
include data about trees, leal nodes, confidence scores,
random forests, or other related information.

In some examples, the device 105 may be coupled directly
to the database 120, and the database 120 may be internal or
external to the device 105. For example, device 105 may
access the categorized data 135 or random forest data 140 1n
the database 120 over the network 1135 via the server 110.

The computing device 125 may be any devices that utilize
a random forest to classily data. For example, the computing
device 125 may use a random forest to 1dentily and detect
malware present on their systems. In some configurations,
the computing device 125 may provide categorized data 135
to the server 110, or data that may be transformed into
categorized data 135 by the server 110. Examples of com-
puting device 125 may include any combination of a mobile
computing device, a laptop, a desktop, a server, a media set
top box, etc. In some embodiments, the device 105 and the
computing device 125 may cooperate to provide the server
110 with additional data about malware threats to computing
systems. For example, as novel malware threats emerge, the
device 105 and/or the computing device 125 may provide
information to the server 110 that aids in the 1dentification
and the detection of such novel malware threats.

In some embodiments, the server 110 may communicate
with the device 105 and/or the computing device 1235 via the
network 115. Examples of the network 115 may include any
combination of cloud networks, local area networks (LAN),
wide area networks (WAN), virtual private networks (VPN),
wireless networks (using 802.11, for example), cellular
networks (using 3G and/or LTE, for example), etc. In some
configurations, the network 115 may include the Internet. It
1s noted that in some embodiments, the server 110 may not
include the update module 130. In such examples, the server
110 may communicate with the update module 130 located
on another device (e.g., device 105 or the computing device
125) via the network 115. In some embodiments, device 105,
the server 110, and the computing device 125 may include
update module 130 where at least a portion of the functions
of the update module 130 are performed separately and/or

10

15

20

25

30

35

40

45

50

55

60

65

8

concurrently on the device 105, one or more of the com-
puting device 125, and/or the server 110.

FIG. 2 1s a block diagram illustrating one example of an
update module 130-a. The update module 130-a may be an
example of the update module 130 depicted 1n FIG. 1. The
update module 130-a may include a data module 205, a tree
generator module 210, a forest generator module 215, a
testing module 220, a performance module 225, an update
generator module 230, and a calculation module 235.

The data module 205 may be configured to receive,
process, and/or store categorized data. Before building any
trees or random forests using supervised machine-learning,
techniques, categorized data 1s obtained. Categorized data
includes data with a set of known attributes. For example, 1n
the field of malware detection, categorized data may include
a set of both clean files (e.g., files that do not include
malware) and corrupted files (e.g., files that do include
malware). In some embodiments, the data module 2035
receives categorized data from the device 105, the comput-
ing device 1235, and/or other sources such as, for example,
entities tasked with classitying data in the manner desired.
The data module 205 may continually receive new data and
may be continually developing new categorized data with
that new data. For example, the device 105 and computing
device 125 may transmit the data about various files to the
server 110. The data module 205 may analyze the data and
determine whether a novel malware threat exists. If such a
novel malware threat 1s confirmed, the data module 205 may
add the file with the malware to the categorized data 135.
Alternatively, the data module 205 may also add clean files
to the categorized data 135. In some embodiments, the data
module 205 may discard some categorized data based at
least 1n part on the age of the categorized data or other
indicators that the categorized data 1s not usetul to classily
other data any longer. In some configurations, the data
module 205 generates ground truth data, which 1s based on
direct observations of desired events and not on inferences.

The tree generator module 210 may be configured to
generate decision trees to classity data based at least 1n part
on relationships i1dentified in the categorized data set. A
decision tree (1.e., a tree) accepts unclassified data, traverses
the unclassified data through a plurality of decision points
(1.e., branch nodes) to divide the unclassified data into
smaller and smaller sets. Finally, the decision tree classifies
cach piece of information in the unclassified data based on
which classification bucket (i.e., leatl or terminal node) the
information terminates. In some embodiments, there are two
types of decision trees, a classification tree having discrete
classification buckets and a regression trees having continu-
ous classification variables.

As described above, 1n one embodiment, update module
130-a may perform a forest returning procedure to update at
least one aspect of a random forest already installed on a
client device. For example, forest generator module 215 may
be configured to build a random forest. In some embodi-
ments, the random forest may include a preconfigured
number N of binary decision trees. In some embodiments, N
may be any value greater than or equal to 2. In one
embodiment, forest generator module 215 may randomly
select a test condition for each node of the N binary decision
trees ol the random forest. For example, one or more of the
N binary decision trees may include at least a root node and
two leaf or terminal nodes. Additionally, 1n some cases, one
or more of the N binary decision trees may include one or
more branch or mntermediary nodes 1n addition to a root node
and leaf nodes. Accordingly, in some embodiments, forest
generator module 215 may randomly select a test condition

US 10,284,585 Bl

9

for each root, branch, and/or leat node for each of the N
binary decision trees of the random forest. In some cases, the
test condition may relate to malware file characteristics. For
example, the randomly selected test condition for each node
may be based on at least one of filename, file size, file type,
file metadata, file header, file creation date, file owner, file
creator, {lle read-only setting, hidden file setting, file encryp-
tion information, file compression information, and an i1den-
tified pattern of data contained in a file.

In some cases, the forest generator module 2135 may build
a random forest based at least i part on a first set of
categorized data. In some embodiments, forest generator
module 215 may be configured to select N random subsets
of data from the first set of categorized data and assign one
of the N random subsets of data to one of the N binary
decision trees of the random forest. In some cases, forest
generator module 215 may run a random subset of the first
set of categorized data down each of the N binary decision
trees of the random forest. In some embodiments, each
random subset may include data that 1s unique to each binary
decision tree. In some configurations, forest generator mod-
ule 215 may assign each of the N random subsets of data
exclusively to one of the N binary decision trees, one
random subset per binary decision tree.

As one example, the first set of categorized data may
include values 1, 2, 3,4, 5,6,7,8,9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20. The values may represent data values,
files, data 1n files, or any combination thereotf. Forest gen-
erator module 215 may randomly select values 1, 35, 9, 13,
1’7 as a first random subset of the first set of categorized data,
randomly select values 3, 8, 10, 17, 19 as a second random
subset of the first set of categorized data, and so forth until
N random subsets are selected. Accordingly, forest generator
module 215 may run each of the first random subset values
1, 5,9, 13, 17 down a first binary decision tree of the N
binary decision trees. The first binary decision tree may
include a root node with a test condition of whether a value
1s greater than or equal to 7, as one example. Accordingly,
forest generator module 215 running the first random subset
of values down the first binary tree may include the root
node of the first binary tree indicating false for values 1 and
5, and true for values 9, 13, and 17. This process may
continue based on test conditions for any branch or inter-
mediary nodes and end upon reaching a leaf or terminal node
of the first binary tree. Likewise, forest generator module
215 may run each of the second random subset values 3, 8,
10, 17, 19 down a second binary decision tree of the N
binary decision trees, and so on with each binary decision
tree until a randomly selected subset of the data 1s run down
cach of the N binary decision trees. In some embodiments,
cach random subset may include the same number of files or
data points. For example, i1 the first set of categorized data
includes a certain number of files, then each randomly
selected subset may include the same number of files.
Alternatively, at least one of the random subsets may include
more or less files/data points than another random subset.

In some embodiments, the first set of categorized data
may include data categorized as malware and data catego-
rized as clean or free from malware. In some cases, the first
set of categorized data may include malware files and clean
files. Thus, 1n some cases, each unique random subset of the
first set of categorized data may include a random subset of
the malware files and/or a random subset of the clean files.
In some cases, a number of malware files 1n a random subset
may equal a number of cleans files in the random subset for
at least one of the N random subsets of the first set of
categorized data. For example, if a first random subset

10

15

20

25

30

35

40

45

50

55

60

65

10

includes 3 malware files, then the first random subset may
include 3 clean files for a total of 6 files. Alternatively, a
random subset may 1include more or less malware files than
clean files.

In some embodiments, data module 205 may be config-
ured to identify a second set of categorized data diflerent
from the first set of categorized data. For example, the data
module 205 may categorize a first set of data and then
categorize a second set of data after categorizing the first set
of data. Accordingly, the data module 205 may generate the
first set of categorized data based on categorizing the first set
of data and then generate the second set of categorized data
based on categorizing the second set of data. In some cases,
both the first and second sets of data may include malware
files and clean files. Accordingly, in some configurations,
data module 205 may 1dentify the first set of categorized data
based on a first set of known malware files and known clean
files. Likewise, data module 205 may 1dentily the second set
of categorized data a second set of known malware files and
known clean files that are different from the first set of
known malware files and known clean files.

In some embodiments, update generator module 230 may
be configured to send the random forest to a client device.
On the client device, the random forest may be implemented
to test unknown files to determine whether they are more or
less likely to include malware. In some cases, the update
generator module 230 may send to the client device a first
random forest control value with the random forest. In some
cases, the first random forest control value may include one
or more confidence scores for leal nodes of the binary
decision trees of the random forest, a threshold of conviction
for the random forest, or any combination thereof. Thus, 1n
some embodiments, the update generator module 230 may
send to the client device one or more confidence scores
and/or a first threshold of conviction with the random forest.

In some embodiments, data module 205 may calculate the
first random forest control value based on analysis of the first
set of categorized data. Likewise, in some embodiments,
data module 205 may calculate a second random {forest
control value based on analysis of the second set of catego-
rized data. In some cases, the update generator module 230
may be configured to send the second random forest control
value to the client device. In some cases, the second random
forest control value may replace the first random forest
control value on the client device. The random forest may be
first implemented on the client device using the first random
forest control value. After recerving the second random
forest control value, the second random forest control value
may replace the first random forest control value and the
random forest may be implemented on the client device
using the second random forest control value instead of the
first random forest control value.

In some cases, a security action may be performed on the
client device 1n conjunction with implementing the first
and/or second random {forest control value in the random
forest on the client device. In some embodiments, the update
generator module 230 may generate an update that also
includes instructions for the client device to perform one or
more security actions based at least i part on the first
categorized data and the second categorized data. As used
herein, the term “security action” may refer to any number
of actions the systems described herein may take after
determining that a file likely includes some type of malware.
For example, types of security actions may include prevent-
ing the file from performing any actions on the computing
device, alerting an admainistrator to the potential malicious-
ness of the file, quarantine the file, delete the file, block a

US 10,284,585 Bl

11

download of the file, and/or warn a user about the file. In
addition, the systems described herein may perform a secu-
rity action on objects other than a file. For example, the
systems described herein may blacklist malicious URLs
and/or IP addresses. It should be appreciated that these are
not exhaustive lists of the types of security actions which
may be performed by the systems described herein. Other
security actions are also included 1n this disclosure.

In some embodiments, the second set of categorized data
may include new definitions of data related to malware data
samples and clean data samples. The second set of catego-
rized data may provide the random forest further clarifica-
tion and confidence 1n classitying unknown files as malware
files or clean files. Thus, implementing the second random
forest control value 1n the random forest may improve the
operation of the random forest already on the client without
having to replace the entire random forest. Thus, generating
only the second random forest control value instead of
generating an entirely new random forest based on the
second set of categorized data may improve system response
time and efliciency because generating a second random
forest control value takes less resources and time than
generating an entirely new random forest. Also, a random
forest control value may be one or more orders of magnitude
smaller byte-wise than a random forest. Thus, sending only
the second random forest control value to the client 1nstead
of an entirely new random forest may save on network
bandwidth.

In some embodiments, calculation module 235 may cal-
culate a set of confidence scores 1n relation to the random
forest. In some embodiments, running the random subsets of
the first set of categorized data down the random forest may
result 1n confidence scores being determined for each leaf
node of the random forest. For example, confidence scores
may be based on the effectiveness of a node of the binary
decision tree correctly classifying a file or data point tested
at the particular node. In some embodiments, calculation
module 235 may calculate a confidence score for each leaf
node of the random forest based at least 1n part on runmng,
data through the random iforest. For instance, calculation
module 235 may calculate the first confidence scores by
running at least a subset of the first set of categorized data
for each binary decision tree of the random forest. Similarly,
calculation module 235 may calculate second confidence
scores by running at least a subset of a second set of
categorized data for each binary decision tree of the random
forest. As one example, a random subset of data run down
a binary decision tree may include 3 known malware files
and 3 known clean files. If a leal node of the binary decision
tree results 1n an 1indication that 2 of the known malware files
contain malware, and the 3 known clean files and one of the
known malware files are free of malware, then the binary
decision tree correctly classifies 5 out of the 6 files. Thus, the
confidence score associated with the binary decision tree
may indicate a confidence of 5 out of 6 files being correctly
classified, or a confidence score of 0.83.

In some embodiments, calculation module 235 may cal-
culate one or more random forest control values. The
random forest control values may include confidence scores
for one or more leal nodes of at least one binary decision tree
of the random forest, a conviction threshold for the random
forest, or any combination thereof. As one example, calcu-
lation module 235 may calculate a threshold of conviction
for a given set of categorized data. For example, calculation
module 235 may calculate a first threshold of conviction
based on the first set of categorized data and calculate a
second threshold of conviction based on the second set of

10

15

20

25

30

35

40

45

50

55

60

65

12

categorized data. In one embodiment, satisfying the thresh-
old of conviction may determine whether an unknown file 1s
more likely to include malware or to be free from malware.
In some cases, the threshold of conviction may be associated
with confidence scores of the binary decision trees of the
random forest determined by running a set of categorized
data down the binary decision trees of the random forest. In
one embodiment, calculating the first threshold of convic-
tion for the random forest may be based at least in part on
an aggregate of the first set of confidence scores. Likewise,
calculating the second threshold of conviction may be based
at least 1n part on an aggregate ol the second set of
confidence scores. For example, calculating a conviction
threshold may be based at least 1n part on calculation module
235 calculating a summation and/or an average ol confi-
dence scores derived from running categorized data through
the binary decision trees of the random forest.

In some cases, calculating the first threshold of conviction
may include calculation module 235 calculating true posi-
tive and false positive rates for each leaf node of the random
forest 1n conjunction with runmng the random subsets of the
first set of categorized data down the random forest. In some
configurations, calculating the second threshold of convic-
tion may include calculation module 235 calculating true
positive and false positive rates for each leal node of the
random {forest in conjunction with running the random
subsets ol the second set of categorized data down the
random forest. In some embodiments, data module 205 may
generate a receiver operating characteristic (ROC) curve
based on the calculated true positive and false positive rates
of each leaf node. In some cases, data module 205 may
select a value along the ROC curve 1n relation to selecting
the first and/or second conviction thresholds.

As one example, where N=3 binary decision trees, the
first conviction threshold may be calculated based on test
data (first or second set of categorized data, for example) ran
through the random forest. The test data being ran through
the 3 binary decision trees may result 1n the first binary
decision tree having a confidence score of 0.94, the second
binary decision tree with a confidence score of 0.86, and the
third binary decision tree with a confidence score of 0.91.
Summing these confidence scores may indicate a summa-
tion-based threshold of conviction of 2.71. Averaging these
confldence scores may indicate an average-based threshold
of conviction of 0.903. Accordingly, the random forest may
be sent with the confidence scores and/or conviction of
threshold to a client device. The client device may 1mple-
ment the random forest to test unknown files. For instance,
an unknown file associated with the client device may be run
down the random forest to determine whether the unknown
file 1s most likely a malware file or a clean file free from
malware. In some embodiments, the forest generator module
215 may run the unknown file down each of the 3 binary
decision tree of the random forest. As a result, the unknown
file may be scored by each binary decision tree. The first
binary decision tree with a confidence score of 0.94 may
give the unknown file a score of 0.92, the second binary
decision tree with a confidence score of 0.86 may give the
unknown file a score of 0.89, and the third binary decision
tree with a confidence score of 0.91 may give the unknown
file a score of 0.93. Since the unknown {file scored below the
confidence score of the first binary decision tree, the first
binary decision tree may indicate the unknown file does not
include malware. However, since the unknown file scored
above the confidence score of the second and third binary
decision trees, the second and third binary decision trees
may 1ndicate the unknown file does include malware. In one

US 10,284,585 Bl

13

embodiment, the scores of the unknown file by each of 3
binary decision trees may be summed and/or averaged and
then compared to the first threshold of conviction to deter-
mine whether to convict the file as containing malware or
indicate the file 1s clean and free from malware. For instance,
the scores of 0.92, 0.89, and 0.93 may be summed resulting
in a summed-score of 2.74 for the unknown file. Compared
to the summation-based threshold of conviction of 2.71, the
summed score of 2.74 may indicate the unknown f{ile
includes malware. In one embodiment, the scores of the
unknown {ile may be averaged resulting 1n an average score
of 0.913 for the unknown file. Compared to the average-
based threshold of conviction of 0.903, the average score of
0.913 may indicate the unknown file includes malware.
Although the conviction of threshold i1s explained here as
indicating malware when a score of an unknown file exceeds
a given threshold, i some embodiments, an unknown file
may be categorized as including malware when a score of
the unknown file does not exceed a given threshold.

In one embodiment, calculation module 235 may be
configured to calculate a second threshold of conviction for
the random forest based at least 1n part on running a second
set of categorized data down the random forest. Accordingly,
in some embodiments, update generator module 230 may be
configured to send the second threshold of conviction to the
client device and/or any combination of a second set of
confldence scores calculated by calculation module 235 1n
association with runmng the second set of categorized data
down the random forest.

In some embodiments, forest generator module 215 may
be configured to implement the second set of confidence
scores and/or the second threshold of conviction in the
random forest already installed on the client device. In some
cases, forest generator module 215 may replace, on the
client device, the first set of confidence scores with the
second set ol confidence scores. Additionally, or alterna-
tively, forest generator module 215 may replace, on the
client device, the first threshold of conviction with the
second threshold of conviction. In some cases, forest gen-
erator module 215 may send a command and/or instructions
to the client device to implement the second set of confi-
dence scores and/or the second threshold of conviction 1n
relation to the random forest on the client device. Addition-
ally, or alternatively, forest generator module 215 may
execute, via a connection with client device, a command
and/or a process on the client device to implement the
second set of confidence scores and/or the second threshold
of conviction. For instance, forest generator module 2135
may establish a secure connection with the client device to
implement the second set of confidence scores and/or the
second threshold of conviction.

FI1G. 3 1s a block diagram 300 1llustrating one example of
random subsets of data from a set of categorized data. As
illustrated, block diagram 300 illustrates a set of categorized
data 305, first random subset of data 310, second random
subset of data 315, and third random subset of data 320. In
one embodiment, the set of categorized data 305 may
include a set of malware data and a set of clean data. As
shown, the malware data set may include malware data 1 to
malware data 10, and clean data set may include clean data
1 to clean data 10.

The malware data set may depict malware files, malware
data, or a set of malware data. As one example, malware data
1 may represent a malware file, malware related data, a
malware data point, a malware related value, or any com-
bination thereof. Although the malware data set 1s depicted
as being equal in number to the clean data set, 1n some

5

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments, the set of categorized data 305 may include
more or less files in the malware data set than files 1n the
clean data set.

In one embodiment, data module 205 may generate the
first random subset of data 310 by randomly selecting a set
of files from the set of categorized data 305. As shown, data
module 205 may randomly select malware data 4, malware
data 7, clean data 2, and clean data 5. Similarly, data module
205 may generate second random subset of data 315 and
third random subset of data 320 by randomly selecting data
from the malware set and/or clean set files. Although each
random subset 310, 315, and 320 1s depicted as having an
equal number of files from the set of categorized data 305,
in some embodiments, at least one of the random subsets
may include more or less files than another of the random
subsets. Additionally, or alternatively, although each random
subset 310, 315, and 320 1s depicted as having an equal
number of malware files to clean files, 1n some cases, at least
one of the random subsets 310, 315, and 320 may include
more or less malware files than clean files.

FIG. 4 1s a block diagram illustrating one example of a
random forest 405 comprised of N number of trees 410. The
random forest 405 may be an example of the random forest

155 depicted 1n FIG. 1. As depicted, a tree 410-1 includes an
M number of leaf nodes 415-M. Each leaf node 415 repre-
sents a terminal node of the tree 410-1. Terminal nodes
represent the final outcome of the classification process
performed by the tree 410-1. In some embodiments, each
leal node 4135 indicates that the data that arrives at the leaf
node 415 belongs 1 a particular class. Each leal node 415
includes a confidence score 420 indicative of a probability
that the data items in the leal node 415 belong to the
particular class indicated by the leat node 415. For example,
if a leal node 415 with a confidence score of 80% indicates
that a file includes malware, the probability that the file
actually includes malware 1s 80%. Confidence scores 420
may be determined using the categorized data 135. Because
the categorized data 135 includes data that has already been
classified, after the decision has been formed, a system may
compare the leal node’s classification against the pre-deter-
mined, known classification. In such a case, the tree 410-1
may have sorted five pieces of data into a particular leaf
node 415-1 that indicates the five pieces of data belong 1n a
first classification. If the pre-determined classification indi-
cates that four of the five belong in the first classification, the
confidence score 420 of the leaf node 415-1 may be 80%.
Please note that branch nodes are not depicted in FIG. 4.
Branch nodes are intermediary decision points that separate
unclassified data into smaller sets, but do not classify the
data.

Returning to FIG. 2, the tree generator module 210 may
build a plurality of trees 410 to be included 1n a random
forest 405. The tree generator module 210 receives the
categorized data 135 generated by the data module 205. The
tree generator module 210 selects a subset of the categorized
data with which to build a particular tree 410-1. In some
embodiments, each tree 410-N 1s built using a difierent
subset of the categorized data 135. In some embodiment,
cach tree 410-N 1s built using a random or pseudo-random
subset of the categorized data 135. When separating the
subset of categorized data (e.g., at branch nodes and/or leat
nodes 415), the tree generator module 210 may select of
subset of variables from a set of variables on which to base
the separation. In some examples, each decision point 1s
made using a diflerent subset of variables. In some
examples, an entire tree 1s built using the same subset of
variables.

US 10,284,585 Bl

15

In some examples, the tree generator module 210 may
terminate the building of a tree 410 after either: (1) the subset
of categorized data 135 cannot be split again, (1) the tree 410
has gone as deep as 1t can go based at least 1n part on the
categorized data and the vaniables used to make decisions,
and (111) the tree 410 has reached a pre-determined number
of leaf nodes 415-M. In some examples, the tree generator
module 210 will terminate when a tree 410-1 has reached a
pre-determined number of leal nodes 415-M. In this way, the
file size of each tree 410-N 1n the random forest 405 may be
roughly equivalent to the file sizes of the other trees 410 in
the random forest 405. Having trees of roughly equivalent
files sizes may allow for updates that refresh a random forest
(e.g., re-tuning or tree replacement or both) to be a predict-
able file size.

The forest generator module 215 may be configured to
generate a random forest from at least a subset of the trees
410 generated by the tree generator module 210. A random
forest 405 1s built with the assumptions that most trees 410
in a random forest 405 are accurate predictors/classifiers of
the categorized data and different trees 410 will make
classification mistakes at diflerent places. To account for any
bias that may be found in a single decision tree 410, a
random forest 405 1s a collection of trees 410 built to classify
the same or similar types of data. By combining the classi-
fication results of multiple trees, i theory, a random forest
405 may be a more accurate predictor/classifier of the data
than any tree 410 alone. In some examples, the random
torest 405 includes all of the trees 410 generated by the tree
generator module 210. In some examples, the random forest
405 1ncludes a subset of the trees generated by the tree
generator module 210. The subset of trees 410 included 1n
the random forest 405 may be determined based at least in
part on the performances of the trees 410 generated by the
tree generator module 210.

The testing module 220 may be configured to determine
whether a random forest should be updated or refreshed
based on new, additional, or updated categorized data. In
some configurations, the testing module 220 may determine
a suflicient amount of new categorized data has been
obtained. Once a suflicient amount of new categorized data
has been obtained, the testing module 220 determines
whether the random forest 405 should be updated. The
testing module 220 may determine that an update 1s required
by running new categorized data through the random forest
405 and/or one or trees 410 of the random {forest 405.
Comparing the classification results of the new categorized
data against the pre-determined classifications of the new
categorized data. The testing module 220 may generate an
overall performance parameter based at least in part on the
comparison of the classification results to the new catego-
rized data. By comparing the overall performance parameter
to an overall performance threshold, the testing module 220
may determine that an update 1s required. If the overall
performance parameter exceeds a performance threshold, an
update may be advisable. In some configurations, testing
module 220 may determine that it should evaluate whether
the random forest 405 should be updated at a pre-determined
time interval (e.g., once a day, once a week, or once a
month). In some configurations, the testing module 220 may
perform an update procedure at a pre-determined time
interval, without comparing the overall performance param-
cter to the overall performance threshold.

In some examples, the new categorized data 1s diflerent
than the categorized data 135 used to generate the random
torest 405 and/or one or more of the trees 410 of the random
torest 4035, where at least some of the new categorized data

5

10

15

20

25

30

35

40

45

50

55

60

65

16

was not used to generate the random forest 405. In some
embodiments, the new categorized data includes at least
some of the categorized data 135 used to generate the
random forest 405. In some embodiments, the random forest
405 may be bwlt using many different iterations of catego-
rized data 135, and the new categorized data may 1nclude at
least part of some of the many different iterations of cat-
cgorized data 135.

As already discussed, a performance of the random forest
405 may decay over time because of the changing nature of
the data being classified. For example, when detecting
malware, the types of malware are always changing, and,
therefore, methods to detect malware may also be updated to
account for new threats. After an amount of time has passed.,
the update module 130 may receive and process new 1nfor-
mation that may be used as new categorized data. The new
categorized data being new relative to the categorized data
135 used to generate the random forest 403.

Once the testing module 220 determines that an update
procedure should be performed, 1n some configurations, the
testing module 220 may determine which type of update
procedure should be performed. For example, the testing
module 220 may determine that a re-tuning of the random
forest 405 may be done, that a new tree should be generated,
that both re-tuning and a new tree should be generated, or
some other type of random forest 405 refreshing method
should be used. In some configurations, the testing module
220 may provide instructions to the tree generator module
210 or the forest generator module 215 to determine new
confidence scores 420 for the random forest 405 based at
least 1n part on the new categorized data (e.g., as part of a
re-tuning operation). In yet other configurations, the testing
module 220 may provide instructions to the tree generator
module 210 to generate an independent tree 4235 based at
least 1n part on the new categorized data.

The performance module 225 may be configured to
determine the performance of individual trees and/or the
performance of entire random forests as part of a refreshing
procedure. As used in this application, performance refers to
the ability of tree(s) 410 or random forest(s) 405 to classily
correctly the data. For example, before building a tree 410
or a random forest 405, another enfity (e.g., a human) may
determine a classification for each piece of information 1n
the categorized data. By comparing the pre-determined
classification, to the classification determined by the tree or
the random forest, the performance of the tree or the random
forest may be determined.

In some configurations, the performance module 225 may
compare a performance of the independent tree 425 to a
performance of the random forest 405. For discussion pur-
poses, the random forest 405 discussed above may also be
referred as the original random forest 405-1 and a plurality
of other unique random forests may be referred as the unique
random forests 405-K. The original random forest 405-1 1s
a random forest that was made using the categorized data
135. In some cases, the original random forest 405-1 may be
in use by the device 105 and the computing device 125 when
the independent tree 425 1s generated.

In some embodiments, the performance module 225 may
compare the performance of the independent tree 425 to the
performance of the original random forest 405-1 by gener-
ating a plurality of random {forests and the comparing the
performances of those random forests. In this example, the
performance module 2235 may generate this comparison by
generating a plurality of the unique random forests 405-K.
The 1llustrative embodiment, each umique random {forest
4035-K will include the same number of trees as the original

US 10,284,585 Bl

17

random forest 405-1. Each unique random forest 405-K may
comprise N number of trees 410, where the N number of
trees 1nclude the mdependent tree 425 and N-1 trees 410
selected from the original random forest 405-1. In some
configurations, the performance module 225 may generate N
number of unique random forests 405-K. In this configura-
tion, each unique random forest 405-K 1includes a unique
subset of trees 410 selected from the independent tree 425
and the trees 410-N 1ncluded 1n the original random forest
405. The unique random forests 405-K may be generated by
replacing a diflerent tree 410 of the original random forest
405-1 with the independent tree 425. For example, a first
unique random forest may include the independent tree 425
and trees 410-2 through 410-N of the original random forest
405-1; a second unique random forest may include the
independent tree 425, tree 410-1 and trees 410-3 through
410-N; and etc. In other embodiments, however, the plural-
ity of unique random forests 405-K may include a number
of trees different than the original random forest 405-1. For
example, the plurality of unique random forests 405-K may
include more than one independent tree generated from the
new categorized data or the unique random forests 4035-K
may include any number of trees selected from the original
random forest 405-1.

To compare the performances of the original random
forest 405-1 and the plurality of unique random {forests
405-K, the performance module 225 may run the new
categorized data through each of the random forests 405-1,
405-K. In some examples, the performance module 225 may
generate a recerver operating characteristic (ROC), or ROC
curve, for each random forest 405-1, 405-K based at least in
part on the new categorized data. The performance module
225 may generate a performance parameter based on the
ROC curves for each random {forest 405-1, 405-K. The
performance module 225 may be used to determine which
random forest 405-1, 405-K performed better than the other
random forests 405-1, 405-K. For example, the performance
module 225 may compare the performance parameters to
determine which random {forest 1s the top-performer. It the
original random forest 405-1 1s not the top-performer, the
performance module 225 may 1dentily a selected tree 43
from the original random forest 405-1 to replace with the
independent tree 425. In some examples, the selected tree
430 1s i1dentified by determining which tree 410-N of the
original random forest 405-1 i1s not included 1n the top-
performing unique random forest 405-K. In some embodi-
ments, the performance module 225 may use one or more
different methods to compare the performances of the ran-
dom forests 405-1, 405-K.

The update generator module 230 may be configured to
generate an update that reifreshes the random forest 4035
being operated by the device 105 and/or the computing
device 125. If the update module 130-a performed a re-
retuning procedure, the update may include mstructions to
replace the confidence scores 420 with new confidence
scores 420 for the random forest 405. If the update module
130-a performed a tree replacement procedure, the update
may include instructions to replace the selected tree 430
with the independent tree 425 in the random forest 405. In
some configurations, the update may include nstructions for
both re-tuning updates and tree replacement updates. The
istructions included in the update are configured to be
executable by any device that uses the random forest 405,
for example, the device 1035 and the computing device 125.

FIG. 5 shows a diagram of a device communication chart
500 1n accordance with various aspects of this disclosure. As
depicted, the device communication chart 500 may 1nclude

10

15

20

25

30

35

40

45

50

55

60

65

18

server 110-a¢ and client device 105-a, which may be
examples of server 110 and device 105 of FIG. 1, respec-
tively.

As shown, at block 505, server 110-a may identily a first
set of data. The first set of data may include data categorized
as malware and clean. For example, the first set of data may
include known malware files and known clean files. At block
510, server 110-a may generate a random forest based on the
first set of data. For example, at least a subset of the first set
of data may be used to train the random forest and/or
determine confidence scores for binary decision trees of the
random forest.

At block 513, server 110-a may calculate a first conviction
threshold based on the first set of data being ran through the
random forest. At commumnication 520, server 110-a may
send the random forest and/or the first conviction threshold
to the client device 105-a. At 525, client device 105-a may
implement the random forest with the first conviction thresh-
old. For example, client device 105-¢ may 1dentily an
unknown file and run the unknown file through the random
forest to classity the unknown file as malware or clean.

At block 530, server 110-a may 1dentify a second set of
data. In one embodiment, the second set of data may include
a set ol known malware files and clean files different from
the files from the first set of data. At block 535, server 110-a
may calculate a second conviction threshold based on run-
ning at least a subset of the second set of data through the
random forest. At communication 540, server 110-a may
send the second conviction threshold 540 to the client device
105-a. At block 545, client device 105-a may implement the
random {forest received at commumnication 520 with the
second conviction threshold. For example, in one embodi-
ment, client device 105-a may replace the {first conviction
threshold with the second conviction threshold after receiv-
ing the second conviction threshold via communication 540
from server 110-a. Thus, 1n some embodiments, client
device 105-a may 1dentily an unknown file after implement-
ing the second conviction threshold 1in the random forest
received at communication 520 i order to classity the
unknown file as malware or as being clean.

FIG. 6 1s a flow diagram illustrating one embodiment of
a method 600 for refreshing a random {forest. In some
configurations, the method 600 may be implemented by the
update module 130 illustrated 1n FIG. 1 or 2. In some
configurations, the method 600 may be implemented 1n

conjunction with the application 150, the user interface 145,
and/or the update module 130 illustrated in FIG. 1.

At block 605, the method 600 may build, by a server, a
first random {forest based at least 1n part on a first set of
categorized data, the first random forest comprising N trees.
In some cases, the original random forest is the first random
forest. In some cases, the method 600 may send, by the
server, the first random forest to the client device before
generating the second random forest, each tree of the first
and second random forests comprising N binary decision
trees each with one or more leaf nodes. In some cases, the
method 600 may identify, by the server, the first set of
categorized data comprising a first set of known malware
files and a first set of known clean files, and 1dentify, by the
server, the second set of categorized data comprising a
second set of known malware files and a second set of
known clean files, the second set of categorized data being
different from the first set of categorized data.

At block 610, the method 600 may generate, by the server,
an mdependent tree based at least 1n part on a second set of
categorized data. At block 615, the method 600 may gen-
erate, by the server, a second random forest, the second

US 10,284,585 Bl

19

random forest comprising the independent tree and N-1
trees from the first random forest.

Atblock 620, the method 600 may compare, by the server,
a performance of the first random forest to a performance of
the second random forest. The performance of the random
forests may be a measure of how eflectively the first random
forest and the second random forest categorize and sort the
second set of categorized data. In some cases, the method
600 may determine a first receiver operating characteristic of
the first random forest based on running at least a first
random subset of the second set of categorized data down
the first random forest. In some cases, the method 600 may
determine a second receiver operating characteristic of the
second random forest based on runming at least a second
random subset of the second set of categorized data down
the second random {forest. In some cases, the method 600
may compare the first receiver operating characteristics of
the first random forest to the second receiver operating
characteristics of the second random forest.

At block 6235, the method 600 may send, by the server, the
independent tree to a client device based at least in part on
the comparing. In some cases, the method 600 may generate
an update that includes the independent tree and instructions
to remove a selected tree from the first random forest and
install the independent tree 1n the first random {forest. In
some cases, the method 600 may determine to send the
independent tree to the client device based at least 1n part on
the first and second receiver operating characteristics indi-
cating the second random forest outperforms the first ran-
dom forest. In some cases, the method 600 may send, by the
server, the mdependent tree to the client device. In some
cases, the method 600 may 1nstruct, by the server, the client
device to remove a selected tree from the first random forest
on the client device. In some cases, the method 600 may
instruct, by the server, the client device to implement the
independent tree 1n the first random forest on the client
device 1n place of the selected tree removed from the first
random forest. In some configurations, the client device may
be the device 105.

FIG. 7 1s a flow diagram 1illustrating one embodiment of
a method 700 for refreshing a random forest. In some
configurations, the method 700 may be implemented by the
update module 130 illustrated in FIGS. 1 and/or 2. In some
configurations, the method 700 may be implemented 1n
conjunction with the application 150, the user interface 145,
and/or the update module 130 illustrated 1n FIG. 1.

At block 705, the method 700 may include obtaining
categorized data. In some examples, the categorized data
may be generated from other data received from other
computing devices using a random forest to classily or sort
data (e.g., device 105 or computing device 125). In some
embodiments, the categorized data may be received directly
from the other computing devices.

At block 710, the method 700 may build an original
random forest by generating an N number of random trees
based at least in part on the categorized data. The random
forest being configured to classity or sort data. For example,
the random forest may be used to determine whether a file
includes malware.

At block 715, the method 700 may determine whether
new categorized data has been received. The data being
classified or sorted may change over time, which may reduce
the eflectiveness of the original random forest to sort and
classily the desired data. Once 1t has been determined that a
suilicient amount of new categorized data has been obtained,
an update for the original random forest may be developed.
Betfore any update of the original random forest 1s 1mple-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

mented, however, 1t may be determined whether an update
based on the new categorized data would increase the
cllectiveness of the original random {forest. In some
examples, the update and the determination of whether an
update would improve the eflectiveness of the original
random forest are determined simultaneously. If the method
700 determines that a suflicient amount of new categorized
data has been received, the method 700 may move to
execute block 720. Otherwise, the method may continue to
execute block 715.

At block 720, the method 700 may generate an indepen-
dent tree based at least 1n part on the new categorized data.
In some examples, the independent tree 1s generated to
replace a tree of the original random forest. In this way the
original random forest 1s refreshed or updated with new data,
which may improve the effectiveness of the original random
forest.

At block 725, the method may generate a plurality of
unique random forests. In some examples, the umique ran-
dom forests comprise the independent tree and N-1 trees of
the original random forest. When determiming the eflective-
ness of a random {forest, 1t may be more useful to measure
the performance of an entire random forest rather than
individual trees. The 1dea of a random forest 1s that aver-
aging the results of a number of decision trees together may
provide more accurate results than any decision tree alone.
With this in mind, 1n some cases, poorly performing trees of
the original random {forest are selected by comparing the
performances of a plurality of random {forests. In some
examples, each unique random forest may include the same
number of trees as the original random forest, except a
unmique tree 1s replaced by the independent tree in each
unique random forest.

At block 730, the method 700 may compare the perfor-
mance of the unique random forests and the original random
forest. In some examples, the performance of each random
forest 1s determined by measuring the ROC curve of the
random {forest after running the new categorized data
through the random forests.

At block 735, the method 700 determines which random
forest of the plurality of unique random forests and the
original forest was the most eflective at classilying and
sorting the new categorized data. If the original random
forest was the top-performing random forest, the method
700 does not execute blocks 740, 745. If one of the plurality
of unique random {forests was the top performing random
forests, the method 700 moves to execute block 740.

At block 740, the method 700 may 1dentily a selected tree
from the original random forest to replace with the inde-
pendent tree. In some examples, the selected tree 1s 1denti-
fied by determining which decision tree from the original
random forest 1s missing irom the top-performing unique
random forest.

At block 743, the method 700 may replace the selected
tree with the independent tree. In some examples, an update
1s sent from a server to a computing device that uses the
original random forest. The update may include data indica-
tive of the new independent tree and may include 1nstruc-
tions for the computing device to remove the selected tree
from 1ts copy of the original random forest and install the
independent tree into the original random forest. In some
cases, the number of leaf nodes 1n a decision tree are limited
to cause each decision tree to have similar file sizes. As one
example, the file size of each decision tree in a random forest
may be 1 to 2 MBs 1n size.

Upon determining at block 735 that the original random
forest performs best, at block 750 the method 700 may

US 10,284,585 Bl

21

include continuing to use the original random forest at the
client device. For example, in one embodiment, the method
700 may send a command to the client device to continue to
use the original random forest. Alternatively, the method 700
may bypass sending any command to the client device upon
determining the original random forest performs best. Thus,
a client device may continue to use the original random
forest to classily unknown files as malware files or clean

files.

FIG. 8 1s a flow diagram illustrating another embodiment
of a method 800 for refreshing random {forests. In some
configurations, the method 800 may be implemented in
conjunction with the application 150, the user interface 145,
and/or the update module 130 illustrated 1n FIG. 1 and/or.

At block 805, method 800 may include building a random
forest based at least 1n part on a first set of categorized data,
the random forest comprising two or more binary decision
trees. In some embodiments, the random forest may be built
by a server. The random forest may include two or more
binary decision trees. In some cases, test conditions for the
nodes of each of the binary decision trees may be selected
randomly. At block 810, method 800 may include sending
the random forest to a client device with a first random forest
control value. The random forest may be implemented on
the client device 1n relation to the random forest control
value. At block 815, method 800 may include i1dentifying a
second set of categorized data different from the first set of
categorized data. At block 820, method 800 may include
calculating a second random forest control value based on
the second set of categorized data. At block 825, method 800
may 1nclude sending the second random forest control value
to the client device

FI1G. 9 1s a flow diagram illustrating another embodiment
of a method 900 for refreshing random {forests. In some
configurations, the method 900 may be implemented 1n
conjunction with the application 150, the user interface 145,
and/or the update module 130 illustrated 1n FIG. 1 and/or.

At block 905, method 900 may include implementing a
random forest and first conviction threshold on a client
device. In some cases, the method 900 may build the random
forest based on running at least a subset of a first set of
known malware files and known clean files through the
random forest. In some embodiments, the method 900 may
include determining one or more confidence scores for each
binary decision tree of the random forest. In some configu-
rations, the first threshold of conviction may be derived from
the one or more confidence scores.

At block 910, method 900 may include identifying a
second set of known malware files and clean files. At block
915, method 900 may include calculating a second threshold
of conviction based on running at least a subset of the second
set of known malware files and clean files through the
random forest. At block 920, method 900 may include
sending the second threshold of conviction to the client
device. At block 925, method 900 may include implement-
ing the second threshold of conviction 1n the random forest
previously sent to and implemented on the client device. At
block 930, the method 900 may determine whether to
categorize an unknown {file as malware or clean based on
running the unknown file through the random forest imple-
mented on the client device with the second threshold of
conviction. Upon determining the unknown file 1s not clean,
at block 935 method 900 may include categorizing the
unknown {ile as a malware file. Conversely, upon determin-

ing the unknown file 1s clean, at block 940 method 900 may
include categorizing the unknown file as a clean file.

10

15

20

25

30

35

40

45

50

55

60

65

22

FIG. 10 depicts a block diagram of a computing system
1000 suitable for implementing the present systems and
methods. The computing system 1000 may be an example of
device 1035, server 110, and/or computing device 123 1llus-
trated 1 FIG. 1. In one configuration, system 1000 includes
a bus 10035 which interconnects major subsystems of system
1000, such as a central processor 1010, a system memory
1015 (typically RAM, but which may also include ROM,
flash RAM, or the like), an input/output controller 1020, an
external audio device, such as a speaker system 1025 via an
audio output interface 1030, an external device, such as a
display screen 1035 via display adapter 1040, an input
device 10435 (e.g., remote control device interfaced with an
input controller 1050), multiple USB devices 1065 (inter-
faced with a USB controller 1070), and a storage interface
1080. Also included are at least one sensor 1055 connected
to bus 1005 through a sensor controller 1060 and a network
interface 10835 (coupled directly to bus 1005).

Bus 1005 allows data communication between central
processor 1010 and system memory 1015, which may
include read-only memory (ROM) or flash memory (neither
shown), and random access memory (RAM) (not shown), as
previously noted. The RAM 1s generally the main memory
into which the operating system and application programs
are loaded. The ROM or tlash memory can contain, among
other code, the Basic Input-Output system (BIOS) which
controls basic hardware operation such as the interaction
with peripheral components or devices. For example, the
update module 130-b may be configured to implement the
present systems and methods may be stored within the
system memory 1015. Applications (e.g., application 150)
resident with the system 1000 are generally stored on and
accessed via a non-transitory computer-readable medium,
such as a hard disk drive (e.g., fixed disk drive 1075) or other
storage medium. Additionally, applications can be in the
form of electronic signals modulated 1n accordance with the
application and data communication technology when
accessed via network interface 1085.

Storage interface 1080, as with the other storage inter-
faces of system 1000, can connect to a standard computer-
readable medium for storage and/or retrieval of information,
such as a fixed disk drive 1075. Fixed disk drive 1075 may
be a part of system 1000 or may be separate and accessed
through other interface systems. Network interface 1085
may provide a direct connection to a remote server via a
direct network link to the Internet via a POP (point of
presence). Network interface 1085 may provide such con-
nection using wireless techniques, including digital cellular
telephone connection, Cellular Digital Packet Data (CDPD)
connection, digital satellite data connection, or the like. In
some embodiments, one or more sensors (e.g., motion
sensor, smoke sensor, glass break sensor, door sensor, win-
dow sensor, carbon monoxide sensor, and the like) connect
to system 1000 wirelessly via network interface 108S.

Many other devices or subsystems (not shown) may be
connected 1n a similar manner (e.g., entertainment system,
computing device, remote cameras, wireless key fob, wall
mounted user mterface device, cell radio module, battery,
alarm siren, door lock, lighting system, thermostat, home
appliance monitor, utility equipment monitor, and so on).
Conversely, all of the devices shown 1n FIG. 10 need not be
present to practice the present systems and methods. The
devices and subsystems can be interconnected in different
ways from that shown in FIG. 10. The aspect of some
operations of a system such as that shown 1n FIG. 10 are
readily known 1n the art and are not discussed in detail 1n this
application. Code to implement the present disclosure can be

US 10,284,585 Bl

23

stored 1n a non-transitory computer-readable medium such
as one or more of system memory 1015 or fixed disk drive
1075. The operating system provided on system 1000 may
be 10S®, ANDROID®, MS-DOS®, MS-WINDOWS®,
OS/2®, UNIX®, LINUX®, or another known operating
system.

Moreover, regarding the signals described herein, those
skilled 1n the art will recognize that a signal can be directly
transmitted from a first block to a second block, or a signal
can be modified (e.g., amplified, attenuated, delayed,
latched, buflered, mverted, filtered, or otherwise modified)
between the blocks. Although the signals of the above
described embodiment are characterized as transmitted from
one block to the next, other embodiments of the present
systems and methods may include modified signals 1n place
of such directly transmitted signals as long as the informa-
tional and/or functional aspect of the signal 1s transmitted
between blocks. To some extent, a signal input at a second
block can be conceptualized as a second signal derived from
a first signal output from a first block due to physical
limitations of the circuitry mvolved (e.g., there will mevi-
tably be some attenuation and delay). Therefore, as used
herein, a second signal derived from a first signal includes
the first signal or any modifications to the first signal,
whether due to circuit limitations or due to passage through
other circuit elements which do not change the informational
and/or final functional aspect of the first signal.

The signals associated with computing system 1000 may
include wireless communication signals such as radio fre-
quency, electromagnetics, local area network (LAN), wide
area network (WAN), virtual private network (VPN), wire-
less network (using 802.11, for example), cellular network
(using 3G and/or LTE, for example), and/or other signals.

The network interface 1085 may enable one or more of
WWAN (GSM, CDMA, and WCDMA), WLAN (including

BLUETOOTH® and Wi-F1), WMAN (WiMAX) for mobile
communications, antennas for Wireless Personal Area Net-
work (WPAN) applications (including RFID and UWB), etc

The I/0 controller 1020 may operate in conjunction with
network interface 1085 and/or storage interface 1080. The
network interface 1085 may enable the computing system
1000 with the ability to communicate with client devices
(e.g., device 105 of FIG. 1), and/or other devices over the
network 1135 of FIG. 1. Network interface 1085 may provide
wired and/or wireless network connections. In some cases,
network interface 1085 may include an Ethernet adapter or
Fibre Channel adapter. Storage interface 1080 may enable
the computing system 1000 to access one or more data
storage devices. The one or more data storage devices may
include two or more data tiers each. The storage interface
1080 may include one or more of an Ethernet adapter, a
Fibre Channel adapter, Fibre Channel Protocol (FCP)
adapter, a SCSI adapter, and 1SCSI protocol adapter.

FIG. 11 1s a block diagram depicting a network architec-
ture 1100 1n which client systems 1105, 1110 and 1115, as
well as storage servers 1120-a and 1120-5 (any of which can
be implemented using computing system 600), are coupled
to a network 1130. In one embodiment, the update module
130-¢ may be located within one of the storage servers
1120-a, 1120-5 to implement the present systems and meth-
ods. an update module 130-¢ may be one example of an
update module 130 depicted in FIGS. 1, 2, and/or 10. The
storage server 1120-q 1s further depicted as having storage
devices 11235-g-1 through 1125-aq-j directly attached, and
storage server 1120-b6 1s depicted with storage devices
1125-5-1 through 1125-b-k directly attached. SAN {fabric

1140 supports access to storage devices 1135-1 through

10

15

20

25

30

35

40

45

50

55

60

65

24

1135-m by storage servers 1120-a¢ and 1120-5, and so by
client systems 1105, 1110 and 1115 via network 1130.
Intelligent storage array 1143 1s also shown as an example
ol a specific storage device accessible via SAN fabric 1140.

With reference to computing system 600, network inter-
face 685 or some other method can be used to provide
connectivity from each of client systems 11035, 1110 and
1115 to network 1130. Client systems 1105, 1110 and 1115
are able to access information on storage server 1120-a or
1120-6 using, for example, a web browser or other client
software (not shown). Such a client allows client systems
1105, 1110 and 1115 to access data hosted by storage server
1120-a or 1120-b6 or one of storage devices 1125-a-1 to
1125-a-j, 1125-5-1 to 1125-b-k, 1135-1 to 1135-m or intel-
ligent storage array 1145. FIG. 11 depicts the use of a
network such as the Internet for exchanging data, but the
present systems and methods are not limited to the Internet
or any particular network-based environment.

While the foregoing disclosure sets forth various embodi-

ments using specilic block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collec-
tively, using a wide range of hardware, software, or firmware
(or any combination thereot) configurations. In addition, any
disclosure of components contained within other compo-
nents should be considered exemplary 1n nature since many
other architectures can be implemented to achieve the same
functionality.
The process parameters and sequence of steps described
and/or 1llustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or dis-
cussed 1n a particular order, these steps do not necessarily
need to be performed in the order illustrated or discussed.
The various exemplary methods described and/or 1llustrated
herein may also omit one or more of the steps described or
illustrated herein or include additional steps in addition to
those disclosed.

Furthermore, while wvarious embodiments have been
described and/or illustrated herein in the context of fully
functional computing systems, one or more of these exem-
plary embodiments may be distributed as a program product
in a variety of forms, regardless of the particular type of
computer-readable media used to actually carry out the
distribution. The embodiments disclosed herein may also be
implemented using software modules that perform certain
tasks. These software modules may include script, batch, or
other executable files that may be stored on a computer-
readable storage medium or 1n a computing system. In some
embodiments, these soltware modules may configure a
computing system to perform one or more of the exemplary
embodiments disclosed herein.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments.
However, the 1llustrative discussions above are not intended
to be exhaustive or to limit the disclosure to the precise
forms disclosed. Many modifications and variations are
possible 1n view of the above teachings. The embodiments
were chosen and described 1 order to best explain the
principles of the present systems and methods and their
practical applications, to thereby enable others skilled 1n the
art to best utilize the present systems and methods and
various embodiments with various modifications as may be
suited to the particular use contemplated.

Unless otherwise noted, the terms “a’” or “an,” as used 1n
the specification and claims, are to be construed as meaning

US 10,284,585 Bl

25

“at least one of.” In addition, for ease of use, the words
“including” and “having,” as used in the specification and
claims, are interchangeable with and have the same meaning
as the word “comprising.” In addition, the term “based on”

26

and a second set of known clean files, the second set of
categorized data being different from the first set of
categorized data.

10. A computing device configured for optimizing com-

as used 1n the specification and the claims 1s to be construed 5 puter detection of malware using pattern recognition by

as meaning “based at least i part upon.”

What 1s claimed 1s:

1. A method of optimizing computer detection of malware
using pattern recognition by refreshing random classifica-
tion forests, comprising:

building, by a server, a first random forest based at least

in part on a first set of categorized data, the first random
forest comprising N trees;
generating, by the server, an independent tree based at
least 1n part on a second set of categorized data;

generating, by the server, a second random {forest, the
second random forest comprising the independent tree
and N-1 trees from the first random forest;

determining a {irst receiver operating characteristic of the
first random forest and a second receiver operating
characteristic of the second random forest:

comparing, by the server, the first receiver operating
characteristic of the first random forest to the second
receiver operating characteristic of the second random
forest; and

sending, by the server, the independent tree to a client

device based at least 1n part on the comparing indicat-
ing the second random forest outperforms the first
random forest.

2. The method of claim 1, comprising;:

sending, by the server, the first random forest to the client

device belore generating the second random {forest,
cach tree of the first and second random forests com-
prising N binary decision trees each with one or more
leat nodes.

3. The method of claim 1, comprising;:

determining the first receiver operating characteristic of

the first random forest based on running at least a first
random subset of the second set of categorized data
down the first random forest.

4. The method of claim 3, comprising:

determining the second receiver operating characteristic

of the second random forest based on running at least
a second random subset of the second set of categorized
data down the second random forest.

5. The method of claim 4, comprising;:

comparing the first receiver operating characteristics of

the first random forest to the second receiver operating
characteristics of the second random forest.

6. The method of claim 1, comprising:

sending, by the server, the independent tree to the client

device.

7. The method of claim 6, comprising;:

instructing, by the server, the client device to remove a

selected tree from the first random forest on the client
device.

8. The method of claim 7, comprising:

instructing, by the server, the client device to implement

the independent tree 1n the first random forest on the
client device 1n place of the selected tree removed from
the first random forest.

9. The method of claim 1, comprising;:

identifying, by the server, the first set of categorized data

comprising a first set ol known malware files and a first
set of known clean files; and

identifying, by the server, the second set of categorized

data comprising a second set of known malware files

10

15

20

25

30

35

40

45

50

55

60

65

refreshing random classification forests, comprising;:
a Processor;
memory 1n electronic communication with the processor;
instructions stored in the memory, the instructions being,
executable by the processor to:
build a first random forest based at least in part on a first
set of categorized data, the first random forest com-
prising N trees;
generate an imndependent tree based at least 1n part on a
second set of categorized data;
generate a second random forest, the second random
forest comprising the independent tree and N-1 trees
from the first random {forest;
determine a {irst recerver operating characteristic of the
first random forest and a second receiver operating
characteristic of the second random forest;
compare the first receiver operating characteristic of the
first random forest to the second receiver operating,
characteristic of the second random forest; and
send the independent tree to a client device based at
least 1n part on the comparing indicating the second
random forest outperforms the first random forest.
11. The computing device of claim 10, wherein the
instructions are executable by the processor to:
send, by the server, the first random forest to the client
device belore generating the second random {forest,
cach tree of the first and second random forests com-
prising N binary decision trees each with one or more
leal nodes.
12. The computing device of claim 10, wherein the
istructions are executable by the processor to:
determine the first recerver operating characteristic of the
first random {forest based on running at least a first
random subset of the second set of categorized data
down the first random forest.
13. The computing device of claim 12, wherein the
instructions are executable by the processor to:
determine the second receiver operating characteristic of
the second random forest based on running at least a
second random subset of the second set of categorized
data down the second random forest.
14. The computing device of claim 13, wherein the
instructions are executable by the processor to:
compare the first recerver operating characteristics of the
first random forest to the second receiver operating
characteristics of the second random forest.
15. The computing device of claim 10, wherein the
instructions are executable by the processor to:
sending, by the server, the independent tree to the client
device; and
instruct, by the server, the client device to remove a
selected tree from the first random forest on the client
device.
16. The computing device of claim 15, wherein the
istructions are executable by the processor to:
instruct, by the server, the client device to implement the
independent tree 1n the first random forest on the client
device 1n place of the selected tree removed from the
first random {forest.
17. A computer-program product for optimizing computer
detection of malware using pattern recognition by refreshing
random classification forests, the computer-program product

US 10,284,585 Bl

27

comprising a non-transitory computer-readable medium
storing instructions thereon, the instructions being execut-
able by a processor to:
build a first random forest based at least 1n part on a first
set of categorized data, the first random forest com-
prising N trees;
generate an independent tree based at least in part on a
second set of categorized data;
generate a second random {forest, the second random
forest comprising the mdependent tree and N-1 trees
from the first random forest;
determine a first recerver operating characteristic of the
first random {forest and a second receiver operating
characteristic of the second random forest:;
compare the first receiver operating characteristic of the
first random forest to the second receiver operating
characteristic of the second random forest; and
send the mndependent tree to a client device based at least
in part on the comparing indicating the second random
forest outperforms the first random forest.
18. The method of claim 1, comprising;
detecting malware, by the server, based at least 1n part on
sending the independent tree to the client device.

% ex *H & o

10

15

20

28

	Front Page
	Drawings
	Specification
	Claims

