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SUPPORTING RESPONSES FOR MEMORY
TYPES WITH NON-UNIFORM LATENCIES
ON SAME CHANNEL

BACKGROUND

Description of the Related Art

A variety of computing devices utilize heterogeneous
integration, which integrates multiple types of ICs for pro-
viding system Iunctionality. The multiple functions are
placed in a processing node and the multiple functions
include audio/video (A/V) data processing, other high data
parallel applications for the medicine and business fields,
processing instructions of a general-purpose instruction set
architecture (ISA), digital, analog, mixed-signal and radio-
frequency (RF) functions, and so forth. A variety of choices
exist for placing a processing node in system packaging to

integrate the multiple types of ICs. Some examples are a
system-on-a-chip (SOC), multi-chip modules ((MCMs) and a
system-in-package (S1P).

Regardless of the choice for system packaging, in several
uses, the performance of one or more computing systems
can depend on the processing node. In one example, the
processing node 1s one of multiple processing nodes 1n a
socket ol a multi-socket server. The server 1s used to provide
services to other computer programs in remote computing
devices as well as computer programs within the server. In
another example, the processing node 1s used within a
mobile computing device running several diflerent types of
applications and possibly relaying information to multiple
users (both local and remote) at one time.

Maintaining performance at relatively high levels typi-
cally requires quick access to stored data. Several types of
data-intensive applications rely on quick access to data
storage to provide reliable high-performance for several
local and remote programs and their users. The memory
hierarchy transitions from relatively fast, volatile memory,
such as registers on a processor die and caches either located
on the processor die or connected to the processor die, to
non-volatile and relatively slow memory. The iterfaces and
access mechanisms for the different types of memory also
changes. Therefore, any hybrid proposals for combining two
different types of memory in the hierarchy provides chal-
lenges to maintain high performance for quick access
demands by the running computer programs.

In view of the above, eflicient methods and systems for
identifying response data arriving out-of-order from two
different memory types are desired.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the methods and mechanisms
described herein may be better understood by referring to
the following description 1n conjunction with the accompa-
nying drawings, in which:

FIG. 1 1s a block diagram of one embodiment of a
computing system.

FIG. 2 1s a block diagram of one embodiment of a timing
diagram.

FIG. 3 1s a block diagram of another embodiment of a
timing diagram.

FIG. 4 1s a block diagram of another embodiment of a
timing diagram.

FIG. 5 1s a block diagram of another embodiment of a
timing diagram.
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FIG. 6 1s a block diagram of another embodiment of a
computing system.

FIG. 7 1s a block diagram of one embodiment of a
memory controller.

FIG. 8 15 a flow diagram of one embodiment of a method
for scheduling memory requests for 1ssue to two different
memory types.

FIG. 9 1s a flow diagram of another embodiment of a
method for scheduling memory requests for issue to two
different memory types.

FIG. 10 1s a flow diagram of another embodiment of a
method for scheduling memory requests for 1ssue to two
different memory types.

FIG. 11 1s a flow diagram of another embodiment of a
method for scheduling memory requests for 1ssue to two
different memory types.

FIG. 12 1s a flow diagram of another embodiment of a
method for scheduling memory requests for 1ssue to two
different memory types.

FIG. 13 15 a flow diagram of one embodiment of a method
for 1dentitying response data arriving out-of-order from two
different memory types.

FIG. 14 1s a flow diagram of another embodiment of a
method for identifying response data arriving out-of-order
from two different memory types.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments are shown
by way of example 1n the drawings and are herein described
in detail. It should be understood, however, that drawings
and detailed description thereto are not imntended to limit the
invention to the particular form disclosed, but on the con-
trary, the invention is to cover all modifications, equivalents
and alternatives falling within the scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
embodiments may be practiced without these specific
details. In some 1instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown 1n detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarnity of illustration, elements shown 1n the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

Various systems, apparatuses, methods, and computer-
readable mediums for identifying response data arriving
out-of-order from two diflerent memory types are disclosed.
In various embodiments, a computing system includes one
or more clients for processing applications. Examples of the
clients are a general-purpose central processing unit (CPU),
a graphics processing unit (GPU), an accelerated processing
umt (APU), an mput/output (I/O) device and so forth. A
memory channel within a memory controller transfers
memory traflic between the memory controller and a
memory bus connected to each of a first memory and a
second memory.

In various embodiments, the first memory and the second
memory utilize different data storage technologies and have
different access latencies. The access latencies of the first
memory and the second memory can ditfer between them by
at least a threshold amount of time. In other embodiments,




US 10,275,352 Bl

3

cach of the first memory and the second memory use a same
data storage technology, but still have access latencies that
differ by at least the threshold amount of time. For example,
in an embodiment, the first memory uses a same data storage
technology as the second memory, but the first memory uses
an onboard cache, whereas the second memory does not.
Each of the first memory and the second memory can
include one of a variety of random access memory (RAM),
such as a variety of dynamic random access memory

(DRAM), one of a variety of non-volatile (NV) dual 1n-line
memory modules (DIMMs) such as NVDIMM-P, one of

another type of data storage technologies such as phase-
change memories (PCM), ferroelectric memories (FeRAM),
magnetoresistive memories (MRAM), resistive memories

(ReERAM or RRAM), three dimensional (3D) cross-point

(XPoint) memories, and so forth. Accordingly, the differ-
ences between the one or more access latencies of the first
memory and the one or more access latencies of the second
memory can exceed a threshold. In some embodiments, the
access latencies for the first memory measured from an 1ssue
of a read command to a recerved response with valid data are
on a scale of 10’s of nanoseconds. In various embodiments,
the access latencies for the second memory measured from
an 1ssue of a read or status command to a received response
1s on a scale of 100°’s of nanoseconds. Therefore, the
differences between latencies exceed 100’s of nanoseconds,
which can be above a given threshold amount of time.

In various embodiments, a command processor or other
logic translates each recerved memory request to one or
more commands. A scheduler in the memory controller
determines whether there are two pending memory access
commands such as a first command for the first memory type
and a second command for the second memory type. The
scheduler determines whether each of the first command and
the second command can be 1ssued without causing a data
collision on the shared memory data bus. For example,
based on the point 1n time for 1ssuing a selected command
in addition to the access latencies of each of the first memory
and the second memory, the memory controller keeps track
of points 1n time when read response data 1s scheduled to
arrive on the shared memory data bus. In some embodi-
ments, points 1n time are measured by clock cycles. IT
selecting eirther of the first command and the second com-
mand would not schedule a data collision on the shared
memory data bus, then each of the first command and the
second command remains a candidate for i1ssue. In such a
case, the scheduler selects a command from the first com-
mand and the second command based on arbitration logic.

In other embodiments, to avoid data collisions on the
shared memory data bus, the scheduler in the memory
controller determines a next given point 1n time that does not
already have read response data scheduled to be on memory
data bus. The scheduler then determines whether there i1s
time to schedule a first memory access command for access-
ing the first memory that will provide response data at the
given point in time. The scheduler also determines whether
there 1s time to schedule a second memory access command
for accessing the second memory that will provide response
data at the given point in time.

If there 1s suilicient time for at least one of the first access
command and the second access command to provide
response data at the given point in time, then the scheduler
selects one of the first memory access command and the
second memory access command based on arbitration logic.
In an embodiment, the arbitration logic uses weighted cri-
teria. The criteria includes at least priority levels, ages, and
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so forth. Afterward, the scheduler 1ssues the selected access
command to one of the first memory and the second memory
via the memory channel.

In some embodiments, when the scheduler schedules a
given command to 1ssue, the scheduler determines a given
point 1n time for requested read data to be scheduled to
arrive on the shared memory data bus. In an embodiment,
the scheduler adds the latency of the given command to a
pomnt 1 time the scheduler schedules to i1ssue the given
command. In some embodiments, the scheduler generates an
identifier as an indication of the entry 1n a request queue
storing information corresponding to the given command. In
other embodiments, the scheduler generates an identifier
based on a combination of one or more of a thread 1dentifier
and a portion of a target address of the memory request
corresponding to the given command. The scheduler stores
an association of the identifier with the given point 1n time.
In an embodiment, a table 1s used. Theretore, the scheduler
1s able to identily the given command with arrnving
requested read data on the shared memory data bus based on
the given point in time, rather than based on a tag mserted
in the given command or with a packet associated with the
arriving requested read data.

Referring to FIG. 1, a generalized block diagram of one
embodiment of a computing system 100 i1s shown. As
shown, clients 110 and 112 send memory requests to
memory controller 120. A memory channel 124 within
memory controller 120 transfers memory tratlic between
memory controller 120 and memory bus 130. Each of
memory 140 and memory 150 store data accessed by clients
110 and 112. In various embodiments, one or more of
memory 140 and memory 150 1s used as system memory by
clients 110 and 112. In various embodiments, the access
latency of memory 140 differs from the access latency of
memory 150 by at least a threshold amount of time. In some
embodiments, memory 140 and memory 150 use different
data storage technology, and accordingly, the access laten-
cies of memory 140 and memory 150 differ between them by
at least the threshold amount of time. In other embodiments,
cach of memory 140 and memory 150 use a same data
storage technology, but still have access latencies that differ
by at least the threshold amount of time. For example, 1n an
embodiment, memory 140 uses a same data storage tech-
nology as memory 150, but memory 140 uses an onboard
cache, whereas memory 150 does not. Accordingly, the
access latencies are diflerent between memory 140 and
memory 150 and can differ by the threshold amount of time.
In other embodiments, other configurations and/or other
components can be used by one of memory 140 and memory
150 but not 1n the other, which causes the different access
latencies between them.

A communication fabric, an mput/output (I/0) interface
for I/O devices and any links and interfaces for network
connections are not shown 1in computing system 100 for ease
of illustration. In some embodiments, the components of
computing system 100 are individual dies on an integrated
circuit (IC), such as a system-on-a-chip (SOC). In other
embodiments, the components are individual dies 1n a sys-
tem-in-package (S1P) or a multi-chip module (MCM). In
some embodiments, clients 110 and 112 include one or more
of a central processing unit (CPU), a graphics processing
unit (GPU), a hub for a multimedia engine, and so forth.
Each of clients 110 and 112 1s one of a variety of computing
resources capable of processing applications and generating
memory requests.

Although a single memory controller 120 1s shown, 1n
other embodiments, another number of memory controllers




US 10,275,352 Bl

S

are used 1n computing system 100. In various embodiments,
memory controller 120 receives memory requests from
clients 110 and 112, and scheduler 122 schedules the
memory requests and sends the scheduled memory requests
to one of memory 140 and 150 via memory channel 124. In
some embodiments, scheduler 122 within memory control-
ler 120 includes control logic, which schedules memory
requests targeting memory locations in memory 140 sepa-
rately from scheduling memory requests targeting memory
locations 1n memory 150. Afterward, scheduler 122 selects
between memory requests targeting memory 140 and
memory requests targeting memory 150. In an embodiment,
scheduler 122 mixes accesses targeting memory 140 and
memory 130.

The control logic in scheduler 122 for scheduling memory
requests uses information such as quality-of-service (QoS)
or other prionity levels of the memory requests, process or
software thread identifiers (IDs) of the memory requests,
ages ol the memory requests, an amount of time since a
memory request had been 1ssued to memory 140, an amount
of time since a memory request had been 1ssued to memory
150, and so forth. Therefore, scheduler 122 supports out-
of-order 1ssue of memory requests. When scheduler 122
selects a memory request to send to one of memory 140 and
memory 150, scheduler 122 sends the selected memory
request to memory channel 124 for transfer.

Memory channel 124 interfaces with each of memory 140
and memory 150. Memory channel 124 supports a protocol
used for interfacing with memory 140 and supports another
protocol used for interfacing with memory 150. The proto-
cols determine values used for information transter, such as
a number of data transiers per clock cycle, signal voltage
levels, signal timings, signal and clock phases and clock
frequencies.

In various embodiments, memory bus 130 supports send-
ing data traflic in a single direction for a given amount of
time, such as during a given mode of the read mode and the
write mode, and then sends data traflic in the opposite
direction for another given amount of time such as during
the other mode of the read mode and the write mode. In an
embodiment, memory bus 130 utilizes a single command
bus and a single data bus. Therefore, scheduling the 1ssue of
memory requests to memory 140 and memory 150 1s per-
formed 1n a manner to avoid data collisions on memory bus
130.

As described earlier, 1n some embodiments, memory 140
and memory 150 use different data storage technology, and
accordingly, have diflerent access latencies. As shown,
memory 140 has access latency 132, which differs from
access latency 134 of memory 150 by at least a threshold
amount of time. Although a single access latency 1s shown
for each of memory 140 and memory 150, in other embodi-
ments, one or more of memory 140 and memory 150 has
multiple access latencies. However, each one of the multiple
access latencies for memory 140 differs from each one of the
multiple access latencies of memory 150 by at least a
threshold amount of time.

In one embodiment, one of memory 140 and memory 150
includes one of a variety of dynamic random access memory
(DRAM) while the other one of memory 140 and memory
150 includes one of a vaniety of non-volatile (NV) dual
in-line memory modules (DIMMs) such as NVDIMM-P. In
other embodiments, other memory types with different
access latencies are used for memory 140 and memory 150.
For example, besides using types of random access memory
(RAM) technologies and NVDIMM technologies, 1n some

embodiments, each of memory 140 and memory 150 1include
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other examples of data storage technologies such as phase-
change memories (PCM), ferroelectric memories (FeRAM),
magnetoresistive memories (MRAM), resistive memories
(ReRAM or RRAM), three dimensional (3D) cross-point
(XPoint) memories, and so forth. In various embodiments,
the diflerences between access latencies of memory 140 and
access latencies of memory 1350 are above a threshold.
Accordingly, scheduler 122 includes control logic and
sequential elements for 1ssuing memory access commands
targeting locations in memory 140 and memory 150 1n a
mixed manner.

In some embodiments, memory controller 120 includes a
command processor for translating each recetved memory
request to one or more commands. In one embodiment,
scheduler 122 determines whether there are two pending
memory access commands such as a first command {for
memory 140 and a second command for memory 150.
Scheduler 122 determines whether each of the first com-
mand and the second command can be issued without
causing a data collision on the shared memory data bus 130.
For example, based on the point 1in time for 1ssuing a selected
command, the access latency 132 and the access latency
134, memory controller 120 keeps track of points 1n time
when data 1s scheduled to arrive on the shared memory data
bus 130. The pending first command and second command
can be read accesses or write accesses. In some embodi-
ments, points 1n time are measured by clock cycles. IT
selecting eirther of the first command and the second com-
mand would not schedule a data collision on the shared
memory data bus 130, then each of the first command and
the second command remains a candidate for 1ssue. In such
a case, scheduler 122 selects a command from the first
command and the second command based on arbitration
logic. In an embodiment, the arbitration logic uses weighted
criteria.

In other embodiments, to avoid data collisions on memory
bus 130 despite an appreciable difference between access
latency 132 and access latency 134, scheduler 122 deter-
mines a next given point in time that the memory bus 130 1s
scheduled to be available. In other words, scheduler 122
determines a next given point 1n time that does not already
have read response data or write data scheduled to be driven
on memory bus 130. In some embodiments, points in time
are measured by clock cycles. Scheduler 122 also deter-
mines whether there 1s time to schedule the first command
for accessing memory 140 and the second command for
accessing memory 150 to provide data at the given point 1n
time. As described earlier, the command processor translates
received memory requests to commands. In an embodiment,
one or more of the first command and the second command
have one or more preceding commands and/or one or more
subsequent commands, which add latency and delay when
the first command and the second command can 1ssue.

If there 1s suthicient time for at least one of the first access
command and the second access command to provide data
at the given point 1n time when memory bus 130 1s available,
scheduler 122 selects one of the first memory access com-
mand and the second memory access command. The criteria
described earlier, such as priority levels, ages, and so forth,
can be used by scheduler 122. Afterward, scheduler 122
sends the selected access command to one of memory 140
and memory 150 via memory channel 124.

Referring to FIG. 2, a generalized block diagram of one
embodiment of a timing diagram 200 i1s shown. In the
illustrated embodiment, memory access commands are
shown to be 1ssued at different times on the time line. The
memory access commands are 1ssued to one of two diflerent
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types of memory with different access latencies. In various
embodiments, the first type of memory (Memory Type 1)
uses a different data storage technology than the second type
of memory (Memory Type 2), and accordingly, Memory
Type 1 has an access latency which differs from an access
latency of Memory Type 2 by at least a threshold amount of
time.

As shown, three memory access commands labeled A, B
and C are 1ssued at times indicated by marks t1, t2 and 3.
These memory access commands are 1ssued to Memory
Type 1. The responses to these memory access commands
are shown to arrive at times indicated by marks t4, t5, and
t6. In some embodiments, the marks on the timeline are
equivalent to clock cycles. In other embodiments, the marks
on the timeline are equivalent to other measurements of time
indicating given points 1n time. The responses are shown to
arrive 1n-order relative to the order of 1ssuing the memory
access commands A, B and C in addition to having a
deterministic access latency of three marks on the timeline.

Additionally, another memory access command D 1s
shown to be 1ssued at a time 1ndicated by mark t7. Memory
access command D 1s 1ssued to Memory Type 2. A response
1s shown to be received at a time indicated by mark t12. The
access latency 1s greater for memory access command D
issued to Memory Type 2 than for the memory access
commands A, B and C 1ssued to Memory Type 1. In some
embodiments, the access latency for Memory Type 2 1s five
marks on the timeline.

In the embodiment shown, Memory Type 2 has a second
access latency. For example, memory access command E 1s
1ssued to Memory Type 2 at a time 1ndicated by the mark t13
on the timeline. In some embodiments, the second access
latency for Memory Type 2 1s s1x marks on the timeline. As
shown, the response to memory access command E 1s shown
to arrtve at a time indicated by the mark t19. In some
embodiments, read access latencies are equal to write access
latencies for Memory Type 1 and Memory Type 2. In other
embodiments, read access latencies are different from write
access latencies for one for more of Memory Type 1 and

Memory Type 2. In the illustrated embodiment, the access
commands A-E have diflerent access latencies 210 and 220
and the commands A-E are shown to be 1ssued separately
from one another. However, such a scheme for 1ssuing is
ineflicient.

Referring to FIG. 3, a generalized block diagram of
another embodiment of a timing diagram 300 1s shown. In
the illustrated embodiment, memory access commands are
shown to be 1ssued at different times on the time line. The
memory access commands are 1ssued to one of two diflerent
types of memory with appreciably diflerent access latencies
such as differing by at least a threshold amount of time. As
shown, the latencies 310 for access commands issued to
Memory Type 1 are less than latencies 320 for access
commands 1ssued to Memory Type 2.

Similar to timing diagram 200, in some embodiments, the
marks on the timeline are equivalent to clock cycles. In other
embodiments, the marks on the timeline are equivalent to
other measurements ol time indicating points in time. As
shown, three memory access commands labeled A, B and C
are 1ssued at times indicated by marks t1, 12 and t3. These
memory access commands are 1ssued to Memory Type 1.
The responses to these memory access commands are shown
to arrive at times indicated by marks t4, t5, and t6 and are
in-order relative to the order of 1ssuing the memory access
commands A, B and C 1n addition to having a deterministic
latency of three marks on the timeline.
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Memory access command D i1s 1ssued to Memory Type 2
at a time 1indicated by mark t7. Before a response 1s received,
another memory access command E 1s 1ssued to Memory
Type 1 at a time 1indicated by mark t8. At the time indicated
by mark t9, 1t 1s impossible to 1ssue another memory access
command to Memory Type 1 without a data collision. It 1s
known 1n this example that the access latency for memory
access commands 1ssued to Memory Type 1 1s three marks
on the timeline and the access latency for memory access
commands 1ssued to Memory Type 2 1s at least five marks
on the timeline. Therefore, 1t 1s known that the memory data
bus 1s unavailable at the time indicated by mark t12 due to
the scheduling of memory access command D. If a memory
access command 1s 1ssued to Memory Type 1 at the time
indicated by mark t9, then a data collision would occur at
t12.

Other access commands are shown to be 1ssued such as
memory access command F 1ssued to Memory Type 2 at
time t13 and memory access commands G and H issued to
Memory Type 1 at times t14 and t135. The access latency 1n
this example for the memory access command F 1s six marks
on the timeline. Therefore, 1t 1s known the memory data bus
1s unavailable at the time indicated by mark t19 due to the
scheduling of status access command F. If a memory access
command 1s 1ssued to Memory Type 1 at the time 1indicated
by mark t16, then a data collision would occur at t19.
Therefore, a scheduler 1ssuing memory access commands to
two types of memory via a memory channel takes into
account when the memory data bus 1s unavailable due to the
latencies for the commands in order to avoid a data collision
on the memory data bus.

Referring to FIG. 4, a generalized block diagram of
another embodiment of a timing diagram 400 1s shown. In
the illustrated embodiment, memory access commands 420
and 430 are shown to be 1ssued at diflerent times based on
clock 410. In the illustrated embodiment, clock cycles of
clock 410 are used to provide measurement of time to
identily points 1n time. The memory access commands are
issued to one of two different types of memory with access
latencies differing from one another by at least a threshold
amount of time. In an embodiment, commands 420 are
issued to the first type of memory (Memory Type 1) and
commands 430 are 1ssued to the second type of memory
(Memory Type 2).

As shown, the latencies for access commands 420 are less
than latencies for access commands 430. The latencies are
not drawn to scale for ease of illustration. In some embodi-
ments, the access latencies for Memory Type 1 measured
from an 1ssue of a read command to a received response with
valid data are on a scale of 10’s of nanoseconds. In the
illustrated example, the latency 1s shown as 2 clock cycles.
In various embodiments, the access latencies for Memory
Type 2 measured from an 1ssue of a read or status command
to a recerved response, which may or may not include valid
data, 1s on a scale of 100’s of nanoseconds. For ease of
illustration, the latency 1s shown as 5 clock cycles, rather
than drawn to scale.

In various embodiments, a memory request, such as a
memory read request or a memory write request, 1s con-
verted mto one or more commands based on the memory
being accessed. For example, control logic within DRAM
performs complex transactions such as activation (opening)
transactions and precharge of data and control lines within
DRAM once to access an 1dentified row and once to put back
the modified contents stored in the row builer to the 1den-
tified row during a close transaction. Each of the different
DRAM transactions, such as activation/open, column
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access, read access, write access, and precharge/close, has a
different respective latency. Often, the activation and pre-
charge transactions have significantly higher latencies than
the read access and write access transactions.

The dashed lines for commands shown 1n the illustrated
example represent possible additional commands 1ssued
along with memory access commands. For example, acti-
vation/open commands and precharge/close commands for
DRAM can be used, but are not shown 1n timing diagram
400. Similarly, for NVDIMM-P, each of a transaction read
(X-READ) command, a send read (SREAD) command, and
a speculative status read command 1s typically followed by
an extended address (XADR) command, which allows
extending the address for large linear addresses. These
additional commands are not specifically shown, but are
represented by the dashed lines for possible placement
among commands 420 and 430. Therefore, back-to-back
access commands typically are not 1ssued on back-to-back
clock cycles. A scheduler for a memory controller with a
memory channel takes into account the possible additional
commands when scheduling memory access commands for
1ssue.

Responses are shown as responses 440 and they are
received on a shared single memory data bus. As shown, a
memory access command “READ A” for Memory Type 1 1s
1ssued at clock cycle (CC) 1. With an access latency of two
clock cycles 1n the example, the valid response data arrives
at CC 3. As shown 1n the example, the valid data consumes
two clock cycles such as CC 3 and CC 4. During each clock
cycle, an amount of data equal to the data bus width 1s
returned to the memory controller. The supported size of the
data bus 1s based on design choice.

In one embodiment, the scheduler or other control logic in
the memory controller determines a next given point in time
that the memory data bus 1s scheduled to be available is after
CC 4, which 1s CC 3. The scheduler determines there 1s time
to schedule a memory access command for Memory Type 1
and a memory access command for Memory Type 2. The
amount of response data for a memory access command for
Memory Type 1 would not collide with response data
arriving for an earlier memory access command for Memory
Type 2. Therefore, the scheduler 1ssues a read command
“READ B” for Memory Type 2 at CC 2 and a memory
access command “READ C” for Memory Type 1 at CC 3.
With an access latency of two clock cycles 1n the example,
the valid response data for “READ C” arrives at CC 5 and
CC 6. With an access latency of five clock cycles 1n the
example, the valid response data 1s scheduled to arrive at CC
7 and CC 8 for “READ B.” However, as shown, the
requested data was not yet ready to be retrieved from
Memory Type 2. An indication specitying the requested data
1s not yet available 1s received by the memory controller and
used by the scheduler to retry at a later time.

The scheduler determines a next given point in time that
does not already have read response data scheduled to be
driven on the memory data bus 1s CC 9. The scheduler
determines there 1s time to schedule a memory access
command for Memory Type 1 and a memory access com-
mand for Memory Type 2. To select the next memory access
command to 1ssue, the scheduler uses information such as
quality-of-service (QQoS) or other priority levels of the
memory requests, process or soltware thread identifiers
(IDs) of the memory requests, ages of the memory requests,
an amount ol time since a memory access command had
been 1ssued to Memory Type 1, an amount of time since a
memory access command had been 1ssued to Memory Type
2, and so forth. In the provided example, the scheduler 1ssues
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a read access command “READ D” for Memory Type 2 at
CC 4. With an access latency of five clock cycles 1n the
example, the valid response data 1s scheduled to arrive at CC
9 and CC 10.

The scheduler determines a next given point in time that
the memory data bus 1s available 1s CC 11. The scheduler
determines there i1s time to schedule a memory access
command for Memory Type 1 and a memory access com-
mand for Memory Type 2. The scheduler selects the next
memory access command to 1ssue based on the earlier
criteria such as priority levels, ages and so forth. In some
embodiments, the scheduler assigns a given weight to each
of the criteria and performs a weighted sum. The memory
access command or status access command with the greatest
sum 1s selected for 1ssue.

In an embodiment, the memory controller receives an
indication on another channel or link interface that the
response data for “READ B” 1s now available from Memory
Type 2. Although the memory access command “READ E”
has a higher weighted sum than the send read command
“SREAD B” corresponding to the earlier read command
“READ B”, the scheduler determines the amount of
response data for the memory access command “READ E”
would collide with response data arriving for the earlier read
command “READ D.” Therefore, the scheduler issues the
send read command “SREAD B” at CC 8 and the memory
access command “READ E” at CC 9. With an access latency
of two clock cycles 1n the example, the valid response data
for “READ E” arrives at CC 11 and CC 12. With an access
latency of five clock cycles for “SREAD B” in the example,
the valid response data 1s scheduled to arrive at CC 13 and
CC 14 (not shown). Although timing diagram 400 is
described with respect to read access commands, 1n other
embodiments, a similar timing diagram 1s used for write
access commands where write data 1s placed on the shared
memory data bus and data collisions can occur with either
read response data or other write data of other write access
commands.

In some embodiments, the received response data
includes a tag or other 1dentifier identifying which command
1s associated with the response data. In other embodiments,
the timing of the arrival of the request data 1s used to 1dentify
which command 1s associated with the response data. There-
fore, although the request data arrives out-of-order corre-
sponding to the 1ssue of commands, the scheduler 1n the
memory controller 1s able to keep track of which recerved
data belongs with which command.

Referring to FIG. 5, a generalized block diagram of
another embodiment of a timing diagram 500 1s shown. In
the illustrated embodiment, memory access commands 520
and 530 are shown to be 1ssued at diferent times based on
clock 510. In the illustrated embodiment, clock cycles of
clock 510 are used to provide measurement of time to
identily points in time. The memory access commands are
1ssued to one of two different types of memory with difierent
access latencies. In an embodiment, commands 520 are
1ssued to the first type of memory, which 1s conventional
DRAM, and commands 530 are 1ssued to the second type of
memory, which 1s NVDIMM-P. However, other types of
memory with different access latencies are possible and
contemplated.

The command latencies are not drawn to scale for ease of
illustration. In some embodiments, the command latencies
for conventional DRAM are on a scale of 10’s of nanosec-
onds. In the illustrated example, the latency 1s shown as 2
clock cycles. In various embodiments, the access latencies

for NVDIMM-P are on a scale of 100’s of nanoseconds. In
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the 1illustrated example, the latency 1s shown as 7 clock
cycles. In various embodiments, a memory request, such as
a memory read request, 1s converted mto one or more
commands based on the memory being accessed. As
described earlier, control logic within DRAM performs
complex transactions as activate and close transactions. In
addition, other signals are generated such as strobes for a
row address and strobes for a column address.

Similar to the earlier timing diagram 400, timing diagram
500 1s described with respect to read access commands.
However, 1n other embodiments, a similar timing diagram 1s
used for write access commands where write data 1s placed
on the shared memory data bus and data collisions can occur
with either read response data or other write data of other
write access commands. Responses are shown as responses
540 and they are received on a single memory data bus. The
scheduler selects the next memory access command to 1ssue
based on the earlier criteria such as priority levels, ages and
so forth. In some embodiments, the scheduler assigns a
given weight to each of the criteria and performs a weighted
sum to use when selecting the next command to issue.

As shown, the scheduler 1ssues a transaction read com-
mand “X-READ A” for Memory Type 2 at CC 2. An

extended address command “XADR A.,” which allows
extending the address for large linear addresses, immedi-
ately follows at CC 3. With an access latency of 7 clock
cycles 1n the example, the valid response data 1s scheduled
to armve at CC 9. In some embodiments, the latency 1s
measured from the command “XADR A,” rather than from
the command “X-READ A.” In various embodiments, the
requested data consumes multiple clock cycles. However,
for ease of 1llustration, the requested data for the command
“X-READ A” consumes a single clock cycle.

The scheduler 1ssues a memory access command “READ
B” for Memory Type 1 at CC 3. With an access latency of
two clock cycles in the example, the valid response data
arrives at CC 5. As shown, an activate command “ACTI-
VATE” 1s 1ssued at CC 1 to prepare for 1ssuing the command
“READ B” at CC 3. The column address strobe (CAS) 1s
asserted with a logic low value at CC 3. The row address and
the column address are provided on the address lines marked
as pointers 370 aligned with the assertions of the corre-
sponding strobes. As shown, the requested data for the
command “READ B” consumes four clock cycles such as
CC 35, CC 6, CC 7 and CC 8. The scheduler takes into
account the number of clock cycles consumed by received
requested data when determining a next given point 1n time
that the memory data bus 1s available.

In one embodiment, the scheduler determines a next given
point in time that the memory data bus 1s available 1s CC 10.
The scheduler determines there 1s time to schedule a
memory access command for Memory Type 1, but there 1s
not time to schedule a memory access command for
Memory Type 2. As shown, the earliest point in time to 1ssue
a next memory access command for Memory Type 2 1s after
the command “XADR A”, which 1s CC 4. With a command
latency of 7 clock cycles, the requested data 1s scheduled to
arrive at CC 11, rather than CC 10. Therefore, the scheduler
1ssues a memory access command “READ C” for Memory
Type 1 at CC 8. With an access latency of two clock cycles
in the example, the valid response data arrives at CC 10.

As shown, precharge command “PRECHARGE” and an
activate command “ACTIVATE” are 1ssued at CC 4 and CC
6, respectively, to prepare for issuing the command “READ
C” at CC 8. The bank to close 1s specified in the “BANK”
data on the address lines marked as pointers 570. In some
embodiments, the received response data includes a tag or
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other identifier 1dentifying which command 1s associated
with the response data. In other embodiments, the timing of
the arrival of the request data i1s used to identity which
command 1s associated with the response data. Therelore,
although the request data arrives out-of-order corresponding
to the i1ssue of commands, the scheduler in the memory
controller 1s able to keep track of which received data
belongs with which command.

Referring to FIG. 6, a generalized block diagram of
another embodiment of a computing system 600 1s shown.
As shown, computing system 600 includes communication
fabric 620 between each of clients 610 and memory con-
troller 630. Memory controller 630 includes a memory
channel 638 for transferring memory traflic between
memory controller 620 and memory 670 and memory 680
via memory bus 650. Each of memory 670 and memory 680
store data accessed by clients 610. In some embodiments,
the components of system 600 are individual dies on an
integrated circuit (IC), such as a system-on-a-chip (SOC). In
other embodiments, the components are individual dies 1n a
system-in-package (S1P) or a multi-chip module (MCM). A
power controller, an 1interrupt controller, network link inter-
faces and so forth, are not shown for ease of illustration.

In various embodiments, memory bus 650 utilizes a
bi-directional shared-bus structure. In various embodiments,
memory 670 and memory 680 use different data storage
technology, and accordingly, memory 670 has access laten-
cies differing from access latencies of memory 680 by at
least a threshold amount of time. In various embodiments,
one or more of memory 670 and memory 680 1s used as
system memory by clients 610.

In an embodiment, when one of memory 670 and memory
680 1s one of a variety of types of DRAM, one example of
a protocol for a respective 1nterface between memory chan-
nel 638 and the memory controller 630 1s a double data rate
(DDR) type of protocol. The protocol determines values
used for information transfer, such as a number of data
transiers per clock cycle, signal voltage levels, signal tim-

ings, signal and clock phases and clock frequencies. Proto-
col examples include DDR2 SDRAM, DDR3 SDRAM,

GDDR4 (Graphics Double Data Rate, version 4), SDRAM,
GDDRS5, SDRAM, GDDR6, HBM2, and so forth. The
memory controller 630 includes control circuitry for inter-
facing to memory channel 638 and other memory channels
(not shown) and following a corresponding protocol.

Although a single memory controller 630 1s shown, 1n
other embodiments, another number of memory controllers
are used in computing system 600. As shown, memory
controller 630 1includes request queues 632 for queuing
memory access requests received from clients 610 via
communication fabric 620. Memory controller 630 also has
response queues 634 for storing responses received from
memory 670 and memory 680. In an embodiment, request
queues 632 include a separate read queue for each of
memory 670 and memory 680 for storing memory read
requests. In addition, request queues 632 include a separate
write queue for each of memory 670 and memory 680 for
storing memory write requests. In some embodiments,
memory controller 630 also includes miss queues 639 when
one or more of memory 670 and memory 680 includes a data
storage technology that provides a miss status as a response
to an access. In an embodiment, one of memory 670 and
memory 680 1s NVDIMM-P, which provides the miss status
response.

In some embodiments, request queues 632 nclude one or
more queues for storing received memory access requests
and a separate queue for storing scheduled memory access
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commands converted from the received requests and
selected from the one or more queues. Schedulers 636
include control logic for selecting memory access com-
mands stored 1n request queues 632 for out-of-order 1ssue to
memory 670 and memory 680. Therefore, memory control-
ler 630 supports out-of-order 1ssue of the memory access
requests to memory 670 and memory 680.

In various embodiments, schedulers 636 1n memory con-
troller 130 schedule the 1ssue of the stored memory access
commands based on a quality-of-service (QoS) or other
priority information, age, a process or thread identifier (ID),
an amount of time since a memory access command had
been 1ssued to memory 670, an amount of time since a
memory access command had been 1ssued to memory 680,
and a relationship with other stored requests such as target-
ing a same memory channel, targeting a same rank, targeting
a same bank and/or targeting a same page. In some embodi-
ments, schedulers 636 assign a given weight to each of the
criteria and perform a weighted sum. The memory access

command or status access command with the greatest sum 1s
selected for 1ssue.

In various embodiments, communication fabric 620 trans-
ters traflic back and forth between clients 610 and memory
controller 630 and includes interfaces for supporting respec-
tive communication protocols. In some embodiments, com-
munication fabric 620 includes at least queues for storing
requests and responses, selection logic for arbitrating
between received requests before sending requests across an
internal network, logic for building and decoding packets,
and logic for selecting routes for the packets.

In the illustrated embodiment, clients 610 include central
processing unit (CPU) 612, graphics processing unit (GPU)
614 and Hub 616. Hub 616 is used for communicating with
Multimedia Engine 618. The CPU 612, GPU 614 and
Multimedia Engine 618 are examples of computing
resources capable of processing applications. Although not
shown, 1n other embodiments, other types ol computing
resources are included in clients 610. In some embodiments,
cach of the one or more processor cores 1n CPU 612 includes
circuitry for executing instructions according to a given
selected 1nstruction set architecture (ISA). In various
embodiments, each of the processor cores i CPU 612
includes a superscalar, multi-threaded microarchitecture
used for processing instructions of the given ISA.

In an embodiment, GPU 614 includes a high parallel data
microarchitecture with a sigmificant number of parallel
execution lanes. In one embodiment, the microarchitecture
uses single-mstruction-multiple-data (SIMD) pipeline for
the parallel execution lanes. Multimedia Engine 618
includes processors for processing audio data and visual data
for multimedia applications. In some embodiments, the
address space of computing system 600 1s divided among at
least CPU 612, GPU 614 and Hub 616 and one or more other
components such as mput/output (I/O) peripheral devices
(not shown) and other types of computing resources.
Memory maps are maintained for determining which
addresses are mapped to which component, and hence to
which one of CPU 612, GPU 614 and Hub 616 a memory
request for a particular address should be routed.

In various embodiments, one or more of memory 670 and
memory 680 are filled with data from disk memory 662
through the 1I/O controller and bus 660 and the memory bus
650. A corresponding cache {ill line with the requested block
1s conveyed from one or more of memory 670 and memory
680 to a corresponding one of the cache memory subsystems
in clients 610 in order to complete the original memory
access request. The cache fill line 1s placed 1n one or more
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levels of caches. In an embodiment, disk memory 662
provides a non-volatile, secondary storage of data. In one
embodiment, disk memory 662 includes one or more hard

disk drives (HDDs). In other embodiments, disk memory
662 includes solid-state disks (SSDs).

Referring to FIG. 7, a generalized block diagram of one
embodiment of a memory controller 700 1s shown. In the
illustrated embodiment, memory controller 700 includes an
interface 710 to clients via a communication fabric, queues
720 for storing received memory access requests and
received responses, control unit 750 and an interface 780 to
multiple memory devices, each using different memory
technologies, via a memory data bus and a memory channel.
Each of interfaces 710, 780 and 782 supports respective
communication protocols. In an embodiment, interface 780
1s an 1nterface to a memory command bus for sending
memory access commands corresponding to memory
requests received via interface 710 to a memory device,
which includes data storage technology of a first memory
type. In one embodiment, interface 782 1s an interface to a
memory data bus for transierring data between the memory
controller 700 and another memory device, which includes
data storage technology of a second memory type different
from the first memory type. In various embodiments, an
access latency of the first memory type differs from an
access latency of the second memory type by at least a
threshold amount of time.

In the illustrated embodiment, queues 720 includes
request queues 730, response queues 740, and miss queues
742. In an embodiment, queues 720 include first read queue
732 for storing recerved read requests targeting a {irst
memory type and second read queue 734 for storing
received read requests targeting a second memory type.
Although two read queues are shown for receiving read
requests targeting two different memory types, i other
embodiments, another number of read queues are used for
receiving read requests targeting another number of different
memory types. In addition, queues 720 include first write
queue 736 for storing received write requests targeting the
first memory type and second write queue 738 for storing
received write requests targeting the second memory type. In
some embodiments, queues 720 also includes miss queues
742 when one or more of the first memory type and the
second memory type include a data storage technology that
provides a miss status as a response to an access. In an
embodiment, one of the first memory type and the second
memory type 1s NVDIMM-P, which provides the miss status
response. In one embodiment, queues 720 includes queue
739 for storing scheduled memory access requests selected
from one or more of queues 732-738 or a unified queue 1f
one 1s used.

In some embodiments, read schedulers 752 include arbi-
tration logic for selecting read requests from first read queue
732 out-of-order as well as for selecting read requests from
second read queue 734 out-of-order. In an embodiment, read
schedulers 752 select a request from either first read queue
732 or second read queue 734 when a respective request 1s
available for scheduling 1 a given clock cycle from either
first read queue 732 or second read queue 734. In some
embodiments, read schedulers 752 schedule read requests
for out-of-order 1ssue to one of the first memory type and the
second memory type based on a quality-of-service (QoS) or
other priority information, age, a process or thread 1dentifier
(ID), and a relationship with other stored requests such as
targeting a same memory channel, targeting a same rank,
targeting a same bank and/or targeting a same page.
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To avoid data collisions on the memory data bus despite
multiple deterministic access latencies for the first memory
type and the second memory type, in one embodiment, read
schedulers 752 determine a next given point in time that the
memory data bus 1s available. In some embodiments, points
in time are measured by clock cycles. Read schedulers 752
determine whether there 1s suflicient time to schedule a first
memory access command corresponding to a selected read
request stored 1n first read queue 732 to provide response
data at the given point 1n time. Additionally, read schedulers
752 also determine whether there 1s suflicient time to sched-
ule a second memory access command corresponding to a
selected read request stored in second read queue 734 to
provide response data at the given point 1n time. In other
words, read schedulers 752 determine whether a new
memory access command received by either first read queue
732 or second read queue 734 can be scheduled for 1ssue to
either the first memory device or the second memory device
such that a response to the new memory access command
will be received on the memory data bus at the given point
in time. In various embodiments, the given point 1n time 1s
a next available point 1n time 1n which the memory data bus
1s not scheduled to have data driven on the memory data bus
and has not yet been considered for scheduling.

Although, 1n some embodiments, the access latencies for
one or more of the first memory type and the second memory
type are non-deterministic, responses have deterministic
latencies. Responses are returned after a deterministic
latency with an indication specifying whether valid data 1s
included 1n the response. If valid data 1s not included in the
response, a retry 1s attempted later. Therefore, the memory
access command 1s stored 1n miss queues 742 for a later
retry. As described earlier, other commands are at times
additionally used along with the memory access commands.
These other commands also add latency to the latency of the
memory access command.

If there 1s suflicient time to issue at least one of the first
access command and the second access command to provide
response data on the memory data bus at the given point in
time, read schedulers 752 select one of the first memory
access command and the second memory access command.
The critenia described earlier, such as priority levels, ages,
and so forth, can be used by scheduler 752. In addition,
weighted values can be used. In an embodiment, read
schedulers 752 place the selected access command 1n queue
739 prior to sending the selected access command to the
corresponding memory type via the memory channel. In
order to determine whether a new pending memory access
command stored in either of first read queue 732 or second
read queue 734 can be scheduled for 1ssue at the given point
in time, read schedulers 752, 1n an embodiment, determine
a response latency for the new memory access command 1s
N clock cycles, where N 1s an integer. Read schedulers 752
identify an earlier point in time that corresponds to N clock
cycles before the given point 1n time, and determine whether
the memory command bus 1s available at the earlier point in
time.

If read schedulers 752 determine there 1s suflicient time
for the above new memory access command to be sched-
uled, then read schedulers 752 schedule the new memory
access command for 1ssue at the earlier point in time and
store an indication that the memory data bus 1s unavailable
at the given point 1n time. In some embodiments, a vector of
bits are stored 1n registers to indicate which points 1 time
the memory data bus 1s available and which points in time
the memory data bus are unavailable. For example, in
vartous embodiments each bit of the vector of bits corre-
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sponds to a particular time slot. If a scheduler determine that
data 1s to be conveyed during a given time slot(s) (e.g., write
data to be transferred to the memory, or read data being
retrieved from the memory), the scheduler sets the corre-
sponding time slot bit(s) i the vector to indicate the data bus
1s scheduled to be busy at that time. For example, 1n some

embodiments, a bit with a value of ‘0” indicates no data 1s
scheduled to be on the data bus at that time (1.e., the data bus
1s non-busy). In such an embodiment, setting a bit of the
time slot causes the bit to have a value of “1”. In other
embodiments, these values may be reversed such that a “0”
indicates a busy period on the data bus and a *“1” indicates
a non-busy period. In such an embodiment, setting a bit
would cause the bit to have a value of “1”. By referencing
the vector of bits, the scheduler can quickly determine
whether or not a given time slot 1s available for purposes of
scheduling new activity. In an embodiment, a register 1s used
to store an 1ndication that specifies which points in time have
not yet been considered for scheduling and which points in
time have been considered for scheduling. In various
embodiments, these stored indications can be used to deter-
mine other given points in time for future scheduling of
commands for issue.

In some embodiments, to avoid data collisions on the
memory data bus despite multiple deterministic access laten-
cies for the first memory type and the second memory type,
read schedulers 752 determine a next point in time that the
memory command bus 1s available 1n contrast to initially
determining a next given point in time that the memory data
bus 1s available. Again, 1n some embodiments, points 1n time
are measured by clock cycles. In some embodiments, read
schedulers 752 determine a respective given point 1n time
for each diflerent type of pending memory access command
stored 1n first read queue 732 and second read queue 734 by
adding the respective latencies to the next point in time that
the memory command bus 1s available.

In order to determine whether a new pending memory
access command stored 1n either of first read queue 732 or
second read queue 734 can be scheduled for 1ssue at the next
point 1n time that the memory command bus 1s available,
read schedulers 752, in an embodiment, determine a
response latency for the new memory access command 1s N
clock cycles, where N 1s an integer. Read schedulers 752
identify a later given point 1n time that corresponds to N
clock cycles after the point in time that the memory com-
mand bus 1s available. Afterward, read schedulers 752
determine whether the memory data bus 1s available at the
later given point in time.

In some embodiments, read schedulers 752 use the stored
vector of bits as described earlier to determine whether the
memory data bus 1s available for each of the respective one
or more given points in time for each of the one or more
pending memory access commands stored in first read queue
732 and second read queue 734. If the memory data bus 1s
available during a respective given point 1n time for only a
single pending memory access command, then read sched-
ulers 752 schedule that single pending memory access
command at the next point 1n time that the memory com-
mand bus 1s available. If the memory data bus 1s available
during respective given points in time for multiple pending
memory access commands, then read schedulers 752 select
one of the pending memory access commands to 1ssue based
on criteria described earlier such as priority levels, ages and
so Tforth. Read schedulers 752 schedule the selected pending
memory access command at the next point in time that the
memory command bus 1s available.




US 10,275,352 Bl

17

Write schedulers 754 include similar selection logic for
first write queue 736 and second write queue 738 as used by
read schedulers 752. In various embodiments, write sched-
ulers 754 also consider data collisions caused by data driven
on the shared memory data bus. The control logic imple-
menting decision algorithms used by read schedulers 752 1s
also used by write schedulers 754. In an embodiment,
response scheduler 756 includes similar logic for 1ssuing,
based on priorities, responses out-of-order to clients. In
some embodiments, the received response data includes a
tag or other identifier that the response scheduler 756 uses to
identily which command stored 1n either first read queue 732
or second read queue 734 1s associated with the response
data. In other embodiments, the timing of the arrival of the
request data on the memory data bus 1s used by response
scheduler 756 to 1dentity which command 1s associated with
the response data. Therefore, although the request data
arrives out-of-order corresponding to the issue of com-
mands, the response scheduler 756 1s able to keep track of
which received data belongs with which command.

In some embodiments, when read schedulers 752 sched-
ule a given command to 1ssue, response scheduler 756
determines a given point 1n time for requested read data to
be scheduled to arrive on the shared memory data bus. In an
embodiment, response scheduler 756 adds the latency of the
given command to a point 1n time the read schedulers 752
schedule to 1ssue the given command. In some embodi-
ments, response scheduler 756 generates an identifier. In
some embodiments, the identifier 1s an indication of the
entry 1n a request queue storing imnformation corresponding
to the given command. In other embodiments, the 1dentifier
1s a combination of one or more of a thread identifier and a
portion of a target address of the memory request corre-
sponding to the given command. Response scheduler 756
stores an association of the identifier with the given point 1n
time. In an embodiment, a table 1s used. Therefore, response
scheduler 756 1s able to i1dentify the given command with
arriving requested read data on the shared memory data bus
based on the given point 1n time, rather than based on a tag
inserted 1n the given command or with a packet associated
with the arriving requested read data.

In some embodiments, control registers 770 store an
indication of a current mode. For example, the off-chip
memory data bus and memory device support either a read
mode or a write mode at a given time. Therefore, traflic 1s
routed 1n a given single direction during the current mode
and changes direction when the current mode 1s changed
alter a data bus turnaround latency. In various embodiments,
control registers 770 store a threshold number of read
requests (read burst length) to send during the read mode. In
some embodiments, control registers 770 store weights for
criteria used by selection algorithms 1n read schedulers 752
and write schedulers 754 for selecting requests stored in
queues 732-738 to 1ssue.

Referring now to FIG. 8, one embodiment of a method
800 for scheduling memory requests for 1ssue to two dii-
ferent memory types 1s shown. For purposes of discussion,
the steps 1n this embodiment (as well as in FIGS. 9-14) are
shown 1n sequential order. However, it 1s noted that in
various embodiments of the described methods, one or more
of the elements described are performed concurrently, 1n a
different order than shown, or are omitted entirely. Other
additional elements are also performed as desired. Any of
the various systems or apparatuses described herein are
configured to implement method 800.

One or more clients within the nodes execute computer
programs, or software applications. The computing resource
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determines a given memory access request misses within a
cache memory subsystem within a given client of the one or
more clients. The client sends the memory access request to
system memory implemented by two different memories via
a memory controller with a memory channel connected to
cach of the two diflerent memories. The differences between
one or more access latencies of a first type of memory and
one or more access latencies ol a second type of memory
exceed a threshold amount of time. Memory requests for the
first type of memory connected to a given memory channel
are stored as they are received (block 802). Memory requests
for the second type of memory connected to the given
memory channel are stored as they are received (block 804).

The memory requests for the first type of memory are
marked for out-of-order 1ssue based at least upon priorities
and targets of the memory requests (block 806). The
memory requests for the second type of memory are marked
for out-of-order issue based at least upon priorities and
targets ol the memory requests (block 808). Theretfore, the
memory controller supports out-of-order 1ssue for each of
the first memory and the second memory. The memory
requests are scheduled for issue 1n a manner to provide
response data at given points 1 time (block 810). For
example, the memory requests are scheduled 1n an inter-
mixed manner without data collision on the shared memory
data bus despite the different access latencies.

In various embodiments, a scheduler or other control
logic in the memory controller determines whether there are
two pending memory access commands such as a first
command for the first memory type and a second command
for the second memory type. The scheduler determines
whether each of the first command and the second command
can be 1ssued without causing a data collision on the shared
memory data bus. For example, based on the point 1n time
for 1ssuing a selected command of the first command and the
second command 1n addition to the access latencies of each
of the first type of memory and the second type of memory,
the memory controller keeps track of points 1n time when
read response data or write data 1s scheduled to arrive on the
shared memory data bus. In some embodiments, points 1n
time are measured by clock cycles.

I selecting either of the first command and the second
command would not schedule a data collision on the shared
memory data bus, then each of the first command and the
second command remains a candidate for issue. In such a
case, the scheduler selects a command from the first com-
mand and the second command based on arbitration logic. In
other embodiments, determining whether to 1ssue the first
command or the second command begins with selecting a
particular given point 1n time for the read response data or
the write data to be driven on the shared memory data bus.

Turning now to FIG. 9, one embodiment of a method 900
for scheduling memory requests for 1ssue to two different
memory types 1s shown. A next given point in time for read
response data to be driven on a memory data bus 1s 1dentified
(block 902). For example, both an access latency and a
scheduled amount of requested data to return for each 1ssued
memory access command and status access command are
considered when determining the next given point 1n time.
In some embodiments, the points 1n time are measured by
clock cycles.

If read response data 1s already scheduled to arrive for the
grven point in time (“yes” branch of the conditional block
904), then control flow of method 900 returns to block 902
where a next given point in time 1s 1dentified. For example,
the next clock cycle after the currently selected clock cycle
1s considered. Alternatively, a count 1s added to the current
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clock cycle equal to a given number of clock cycles to be
consumed for read requested data scheduled to arrive from
one of two different memories. If read response data 1s not
scheduled to arrive for the given point 1n time (“no™ branch
ol the conditional block 904), then 1t 1s determined whether
there 1s suflicient time to schedule a memory access com-
mand for a first memory type to provide response data at the
given point 1n time (block 906). Following, 1t 1s determined
whether there 1s suflicient time to schedule a memory access
command for a second memory type different from the first
memory type to provide response data at the given point in

time (block 908).

In some embodiments, it 1s also determined whether there
1s suilicient time to schedule a status access command for the
second memory type to provide response data at the given
point 1n time (block 910). In some embodiments, the access
latency for the status access command i1s different than the
access latency for the memory access command for the
second memory type. A command 1s selected from candidate
commands capable of providing response data at the given
point 1n time (block 912). In various embodiments, a sched-
uler selects the next memory access command or status
access command to 1ssue based on criteria described earlier
such as priority levels, ages and so forth. The selected
command 1s scheduled for 1ssue at a point 1n time that allows
the selected command to provide response data at the given
point 1n time (block 914). For example, a scheduler for a
memory controller with a memory channel takes into
account the possible additional commands used to prepare
the selected command to 1ssue and their respective latencies
when scheduling memory access commands and status
access commands for issue.

As described above, method 900 describes steps to avoid
data collisions on the memory data bus despite multiple
deterministic access latencies for the first memory type and
the second memory type. However, as described earlier, in
other embodiments, the scheduler for the memory controller
with a memory channel determines a next point 1in time that
the memory command bus 1s available in contrast to nitially
determining a next given point in time that the memory data
bus 1s available. In some embodiments, points 1n time are
measured 1n clock cycles. In some embodiments, the sched-
uler determines a respective given point in time for each
different type of pending memory access command by
adding the respective latencies to the next point 1n time that
the memory command bus 1s available.

In order to determine whether a new pending memory
access command can be scheduled for 1ssue at the next point
in time that the memory command bus 1s available, the
scheduler, 1n an embodiment, determines a response latency
for the new memory access command 1s N clock cycles,
where N 1s an 1integer. The scheduler 1dentifies a later given
point 1n time that corresponds to N clock cycles after the
point 1n time that the memory command bus 1s available.
Afterward, the scheduler determines whether the memory
data bus 1s available at the later given point in time.

If the memory data bus 1s available during a respective
given point in time for only a single pending memory access
command, then the scheduler schedules that single pending
memory access command at the next point in time that the
memory command bus 1s available. If the memory data bus
1s available during respective given points i1n time for
multiple pending memory access commands, then the sched-
uler selects one of the pending memory access commands to
issue based on criteria described earlier such as priority
levels, ages and so forth. The scheduler schedules the
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selected pending memory access command at the next point
in time that the memory command bus 1s available.

The {following descriptions for methods 1000-1200
describe steps for initially determining a next given point 1n
time that the memory data bus 1s available followed by
determining an earlier point 1n time to schedule a memory
access command to 1ssue on the memory command bus.
However, 1n various other embodiments, as described above,
the scheduler determines a next pomnt i time that the
memory command bus 1s available followed by determining
a later point in time for read response data to be scheduled
to arrive on the memory data bus without collision. Although
the steps 1n methods 1000-1200 are described with respect
to read access commands, 1n other embodiments, similar
logic and steps are used for write access commands where
write data 1s placed on the shared memory data bus and data
collisions can occur with either read response data or other
write data of other write access commands being driven on
the shared memory data bus.

Turning now to FIG. 10, one embodiment of a method
1000 for scheduling memory requests for issue to two
different memory types 1s shown. In order to select an access
command and schedule the access command for 1ssue at a
point 1n time that allows the selected access command to
provide response data at a targeted given point in time,
particular timing values are evaluated. In some embodi-
ments, the following steps are performed atfter block 914 of
method 900 (of FIG. 9). A first amount of time 1s determined
between a given point 1n time for command 1ssue and a most
recent point 1n time for a scheduled first access command for
a first memory type (block 1002). The latencies of any
necessary additional commands to prepare for a possible
next 1ssue of the access command for the first memory type
are added to a first latency of the access command for the
first memory type (block 1004). Similar steps are performed
for an access command for a second memory type. For
example, a second amount of time 1s determined between the
given point 1n time and a most recent point in time for a
scheduled second access command for the second memory
type (block 1006). The latencies of any necessary additional
commands to prepare for a possible next 1ssue of the access
command for the second memory type are added to a second
latency of the access command for the second memory type
(block 1008).

A third amount of time 1s determined between the given
point in time and a most recent point in time for a scheduled
third access command for the second memory type (block
1010). The latencies of any necessary additional commands
to prepare for a possible next 1ssue of the third access
command for the second memory type are added to a third
latency of the third access command for the second memory
type (block 1012). Each of the first, second and third
amounts of time 1s compared to a respective one of the first,
second and third latencies (block 1014).

Turmning now to FIG. 11, one embodiment of a method
1100 for scheduling memory requests for 1ssue to two
different memory types 1s shown. In order to select an access
command and schedule the access command for 1ssue at a
point 1n time that allows the selected access command to
provide response data at a targeted given point in time,
particular comparisons of timing values are done. In some
embodiments, the following steps are performed after block
1014 of method 1000 (of FIG. 10).

If the first latency 1s not greater than the first amount of
time (“no” branch of the conditional block 1102), then a first
memory access command for the first memory type 1s
inserted 1 a set of candidate commands for 1ssue (block
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1104). In other words, 1f the accumulated latencies of the
memory access command for the first memory type and any
additional commands used to prepare the memory access
command for 1ssue 1s less than or equal to an amount of time
between the last 1ssue of any command for the first memory
type and the given point in time, then there 1s suthcient time
to 1ssue the memory access command for the first memory
type. For example, referring again to timing diagram 500 (of
FIG. §), there needs to be at least four clock cycles between
the 1ssue of “READ C” at CC 8 and the completion of
issuing “READ B” by CC 4.

If the first latency 1s greater than the first amount of time
(“ves” branch of the conditional block 1102), then the first
memory access command for the first memory type 1s
removed from consideration as a candidate command for
issue (block 1106). Similar steps are performed for a second
memory access command for the second memory type. For
example, 11 the second latency 1s not greater than the second
amount of time (“no” branch of the conditional block 1108),
then the second memory access command for the second
memory type 1s mserted in the set of candidate commands
for 1ssue (block 1110). Otherwise, 11 the second latency 1is
greater than the second amount of time (*yes” branch of the
conditional block 1108), then the second memory access
command for the second memory type 1s removed from the
set of candidate commands for 1ssue (block 1112).

Similar steps are performed for a third memory access
command for the second memory type. However, 1n some
embodiments, a check 1s made as to whether the requested
read data was already returned for the corresponding origi-
nal memory access command. Referring briefly again to the
timing diagram 400 (of FI1G. 4), the read command “SREAD
B” 1s 1ssued since the requested read data was not returned
for the original transaction read command “READ B”. At
CC 7, the requested read data 1s scheduled to arrive, but 1t
was not returned from the second memory type. However,
no subsequent read command 1s 1ssued for read command
“READ D,” since the requested read data was returned at the
scheduled given point 1 time at CC 9. In some embodi-
ments, the memory controller receives an indication on
another channel or link mterface specitying whether the
response data for a read access command 1s now available
for a particular one of the first memory type and the second
memory type. In other embodiments, the memory controller
1ssues speculative read commands to determine whether the
response data 1s ready.

If the third latency 1s not greater than the third amount of
time (“no” branch of the conditional block 1114), and 1t 1s
determined the corresponding response data did not yet
return (“no” branch of the conditional block 1116), then the
third memory access command for the second memory type
1s 1serted 1n the set of candidate commands for 1ssue (block
1118). If the third latency 1s not greater than the third amount
of time (“no” branch of the conditional block 1114), and 1t
1s determined the corresponding response data did return
(“ves” branch of the conditional block 1116), then the third
memory access command for the second memory type 1s
removed from the set of candidate commands for issue
(block 1120). Likewise, 11 the third latency 1s greater than the
third amount of time (*yes” branch of the conditional block
1114), then the third memory access command for the
second memory type 1s removed from the set of candidate
commands for issue (block 1120).

Turning now to FIG. 12, one embodiment of a method
1200 for scheduling memory requests for issue to two
different memory types 1s shown. In order to select an access
command and schedule the access command for 1ssue at a
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point 1 time that allows the selected access command to
provide response data at a targeted given point 1n time,
arbitration among a set of qualified candidate commands 1s
done. In some embodiments, the following steps are per-
formed after the steps of method 1100 (of FIG. 11). Weights
are assigned to criteria used for selecting a command from
a set of candidate commands for 1ssue (block 1202).

As described earlier, the criteria includes one or more of
a QoS or other priority information, age, a process or thread
identifier (ID), an amount of time since a memory access
command had been i1ssued to the first memory type, and an
amount of time since a memory access command or a status
access command had been 1ssued to the second memory
type. In some embodiments, programmable control and
status registers store the weights assigned to the selected
criteria. A set of candidate commands 1s determined for 1ssue
(block 1204). In an embodiment, commands are qualified
alter the steps of the previous methods 900-1100. I1 the set
contains a single command (““ves” branch of the conditional
block 1206), then the single command 1s selected for 1ssue
(block 1208).

I1 the set contains multiple commands (“no” branch of the
conditional block 1206), then a single command 1s selected
from among the multiple candidates based on the weighted
criteria (block 1210). As described earlier, in some embodi-
ments, schedulers assign a given weight to each of the
criteria and perform a weighted sum. The memory access
command or status access command with the greatest sum 1s
selected for 1ssue. The total latency of the selected command
including any necessary additional commands to prepare for
the 1ssue of the selected command is subtracted from a point
in time the read response data 1s scheduled to arrive (block
1212). The additional commands and the selected access
command are scheduled to 1ssue at the determined points 1n
time found by performing the subtraction (block 1214).

Turning now to FIG. 13, one embodiment of a method
1300 for identitying read response data arriving out-of-order
from two memories with different access latencies 1s shown.
In various embodiments, one or more of the memories 1s a
memory type that responds with a deterministic response
time. In such an embodiment, the response includes the
requested data or the response indicates the data 1s not
currently ready. In some embodiments, such a memory type
1S NVDIMM-P. As shown 1n the embodiment of FIG. 13, an
indication 1s received that a memory access command (e.g.,
a read request) 1s ready for 1ssue to one of the memories
(block 1302). A determination 1s then made as to whether the
memory access command already has an assigned 1dentifier
(block 1304). If there i1s not already an identifier (“no”
branch of the conditional block 1306), then an 1dentifier 1s
generated or otherwise assigned for the memory access
command (block 1308). In some embodiments, the identifier
1s an 1dentification of an entry 1n a request queue that stores
information corresponding to the memory access command.
In other embodiments, the 1dentifier 1s a combination of one
or more of a thread 1dentifier and a portion of a target address
of the memory request corresponding to the memory access
command.

If there 1s already an identifier for the command (*yes”
branch of the conditional block 1306), then control flow of
method 1300 moves to block 1310 where a determination 1s
made as to a first point in time that the memory access
command 1s scheduled to 1ssue (block 1310). For example,
a scheduler can provide this information when the scheduler
selects the memory access command for 1ssue.

Further, a response latency for the memory access com-
mand 1s determined (block 1312). In various embodiments,
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memory access commands for each of a first memory type
and a second memory type of the memories, 1n addition to
status access commands for the second memory type, have
deterministic latencies. However, each command can have a
latency different from a latency of another command. The
identifier 1s then associated with a second point in time that
corresponds to a time a response to the command 1s expected
(block 1314). For example, 1f the time the command 1s to
issue 1s 11 and the latency 1s determined to be equal to 100
cycles (or some other measure of latency), then the second
point 1n time 1s equal to T1+100. In various embodiments,
the 1dentifier 1s not included with the memory access com-
mand when 1t 1s conveyed to the memory. Rather, the point
in time that a response to the command 1s scheduled to
arrive, such as a particular clock cycle, 1s used to 1dentity the
access command that corresponds to the received response.

Referring to FIG. 14, one embodiment of a method 1400
for 1dentifying response data arriving out-of-order from two
different memory types 1s shown. In order to match received
read data to corresponding access commands, without
iserting tags or other identifiers 1n the 1ssued commands,
control logic 1 a response scheduler performs the below
steps. In some embodiments, the following steps are per-
formed after the steps of method 1300 (of FIG. 13).

Identifiers and points in time are maintained for receiving,
read response data for 1ssued commands (block 1402). If a
given point in time for receiving read response data has
arrived (“‘ves” branch of the conditional block 1404), then a
given command corresponding to the reached point 1n time
1s 1dentified (block 1406) based on the point 1n time. In some
embodiments, numbered clock cycles are used to indicate
points 1 time. In other embodiments, another count or
measure of time 1s used. In various embodiments, the given
point 1n time 1s used to index nto a table to determine an
identifier associated with the corresponding command. For
example, in some embodiments the 1dentifier 1s an indication
of the entry 1n a request queue that stores information
corresponding to the memory access command. In other
embodiments, the identifier 1s a combination of one or more
of a thread 1dentifier and a portion of a target address of the
memory request corresponding to the memory access com-
mand.

If valid data 1s received at the given point in time (“ves”™
branch of the conditional block 1408), then a requestor that
generated the given command 1s 1dentified (block 1410), the
valid data 1s sent to the identified requestor (block 1412),
and the given command i1s marked as completed (block
1414). If valid data 1s not received at the given point in time
(“no” branch of the conditional block 1408), then the given
command remains outstanding (block 1416).

In various embodiments, program instructions ol a soft-
ware application are used to implement the methods and/or
mechanisms previously described. The program instructions
describe the behavior of hardware in a high-level program-
ming language, such as C. Alternatively, a hardware design
language (HDL) 1s used, such as Verilog. The program
instructions are stored on a non-transitory computer readable
storage medium. Numerous types ol storage media are
available. The storage medium 1s accessible by a computing
system during use to provide the program instructions and
accompanying data to the computing system for program
execution. The computing system includes at least one or
more memories and one or more processors configured to
execute program instructions.

It should be emphasized that the above-described embodi-
ments are only non-limiting examples of implementations.
Numerous variations and modifications will become appar-
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ent to those skilled 1n the art once the above disclosure 1s
tully appreciated. It 1s intended that the following claims be
interpreted to embrace all such variations and modifications.

What 15 claimed 1s:

1. A memory controller comprising:

a {irst interface for receiving read response data on a data
bus from both a first memory device and a second
memory device diflerent from the first memory device;

a second interface for sending the read response data to
one of a plurality of clients; and

control logic;

wherein 1n response to determining a given point in time
for receiving read response data 1s reached, the control
logic 1s configured to:
identify, based on the given pomnt in time, a first

memory access command that corresponds to the

read response data; and

in response to determining the read response data 1s
received on the data bus at the given point in time:
mark the first memory access command as complete;
and
send the read response data to a given client that
generated the first memory access command.
2. The memory controller as recited 1n claim 1, wherein
the control logic 1s configured to:
maintain a vector of bits, with each bit of the vector of bits
corresponding to a scheduling time slot; and
set a given bit of the vector of bits responsive to deter-
mining data 1s scheduled to be conveyed on a data bus
at a time that corresponds to the given time slot.
3. The memory controller as recited 1n claim 1, wherein
in response to receiving an indication that a second memory
access command 1s scheduled to 1ssue, the control logic 1s
turther configured to assign a point 1n time for receiving read
response data for the second memory access command to an
identifier that identifies the second memory access com-
mand.
4. The memory controller as recited 1n claim 3, wherein
assigning the identifier to the second memory access com-
mand comprises determining the second memory access
command 1s a status access command targeting a same
address as an outstanding memory access command.
5. The memory controller as recited in claim 1, wherein
the control logic 1s further configured to generate a unique
identifier for assigning to the given point in time.
6. The memory controller as recited 1n claim 5, wherein
the unique i1dentifier comprises one or more of a thread
identifier and a portion of a target address targeted by the
first memory access command.
7. The memory controller as recited 1n claim 1, wherein
determining the given point in time comprises adding a
response latency of the first memory access command to a
time at which the first memory access command 1s sched-
uled to 1ssue.
8. A method, comprising:
receiving, via a first interface, read response data on a data
bus from either a first memory device or a second
memory device different from the first memory device;
sending, by a second interface, the read response data to
one of a plurality of clients;
in response to determining a given point 1 time for
receiving read response data 1s reached:
identifying, based on the given point 1n time, a first
memory access command that corresponds to the
read response data; and

in response to determining the read response data 1s
received on the data bus at the given point in time:




to receiving an indication that a second memory access
command 1s scheduled to 1ssue, the method comprises
assigning a point in time for recerving read response data for
the second memory access command to an identifier that 1°
identifies the second memory access command.

the 1dentifier to the second memory access command com-
prises determining the second memory access command 1s a
status access command targeting a same address as an 2Y
outstanding memory access command.

generating a unique identifier for assigning to the given
point in time.

identifier comprises one or more of a thread identifier and a
portion of a target address targeted by the second memory
access command.

the given point in time comprises adding a response latency 3Y
of the first memory access command to a time at which the
first memory access command 1s scheduled to 1ssue.
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marking the first memory access command as com- wherein 1n response to determining a given point 1in time
plete; and for rece1ving read response data 1s reached, the memory
sending the read response data to a given client that controller 1s configured to:

identily, based on the given point in time, a {first
memory access command that corresponds to the
read response data; and
in response to determining the read response data 1s
received on the data bus at the given point i time:
mark the first memory access command as complete;
10 and
send the read response data to a given client that
generated the first memory access command.

16. The computing system as recited 1n claim 135, wherein
the memory controller 1s further configured to:

maintain a vector of bits, with each bit of the vector of bits

corresponding to a scheduling time slot; and

set a given bit of the vector of bits responsive to deter-

mining data 1s scheduled to be conveyed on a data bus
at a time that corresponds to the given time slot.

17. The computing system as recited 1n claim 1, wherein
1in response to recerving an indication that a second memory
access command 1s scheduled to 1ssue, the memory control-
ler 1s further configured to assign a point 1n time for
receiving read response data for the second memory access
command to an identifier that 1dentifies the second memory
access command.

18. The computing system as recited 1n claim 17, wherein
assigning the i1dentifier to the second memory access com-
mand comprises determining the second memory access
command 1s a status access command targeting a same
address as an outstanding memory access command.

19. The computing system as recited 1n claim 135, wherein
the memory controller 1s further configured to generate a
umque 1dentifier for assigning to the given point in time.

20. The computing system as recited in claim 19, wherein
the unique i1dentifier comprises one or more ol a thread
identifier and a portion of a target address targeted by the
first memory access command.

generated the first memory access command.
9. The method as recited in claim 8, further comprising: >
maintaining a vector of bits, with each bit of the vector of
bits corresponding to a scheduling time slot; and
setting a given bit of the vector of bits responsive to
determining data 1s scheduled to be conveyed on a data
bus at a time that corresponds to the given time slot.
10. The method as recited in claim 8, wherein in response

11. The method as recited 1n claim 10, wherein assigning

12. The method as recited 1n claim 8, further comprising

13. The method as recited in claim 12, wherein the unique 2°

14. The method as recited in claim 8, wherein determining

15. A computing system comprising:

a plurality of clients configured to generate memory
access requests for data stored in a first memory device 33
or a second memory device different from the {first
memory device; and

a memory controller coupled to each of the first memory
device and the second memory device; I I
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