12 United States Patent

Ratcliff et al.

US010268722B2

US 10,268,722 B2
Apr. 23,2019

(10) Patent No.:
45) Date of Patent:

(54) MULTIPLE PARALLEL QUERIES ON
MULTIPLE DATABASES FOR BIG DATA

INJECTION

(71)
(72)

Applicant: ADP, LL.C, Roseland, NJ (US)

Inventors: Michael Ratcliff, Roseland, NJ (US);
James Haas, Bridgewater, NI (US);
Marc Rind, Summait, NJ (US); Venkata

Turlapati, Roseland, NJ (US)
(73)

(%)

Assignee: ADP, LLC, Roseland, NJ (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 208 days.

Notice:

(21) 15/462,850

(22)

Appl. No.:

Filed: Mar. 18, 2017

(65) Prior Publication Data

US 2018/0268026 Al Sep. 20, 2018

Int. CIL.
GO6F 17/30

U.S. CL
CPC ..

(51)
(2006.01)
(52)
GOGF 17/30445 (2013.01); GO6F 17/30112

(2013.01); GO6F 17/30144 (2013.01); GO6F
17/30215 (2013.01)

(38) Field of Classification Search
CPC GO6F 17/30445
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

12/1996 Cohen et al.
11/2005 Bayliss et al.

5,590,319 A
6,968,335 B2

Primary Examiner — Grace Park
(74) Attorney, Agent, or Firm — Yee & Associates, P.C.

(57) ABSTRACT

A computer-implemented method for processing informa-
tion 1in a big data environment. A target query 1s received.
The target query 1s run against a catalog to obtain desired
fields for search and to filter for specific targets from which
data will be extracted. Responsive to the query, particular
data 1s extracted from the specific targets. Extracting
includes defining a query pack comprising a configuration
file and one or more files containing queries to execute on
cach target in the specific targets, the configuration file
containing a section for each of the one or more files to
customize configurations for each of the one or more files,
and particular connection information defining relationships
among the specific targets. One 1ngestion daemon 1s
executed for every file of the one or more files in the query
pack to produce results. The results are processed 1 a

distributed parallel computing environment.

20 Claims, 5 Drawing Sheets

MASSIVE PARALLEL 124
COMPUTING ENVIRONMENT
102
\ = = = L L
114~ | | | |
QueryPacktargz | Ny ‘ PUSH \ - ‘ PUSH \ B
106 . SPAWN | IS] & |
ﬁle1.sqlf 104 " INGESTION ! | &4 | | M1l 116
1 . 9 | COMPRESS COMPRESS | 4
fozsg1 -~ 108 LI ' DAEMONS | |3] 5 4
—> = | | = |
vy 'S row |!'!'[Row |B
| TARGET INFORMATION . | | uy
| WRAPPED IN QUERY PACKS | © | | 2 |
____________ | sPooLDR | | | SPOOLDR |
lFETCHTARGET: 100 e e S I
. INFORMATION v / | DESTINATION |
. FROM CATALOG | P—— | DIRECTORIES | _| DIRECTORY DIRECTORY
CATALOG aldEAtractor file1.sql file2.sq]
oS | 110 112
| EXTRACT DATA FROM TARGET |
| SYSTEMS AND SAVE IT TO |
 DESTINATION DIRECTORIES :

US 10,268,722 B2

Sheet 1 of 5

Apr. 23, 2019

U.S. Patent

O
<~
<~

B

r——

Vel

INGESTION DAEMON

chl 0L}

_cm..mm_a

bs* Loy

AHO103MIC AHOL103YIC
. B R R
¥Id 100dS “ “ ¥l 100dS “
z
| 1 ol
. 11 = |
T10¥ _ <
1 11 < |
| | Z
| | =
SSTUANOD - - SSTUAINOD %
| | =
| | ~
HSNd 1 HSNd _
. S I T N

LNJWNOXHIAND ONILNdNOO

13TIvdvd JAISSYIN

-

SO LOFHIC
NOILVNILS3d

¢el

r

SNOW3V(Q
NOILSJONI

inbjabinir dnblofinkl bbinhinkl okl -iekiiphle dmbbighiel ohbiekjehil dieblel bheekids bdpkink

142

[DId

MQ SWaad |~ 0c¢l
/dV'10

| s31M0L93MIa NOILYNILSAA
|01 11 3AVS ONV SWILSAS

-

| 139aV.1 NOY4 V.IVA LOVaLXd

“
|
|
|

j0)0BNXJE)ED
. 00 TV.1IVO NOYA
NOILVINHOANI

m
“
_
_
001 1394VL HOL3 |

SYOVd AYIND NI 3ddVaiM |
NOILYWHOLNI 139dVL |

bs za|y
s Loy

Zh jepjoedAianyd

¢0l

U.S. Patent Apr. 23, 2019 Sheet 2 of 5 US 10,268,722 B2

200

POOLSIZE

PROCESS 1 PROCESS 2 PROCESS 3 l ocoo | PROCESSN

202 204 206 208

00

10— 10— 771 7
| EXTRACT | I EXTRACT | | EXTRACT [|oeocof EXTRACT I
R [A S N —— I —

TARGET SYSTEMS
>
212 214

FIG. 2

210

U.S. Patent Apr. 23, 2019 Sheet 3 of 5 US 10,268,722 B2

300
B

302 RECEIVE A TARGET QUERY AT A COMPUTER, THE TARGET
QUERY COMPRISING A FILE SPECIFIED BY A USER WHICH
DEFINES WHAT INFORMATION IS OF INTEREST TO THE USER

RUN, BY THE COMPUTER, THE TARGET QUERY AGAINST A
CATALOG TO OBTAIN DESIRED FIELDS FOR SEARCH AND TO

FILTER FOR SPECIFIC TARGETS FROM WHICH DATA WILL BE
304 EXTRACTED, WHEREIN THE CATALOG COMPRISES A RELATIONAL
DATABASE STORING FIRST CONNECTION INFORMATION AMONG
A FIRST PLURALITY OF TARGETS THAT TOGETHER COMPOSE A
BIG DATA ENVIRONMENT, AND WHEREIN THE SPECIFIC TARGETS
ARE A SUBSET OF THE FIRST PLURALITY OF TARGETS

306 EXTRACT, RESPONSIVE TO THE QUERY,
PARTICULAR DATA FROM THE SPECIFIC TARGETS

308 BREAK THE PARTICULAR DATA SET INTO A PLURALITY OF BLOCKS

DISTRIBUTE ONES OF THE PLURALITY OF BLOCKS TO
310 CORRESPONDING ONES OF DIFFERENT COMPUTERS THAT ARE
ALL IN COMMUNICATION WITH A MASTER NODE COMPUTER

PERFORM PARALLEL PROCESSING OF THE PLURALITY OF

319 BLOCKS USING THE DIFFERENT COMPUTERS, WITH THE MASTER
NODE COMPUTER COORDINATING THE PARALLEL PROCESSING

RETURN A RESULT OF THE TARGET QUERY
314 BASED ON THE PARALLEL PROCESSING
FIG. 3

U.S. Patent Apr. 23, 2019 Sheet 4 of 5 US 10,268,722 B2

400
\
402 RECEIVE A QUERY

WRAP TARGET INFORMATION IN A QUERY PACK., WHEREIN THE
TARGET INFORMATION DEFINES A SUBSET OF TARGETS IN A

PLURALITY OF TARGETS, WHEREIN THE PLURALITY OF TARGETS
404 COMPRISE A PLURALITY OF SCHEMA AND A PLURALITY OF
RELATIONAL DATABASES IN A BIG DATA ENVIRONMENT, AND

WHEREIN THE QUERY PACK COMPRISES A TARBALL CONTAINING
ONE CONFIGURATION FILE AND A PLURALITY OF QUERIES TO

EXECUTE ON EACH OF THE SUBSET OF TARGETS

406 DEFINE A PLURALITY OF DESTINATION DIRECTORIES
FOR EACH OF THE PLURALITY OF QUERIES

SPAWN A PLURALITY OF INGESTION DAEMONS, WHEREIN
408 ONE CORRESPONDING INGESTION DAEMON IS SPAWNED
FOR EACH OF THE PLURALITY OF QUERIES

FETCH TARGET INFORMATION FROM A CATALOG DEFINING
410 RELATIONSHIPS AMONG THE SUBSET OF TARGETS

EXTRACT, USING THE PLURALITY OF INGESTION
DAEMONS, CORRESPONDING DATA FROM THE SUBSET
412 OF TARGETS INTO CORRESPONDING ONES OF THE
PLURALITY OF DESTINATION DIRECTORIES BASED ON
THE TARGET INFORMATION AND THE QUERY PACK

PROCESS THE CORRESPONDING DATA USING PARALLEL
PROCESSING PERFORMED BY A PLURALITY OF COMPUTERS
414 COORDINATED BY A MASTER NODE COMPUTER, WHEREIN
PROCESSING PRODUCES A RESULT OF THE QUERY

FI1G. 4

U.S. Patent Apr. 23,2019 Sheet 5 of 5 US 10,268,722 B2

500

DATA PROCESSING SYSTEM

516 s STORAGE DEVICES 208
504

06
PERSISTENT
MEMORY STORAGE
PROCESSOR UNIT
I
COMMUNICATIONS INPUT/OUTPUT
UNIT UNIT DISPLAY
510 512 514

520 COMPUTER
PROGRAM PRODUCT

COMPUTER READABLE MEDIA

PROGRAM CODE
518
COMPUTER READABLE
STORAGE MEDIA
526

524
COMPUTER READABLE
SIGNAL MEDIA

FI1G. 5

522

US 10,268,722 B2

1

MULITIPLE PARALLEL QUERIES ON
MULTIPLE DATABASES FOR BIG DATA
INJECTION

BACKGROUND INFORMATION
1. Field

The present disclosure relates to methods and devices for
improving the speed of processing big data from an unde-
fined number of relational databases by using multiple
parallel queries on multiple databases for big data injection.

2. Background

“Big data” has become of increasing interest i the
information age. “Big data™ 1s a term that refers to amounts
of data that are so large that it would be impossible for a
human to sort or analyze all of the data. However, with the
advent of fast computers and specialized software, big data
may be mined to glean facts regarding subjects of interest or
even to determine trends 1n events or industries. Neverthe-
less, working with big data can still present many technical
challenges because of the sheer volume of the information,
or because of the format of the information.

For example, traditional Internet search engines do not
search relational databases well. Additionally, such engines
have difliculty extracting data from some formats, such as an
undefined number of multiple relational databases.

In another example, even 1f a fast computer programmed
with specialized software 1s used to process big data, the
amount of data being analyzed can be so vast that the
processing time becomes unacceptably slow. Thus, tech-
niques are need to improve the effective speed of computers
processing big data.

SUMMARY

The 1illustrative embodiments provide for a computer-
implemented method. The method includes receiving a
target query at a computer. The target query comprising a file

specified by a user which defines what information 1s of

interest to the user. The method also includes running, by the
computer, the target query against a catalog to obtain desired
fields for search and to filter for specific targets from which
data will be extracted. The catalog comprises a relational
database storing {irst connection information among a {irst
plurality of targets that together compose a big data envi-
ronment. The specific targets are a subset of the first plurality
of targets. The method also includes extracting, responsive
to the query, particular data from the specific targets.
Extracting includes defining a query pack comprising a
configuration file and one or more files containing queries to
execute on each target in the specific targets. The configu-
ration file contains a section for each of the one or more files
to customize configurations for each of the one or more files.
The configuration file also comprises particular connection
information defiming relationships among the specific tar-
gets, the particular connection information being part of the
first connection information. Extracting also includes
executing one ngestion daemon for every file of the one or
more files 1n the query pack. Fach ingestion daemon moni-
tors a local output file system for output files and concat-
enates the output files. Each ingestion daemon avoids open-
ing the output files, wherein executing results in a particular
data set. The method also includes breaking the particular
data set 1nto a plurality of blocks. The method also includes

10

15

20

25

30

35

40

45

50

55

60

65

2

distributing ones of the plurality of blocks to corresponding
ones of different computers that are all 1n communication
with a master node computer. The method also includes
performing parallel processing of the plurality of blocks
using the different computers, with the master node com-
puter coordinating the parallel processing. The method also
includes returning a result of the target query based on the
parallel processing.

The 1llustrative embodiments also contemplate a non-
transitory computer-recordable storage medium storing pro-
gram code which, when executed by a processor, performs
a computer-implemented method. The method may be as
described above.

The illustrative embodiments also provide for a computer-
implemented method. The method includes receiving a
query. The method also includes, based on the query, wrap-
ping target information m a query pack. The target infor-
mation defines a subset of targets 1n a plurality of targets.
The plurality of targets comprises a plurality of schema and
a plurality of relational databases 1n a big data environment.
The query pack comprises a tarball containing one configu-
ration file and a plurality of queries to execute on each of the
subset of targets. The method also includes defining a
plurality of destination directories for each of the plurality of
queries. The method also includes spawming a plurality of
ingestion daemons. One corresponding ingestion dagmon 1s
spawned for each of the plurality of queries. The method
also includes fetching target information from a catalog
defining relationships among the subset of targets. The
method also includes extracting, using the plurality of inges-
tion daemons, corresponding data from the subset of targets
into corresponding ones of the plurality of destination direc-
tories based on the target information and the query pack.
The method also includes processing the corresponding data
using parallel processing performed by a plurality of com-
puters coordinated by a master node computer. Processing
produces a result of the query.

The illustrative embodiments also contemplate a com-
puter configured to execute program code which implements
the above methods. Thus, the illustrative embodiments are
not necessarily limited to these examples.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the 1llustra-
tive embodiments are set forth 1n the appended claims. The
illustrative embodiments, however, as well as a preferred
mode of use, further objectives and features thereof, will
best be understood by reference to the following detailed
description of an illustrative embodiment of the present
disclosure when read in conjunction with the accompanying
drawings, wherein:

FIG. 1 1s a block diagram of a data extractor architecture
in accordance with an illustrative embodiment;

FIG. 2 1s a block diagram of operation of a worker pool
in accordance with an illustrative embodiment;

FIG. 3 15 a flowchart of a computer-implemented method
for extracting information 1n a big data environment;

FIG. 4 1s a flowchart of another computer-implemented
method for extracting information in a big data environment;
and

FIG. 5 1s a block diagram of a data processing system 1n
accordance with an 1llustrative embodiment.

DETAILED DESCRIPTION

The illustrative embodiments recognize and take into
account that some big data environments are so large and so

US 10,268,722 B2

3

diverse 1n terms of the number of databases to be queried,
that even many computers operating in parallel, such as in
a HADOOP® cluster, can have difliculty extracting desired
data and/or extracting data in a timely fashion. For example,
a use case was tested for the 1llustrative embodiments. In this
use case a query was made to extract desired data from
86,000 relational databases containing billions of records,
where not all relational databases were compatible with each
other, and also including thousands of target schema con-
taining additional desired information. Traditional tech-
niques for data extraction, such as those described below,
cither failed to retrieve the desired data upon a search query,
or failed to retrieve the desired data within a desirable
amount ol time, even using massively parallel computing,
such as a HADOOP® cluster. Thus, the illustrative embodi-
ments solve a computer-centric problem of extracting
desired data 1 a big data environment. The illustrative
embodiments also solve a computer-centric problem of
extracting the desired data more quickly than existing data
extraction tools.

Prior art tools for extracting information from a big data
environment mnclude FLUME® and SQOOP®, but offered
by the APACHE SOFTWARE FOUNDATION®. This soft-
ware takes structured data files and loads them 1nto a cluster
of computers for parallel processing. However, this software
opens up the file and processes the relational databases on a
row-by-row basis, which takes an unreasonable amount of
time when processing billions of records. SQOOP® physi-
cally connects to relational databases and can move parts or
queries 1nto clusters of computers for parallel processing.
However, SQOOP requires running setup calls 1n a session
before data extraction from the databases, and pre-process-
ing calls are not supported. Also, without a manual frame-
work neither soiftware tool supports parallelism with the
amount ol databases for very large sets of databases, such as
those 1n the use case of interest.

Those of skill 1in the art would recognize that traditional
Internet search engines could not be used for searching
relational databases and schema, as in the above use case.
For example, Internet search engines such as GOOGLE® or
BING® are designed to search HTML web pages, plain text,
or 1mages, not the records of relational databases or the
specialized data structures of various schema used to store
data. Internet search engines cannot be used to search
relational databases and schema in a big data environment.
Those of skill in the art recognize that more specialized
search tools are needed for such data extraction.

The illustrative embodiments also recognize and take into
account that only using a massively parallel computing
environment, such as a HADOOP® cluster 1s tnadequate to
the data extraction task contemplated. A HADOOP® cluster
relies on dividing blocks of data among a large number of
slave computers operating in parallel and coordinated by one
or more master computers. However, the blocks of data must
still be made available to the HADOOP® cluster, so the
cluster may not be able to provide the desired query results.
Even 1f capable, searching every database row by row may
be undesirably time consuming even for a HADOOP®
cluster.

Thus, the illustrative embodiments recognize and take
into account that a data extractor for extracting possible data
ol 1nterest from the big data environment 1s desirable. The
data extractor can mnitially parse the relational databases and
schema as being targets for search, and then concatenate
these files without opening them. The HADOOP® cluster
can then operate on these concatenated files 1n a much more
ellicient manner.

10

15

20

25

30

35

40

45

50

55

60

65

4

However, the illustrative embodiments recognize and take
into account that retrieving targeted data from a large

number of databases to 1nject into big data servers such as
a HADOOP® cluster, has several challenges. One such
challenge 1s the efliciency in workload management of a
large number of queries against a large number of relational
databases and schema. A second such challenge 1s efliciency
in 1jecting a large number of query results into big data
server cluster, such as a HADOOP® cluster.

The illustrative embodiments solve these challenges. The
illustrative embodiments provide for a parallel data extrac-
tion tool which can run large amounts of queries across large
amounts of databases 1n a predictable and repeatable fash-
ion. This tool may be referred-to as “DXR” (data extractor).
DXR writes file contents extracted from a large number of
relational databases and schema 1n a big data environment
into files of a local file system. DXR has the option to
concatenate these files and write them into a massively
parallel computing environment, such as a HADOOP®
cluster. The massively parallel computing environment can
then process these files to extract the specific information
that relates to the query at 1ssue.

Attention 1s now returned to the use case described above.
DXR was created to fulfill a need to execute a potential
workload of thousands of queries across tens of thousands of
databases and schema containing billions of records for the
purpose ol loading the result sets into a Hadoop® cluster.

Both Apache SQOOP® and FLUME® were analyzed as
potential data extraction and ingestion tools for this use case.
Both had shortcomings which prevented their use. In addi-
tion to taking a very large amount of time to setup thousands
of SQOOP® jobs, at the time of this experiment SQOOP®
did not support session setup calls prior to running queries
in databases. The queries being used also access views and
other data side business logic which prevented taking advan-
tage of multithreaded extraction optimizations and object
level extraction features in SQOOP®.

An implementation of FLUME® was also considered for
handling the imgestion portion of data transier. Reliable file
channel based FLUME® agents were designed with sink
groups along with load balancing capabilities. However,
these FLUME® agents quickly saturated the local disk due
to the inherent nature of how FLUME® processes data on a
record-by-record basis. With the amount of data and the rate
at which the data was generated, FLUME® was simply too
slow for this use case.

Attention 1s now turned to the architecture of the data
extractor of the illustrative embodiments. DXR may be
written 1n PYTHON® and may utilize abstract classes to
allow extensibility for other databases, data manipulation
and securing techniques, and ingestion into other filesys-
tems. DXR uses the concept of “targets” to delineate
between different data sources which are being targeted for
data extraction. This generic term was chosen because a
relational database 1s not always the target for data extrac-
tion. In some cases, only a specific schema 1s targeted. DXR
may utilizes several main components, as shown 1 FIG. 1
below, to achieve the desired outcome.

The data extractor of the 1illustrative embodiments uses a
specialized catalog, which may be termed a DXR catalog.
The DXR catalog 1s a schema which lives in a relational
database management system and stores all the required
connection mformation for the targets. The DXR catalog
also stores logging information 1n the schema, which allows
simple queries to be written for monitoring and job verifi-
cation purposes.

US 10,268,722 B2

S

The data extractor of the illustrative embodiments also
uses a query pack. A query pack may be a tarball containing
one configuration file and one or more files containing
queries to execute on each target. A tarball 1s a computer file
format that can combine multiple files 1nto a single file. The
configuration {ile also contains a section for each file in the
query pack so each query can have customized configura-
tions as desired.

The data extractor of the illustrative embodiments also
uses a target query. The target query 1s a file provided by the
user which will be run against the DXR catalog to get all the
relevant fields and filter for the specific targets from which
the user would like to extract data.

The data extractor of the illustrative embodiments also
uses a DXR configuration file. This file contains configura-
tions used for a single run of the DXR. The DXR configu-
ration file includes 1items such as pool size and DXR catalog
connection information.

The data extractor of the illustrative embodiments also
uses a worker pool. The worker pool includes of a number
of processes specified for a specific run. See FIG. 2 for an
example of a worker pool. These processes will service the
query execution and will only be idle when there 1sn’t
enough work for all processes to be busy.

The data extractor of the illustrative embodiments also
uses a set of ingestion daemons. A “daemon”, 1n multitask-
ing computing, 1s a computer program that runs as a back-
ground process, rather than being under the direct control of
an interactive user. In the illustrative embodiments, the
ingestion daecmons may be HADOOP® Diastributed File
System (HDFS) ingestion daemons. I a user chooses HDES
ingestion, one HDFS daemon will be started for every query
file 1 the query pack. The ingestion daemons will each
monitor the local output file system for files and concatenate
the files until the local file breaches the roll size in bytes
specified i the DXR configuration file. If a roll size 1s not
specified, the roll may default to 209,715,200 bytes, but this
default number may be pre-selected to be a different value
as desired. Whichever specific daemon process 1s used, this
process does not open the files. This process might only
support gzip or plain text files. Because the files are not
opened, the resulting extracted files can be larger than the
specified roll size, but never smaller.

Thus, the main components of the DXR of the illustrative
embodiments are to drive execution ol queries, manage
workload, and manage metadata storage. The DXR of the
illustrative embodiments can put together a package of
queries, pass parameters as to where a package 1s, specily
which databases are to be run, and where output goes.

The DXR of the illustrative embodiments may start up a
parallel framework to which all work 1s submitted, and that
work 1s the driver that runs the individual query. The DXR
of the 1llustrative embodiments also may start an additional
component 1f the user wants the data to be directed nto a
massively parallel computing cluster. In this case, the DXR
of the illustrative embodiments may take extracted data into
a data staging area, and then combine that data for a parallel
computing framework and then instruct the framework to
execute.

The DXR of the illustrative embodiments may be pro-
vided with additional functionality. For example, the DXR
of the illustrative embodiments may be configured to allow
a user to determine 1f some of the data 1s to be obscured. The
DXR of the illustrative embodiments can then move that
data to a location that can be secured. Thus, the DXR of the
illustrative embodiments may be independent of any mas-
sively parallel computing environment, and can be a stand-

10

15

20

25

30

35

40

45

50

55

60

65

6

alone product that might also be configured to interact with
another product such as HADOOP®.

The DXR of the illustrative embodiments improve query
management efliciency by establishing a worker pool to
accept as many queries as users are submitting. In addition,
queries may be bundled. Bundles of queries may utilize a
configuration file to provide additional instructions on how
the queries should be run.

In 1mproving query results and injection ethiciency, file
names may be utilized to direct query results to be sent to
specific folders, to be subsequently concatenated when cer-
tain conditions are met. Upon concatenation, larger files,
rather than mdividual query result records, may be mjected
into big data server, such as but not limited to a HADOOP®
cluster.

FIG. 1 1s a block diagram of a data extractor architecture
in accordance with an 1llustrative embodiment. Data extrac-
tor 100 may be the data extractor or DXR described above.

In an 1illustrative embodiment, data extractor 100 wraps
target information 1n one or more query packs, such as query
pack 102. The query pack includes a configuration file, such
as configuration file 104, and one or more configuration
files, such as file 1 106 and file 2 108. Configuration file 104
may specily destination directories into which extracted data
will be placed, such as directory 110 and directory 112.

Data extractor 100 may spawn ingestion daemons for
processing the query files in query pack 102. Thus, for
example, mgestion daemon 114 and ingestion daecmon 116
may operate 1n parallel to process individual query files to
extract desired data. The relational databases and schema
which contain the desired data are called targets. Data
extractor 100 fetches target information from catalog 118.

Data extractor then uses the information from the catalog
to extract data from target systems, such as relational
databases, RDBMS 120, and schema, OLAP/DW 122. The
extracted data may be processed by the imgestion daemons
such that unopened files are concatenated and stored 1n rolls.
These rolls, unopened files, or concatenated data are then
processed 1n massive parallel computing environment 124.
Massive parallel computing environment 124 may be a
HADOOP® cluster, but also may be other kinds of parallel
computing environments, or possibly may be one or more
so-called super computers. Massive parallel computing
environment 124 then processes the concatenated files to
retrieve the information desired by the user as specified in
the query files 1n query pack 102. The result 1s an output with
the desired retrieved information.

FIG. 2 1s a block diagram of operation of a worker pool
in accordance with an illustrative embodiment. Worker pool
200 may be a plurality of ingestion daemons operating on
individual query files from a query pack, such as ingestion
daemon 114, mgestion daemon 116, query pack 102, con-
figuration file 104, and file 1 106 in FIG. 1. Worker pool 200
may have a pool size defined by the number of processes or
ingestion daemons operating in parallel, which in FIG. 2 1s
“N” processes or “N”” ingestion daemons.

Thus, each process 1n FIG. 2, mcluding process 1 202,
process 2 204, process 3 206, and process “N” 208 may be
an 1ngestion daecmon as described with respect to FIG. 1.
Each process extracts data from target systems 210, which
may be relational databases, RDBMS 212, and schema,
OLAP/DW 214. Relational databases, RDBMS 212 may be
relational databases 120 of FIG. 1 and schema, OLAP/DW
214 may be schema, OLAP/DW 122 of FIG. 1. Typically,
one process acts on one target. However, 1n some cases one
process may act on multiple targets.

US 10,268,722 B2

7

FIG. 3 1s a flowchart of a computer-implemented method
for extracting information 1 a big data environment.
Method 300 15 a specific example of a process of extracting
information using a data extractor or DXR, as described
above, including for FIG. 1 and FIG. 2. Method 300 may be
implemented using one or more computers. Method 300
cannot be performed by a human because method 300 is
performed 1n a big data environment 1 which 1t 1s 1mpos-
sible for a human to sort through the information.

Method 300 includes receiving a target query at a com-
puter, the target query comprising a file specified by a user
which defines what information 1s of interest to the user
(operation 302). Method 300 also includes running, by the
computer, the target query against a catalog to obtain desired
fields for search and to filter for specific targets from which
data will be extracted, wherein the catalog comprises a
relational database storing {irst connection information
among a first plurality of targets that together compose a big
data environment, and wherein the specific targets are a
subset of the first plurality of targets (operation 304).

Method 300 also includes extracting, responsive to the
query, particular data from the specific targets (operation
306). Extracting may include defining a query pack com-
prising a configuration file and one or more files containing,
queries to execute on each target in the specific targets,
wherein the configuration file contains a section for each of
the one or more files to customize configurations for each of
the one or more files, and wherein the configuration file also
comprises particular connection information defining rela-
tionships among the specific targets, the particular connec-
tion information being part of the first connection informa-
tion. Extracting also may include executing one ingestion
daemon for every file of the one or more files in the query
pack, wherein each ingestion daemon monitors a local
output file system for output files and concatenates the
output files, and wherein each ingestion daemon avoids
opening the output files. Executing results in a particular
data set.

Method 300 also includes breaking the particular data set
into a plurality of blocks (operation 308). Method 300 also
includes distributing ones of the plurality of blocks to
corresponding ones of different computers that are all 1n
communication with a master node computer (operation
310).

Method 300 also includes performing parallel processing
of the plurality of blocks using the different computers, with
the master node computer coordinating the parallel process-
ing (operation 312). Method 300 also includes returning a
result of the target query based on the parallel processing,
(operation 314). In one illustrative embodiment, the method
may terminate thereaiter.

Method 300 may be varied. For example, in one illustra-
tive embodiment each ingestion daemon 1s processed by a
corresponding worker process 1n a worker pool. The worker
pool includes a plurality of processes specified by the query
pack.

In another illustrative embodiment, each ingestion dae-
mon ceases monitoring and concatenating when a local file
breaches a roll size 1 bytes specified in the configuration
file. In yet another illustrative embodiment, a new local file
1s started after the local file breaches the roll size.

In still another 1llustrative embodiment, the specific tar-
gets comprise at least some different target types that are
incompatible with each other. In a related illustrative
embodiment, the specific targets comprise a mix ol a plu-
rality of relational databases and a plurality of schemas. In
still another 1llustrative embodiment, the catalog comprises

5

10

15

20

25

30

35

40

45

50

55

60

65

8

a schema 1n a relational database. In this case, the method
further includes storing logging information in the schema.

Other vanations are possible. Therefore, the 1illustrative
embodiments are not necessarily limited to these examples.

FIG. 4 1s a flowchart of another computer-implemented
method for extracting information 1n a big data environment.
Method 400 1s a specific example of a process of extracting

information using a data extractor or DXR, as described
above, including for FIG. 1 and FIG. 2. Method 400 may be

a variation of method 300 of FIG. 3. Method 400 may be
implemented using one or more computers. Method 400
cannot be performed by a human because method 400 1s
performed 1n a big data environment in which it 1s 1mpos-
sible for a human to sort through the information.

Method 400 may include receiving a query (operation
402). Method 400 may also include based on the query,
wrapping target information 1 a query pack, wherein the
target information defines a subset of targets in a plurality of
targets, wherein the plurality of targets comprise a plurality
of schema and a plurality of relational databases 1n a big data
environment, and wherein the query pack comprises a
tarball containing one configuration file and a plurality of
queries to execute on each of the subset of targets (operation
404).

Method 400 may also include defining a plurality of
destination directories for each of the plurality of queries
(operation 406). Method 400 may also include spawning a
plurality of ingestion daemons, wherein one corresponding
ingestion daemon 1s spawned for each of the plurality of
queries (operation 408).

Method 400 may also include fetching target information
from a catalog defining relationships among the subset of
targets (operation 410). Method 400 may also include
extracting, using the plurality of imngestion daemons, corre-
sponding data from the subset of targets into corresponding,
ones of the plurality of destination directories based on the
target information and the query pack (operation 412).

Method 400 may also include processing the correspond-
ing data using parallel processing performed by a plurality
of computers coordinated by a master node computer,
wherein processing produces a result of the query (operation
414). In an illustrative embodiment, the method may termi-
nate thereafter.

Method 400 may be varied. For example, 1n an illustrative
embodiment, the plurality of ingestion daemons 1s executed
by a worker pool comprising a plurality of processes speci-
fied by the query pack. In another variation, the configura-
tion file contains configurations required for execution of the
query pack.

In still another variation, the configuration file further
specifies a maximum size for files generated by the plurality
of imngestion daemons. In yet another variation, the configu-
ration file further specifies catalog connection information to
be obtained from the catalog.

In another vanation, the plurality of ingestion daemons
also monitor local output file sizes and concatenates local
output files until a roll size 1s reached for a given concat-
cnated file. In yet another variation, the plurality of ingestion
daemons avoids opening any files.

Other vanations are possible. Therefore, the 1illustrative
embodiments are not necessarily limited to these examples.

FIG. 5 1s a block diagram of a data processing system
depicted 1n accordance with an illustrative embodiment.
Data processing system 500 1s an example of a computer as
described with respect to FIG. 1 through FIG. 4.

In this 1llustrative example, data processing system 3500
includes communications framework 502, which provides

US 10,268,722 B2

9

communications between processor unit 504, memory 506,
persistent storage 508, communications unit 510, input/
output unit 512, and display 514. In this example, commu-
nications framework 502 may take the form of a bus system.

Processor unit 504 serves to execute instructions for
software that may be loaded into memory 506. Processor
unit 504 may be a number of processors, a multi-processor
core, or some other type ol processor, depending on the
particular implementation.

Memory 506 and persistent storage 308 are examples of
storage devices 516. A storage device 1s any piece of
hardware that 1s capable of storing information, such as, for
example, without limitation, at least one of data, program
code 1n functional form, or other suitable information either
on a temporary basis, a permanent basis, or both on a
temporary basis and a permanent basis. The program code
may be the software on massive parallel computing envi-
ronment 124 of FIG. 1. Storage devices 516 may also be
referred to as computer-readable storage devices in these
illustrative examples. Memory 506, in these examples, may
be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. Persistent
storage 508 may take various forms, depending on the
particular implementation.

For example, persistent storage 508 may contain one or
more components or devices. For example, persistent stor-
age 508 may be a hard drive, a flash memory, a rewritable
optical disk, a rewritable magnetic tape, or some combina-
tion of the above. The media used by persistent storage 508
also may be removable. For example, a removable hard
drive may be used for persistent storage 3508.

Communications unit 510, in these 1llustrative examples,
provides for communications with other data processing
systems or devices. In these illustrative examples, commu-
nications unit 510 i1s a network interface card.

Input/output unit 312 allows for mput and output of data
with other devices that may be connected to data processing,
system 500. For example, input/output umit 312 may provide
a connection for user iput through at least of a keyboard, a
mouse, or some other suitable iput device. Further, input/
output unit 512 may send output to a printer. Display 514
provides a mechanism to display information to a user.

Instructions for at least one of the operating system,
applications, or programs may be located 1n storage devices
516, which are 1n communication with processor unit 504
through communications framework 502. The processes of
the different embodiments may be performed by processor
unit 504 using computer-implemented instructions, which
may be located in a memory, such as memory 506.

These mstructions are referred to as program code, com-
puter-usable program code, or computer-readable program
code that may be read and executed by a processor in
processor unit 504. The program code in the diflerent
embodiments may be embodied on different physical or
computer-readable storage media, such as memory 506 or
persistent storage 508.

Program code 518 i1s located mn a functional form on
computer-readable media 520 that 1s selectively removable
and may be loaded onto or transierred to data processing
system 500 for execution by processor umt 504. Program
code 518 and computer-readable media 520 form computer
program product 522 1n these illustrative examples. In one
example, computer-readable media 520 may be computer-
readable storage media 524 or computer-readable signal
media 526.

In these illustrative examples, computer-readable storage
media 524 1s a physical or tangible storage device used to

10

15

20

25

30

35

40

45

50

55

60

65

10

store program code 3518 rather than a medium that propa-
gates or transmits program code 518.

Alternatively, program code 518 may be transferred to
data processing system 300 using computer-readable signal
media 526. Computer-readable signal media 526 may be, for
example, a propagated data signal contaiming program code
518. For example, computer-readable signal media 526 may
be at least one ol an electromagnetic signal, an optical
signal, or any other suitable type of signal. These signals
may be transmitted over at least one of communications
links, such as wireless communications links, optical fiber
cable, coaxial cable, a wire, or any other suitable type of
communications link.

The different components illustrated for data processing
system 500 are not meant to provide architectural limitations
to the manner in which different embodiments may be
implemented. The different 1llustrative embodiments may be
implemented 1n a data processing system including compo-
nents, 1n addition to or in place of those illustrated for data
processing system 500. Other components shown 1n FIG. 5
can be varied from the illustrative examples shown. The
different embodiments may be implemented using any hard-
ware device or system capable of running program code 518.

The flowcharts and block diagrams in the different
depicted embodiments 1llustrate the architecture, function-
ality, and operation of some possible implementations of
apparatuses and methods 1n an 1illustrative embodiment. In
this regard, each block in the flowcharts or block diagrams
may represent at least one of a module, a segment, a
function, or a portion of an operation or step. For example,
one or more of the blocks may be implemented as program
code, 1n hardware, or a combination of the program code and
hardware. When implemented in hardware, the hardware
may, for example, take the form of integrated circuits that
are manufactured or configured to perform one or more
operations 1n the flowcharts or block diagrams. When imple-
mented as a combination of program code and hardware, the
implementation may take the form of firmware.

In some alternative implementations of an 1illustrative
embodiment, the function or functions noted in the blocks
may occur out of the order noted 1n the figures. For example,
in some cases, two blocks shown in succession may be
performed substantially concurrently, or the blocks may
sometimes be performed in the reverse order, depending
upon the functionality imnvolved. Also, other blocks may be
added 1n addition to the illustrated blocks 1n a flowchart or
block diagram.

Many modifications and varnations will be apparent to
those of ordinary skill in the art. Further, different 1llustrative
embodiments may provide diflerent features, as compared to
other desirable embodiments. The embodiment or embodi-
ments selected are chosen and described in order to best
explain the principles of the embodiments, the practical
application, and to enable others of ordinary skill 1n the art
to understand the disclosure for various embodiments with
vartous modifications as are suited to the particular use
contemplated.

As used herein, the term “‘server computer” 1s any com-
puter which operates 1n the role of a server, whether or not
the computer 1s configured specifically to operate as a
“server.” As used herein, the term “client computer” 1s any
computer which operates 1n the roll of a client, whether or
not the computer 1s configured specifically to operate as a
“client” or a “workstation.”

The description of the different illustrative embodiments
has been presented for purposes of illustration and descrip-
tion, and 1s not intended to be exhaustive or limited to the

US 10,268,722 B2

11

embodiments 1n the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art. Further, different 1llustrative embodiments may provide
different features as compared to other illustrative embodi-
ments. The embodiment or embodiments selected are cho-
sen and described 1n order to best explain the principles of
the embodiments, the practical application, and to enable
others of ordinary skill 1n the art to understand the disclosure
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A computer-implemented method comprising:

receiving a target query at a computer, the target query

comprising a file specified by a user which defines what
information 1s of interest to the user;

running, by the computer, the target query against a

catalog to obtain desired fields for search and to filter
for specific targets from which data will be extracted,
wherein the catalog comprises a relational database
storing first connection mformation among a first plu-
rality of targets that together compose a big data
environment, and wherein the specific targets are a
subset of the first plurality of targets;

extracting, responsive to the target query, particular data

from the specific targets, wherein extracting comprises:

defining a query pack comprising a configuration file
and one or more {iles containing queries to execute
on each target in the specific targets, wheremn the
configuration file contains a section for each of the
one or more files to customize configurations 1o
each of the one or more files, and wherein the
configuration {ile also comprises particular connec-
tion 1nformation defining relationships among the
specific targets, the particular connection informa-
tion being part of the first connection information;
and

executing one ingestion daemon for every file of the
one or more files 1n the query pack, wherein each
ingestion daemon monitors a local output file system
for output files and concatenates the output files, and
wherein each ingestion daemon avoids opening the
output files, and wherein executing results in a
particular data set;

breaking the particular data set into a plurality of blocks;

distributing ones of the plurality of blocks to correspond-

ing ones of different computers that are all 1n commu-
nication with a master node computer;
performing parallel processing of the plurality of blocks
using the different computers, with the master node
computer coordinating the parallel processing; and

returning a result of the target query based on the parallel
processing.

2. The computer-implemented method of claim 1,
wherein each ingestion daemon 1s processed by a corre-
sponding worker process 1 a worker pool, the worker pool
comprising a plurality of processes specified by the query
pack.

3. The computer-implemented method of claim 1,
wherein each ingestion daemon ceases monitoring and con-
catenating when a local file breaches a roll size in bytes
specified 1n the configuration {ile.

4. The computer-implemented method of claim 3,
wherein a new local file 1s started after the local file breaches
the roll size.

5. The computer-implemented method of claim 1,
wherein the specific targets comprise at least some diflerent
target types that are incompatible with each other.

10

15

20

25

30

35

40

45

50

55

60

65

12

6. The computer-implemented method of claim 5,
wherein the specific targets comprise a mix of a plurality of
relational databases and a plurality of schemas.

7. The computer-implemented method of claim 1,
wherein the catalog comprises a schema in a relational
database, and wherein the method further comprises:

storing logging information in the schema.

8. A computer-implemented method comprising:

receving a query;
based on the query, wrapping target information 1 a
query pack, wherein the target information defines a
subset of targets 1n a plurality of targets, wherein the
plurality of targets comprise a plurality of schema and
a plurality of relational databases 1n a big data envi-
ronment, and wherein the query pack comprises a
tarball containing one configuration file and a plurality
of queries to execute on each of the subset of targets;

defining a plurality of destination directories for each of
the plurality of queries;

spawning a plurality of ingestion daemons, wherein one

corresponding ingestion daemon 1s spawned for each of
the plurality of queries;

fetching target information from a catalog defining rela-

tionships among the subset of targets;
extracting, using the plurality of ingestion daemons, cor-
responding data from the subset of targets into corre-
sponding ones of the plurality of destination directories
based on the target information and the query pack; and

processing the corresponding data using parallel process-
ing performed by a plurality of computers coordinated
by a master node computer, wherein processing pro-
duces a result of the query.

9. The computer-implemented method of claim 8,
wherein the plurality of ingestion daemons are executed by
a worker pool comprising a plurality of processes specified
by the query pack.

10. The computer-implemented method of claim 8,
wherein the configuration file contains configurations
required for execution of the query pack.

11. The computer-implemented method of claim 10,
wherein the configuration file further specifies a maximum
s1ze for files generated by the plurality of ingestion daemons.

12. The computer-implemented method of claim 11,
wherein the configuration file further specifies catalog con-
nection information to be obtained from the catalog.

13. The computer-implemented method of claim 8,
wherein the plurality of igestion daemons also monitor
local output file sizes and concatenates local output files
until a roll size 1s reached for a given concatenated {ile.

14. The computer-implemented method of claim 13,
wherein the plurality of ingestion daemons avoid opening
any files.

15. A non-transitory computer-recordable storage medium
storing program code which, when executed by a processor,
performs a computer-implemented method, the program
code comprising:

program code for receiving a query;

program code for, based on the query, wrapping target

information i a query pack, wherein the target infor-
mation defines a subset of targets in a plurality of
targets, wherein the plurality of targets comprise a
plurality of schema and a plurality of relational data-
bases 1n a big data environment, and wherein the query
pack comprises a tarball containing one configuration
file and a plurality of queries to execute on each of the
subset of targets;

US 10,268,722 B2

13

program code for defining a plurality of destination direc-
tories for each of the plurality of queries;

program code for spawning a plurality of ingestion dae-
mons, wherein one corresponding ingestion daemon 1s
spawned for each of the plurality of queries;

program code for fetching target information from a
catalog defining relationships among the subset of
targets;

program code for extracting, using the plurality of inges-
tion daemons, corresponding data from the subset of
targets 1nto corresponding ones of the plurality of
destination directories based on the target information
and the query pack; and

program code for processing the corresponding data using . .

parallel processing performed by a plurality of com-
puters coordinated by a master node computer, wherein
processing produces a result of the query.

16. The non-transitory computer-recordable storage

medium of claim 15, wherein the program code further
includes program code for the plurality of ingestion dae-

14

mons to be executed by a worker pool comprising a plurality
of processes specified by the query pack.

17. The non-transitory computer-recordable storage
medium of claim 15, wherein the configuration file contains
configurations required for execution of the query pack.

18. The non-transitory computer-recordable storage
medium of claim 17, wherein the configuration file further
specifles a maximum size for files generated by the plurality
ol 1ngestion daemons.

19. The non-transitory computer-recordable storage
medium of claim 17, wherein the configuration file further
specifies catalog connection information to be obtained from
the catalog.

20. The non-transitory computer-recordable storage
medium of claim 15, wherein the program code further
includes program code for the plurality of ingestion dae-
mons to also monitor local output file sizes and to concat-
enate local output files until a roll size 1s reached for a given
concatenated file, and wherein program further prevents the

plurality of ingestion daemons from opening any files.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

