US010261814B2

a2 United States Patent (10) Patent No.: US 10,261,814 B2

Cooper et al. 45) Date of Patent: Apr. 16, 2019
(54) LOCAL SERVICE CHAINING WITH (56) References Cited
VIRTUAL MACHINES AND VIRTUALIZED N
CONTAINERS IN SOFTWARE DEFINED U.s. PATENT DOCUMENTS
NETWORKING 7,685,281 B1* 3/2010 Saraiya GO6F 13/387
370/392
(71) Applicant: Intel Corporation, Santa Clara, CA 2008/0005441 Al* 1/2008 Droux HO4L 49/10
(US) 710/306
(Continued)
(72) Inventors: Trevor Cooper, Portland, OR (US); B .
Brian J. Skerry, Gilbert, AZ (US) FOREIGN PATENT DOCUMENTS
_ _ CN 102124525 A 7/2011
(73) Assignee: Intel Corporation, Santa Clara, CA 1P 2002-101124 A 4/2002
(US) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PURBIICATIONS
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 961 days. Oflice Action received for Japanese Patent Application No. 2015-
104059, dated May 10, 2016, 4 Pages of Oflice Action including 2
(21) Appl. No.: 14/311,818 pages of English Translation.
(Continued)

(22) Filed: Jun. 23, 2014 Primary Examiner — Farley Abad

Assistant Examiner — Getente A Yimer

(63) Prior Publication Data (74) Attorney, Agent, or Firm — Law Oflice of R. Alan
US 2015/0370586 Al Dec. 24, 2015 Burnett, P.S

(51) Int. CL (37) ABSTRACT
GO6F 9/455 (2018.01) Methods, software, and apparatus for implementing local
GO6F 157173 (2006.01) service chaining (LSC) with virtual machines (VMs) or
GO6F 12/02 (2006.01) virtualized containers in Software Defined Networking

(52) U.S. CL (SDN). In one aspect a method 1s implemented on a compute

platform including a plurality of VMs or containers, each
including a virtual network interface controller (vINIC) com-
municatively coupled to a virtual switch 1n an SDN. LSCs

CPC ... GOGF 9/45533 (2013.01); GOGF 9/45558
(2013.01); GO6F 12/0223 (2013.01):

(Continued) are 1implemented via a plurality of virtual network appli-

(58) Field of Classification Search ances hosted by the plurality of VMs or containers. Each

CPC ... GO6F 9/45533; GO6F 12/23; GO6F 12/0813 LCS comprises a sequence (chain) of services performed by
(Continued) (Continued)

12 108 Application
(typ) SDN Controller [memory space

T VM1 / ' Zria INPUT _VMA
~T Fiow Flow
typ)| Tabket [| Table? L Tablen

-tﬁpplicatiﬂn 1A ll— Application 24 Il— INPUT Application NA Il—
Application 1B Il— Application 28 Application NB Il—

Application 2C
Appliance 2 et Appliance N et

il

. mpmﬂwrefi":'ni i JE

f Flow Table 1]
128 (typ) 129 (typ) Virtual Switch ¢ 148 127 (typ)
e 126 Wp) e

" P e
P1y——1F2] Pe— —_———
R T 4 ,",r'.' : .

1 hed e Shered memory

Host Cperating
System

107

'{1 06 DA

'1 "| E"h.r - = ——————— - :
~ 120 Flow Classifier | | Flow Table |

(typ) L yp) L, T]
*Portt . Port2 “148a , , , (104 F"«"”"‘"l

(116 (typ)
L \ .p
140 100 152

US 10,261,814 B2
Page 2

virtual network appliances defined for the LSC. In connec-
tion with performing the chain of services, packet data 1s
torwarded between VMs or containers using a cut-through
mechanisms under which packet data 1s directly written to
receive (Rx) buflers on the vINICs 1n a manner that bypasses
the virtual switch. LSC indicia (e.g., through LSC tags) and
flow tables are used to mform each virtual network appli-
ance and/or or 1ts host VM or container of the next vINIC Rx

bufler or Rx port to which packet data 1s to be written.

24 Claims, 10 Drawing Sheets

(52) U.S. CL
CPC oo GO6F 15/17331 (2013.01); GOG6F

2009/4557 (2013.01); GO6F 2009/45595
(2013.01); GO6F 2212/154 (2013.01)

(58) Field of Classification Search
USPC e e 710/38
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0216964 Al1l* &/2009 Palladino GO6F 13/28
711/154
2009/0304002 AL* 12/2009 YU ..ooovvvvivinviniininnn, HO041. 49/30
370/395.3
2011/0090915 A1* 4/2011 DrouxXcocovvvvevnnen, HO041. 49/00
370/411
2013/0163427 Al 6/2013 Beliveau et al.
2013/0279378 AL* 10/2013 Nieacovvveevvvnnnnn.. HO4B 3/36
370/293
2013/0318243 Al 11/2013 Chinthalapati et al.
2014/0010085 Al 1/2014 Kavunder et al.
2014/0101306 Al1* 4/2014 Murgia HO4I. 47/125
709/224
2014/0280834 Al1* 9/2014 Medved HO4I. 47/122
709/223

7/2015 Zhu ...l HO4L 45/507
370/392

2015/0200844 Al*

FOREIGN PATENT DOCUMENTS

JP 2007-158870 A 6/2007
JP 2009-230479 A 10/2009
JP 2009-230549 A 10/2009
JP 2010-003061 A 1/2010
JP 2011-070526 A 4/2011
JP 2011-134320 A 7/2011
JP 2012-003747 A 1/2012
JP 2015-536003 A 12/2015
KR 10-2009-0108044 A 10/2009
WO 2011/068091 Al 6/2011
WO 2014/063129 Al 4/2014

OTHER PUBLICATTONS

Office Action received for Korean Patent Application No. 10-2015-
0071740, dated Feb. 23, 2016, 5 pages (2 pages of translation and

3 pages of Ofhcial copy).

Notice of Allowance received for Korean Patent Application No.
10-2015-0071740, dated Mar. 8, 2017, 3 pages of Korean Notice of
Allowance including 1 page of English Translation.

Office Action for Chinese Patent Application No. 201510264698.2,
dated Nov. 29, 2017, 24 pages, including 15 pages of English
Translation.

Office Action for Japanese Patent Application No. 2016-188478,
dated Oct. 24, 2017, 13 pages, including 5 pages of English
Translation.

Search Report for Japanese Patent Application No. 2015-104059,
dated Apr. 20, 2016, 29 pages.

Oflice Action received for Korean Patent Application No. 10-2015-
0071740, dated Aug. 29, 2016, 5 pages of Korean Oflice Action
including 2 pages of English Translation.

Notice of Allowance received for Japanese Patent Application No.
2015-104059, dated Aug. 30, 2016, 3 Pages of Japanese Oflice
Action only.

* cited by examiner

U.S. Patent Apr. 16, 2019 Sheet 1 of 10 US 10,261,814 B2

112 (typ) 108 Application

% —INPUT [SDN Controller T—! memory space

VM 1 VM2 INPUT NPUT VM N
~T Flow]Q || Flow || || Flow

190 (typ) Table Table2 TableN

138 fx_;Application 1A lw—— | Application 2A INPUT Application NAJ

t x
(YP) Application 1B Application 2B Application NB

Application 1C I$ Application 2C I$
1367y Appliance 1 | Appliance 2 ! Appliance N It
(typ) - -

V2l | | [Rx
| Hypervisor
RRSTRISEIN

Rx Flow Table ,

129 (typ) Virtual Switch .t~ 148

146 Flow Classifier | |
o Host Operating

107 Sysiem

DMA 102 8 106 DMA

Network interface (NIC) 21 22

1_120] Flow Table |
Flow Classifier 1483 |

(typ) —e— ——————— ; N -
146a PorthM

118
(typ)

FPort1 I
116 (typ)

Port?

U.S. Patent Apr. 16, 2019 Sheet 2 of 10 US 10,261,814 B2

112 (typ) 108 Application
% —INPUT SDN Controller memory space

VM 1 VM2 INPUT 2114 NPUT VM N
| Flow | Flow Flow
150 (typ)| Table Table2 TableN
138 ~Application 1A

!
(YP) | Faoplication 18 -
Application 1C Ii—

1367 Appliance 1
(typ)

Application 2A

Application 2B Ii—

Application 2C

INPUT |Applicati0n NAI!—
Application NB

Application NC

Appliance N

: vNIC

Appliance 2

WNICT __

Tx- ‘Rx :?Tx 109

2

128 (typ) 129 (typ) Virtual Switch -1

B P1 :: R r
R :TX;SfoE R

Flow Table
148

T 126 (typ) 7

.

1467

Host Operating

T~ 107 System

DMA Compute Platform 102 106 DMA

Repfp o R] w8 0 IR X

Network interface (NIC) 122

1187y ™~ 120 e Flow Table
(typ) Flow Classifier | 1483

- L (typ) it
‘ Port1 -| Port2 146a , , , 2104 PortM

21 16 (typ)

wnatl LKL RN R
a q:t\'\'l-'\t y *11 ,‘,"‘\\h
. " Bt b
hﬂ.‘-ﬂ.ﬂ?ﬂ. . oo ool ot

140 Fig. 1a 100 152

U.S. Patent Apr. 16, 2019 Sheet 3 of 10 US 10,261,814 B2

606 (typ) 108 Application

lNPUT-————T SDN Controlier -1 memaory space

Container 1 Container 2 INPUT 2 114 INPUT Container N

Flow Flow | Flow
150 (typ)| Tablet Table2 TableN
138 ~+Application 1A I Application 2A lt— | INPUT
{ ' _
(typ) I Application 2B lt—

Application 2C

Application NA

Application 1B

[Application 1C ll—

1367 Appliance 1
(typ)

Appliance 2

2 2ot b 90 gemeyeegon L2 |
: ':E§E§Eﬁfﬁi}fﬁ5@5@5{5@’-@5@5{5@5@5ﬁﬂ'iﬁfﬁfﬁfﬁfﬁ}ﬁfﬁf_ Vz by g | '
- Tx- Tx1 10 T .

129 (typ)f Virtual Switch

Host Operating
System

Network interface (NIC) (122

118"\ 4 120 t , Flow Table '
1 148a

(typ) oo , 1 l148a !
Port1 l Port2 I 14ba , , , ﬁod, PortM

e e e ety ‘.:1.1.1.1.. A
5 & a

hy 3 Y : :: L] ¥ 4 :

UL 'I.; By v w]

% a* N bl N

U.S. Patent Apr. 16, 2019 Sheet 4 of 10 US 10,261,814 B2

Receive packet at Rx port of NIC; Perform PHY
layer operations and extract Ethernet Packets / 200

Fig, . 2

Perform flow classification: Inspect packet
header(s); determine flow (D; Perform flow table
lookup using flow |D and forward packet data to

applicable vNIC Rx buffer (e.g., FIFO Queue)

206
Attach flow ID or LSC tag
207

For each Virtual Appliance in LSC)
(208

Perform Virtual Appliance packet processing
~ operations for the flow/LSC

210
Lokp flow ID or LSC in local Flow Table to identi
VNIC Rx port or network Tx port of next port in LSC

212

214
YES

Write packet data directly to vNIC Rx port bufter
(e.g., FIFO Queue) bypassing Virtual Switch

216
218

U.S. Patent Apr. 16, 2019 Sheet 5 of 10 US 10,261,814 B2

1 Application
112 (typ) —INPUT SDN Controller Mg

VM 1 VM2 INPUT NPUT __VMN
Flow Flow 114 INPUT Flow
190 (typ)| Tablet Table2 TableN

Application NA

Appliance N '1

Application 2A

[
[4
|]
E
L
x
3
1

“Virtual itol'f

x
+
¥

ot RY e P Tx :

ETAG] HDR]| PAYLOAD DATA!

ueue FIFOQueue | FIFO Queu e FIFO Queue

..

..
..

U.S. Patent Apr. 16, 2019 Sheet 6 of 10 US 10,261,814 B2

i—INPUT l 1 SDN Controller
—INPUT 114 INPUT
e [
TableZ TableN
Next Port | Services
1 A

, B A, B
3 | vnica | A 3 [Nexm | AB
4 viNIC4 A 4 NICTx 4 A

Flow Table
148

Flow ID 1SCID
NIC1 1

-*
2 vNIC] 2
3 vNIC] 3
4 vNIC2Z 4

Fig. 4

U.S. Patent Apr. 16, 2019 Sheet 7 of 10 US 10,261,814 B2

INPUT SDN Controller ——]

NPUT ™ (s INPUT

Flow Flow Flow
150 (typ)| Tablet Table2 TableN

Services Flow ID | Next Port | Services
% Tt
2 VNIC2 A, B 2 vNIC3 2 NIC Tx M A, B
3 vNIC2 A, B,C 3 vNiC4 3 NIC Tx M A, B
4 A] 4 | NICIx4 A

Flow Table
148

Flow ID |Ingress Port
1 vNIiC1l
2 vNIC1
3 vNIiCl
4 vNIC2

L

Fig. 4a

U.S. Patent Apr. 16, 2019 Sheet 8 of 10 US 10,261,814 B2

INPUT SDN Controller

INPUT ,” 4 INPUT
Flow Flow Flow
150 (59)_Tobt |
NIC Tx M

Flow Table
1483

U.S. Patent Apr. 16, 2019 Sheet 9 of 10 US 10,261,814 B2

Application 1A Application 2A ! Application NA In—
Application 1B Application 2B Application NB }
IAppIication 1C |$] Application 2C |-— T Application NC
Appliance 1 Appliance 2 Appliance N

U_ r——__J| ||VUser__ = T __ -

K1 Networking Stack Kemel | Networking Stack I K1 Networking Stack

OPERATING SYSTEM 1 OPERATING SYSTEM 2 """ ||OPERATING SYSTEM N

VM1 LN

§

HYPERVISOR (VMM) 32

_____ —

HOST OS 230

s I " PLATFORM
i . HARDWARE
| 202 Other Hardware
I\ 504
""""""" =T
__Interconnect

FIRMWARE >10 "HHHHH!H .508 -
MEOYInterfae 518 'STORE —— 3 /O interface £ > IC

’ 506 12 cog l 520
‘w1 fvm2y (VMNG " FIRMWARE
. Space ; {Space;,,,iSpace . COMPONENTS
""""""""""""""""""" Shared Space -
o st 08 Space N
MEMORY . COMPONENTS
N
/ . 526 Network. }
500 Fig. 5 Ces

U.S. Patent

Apr. 16, 2019

..

T 0l AL o e A A e e T AR A e S L e R S O e e L

*“ ##

IIIIIIIIIIIIIIIIIIIIIIIIIII

iiiiiiiiiiiiiiiiiiiiiiiiiii

Sheet 10 of 10

US 10,261,814 B2

.............................
i ™

1155
:"'#mf-/‘ N

" SOFTWARE 1.
. COMPONENTS |

Fig. 6

Application 1A Application 2A 606 Application NA
t
Aoplication 1B | Application 28 | (typ) Application NB
Application 1C | |] Application 2C I-— lApplication NCI-
Appliance 1 Appliance 2 Appliance N
A/U ¢ App./User s A/U s
S| Networking Stack System| Networking Stack S| Networking Stack
SYS. LIBS./SOFT. 1 SYSTEM LIBRARIES/SOFTWARE 2 T] SYS. LIBS./SOFT. N
CONTAINER; CONTAINER> CONTAINERw
0S VIRTUALIZATION LAYER 604
HOST 0S 602
S ————S————— " PLATFORM
- HARDWARE
*L 202 Other Hardware
i\ 504
Interconnect _ o
518 FIEM(\;QS : /O Interface g—1 NIC
512 BB ‘ 520

DISK CONTROLLER

US 10,261,814 B2

1

LOCAL SERVICE CHAINING WITH
VIRTUAL MACHINES AND VIRTUALIZED
CONTAINERS IN SOFTWARE DEFINED
NETWORKING

BACKGROUND INFORMATION

Access to computer networks has become a ubiquitous
part of today’s computer usage. Whether accessing a Local
Area Network (LAN) 1n an enterprise environment to access
shared network resources, or accessing the Internet via the
L. AN or other access point, 1t seems users are always logged
on to at least one service that 1s accessed via a computer
network. Moreover, the rapid expansion of cloud-based
services has led to even further usage of computer networks,
and these services are forecast to become ever-more preva-
lent.

Networking 1s facilitated by various types of equipment
including routers, switches, bridges, gateways, and access
points. Large network infrastructure typically includes use
of telecommunication-class network elements, including
switches and routers made by companies such as Cisco
Systems, Juniper Networks, Alcatel Lucent, IBM, and Hewl-
ett-Packard. Such telecom switches are very sophisticated,
operating at very-high bandwidths and providing advanced
routing functionality as well as supporting different Quality
of Service (QoS) levels. Private networks, such as Local
arca networks (LANs), are most commonly used by busi-
nesses and home users. It 1s also common for many business
networks to employ hardware- and/or software-based fire-
walls and the like.

In recent years, virtualization of computer systems has
seen rapid growth, particularly 1n server deployments and
data centers. Under a conventional approach, a server runs
a single 1nstance of an operating system directly on physical
hardware resources, such as the CPU, RAM, storage devices
(e.g., hard disk), network controllers, 1/O ports, etc. Under
one virtualized approach using Virtual Machines (VMs), the
physical hardware resources are employed to support cor-
responding instances of virtual resources, such that multiple
VMs may run on the server’s physical hardware resources,
wherein each virtual machine includes 1ts own CPU alloca-
tion, memory allocation, storage devices, network control-
lers, I/O ports etc. Multiple instances of the same or different
operating systems then run on the multiple VMs. Moreover,
through use of a virtual machine manager (VMM) or “hyper-
visor,” the virtual resources can be dynamically allocated
while the server i1s running, enabling VM 1nstances to be
added, shut down, or repurposed without requiring the
server to be shut down. This provides greater tlexibility for
server utilization, and better use ol server processing
resources, especially for multi-core processors and/or multi-
Processor servers.

Under another virtualization approach, container-based
OS virtualization 1s used that employs virtualized *“contain-
ers” without use of a VMM or hypervisor. Instead of hosting
separate 1nstances ol operating systems on respective VMs,
container-based OS virtualization shares a single OS kernel
across multiple containers, with separate instances of system
and software libraries for each container. As with VMs, there
are also virtual resources allocated to each container.

Deployment of Software Defined Networking (SDN) and
Network Function Virtualization (NFV) has also seen rapid
growth 1n the past few years. Under SDN, the system that
makes decisions about where traflic 1s sent (the control
plane) 1s decoupled for the underlying system that forwards
traflic to the selected destination (the data plane). SDN

10

15

20

25

30

35

40

45

50

55

60

65

2

concepts may be employed to facilitate network virtualiza-
tion, enabling service providers to manage various aspects
of their network services via software applications and APIs
(Application Program Interfaces). Under NFV, by virtualiz-
ing network functions as software applications, network
service providers can gain flexibility 1n network configura-
tion, enabling significant benefits including optimization of
available bandwidth, cost savings, and faster time to market
for new services.

“Service chaining” 1s often used 1n the context of SDN to
describe a flow of packets traversing a network that are
processed by a series of network service elements 1mple-
mented at various physical compute nodes. As used herein,
the term “Local service chaimning™ (LLSC) 1s used to describe
a flow of packets traversing a network that 1s internal to a
compute node that are processed by a series ol network
service elements implemented in VMs or virtualized con-
tainers. Under the conventional approach, LCS employs the
use of a Virtual Switch (VS) or equivalent mechanism to
switch packets between VMs. This switching mechanism
requires compute resources and negatively impacts through-
put capacity of the system. This problem 1s exacerbated
when a large amount of traflic 1s processed through L.SCs, as

the processing of each packet may involve multiple data
transiers via one or more VSs.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken 1n conjunction
with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views
unless otherwise specified:

FIG. 1 1s schematic diagram 1llustrating an architecture
including virtual machines for a compute platform config-
ured to perform packet processing operations through the
use of LSCs;

FIG. 1a 1s a schematic diagram illustrating an augmented
version of the compute platform of FIG. 1 under which
packet data 1s transferred directly from a network intertace
to a receive (Rx) bufler in a virtual network interface
controller (vNIC);

FIG. 156 1s schematic diagram 1illustrating an architecture
for a compute platform including virtualized containers
configured to perform packet processing operations through
the use of LLSCs;

FIG. 2 1s a flowchart illustrating operations and logic
performed by software executing on the compute platiorm to
facilitate implementation of LSCs.

FIG. 3 1s a schematic diagram 1llustrating further details
of Rx FIFO queues 1n the shared memory region of the
architecture of FIG. 1;

FIG. 4 1s a diagram 1llustrating a first set of exemplary
data contained 1n the flow tables of the architecture of FIG.
1 for implementing LSC operations using LSC IDs;

FI1G. 4a 1s a diagram 1llustrating a second set of exemplary
data contained 1n the flow tables of the architecture of FIG.
1 for implementing LSC operations using tlow IDs;

FIG. 4b 15 a diagram 1llustrating a third set of exemplary
data contained 1n the flow tables of the architecture of FIG.
1 for implementing a predefined LSC for all packets
received at a predefined network port;

FIG. 5 1s a schematic diagram of a first exemplary host
platform hardware and software architecture including vir-

US 10,261,814 B2

3

tual machines via which aspects of the embodiments dis-
closed herein may be implemented; and

FIG. 6 1s a schematic diagram of a second exemplary host
platform hardware and software architecture including con-
tainers 1mplementing container-based virtualization wvia

which aspects of the embodiments disclosed herein may be
implemented.

DETAILED DESCRIPTION

Embodiments of methods, software, and apparatus for
implementing local service chaiming with virtual machines
or virtualized containers in Software Defined Networking
are described herein. In the following description, numerous
specific details are set forth to provide a thorough under-
standing of embodiments disclosed and illustrated herein.
One skilled in the relevant art will recognize, however, that
the invention can be practiced without one or more of the
specific details, or with other methods, components, mate-
rials, etc. In other instances, well-known structures, mate-
rials, or operations are not shown or described 1n detail to
avoid obscuring aspects of the mvention.

For clarity, individual components in the Figures herein
may also be referred to by their labels in the Figures, rather
than by a particular reference number. Additionally, refer-
ence numbers referring to a particular type of component (as
opposed to a particular component) may be shown with a
reference number followed by “(typ)” meaning “typical.” It
will be understood that the configuration of these compo-
nents will be typical of similar components that may exist
but are not shown 1n the drawing Figures for stmplicity and
clarity or otherwise similar components that are not labeled
with separate reference numbers. Conversely, “(typ)” 1s not
to be construed as meaning the component, element, etc. 1s
typically used for its disclosed function, implement, pur-
pose, €tc.

As used herein, the terms ‘““virtual appliance,” “virtual
network appliance,” “network appliance,” or simply “appli-
ance” may be used interchangeably. In addition, for the
purpose herein, including the claims, any software-based
appliance relating to Software Defined Networking or con-
figured to implement Network Function Virtualization may
more generally be referred to as a ““virtual appliance,” with
the understanding that virtual network appliances include
any network appliance or virtualized entity that 1s configured
to implement Network Function Virtualization and/or opera-
tions relating to Software Defined Networking. Accordingly,
the terms virtual appliance 1n the following description
includes all NFV appliances, as well.

In accordance with aspects of the embodiments described
herein, packet throughput 1s accelerated by creating a “cut-
through™ mechanism that enables packets to be transierred
between virtual network appliances and similar SDN com-
ponents without the use of virtual switches. This 1s facili-
tated, 1n part, via use of “Local Service Chaining” (LSC),
which 1s used herein to describe a tlow of packets traversing
a network that 1s internal to a compute node under which the
packets are processed by a series of network service ele-
ments (e.g., virtual network appliances) implemented in
multiple virtual machines or virtualized containers.

By way of example and without limitation, FIG. 1 shows
an architecture 100 for a compute node (e.g., compute
platform such as a server) configured to perform packet
processing operations through the use of LSC. Architecture
100 includes a compute platiorm 102 coupled to a network
interface 104 that may be integrated on the compute plat-
form (e.g., as a network interface controller (NIC)) or

- 4 4

10

15

20

25

30

35

40

45

50

55

60

65

4

otherwise operatively coupled to the compute platiorm (e.g.,
as a PCle (Peripheral Component Interconnect Express) card
installed 1n a PCle expansion slot). Compute platform 102
includes a host operating system (OS) 106 running 1n OS
memory 107 that 1s configured to host multiple applications
running in an application memory space 108, which are
depicted above host OS 106. This includes a virtual switch
109 and a hypervisor 110 that 1s configured to host N virtual
machines 112, as depicted by virtual machines labeled VM
1, VM2 and VMN. The software components further include
an SDN controller 114.

Network interface 104 includes M network ports 116
labeled Portl, Port2 . . . PortM, where M may be the same
or different from N. Each network port 116 includes a
receive (Rx) bufler 118 and a transmit (Tx) builer 120. As
used in the Figures herein, the Rx and Tx builers and Rx and
Tx queues that are depicted also may represent co-located
Rx and Tx ports; to reduce clutter the Rx and Tx ports are
not shown separately, but those skilled in the art will
recognize that each Rx and Tx port will include one or more
Rx and Tx buflers and/or queues.

Generally, a network interface may include relatively
small Rx and Tx buflers that are implemented in the Rx and
Tx ports, and then larger Rx and Tx buflers that may be
implemented 1n mput/output (JO) memory on the network
interface that 1s shared across multiple Rx and Tx ports. In

the illustrated example, at least a portion of the JO memory
1s memory-mapped JO (MMIO) 122 that 1s configured by a

NIC dniver 124 1n OS memory 107 of host OS 106. MMIO
122 1s configured to support direct memory access (DMA)
data transfers between memory buflers in MMIO 122 and
buflers 1n system memory on compute platform 102, as
describe 1n further detail below.

Virtual switch 108 1s a software-based entity that is
configured to perform SDN switching operations internal to
compute platform 102. In the illustrated example, virtual
switch 108 includes a virtual Rx and Tx port for each
physical Rx and Tx port on network interface 104 (e.g., for
cach of Portl-PortM), and a virtual Rx and Tx port for each
of virtual machines VM 1-VM N. The virtual ports on the
network interface side are depicted as Rx virtual ports 126
and Tx virtual ports 127, while the virtual ports on the VM
side are depicted as Rx virtual ports 128 and Tx virtual ports
129. As turther shown, a portion of each of Rx and Tx virtual
ports 126, 127, 128, and 129 are depicted as overlapping a
shared memory region 134 of the system memory address
space (also referred to as a shared address space). Addition-
ally, pairs of Rx and Tx virtual ports 130 and 132 are further
depicted as extending into a respective virtual NIC (vNIC),
as shown by vINIC1, vNIC2 and vINICN, wherein the vNICs
are associated with respective virtual machines VM 1, VM
2 and VM N.

Hach of virtual machines VM 1, VM 2, and VM N 1s
shown 1ncluding a virtual appliance 136 and three applica-
tions 138 with 1indicia identitying the corresponding VM the
virtual appliance and applications are running on. For
example, for VM 1 the virtual appliance 1s labeled “Appli-
ance 17 and the applications are labeled “Application 1A,
“Application 1B,” and “Application 1C.” Generally, each
virtual appliance 136 may be implemented via one or more
applications 138, and the inclusion of three applications 1s
merely for illustrative purposes. During operation of com-
pute platform 102, each of virtual appliances 136 1s config-
ured to perform one or more packet-processing services.
Moreover, the packet-processing services are implemented
in a chained manner as defined by the applicable LSC for the
packet tflow associated with each packet.

US 10,261,814 B2

S

The concept of chained packet-processing services using
local service chaiming 1s further illustrated in FIG. 1 via
operations and data transfers that are depicted in connection
with processing of a packet 140, and further reference to a
flowchart 200 shown 1n FIG. 2. Packet 140 1s depicted as an
IP (Internet Protocol) packet, and this exemplary use of an
IP packet means that the packet employs IP addressing that
1s used, 1n part, to determine where packet 140 1s forwarded
in the network and handled internally by compute platform
102. As shown 1n a block 202 of flowchart 200, the process
beings with Packet 140 being received from the network at
Portl of network interface 104. Generally, packet data 1s
transierred over the links of a network as bitstreams of data.
For example, for an Ethernet network, packet data 1s trans-
ferred as a stream of Ethernet frames. At Portl, applicable
Physical Layer (PHY) operations are performed to extract
Ethernet packets that encapsulate the packet data that 1s to be
processed by virtual apphances 136. The extracted FEthernet
packets are buflered in the Rx bufler 118 of Portl.

Next, in a block 204, IP packets are extracted from the
Ethernet packets. Optionally, Layer 4 or higher level packets
may be extracted, as applicable. Generally, the operations of
block 204 may be performed by either network interface
104, by OS software-based networking components
depicted as a network stack 142, or by a combination of the
two using a split processing scheme. For example, some
more recent NICs support Layer 3 (IP) packet processing
operations and may also support TCP (Transaction Control
Protocol) packet processing operations. Other Layer 4 and
higher packet processing will usually be performed wvia
soltware components in network stack 142, although these
also may be implemented by a NIC or similar network
interface.

In a block 206 flow classification of the packet 1s per-
formed. This will usually involve inspecting applicable
header fields 1n a packet header or headers to identily a
packet flow that a received packet belongs to (if any). As
described in further detail below, 1n some embodiments
packet flow information may be explicitly defined i a
packet header field. Packet flow classification may also be
performed using data in multiple fields, such as through use
ol well-known N-tuple packet classification techniques.

Generally, packet header inspection may be done using
one or more of the following schemes. In one embodiment,
packets are DMA’ed (e.g., using a DMA write operatlon)
from Rx buflers in port 116 into an Rx bufler 144 in OS
memory 107. For example, in one embodiment memory
spaces 1n the NIC port Rx buflers are allocated for FIFO
(First-in, First-out) queues that employ circular FIFO point-
ers, and the FIFO head pointer points to the packet that 1s
DMA’ed into Rx bufler 144. Further details of how FIFO
queues operate, according to one embodiment, are shown 1n
FIG. 3 and described below. As an alternative, only the
packet header 1s DMA' ed into Rx butiler 144. As yet another
option, the packet header data 1s read “in place” without
copying either the packet data or header into Rx builer 144.
In this instance, the packet header data for a small number
ol packets 1s read into a buller associated with network stack
142 or a flow classifier 146 1n host OS 106. Similarly, for
flow classification that 1s performed by network interface
104 the packet header data may be read 1n place; however,
in this instance the bufler i1s located 1n memory on network
interface 104 that will typically be separate from MMIO 122
(not shown).

The result of tlow classification returns a tlow 1dentifier
(flow ID) for the packet. In one embodiment, the flow ID 1s
added to a packet header field for packets that are received

10

15

20

25

30

35

40

45

50

55

60

65

6

without an explicit tlow 1D, or, alternatively, a flow ID tag
1s attached to (e.g., prepended) or the packet 1s encapsulated
in a “wrapper” that includes a field for the tlow ID.

As shown 1n FIG. 1, 1n the illustrated embodiment packet
classification 1s performed by flow classifier 146. Optionally,
flow classification may be performed in network interface
104 via a similar flow classifier 146a. In one embodiment,
a split classification scheme 1s implemented under which
existing flows (e.g., previously classified tflows) are 1dent-
fied 1n network interface 104 by flow classifier 146a, while
packets that don’t belong to an existing flow are forwarded
to tlow classifier 146 for packet classification corresponding
to a new packet flow. Information for the new packet flow
1s then provided to flow classifier 146a. Under another
embodiment, the list of classified flows maintained by a tlow
classifier 146aq 1s less than a complete list maintained by tlow
classifier 146, and operates similar to a memory cache where
flows pertaining to more recent packets are maintained 1n
flow classifier 146a on the NIC and flows for less recent
packets are replaced.

As further depicted in block 206, the tflow ID 1s used as
a lookup 1nto a flow table 148, which is depicted as being
part of virtual switch 109. In one embodiment, the flow table
contains a column of flow ID’s and a column of vNIC Rx
port IDs such that given an input tflow ID, the lookup will
return a corresponding vINIC Rx port ID. Flow table 148
may also contain an LSC ID that may be used for an LSC
tag or to a field 1n the packet wrapper or otherwise associated
with the packet. Optionally, an LSC tag may be added by a
first virtual appliance 1n a local service chain.

In addition to flow table 148 being implemented 1n virtual
switch 109, all or a portion of the flow table may be
implemented in host OS 106 or network interface 104
(neither of which 1s shown 1 FIG. 1). In embodiments
employing all or a portion of a flow table in network
interface 104, the flow table entries will generally be deter-
mined by software in host OS 106 and populated via an
interface provided by NIC driver 124.

Once the vINIC Rx port ID 1s 1dentified, the packet data 1s
written to an applicable Rx bufler address. In the example
illustrated 1n FIG. 1, this Rx port 1s labeled V1 Rx (the Rx
port for vINIC 1 of virtual machine VM 1). In one embodi-
ment, the packet data 1s copied from an Rx bufler in OS
memory 107 (not shown) using a memory write operation
under which data 1s copied from the OS memory Rx bufler
to the applicable Rx bufler address. In another embodiment,
the packet data 1s written from the Rx bufler of Portl in
MMIO 122 directly 1mnto the vINIC Rx bufler using a DMA
write. For example, for packets having their headers
ispected 1n place, a direct DMA write may be performed.

In one embodiment, the vINIC Rx buflers are implemented
as FIFO queues with circular FIFO pointers. Details of one
embodiment employing this configuration are shown in FIG.
3. As 1llustrated toward the bottom of FIG. 3, each vNIC Rx
port 130 includes an associated vINIC Rx FIFO queue 300.
Each vNIC Rx FIFO queue 300 includes an address space
divided into multiple FIFO “slots”; under the illustrated
embodiment there are 256 slots per FIFO queue, but this 1s
merely illustrative of one example, as the number of FIFO
slots may vary. The size used for each FIFO slot may also
vary. In one embodiment, the size of each FIFO slot 1s the
same as the size of a cache line used for application memory
space 108. Each vNIC Rx FIFO queue 300 further includes
a circular FIFO head pointer and a circular FIFO tail pointer.
The circular FIFO head pointer points to the FIFO slot that
1s currently at the logical “top” of the FIFO queue, while the
tail pointer points to a FIFO slot corresponding to the current

US 10,261,814 B2

7

logical “bottom™ of the FIFO queue. The operations of FIFO
queues using head and tail pointers are well-known 1n that
art, so further details of these operations are not provided
herein.

In one embodiment, each vNIC 1s implemented via a set
ol one or more soltware modules. Under an object-oriented
design, each Rx FIFO queue may be implemented as an
instance of a corresponding class (e.g., Rx_FIFO_queue). As
1s well-known, classes provide methods for implementing
functions that operate on class objects (e.g., data) and
interfaces for passing data to and receiving data from other
software components (e.g., other classes).

In one embodiment, a DMA write request 1s sent to the
Rx_FIFO_queue (class) instance for the vINIC1 Rx FIFO
queue. In response to recerving the DMA write request, a
method 1 the Rx_FIFO_queue instance 1identifies the
memory address of the FIFO slot currently pointed to by the
tall pointer and returns the address to the DMA write
requester (e.g., an embedded software module on network
interface 104). A DMA engine or the like (not shown) then
writes the packet data from 1ts location in MMIO 122 to the
memory address for the FIFO slot. For instances in which
the packet data spans multiple FIFO slots, multiple DMA
writes may be performed in sequence. For illustrative pur-
poses, the packet data 1s shown as being written to the
bottom of the representation of the vNIC Rx ports; however,
those skilled 1n the art will recognize that the location 1n the
Rx FIFO queue of the slot at which the packet data 1s written
will be the logical “bottom” of the FIFO builer pointed to by
the FIFO tail pointer.

Next, i a block 207 a flow ID tag or LSC tag 1s attached
to the packet data. As shown 1n FIG. 3, 1n one embodiment
the data written to a first FIFO slot (of one or more slots to
which the packet data 1s written) contains a tag 302
prepended to packet data comprising a packet header 304
and packet payload data 306. In one embodiment, tag 302 1s
used to store in LCS tag (e.g., LSC ID value). Optionally, tag
302 may be used to store a flow ID. As 1s well-known, the
s1ze of an IP packet (or other types of packets) may vary,
while the length of a packet protocol header will generally
be the same (noting that some protocols define packet
headers with optional fields that when used change the
header length). In view of the variable-length packet size,
the packet data for a given packet may be written to one or
more FIFO slots.

As depicted by the loop delineated by start and end loop
blocks 208 and 218, multiple operations are performed for
cach virtual appliance 1n a local service chain associated
with a give packet tlow (or alternatively, as explicitly
identified by an LSC ID 1n a LSC tag, packet header or
wrapper). Each LSC comprises multiple services performed
by virtual network appliances that are chained together in a
sequence 1n a manner similar to a set of pipelined services.
Example services may include NAT (Network Address
Translation) services, firewall services, packet-processing
services, WAN Optimization, Virtual Private Network Gate-
way, Video Transcoding, Content Distribution Network ser-
vices, etc. For 1llustrative purposes, FIG. 1 shows a chained
sequence from Appliance 1 to Appliance 2 . . . to Appliance
N. However, this 1s merely exemplary as the LSC may
traverse any combination of Appliances. Moreover, the LSC
need not traverse Appliances 1n an increasing order (e.g., an
LSC could be Appliance 3 to Appliance 2 to Appliance
5 .. .). It 1s also possible for multiple Appliances to be
implemented to perform the same service or sets of services.
Alternatively, a given Appliance may be configured to
perform different services for different packet tlows.

10

15

20

25

30

35

40

45

50

55

60

65

8

Returning to the processing loop 1n flowchart 200, in a
block 210 the packet processing operations for the flow
and/or LSC for the current virtual appliance in the LSC
chain are performed. In one embodiment, the packet-pro-
cessing operations will be performed on a given packet 1n
the vNIC Rx FIFO queue pointed to by the FIFO head
pointer. Some virtual appliances will read the packet data
and perform processing using that data (e.g., forward the
packet data to a consumer application), while other virtual
appliances may modily the packet data (e.g., modily one or
more fields 1n a packet header). In cases where the packet
data 1s modified, the packet data can either be modified 1n
place, or packet data may be copied into a builer on the VM
allocated for the virtual appliance (not shown 1n FIG. 1) and
then modified.

Continuing at a block 212, upon completion of the opera-
tions performed by a given virtual appliance, a determina-
tion 1s made to where the packet data 1s to be forwarded so
it can be accessed by either the next virtual appliance in the
LSC, or it the current virtual appliance 1s the last virtual
appliance 1n the LSC, what Tx network port to forward the
packet to. In one embodiment, this 1s performed using the
LSC tag value as a lookup mto a local flow table 150.
Optionally, the local flow table may contain flow IDs rather
than or 1n addition to LSC tag values. Generally, local flow
tables 150 may be configured 1n a similar manner to flow
table 148; however, rather than pointing to the vINIC Rx port
(or Rx FIFO queue) for the VM hosting the first virtual
appliance in the LSC, the local flow table points to the vINIC
Rx port (or Rx FIFO queue) for the VM hosting the next
virtual appliance 1n the LSC. It 1s also noted that flow table
148 may contain information pertaining to non-LSC flows
(or otherwise such information may be maintained 1n a
separate table accessible to virtual switch 109.

Under the conventional approach, VMs are allocated
separate memory spaces and data 1s transierred between
these separate memory spaces through use of wvirtual
switches. This entails first copying the data to a vINIC Tx
port, forwarding the data to a Rx port of the virtual switch
(via a memory write), determining via the virtual switch the
vINIC Rx port to which the data 1s to be written, copying or
writing the data to the virtual switch Tx port connected to
that vINIC Rx port, and then writing the data to the vINIC Rx
port. In practice, each of these writes are to a butler, such as
a FIFO queue, and the switching processes involves a
significant amount of overhead. Moreover, when multiple
packet tlows are being switched simultaneously, there 1s a
potential for congestion as one or more of the virtual switch
ports.

To better understand the conventional virtual switch
operation, consider a packet processing sequence that
involves operations performed by a series of virtual network
applhiances, A, B, C, and D, each of which performs one or
more operations relating to the packets 1t receives. These
operations are chained such that a sequence of operations a,
b, ¢, and d, are performed by respective virtual network
appliances A, B, C, and D, and each of the virtual network
appliances are hosted by a separate VM ,_,, connected to a
virtual switch S. Under the existing approach, the packet
flow would be handled as follows: VM , to S to VM to S to
VM, . to S to VM. Each transier to and from virtual switch
S requires the use of separate receive and transmit buflers/
queues that are implemented for separate virtual switch ports
to which virtual machines VM ,, VM, VM and VM, are
respectiully connected.

In accordance with an aspect of the embodiments herein,
a “cut-through” mechanism 1s implemented under which

US 10,261,814 B2

9

data 1s written directly from a first vINIC Rx bufler (e.g.,
vINIC Rx FIFO queue) or a bufler on a VM hosting a virtual
appliance performing a current service i an LSC to the
vNIC Rx buffer (e.g., vNIC Rx FIFO queue) of the VM
hosting the virtual appliance that i1s to perform the next
service 1n the LSC. This 1s facilitated, 1n part, through the
use of shared memory region 134: Since the vINIC Rx FIFO
queues are 1n a shared memory region accessable to all of the
VMs, any VM can write to the vINIC Rx FIFO queue of any
other VM 1n a manner that bypasses the virtual switch. This
provides a significant reduction 1n memory transfers, as well
as eliminates corresponding latencies incurred during virtual
switching operations.

As depicted by a decision block 214, 1f the next butler 1s
a VNIC Rx FIFO queue the flowchart logic proceeds to a
block 216 1n which the packet data 1s written directly to the
identified vNIC Rx FIFO queue, thus bypassing virtual
switch 134. As before and as depicted, the packet data 1s
written to the bottom of the vNIC Rx port representation.
Also as before, this may be eflected by writing the data to
an address of the slot 1n the Rx FIFO queue currently pointed
to by the FIFO tail pom‘[er
If the flow ID lookup 1n block 212 identifies the next
butler as a network Tx port, the flowchart logic proceeds to
a block 220 in which a DMA write of the packet data from
the current vINIC Rx FIFO slot(s) (or local builer 11 associ-
ated with the current virtual appliance) to the network Tx
builer, which 1s located in the address space of MMIO 122.
In the example illustrated 1n FIG. 1, this 1s depicted as
direct transfer of packet data from the Rx FIFO queue of
vINICN to the Tx bufler of PortM on network interface 104.
Alternatively, rather than a direct DMA data transfer, the
packet data may be forwarded through virtual switch 109. In
one embodiment, the packet data 1s copied directly from the
vINICN Rx FIFO queue (or a builer on VM N) to the network
Tx bufler on the virtual switch (rather than being forwarded
via VNICN’s Tx port).

As depicted at the lower right-hand corner of FIG. 1, a
packet 152 1s transmitted from the Tx port of PortM into the
network. Generally, the headers of packets 140 and 152 may
differ, while the packet payload data may remain the same.
For example, one or more ficlds 1n the packet header for a
given packet may be changed during the LSC processing
operations performed by the virtual appliances. In some
instances, the packet payload data may also change as a
result of services performed by an LSC.

The foregoing processing of packet 140 illustrates one
technique for processing packets on a per-tlow basis. In one
embodiment, SDN controller 114 1s configured to manage
flow ID and/or LSC data used by tlow table 148 and local
flow tables 150. Packets for a given packet flow may be
serviced using an LSC comprising a chained sequence of
services performed by respective virtual appliances, as dis-
cussed above. In one embodiment, an entry point (e.g., an
ingress Rx port, Rx bufler or Rx FIFO queue) for a flow 1D
or LSC ID 1n a flow table 1s used to lookup the next entry
point for the service chain (e.g., the next Rx port, Rx butler,
or Rx FIFO queue). Accordingly, the flow tables may
generally comprise two or more columns, one containing the
flow ID or LSC ID and the other containing the next entry
point. In another embodiment, a flow 1D 1s used to forward
a packet received from the network to a first virtual appli-
ance, which then does a flow ID-to-LSC ID mapping and
attaches an LSC tag to the packet for further processing.

LSCs used on a per-tlow implementation may be either
preconfigured by SDN controller 114, or determined when a
flow first appears. For example, in accordance with the

10

15

20

25

30

35

40

45

50

55

60

65

10

OpenFlow protocol, packet flows and corresponding LSCs
may be determined during run-time operations. The particu-
lar sequence chain for the LSC may be determined by logic
in SDN controller, logic in another component, such as a
central SDN controller (e.g., orchestrator) or the like, or a
combination of SDN controller components and related
components.

FIG. 4 depicts a set of exemplary table data for flow tables
148, Tablel, Table2, and TableN. Flow table 148 includes a
Flow ID column containing flow IDs, an Ingress Port
column containing ingress port IDs, and an LSC ID column
containing LSC IDs. Each of Tablel, Table2 and TableN
include an LSC ID column, a Next Port column, and a
Services column. In one embodiment, the table data for each
of tables 148, Tablel, Table2, and TableN 1s managed by
SDN controller 114. Generally, the table data may be popu-
lated during imitialization of the compute platform and/or
during run-time operations.

In one embodiment, the table data 1s implemented as
follows. In conjunction with flow classification, a flow 1D
for the packet 1s determined. This 1s used as a lookup for
flow table 148. From the flow 1D the ingress port of the VM
hosting the first virtual appliance 1n the service chain can be
determined. The LSC ID also can be determined. As an
option, flow table 148 may not include an LSC ID column
and the flow ID-to-LSC ID mapping 1s performed by the first
virtual appliance 1n each LSC.

As shown, the ingress port need not be the same for each
flow. Depending on the services that are to be performed, an
LSC may skip one or more virtual appliances. Also, the
services performed by a given virtual appliance may also be
different, depending on the LSC ID. The use of *A’, “‘B’, and
‘C’ 1n the Services columns corresponds to services per-
formed by the virtual appliance each flow table 150 corre-
sponds to. The inclusion of the Services column 1s optional,
as under some 1implementation a give virtual appliance will
perform the same services for all LSCs (or tlows) that 1t
provides services to. In addition, the egress port at the
network adaptor/NIC may also differ, depending on the
particular LSC.

FIG. 4a 1llustrates an alternative tlow table scheme that
employs tlow IDs for flow tables 150 rather than LSC IDs.
The flow ID-to-LSC mapping 1s performed internally by
SDN controller 114 such that flow IDs may be used 1n place
of LSC IDs. The remainder of the processing logic remains
the same.

In addition to per-tflow local service chaining, a compute
platform may be preconfigured to perform the same set of
services (and thus implement the same LSC) for all packets
received by a network interface or all packets recerved at a
predetermined port of the network interface. FIG. 45 shows
exemplary table data 1n flow table 148a, Flow Tablel, Flow
Table2, and Flow TableN to implement a single, pre-deter-
mined LSC. As illustrated, the ingress port for all flows 1s
vNIC1 Rx. Meanwhile, the Next Port for each wvirtual
appliance 1s the vINIC Rx port for the next virtual appliance
in the LSC. For illustrative purposes, tlow table data are
shown for implementing a pre-determined LSC. In practice,
other techniques could be used, such as configuring software
variables and/or soitware instructions to implement the
pre-determined LSC. For instance, software could be down-
loaded to each of the virtual machines to implement the LSC
without the use of flow tables. Similarly, a network adaptor
or NIC could be configured to forward (e.g., via a DMA
write) all packets to the ingress vINIC Rx port for the LSC.

FIG. 1a 1illustrates the processing of packet 140 using a
pre-determined LSC. As illustrated, packet 140 1s DMA’ed

US 10,261,814 B2

11

from Portl’s Rx port to vNIC1’s Rx port, bypassing any
operations that previously may have been performed by host
OS 106, and also bypassing virtual switch 109. Under
another embodiment, packets may be DMA’ed from the
network interface to Rx bufler 144 and then to vNIC1’s Rx
port.

In accordance with another method, LSCs are imple-
mented using meta-data added to the packet header. Under
this technique, an entity (e.g., an orchestrator or the like) on
an external platform may determine the elements of the
entire service chain, then once the service chain reaches the
platform with the LSC, software operating on the platform
uses this meta-data to determine the packet flow. In this way,
an LSC could interoperate with a larger service chain that 1s
implemented via virtual appliances operating on multiple

platforms.

Generally, 1n a Network Function Virtualization system
where VM placement 1s done by an orchestrator, it may be
advantageous for an orchestrator to instantiate VMs hosting
the virtual appliances of a service chain into a single
physical platform, such that inherent benefits of implement-
ing Local Service Chains 1n accordance with the embodi-
ments herein can be taken advantage of. For example, since
the same services are performed for each packet for a given
flow 1n a pipelined manner, the potential i1ssue of FIFO
overtlow (no room 1n a FIFO queue to add more packet data)
can be eliminated through use of appropnately-sized FIFO
queues. This approach also eliminates any latencies that may
occur as a result of traflic congestion 1n a virtual switch; such
latencies result 1n reducing the processing performance of
the entire service chain, since a latency for a single packet
results 1n a processing latency for all subsequent packets.

It 1s noted that while FIFO queues are illustrated in the
drawings and described herein, it 1s possible to use other
types of queues as are known in the art. However, for
chained operations, FIFO queues provide inherent advan-
tages through their simplicity and lack of overhead. Fur-
thermore, although a single FIFO queue 1s shown for each
vINIC Rx port, one or more FIFO queues may be employed.
For example, separate FIFO queues may be used for respec-
tive tlows and/or LSCs.

Computer platforms may also be configured to support
both LSC flows and non-LSC flows. For example, during
flow classification a packet may be 1dentified as belonging to
a tlow that 1s not associated with an LSC. Accordingly, the
packet could be processed using conventional techniques for
processing packet flows.

In addition to the use of tflow tables 150, other techniques
may be used for enabling each VM to determine what
actions should be taken for each packet 1t receives that is
associated with an LSC. For example, 1n one embodiment an
LSC module 1n the ingress VM tags the packets with an
appropriate LSC label that 1s used by each subsequent VM
that recerves the packet to determine what services, 1f any,
should be performed on the packet and to determine the next
VM the packet should be forwarded to.

FIG. 5 shows an exemplary host platform configuration
500 including platform hardware 502 and various software-
based components. Platform hardware 502 includes a central
processing unit (CPU) 504 coupled to a memory interface
506 and an 1mput/output (1/O) interface 508 via an 1ntercon-
nect 510. In some embodiments, all or a portion of the
foregoing components may be integrated on a System on a
Chip (SoC). Memory interface 506 1s configured to facilitate
access 1o system memory 512, which will usually be sepa-
rate from the SoC.

10

15

20

25

30

35

40

45

50

55

60

65

12

I/0 iterface 508 is illustrative of various I/O interfaces
provided by platform hardware 502. Generally, I/O interface
508 may be implemented as a discrete component (such as
an ICH (I/O controller hub) or the like), or 1t may be
implemented on an SoC. Moreover, I/0 interface 508 may
also be implemented as an I/O hierarchy, such as a Periph-
eral Component Interconnect Express (PCle™) I/O hierar-
chy. /O interface 3508 further facilitates communication
between various 1/0 resources and devices and other plat-
form components. These include a non-volatile storage
device, such as a disk drive 514 that 1s communicatively
coupled to I/O interface 508 via a disk controller 516, a
firmware store 518, a NIC 520, and various other /O
devices, collectively depicted as other hardware 522.

In general, CPU 504 may comprise a single core proces-
sor or a multi-core processor, such as depicted by M cores
505. The multiple cores are employed to execute various
soltware components 424, such as modules and applications,

which are stored 1n one or more non-volatile storage devices,
as depicted by disk drive 514. More generally, disk drive 514

1s representative of various types of non-volatile storage
devices, including both magnetic- and optical-based storage
devices, as well as solid-state storage devices, such as solid
state drives (SSDs) or Flash memory. Optionally, all or a
portion of software components 324 may be stored on one
or more storage devices (not shown) that are accessed via a
network 526

During boot up or run-time operations, various soitware
components 524 and firmware components 528 are loaded
into system memory 312 (as depicted by FW space) and
executed on cores 5035 as processes comprising execution
threads or the like. Depending on the particular processor or
SoC architecture, a given “physical” core may be imple-
mented as one or more logical cores, with processes being
allocated to the various logical cores. For example, under the
Intel® Hyperthreading™ architecture, each physical core 1s
implemented as two logical cores.

Under a typical system boot for platform hardware 502,
firmware 3528 will be loaded and configured 1n system
memory 512, followed by booting a host OS 530. Subse-
quently, a hypervisor 532, which may generally comprise an
application running on host OS 530, will be launched.
Hypervisor 532 may then be employed to launch various
virtual machines, VM, _,,, each of which will be configured
to use various portions (1.e., address spaces) of system
memory 512. In turn, each virtual machine VM, _,, may be
employed to host a respective operating system 534, .-

During run-time operations, hypervisor 532 enables
reconiiguration of various system resources, such as system
memory 512, cores 505, and disk drnive(s) 514. Generally,
the virtual machines provide abstractions (1n combination
with hypervisor 532) between their hosted operating system
and the underlying platiorm hardware 3502, enabling the
hardware resources to be shared among VM, _,. From the
viewpoint of each hosted operating system, that operating
system “owns” the entire platform, and 1s unaware of the
existence ol other operating systems running on virtual
machines. In reality, each operating system merely has
access to only the resources and/or resource portions allo-
cated to 1t by hypervisor 532.

As Tfurther illustrated in FIG. 5, each operating system
includes a kernel space and a user space, both of which are
implemented as memory spaces in system memory 512. The
kernel space 1s protected and used to run operating system
kernel components, mcluding a networking stack. Mean-
while, an operating system’s user space 1s used to run user

US 10,261,814 B2

13

applications, as depicted by Appliances 1, 2, and N, and
Applications 1A-C, 2A-C, and NA-C.

Generally, Appliances 1, 2, and N are illustrative of
vartous SDN or NFV appliances that may run on virtual
machines on platform hardware 502. For simplicity, each
VM, _» 1s depicted as hosting a similar set of software
applications; however, this 1s merely for illustrative pur-
poses, as the VMs for a given platform may host similar
applications, or may host different applications. Similarly,
cach VM, _,,may host a single virtual network appliance (as
shown), may host multiple virtual network appliances, or
may not host any virtual network appliances.

As discussed above, 1n addition to virtualizing computer
plattorm using VMs, container-based OS wvirtualization
employing virtualized containers may be implemented.
Examples of embodiments employing container-based vir-
tualization are depicted in architecture 1005 shown 1n FIG.
15 and platform configuration 600 in FIG. 6.

The hardware configuration used 1n platform configura-
tion 600 1s the same as platform configuration 500, as
shown. The differences in the platform configurations occur
in the software. The software 1n platform configuration 600
includes a host OS 602, an OS virtualization layer 604, and
a plurality of containers 606. Optionally, containers may
also be called virtual engines, virtual machines or other
terms, depending on the vendor providing the container-
based virtualization soiftware or the author describing how
container-based OS virtualization works.

Each container includes a set of software libraries and
applications logically partitioned mto system components
and application and/or user components. The system com-
ponents include system libraries and system software mod-
ules. As illustrated, each container includes a networking
stack system module or the like. The virtual appliances run
in the application/user space. Generally, the virtual appli-
ances may be configured such that they are agnostic to
whether they are operating on a VM or a container, or
otherwise there are minor differences between virtual appli-
ances configured to run on VMSs as opposed to hosted by
containers.

As shown 1n architecture 1005 of FI1G. 15, the architecture
components are substantially similar to those shown 1in
architectures 100 and 100aq, with the primary differences
being the Hypervisor being replaced with OS virtualization
layer 604 and the VMs being replaced with containers 606.
As with the VMs, each container includes a similar set of
soltware components, including a vINIC, one or more virtual
appliances 136 and corresponding applications 138, as well
as a tlow table 1350.

In addition to use of IP packets and Ethernet packets,
virtualization overlays may be used, such as VXLAN (Vir-
tual Extension Local Area Network) NVGRE (Network
Virtualization using Generic Routing), which employ an
inner and outer IP address. To implement local service
chaining using VXLAN or NVGRE, the presence of over-
lays would just add to the processing of IP as described 1n
the embodiments above. Further techniques for processing
packets using VXLAN and NVGRE are known to those
having skill in the art, so further details for implementing
embodiments using VXLAN or NVGRE are not described
herein.

Further aspects of the subject matter described herein are
set out 1n the following numbered clauses:

1. A method, implemented on a compute platform on
which a plurality of virtual machines (VMs) or virtualized
containers (containers) are running, each VM or container
including a virtual network interface controller (vINIC) com-

10

15

20

25

30

35

40

45

50

55

60

65

14

municatively coupled to a wvirtual switch 1n a software
defined network (SDN), the method comprising;

implementing a local service chain (LSC) via a plurality
of virtual network appliances hosted by the plurality of VMs
or containers, each virtual network appliance configured to
perform one or more services for each of a plurality of
packets to be processed by the LSC; and

transierring packet data corresponding to the plurality of
packets between VMs or containers without using the virtual
switch.

2. The method of clause 1, wherein the packet data 1s
transferred from a first VM or container including a first
vINIC having a first receive (Rx) bufler and hosting a current
virtual network appliance 1n the LSC to a second VM or
container including a second vNIC having a second Rx
bufler and hosting a next virtual network appliance 1n the
LSC by writing packet data directly to the second Rx bufler.

3. The method of clause 2, wherein the packet data 1s
copied from the first Rx bufler to the second Rx builer.

4. The method of clause 3, wherein at least a portion of the
first and second Rx buflers are configured as respective
First-in, First-out (FIFO) queues, and packet data for a given
packet 1s copied from one or more slots 1n a first FIFO queue
to one or more slots 1n the second FIFO queue.

5. The method of any of the proceeding clauses, further
comprising:

implementing a plurality of LSCs, each LSC comprising
a unique sequence ol services to be performed on packets
processed using that LSC; and

implementing, for each of the plurality of LSCs, a mecha-
nism to facilitate transier of packet data for packets assigned
to that LSC, wherein, for each LSC the packet data 1s
transierred between VMs or containers hosting the virtual
network appliances for that LSC in a chained manner the
does not traverse the virtual switch.

6. The method of clause 35, wherein the mechanism
comprises a respective local flow table for each VM or
container, wherein the local tflow table for a given VM or
container identifies at least one of a vINIC recerve (Rx) port
or Rx bufler for a VM or container hosting a next virtual
network appliance in the LSC.

7. The method of clause 6, further comprising configuring,
the local flow table for each VM or container using an SDN
controller.

8. The method of any of the proceeding clauses, further
comprising;

allocating respective application memory spaces for each
of the plurality of VMs or containers, wherein an application
running 1n an application memory space of a VM or con-
tainer 1s not able to access the application memory space of
another VM or container; and

allocating a shared memory space that 1s employed for
receive bullers employed by virtual network interface con-
trollers (vINICs) for each of the VMSs or containers, wherein
cach VM or container 1s enabled to read from and write to
the shared memory space.

9. The method of any of the proceeding clauses, wherein
the compute platform includes a network interface including
at least one network port communicatively coupled to the
compute platform, the method further comprising:

recerving a packet at a network port of the network
interface;

determine at least one of a flow the packet belongs to or
an LSC to be used to service the packet; and

forwarding the packet from the network interface to a
receive buller of a vINIC for a VM or container used to host
a first virtual network appliance defined for the LSC.

US 10,261,814 B2

15

10. The method of clause 9, wherein the packet 1s for-
warded by copying packet data for the packet from a receive
bufler 1n a memory-mapped mput-output (IMMIO) address
space ol the network interface to the receive bufler of the
vINIC using a Direct Memory Access (DMA) data transiter.

11. The method of any of the proceeding clauses, wherein
the compute platiorm includes a network interface including,
at least one network port communicatively coupled to the
compute platform, the method further comprising:

for each packet received from a network at a predefined
network port of the network interface,

buflering packet data for the packet 1n a receive bufler 1n
a memory-mapped 1nput-output (MMIQO) address space of
the network interface; and

copying the packet data for the packet from the receive
bufler to a receive bufler of a vINIC for a VM or container
used to host a first virtual network appliance defined for the
LSC using a Direct Memory Access (DMA) data transier.

12. The method of any of the proceeding clauses, wherein
the compute platiorm includes a network interface including
at least one network port communicatively coupled to the
compute platiform, further comprising employing the same
LSC for all packets received at a predefined network port.

13. The method of any of the proceeding clauses further
comprising;

determining a virtual appliance 1s the last virtual appli-
ance 1 an LSC used for a given packet;

determining an output port on a physical network adaptor
the packet 1s to be forwarded out of; and

forwarding packet data from a bufler on a VM or con-
tainer hosting the last virtual appliance to a bufler associated
with the output port of the physical network adaptor 1n a
manner that bypasses the virtual switch.

14. The method of clause 13, wherein the compute
platform 1ncludes a network interface including at least one
network port commumcatively coupled to the compute
platform, the method further comprising:

for each packet received from a network at a predefined
network port of the network interface,

buflering packet data for the packet 1n a receive bufler 1n
a memory-mapped 1nput-output (MMIQO) address space of
the network interface; and

copying the packet data for the packet from the receive
butler to a receive bufler of a vINIC for a VM or container
used to host a first virtual network appliance defined for the
LSC using a Direct Memory Access (DMA) data transier.

15. A non-transitory machine-readable medium, having a
plurality of instructions stored thereon that are configured to
be executed on a processor of a compute platform on which
a plurality of VMs or containers are to be run, wherein
execution of the plurality of instructions causes the compute
platform to perform the method of any of the proceeding
clauses.

16. A compute platform comprising means for implement-
ing the method of any of clauses 1-14.

17. A non-transitory machine-readable medium, having a
plurality of instructions stored thereon that are configured to
be executed on a processor of a compute platform on which
a plurality of virtual machines (VMs) or virtualized con-
tainers (containers) are to be run, at least a portion of the
VMs or containers including a virtual network interface
controller (vNIC) communicatively coupled to a virtual
switch 1n a software defined network (SDN) and hosting a
virtual network appliance, wherein execution of the plurality
ol 1nstructions causes the compute platiorm to:

implement a local service chain (LSC) via a plurality of
the virtual network appliances, each virtual network appli-

10

15

20

25

30

35

40

45

50

55

60

65

16

ance configured to perform one or more services for each of
a plurality of packets to be processed by the LSC; and

transier packet data corresponding to the plurality of
packets between VMs or containers by writing packet data
from a bufler accessible to a first VM or container hosting
a first virtual network appliance configured to perform a
current service 1 the LSC to a receive (Rx) buller of a vNIC
of a second VM or container hosting a second virtual
network appliance configured to perform a next service in
the LSC.

18. The non-transitory machine-readable medium of
clause 17, wherein the Rx bufler of the vINIC of the second
VM or container comprises a second Rx builer, and wherein
the packet data 1s copied from a first Rx builer of a vINIC for
the first VM or container to the second Rx bufler.

19. The non-transitory machine-readable medium of
clause 17 or 18, wherein execution of the plurality of
instructions further causes the compute platiform to:

configure at least a portion of the first and second Rx
buflers as respective first and second First-in, First-out
(FIFO) queues; and

copy packet data for a given packet from one or more slots
in a first FIFO queue to one or more slots 1n the second FIFO
queue.

20. The non-transitory machine-readable medium of any
of clauses 17-19, wherein execution of the plurality of
instructions further causes the compute platform to:

implement a plurality of LSCs, each LSC comprising a
unique sequence ol services to be performed on packets
processed using that LSC; and

configure a local flow table for each VM or container
hosting a virtual network appliance, wherein the local flow
table for a given VM or container includes an entry for each
of the LSCs that include a service to be performed by a
virtual network appliance hosted by that VM or container,
and the entry for each LSC 1dentifies at least one of a vNIC
receive (Rx) port or Rx bufler for a VM or container hosting
a next virtual network appliance in the LSC.

21. The non-transitory machine-readable medium of
clause 20, wherein the plurality of instructions further
include structions for implementing a SDN controller that,
when executed, configures the local flow table for each VM
Or container.

22. The non-transitory machine-readable medium of any
of clauses 17-21, wherein execution of the plurality of
instructions further causes the compute platform to allocate

a shared memory space that 1s employed for recerve bullers
employed by vNICs for each of the VMs or containers,
wherein each VM or container 1s enabled to read from and
write to the shared memory space.

23. The non-transitory machine-readable medium of
clause 22, wherein execution of the plurality of istructions
turther causes the compute platform to allocate respective
application memory spaces for each of the plurality of VMs
or containers, wherein an application running in an appli-
cation memory space of a VM or container 1s not able to
access the application memory space of another VM or
container.

24. The non-transitory machine-readable medium of any
of clauses 17-23, wherein the compute platform includes a
network interface including at least one network port com-
municatively coupled to the compute platform, and wherein
execution of the plurality of instructions further causes the
compute platform to:

determine at least one of a flow a packet recerved at the
network intertace belongs to or an LSC to be used to service
the packet; and

US 10,261,814 B2

17

forward the packet from the network interface to a receive
butler of a vNIC for a VM or container used to host a first
virtual network appliance defined for the LSC.

25. The non-transitory machine-readable medium of
clause 24, wherein the packet 1s forwarded by copying
packet data for the packet from a receive buller mn a
memory-mapped mput-output IMMIO) address space of the
network interface to the receive buller of the vINIC using a
Direct Memory Access (DMA) data transier.

26. The non-transitory machine-readable medium of any
of clauses 17-25, wherein the compute platform includes a
network interface mcluding at least one network port com-
municatively coupled to the compute platform and memory,
and wherein execution of the plurality of instructions further
causes the compute platform to:

configure at least a portion of the memory on the network
interface as a memory-mapped mput-output (MMIO)
address space; and

configure the network interface to,

bufler packet data for each of a plurality of packets
received from a network at a predefined network port of the
network interface 1n a receive bufler in the MMIO address
space; and

copy packet data for each packet from the receive bufler
to a recerve buller of a vINIC for a VM or container used to
host a first virtual network appliance defined for the LSC
using a Direct Memory Access (DMA) data transier.

2'7. The non-transitory machine-readable medium of any
of clauses 17-26, wherein execution of the plurality of
instructions further causes the compute platform to:

determine a flow a packet belongs to;

determine an LSC to be used to service packets belonging
to the flow; and

add indicia to the packet 1dentitying the LSC to be used
to service the packet.

28. A compute platform, comprising:

a processor, including a plurality of processor cores;

system memory, operatively coupled to the processor;

a network interface controller (NIC) including at least one
network port and memory, operatively coupled to the pro-
cessor; and

a storage device, having a plurality of instructions stored
thereon including instructions that are configured to be
executed via one or more of the processor cores to cause the
apparatus 1o,

instantiate a plurality of virtual machines (VMs) or vir-
tualized containers (containers), each VM or container
including a virtual network interface controller (vNIC), at
least a portion of the VMs or containers hosting a virtual
network appliance;

configure a software defined network (SDN) on the plat-
form 1ncluding a virtual switch having virtual network ports
coupled to respective vINICs and at least one network port on
the NIC;

implement a local service chain (LSC) via a plurality of
the virtual network appliances, each virtual network appli-
ance configured to perform one or more services for each of
a plurality of packets to be processed by the LSC; and

transfer packet data corresponding to the plurality of
packets between VMs or containers by writing packet data
from a buller accessible to a first VM or container hosting
a first virtual network appliance configured to perform a
current service i the LSC to a receive (Rx) buller of a vNIC
of a second VM or container hosting a second virtual
network appliance configured to perform a next service in

the LSC.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

29. The compute platiorm of clause 28, wherein execution
of the plurality of instructions further causes the compute
platform to:

implement a plurality of LSCs, each LSC comprising a
unique sequence ol services to be performed on packets
processed using that LSC; and

configure a local flow table for each VM or container
hosting a virtual network appliance, wherein the local flow
table for a given VM or container includes an entry for each
of the LSCs that include a service to be performed by a
virtual network appliance hosted by that VM or container,
and the entry for each LSC 1dentifies at least one of a vNIC
receive (Rx) port or Rx bufler for a VM or container hosting
a next virtual network appliance in the LSC.

30. The compute platform of clause 28 or 29, wherein
execution of the plurality of instructions further causes the
compute platiorm to allocate a shared memory space that 1s
employed for receive bullers employed by vINICs for each of
the VMs or containers, wherein each VM or container 1s
enabled to read from and write to the shared memory space.

31. The compute platform of any of clauses 28-30,
wherein execution of the plurality of instructions further
causes the compute platform to:

determine at least one of a flow a packet recerved at the
NIC belongs to or an LSC to be used to service the packet;
and

forward the packet from the NIC to a receive buller of a
vINIC for a VM or container used to host a first virtual
network appliance defined for the LSC.

32. The compute platform of any of clauses 28-31,
wherein execution of the plurality of instructions further
causes the compute platiorm to:

configure at least a portion of the memory on the NIC as
a memory-mapped mput-output (MMIO) address space; and

configure the NIC to,

bufler packet data for each of a plurality of packets
received from a network at a predefined network port of the
network interface in a receive bufler in the MMIO address
space; and

copy packet data for each packet from the receive butler
to a recerve buller of a vINIC for a VM or container used to
host a first virtual network appliance defined for the LSC
using a Direct Memory Access (DMA) data transfer.

33. A compute platform, comprising;

a network interface controller (NIC) including at least one
network port and memory, and

means for,

instantiating a plurality of virtual machines (VMs) or
virtualized containers (containers), each VM or container
including a virtual network interface controller (vINIC), at
least a portion of the VMs or containers hosting a virtual
network appliance;

configuring a soiftware defined network (SDN) on the
platform including a virtual switch having virtual network
ports coupled to respective vNICs and at least one network
port on the NIC;

implementing a local service chain (LSC) via a plurality
of the virtual network appliances, each virtual network
appliance configured to perform one or more services for
cach of a plurality of packets to be processed by the LSC;
and

transierring packet data corresponding to the plurality of
packets between VMs or containers by writing packet data
from a bufler accessible to a first VM or container hosting
a first virtual network appliance configured to perform a
current service i the LSC to a receive (Rx) buller of a vNIC

US 10,261,814 B2

19

of a second VM or container hosting a second virtual
network appliance configured to perform a next service in
the LSC.

34. The compute platform of clause 33, further compris-
ing means for:

implementing a plurality of LSCs, each LSC comprising
a unique sequence of services to be performed on packets
processed using that LSC; and

configuring a local tlow table for each VM or container
hosting a virtual network appliance, wherein the local flow
table for a gtven VM or container includes an entry for each
of the LSCs that include a service to be performed by a
virtual network appliance hosted by that VM or container,
and the entry for each LSC identifies at least one of a vNIC
receive (Rx) port or Rx buller for a VM or container hosting
a next virtual network appliance 1n the LSC.

35. The compute platform of clause 33 or 34, further
comprising means for allocating a shared memory space that
1s employed for recerve bullers employed by vNICs for each
of the VMs or containers, wherein each VM or container 1s
enabled to read from and write to the shared memory space.

36. The compute platform of any of clauses 33-33, further
comprising means for:

determining at least one of a flow a packet received at the
NIC belongs to or an LSC to be used to service the packet;
and

forwarding the packet from the NIC to a receive butiler of
a VNIC for a VM or container used to host a first virtual
network appliance defined for the LSC.

377. The compute platform of any of clauses 33-36, further
comprising means for:

configuring at least a portion of the memory on the NIC
as a memory-mapped mput-output (MMIO) address space;
and

configuring the NIC to,

bufler packet data for each of a plurality of packets
received from a network at a predefined network port of the
network interface 1n a receive bufler in the MMIO address
space; and

copy packet data for each packet from the receive buller
to a recerve buller of a vINIC for a VM or container used to
host a first virtual network appliance defined for the LSC
using a Direct Memory Access (DMA) data transier.

Although some embodiments have been described in
reference to particular implementations, other implementa-
tions are possible according to some embodiments. Addi-
tionally, the arrangement and/or order of elements or other
teatures 1llustrated 1n the drawings and/or described herein
need not be arranged 1n the particular way illustrated and
described. Many other arrangements are possible according
to some embodiments.

In each system shown 1n a figure, the elements 1n some
cases may each have a same reference number or a different
reference number to suggest that the elements represented
could be different and/or similar. However, an element may
be flexible enough to have different implementations and
work with some or all of the systems shown or described
herein. The various elements shown 1n the figures may be the
same or different. Which one is referred to as a first element
and which 1s called a second element 1s arbitrary.

In the description and claims, the terms “coupled” and
“connected,” along with their derivatives, may be used. It
should be understood that these terms are not intended as
synonyms for each other. Rather, 1in particular embodiments,
“connected” may be used to indicate that two or more
clements are 1n direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are

10

15

20

25

30

35

40

45

50

55

60

65

20

in direct physical or electrical contact. However, “coupled”
may also mean that two or more elements are not 1n direct
contact with each other, but yet still co-operate or interact
with each other.

An embodiment 1s an implementation or example of the
inventions. Reference in the specification to “an embodi-
ment,” “one embodiment,” “some embodiments,” or “other
embodiments” means that a particular feature, structure, or
characteristic described 1n connection with the embodiments
1s included 1n at least some embodiments, but not necessarily
all embodiments, of the inventions. The various appearances
“an embodiment,” “one embodiment,” or “some embodi-
ments” are not necessarily all referring to the same embodi-
ments.

Not all components, features, structures, characteristics,
etc. described and illustrated herein need be included 1n a
particular embodiment or embodiments. If the specification
states a component, feature, structure, or characteristic
“may”’, “might”, “can” or “could” be included, for example,
that particular component, feature, structure, or characteris-
tic 1s not required to be included. If the specification or claim
refers to “a” or “an” element, that does not mean there 1s
only one of the element. If the specification or claims refer
to “an additional” element, that does not preclude there
being more than one of the additional element.

Italicized letters, such as ‘M’ and ‘N’, 1n the foregoing
detailed description and are used to depict an integer num-
ber, and the use of a particular letter 1s not limited to
particular embodiments. Moreover, the same letter may be
used to represent separate integer numbers, or different
letters may be used. In addition, use of a particular letter 1n
the detailed description may or may not match the letter used
in a claim that pertains to the same subject matter 1n the
detailed description.

As discussed above, various aspects of the embodiments
herein may be facilitated by corresponding software and/or
firmware components and applications, such as software
running on a server or device processor or software and/or
firmware executed by an embedded processor or the like.
Thus, embodiments of this invention may be used as or to
support a soltware program, software modules, firmware,
and/or distributed software executed upon some form of
processing core (such as the CPU of a computer, one or more
cores of a multi-core processor), a virtual machine running
on a processor or core or otherwise implemented or realized
upon or within a computer-readable or machine-readable
non-transitory storage medium. A computer-readable or
machine-readable non-transitory storage medium includes
any mechanism for storing or transmitting information 1n a
form readable by a machine (e.g., a computer). For example,
a computer-readable or machine-readable non-transitory
storage medium 1ncludes any mechanism that provides (1.e.,
stores and/or transmits) iformation in a form accessible by
a computer or computing machine (e.g., computing device,
clectronic system, etc.), such as recordable/non-recordable
media (e.g., read only memory (ROM), random access
memory (RAM), magnetic disk storage media, optical stor-
age media, flash memory devices, etc.). The content may be
directly executable (*object” or “executable” form), source
code, or difference code (“delta” or “patch” code). A com-
puter-readable or machine-readable non-transitory storage
medium may also include a storage or database from which
content can be downloaded. The computer-readable or
machine-readable non-transitory storage medium may also
include a device or product having content stored thereon at
a time of sale or delivery. Thus, delivering a device with
stored content, or offering content for download over a

US 10,261,814 B2

21

communication medium may be understood as providing an
article of manufacture comprising a computer-readable or
machine-readable non-transitory storage medium with such
content described herein.
Various components referred to above as processes, serv-
ers, or tools described herein may be a means for performing
the functions described. The operations and functions per-
formed by various components described herein may be
implemented by software running on a processing element,
via embedded hardware or the like, or any combination of
hardware and software. Such components may be 1mple-
mented as software modules, hardware modules, special-
purpose hardware (e.g., application specific hardware,
ASICs, DSPs, etc.), embedded controllers, hardwired cir-
cuitry, hardware logic, etc. Software content (e.g., data,
instructions, configuration information, etc.) may be pro-
vided via an article of manufacture including computer-
readable or machine-readable non-transitory storage
medium, which provides content that represents nstructions
that can be executed. The content may result in a computer
performing various functions/operations described herein.
The above description of 1illustrated embodiments of the
invention, mncluding what i1s described 1n the Abstract, 1s not
intended to be exhaustive or to limit the mvention to the
precise forms disclosed. While specific embodiments of, and
examples for, the mvention are described herein for illus-
trative purposes, various equivalent modifications are pos-
sible within the scope of the invention, as those skilled in the
relevant art will recognize.
These modifications can be made to the invention in light
of the above detailed description. The terms used 1n the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed 1n the specifica-
tion and the drawings. Rather, the scope of the invention 1s
to be determined entirely by the following claims, which are
to be construed 1n accordance with established doctrines of
claim interpretation.
What 1s claimed 1s:
1. A method comprising:
implementing, on a single compute platiorm, a software
defined network (SDN) including a virtual switch, the
compute platform runmng a plurality of wvirtual
machines (VMs) or virtualized containers (containers),
cach VM or container including a virtual network
interface controller (VNIC) communicatively coupled
to the wvirtual switch; 1mplementing a local service
chain (LSC) via a plurality of virtual network appli-
ances hosted by the plurality of VMs or containers
running on the compute platform, each virtual network
appliance configured to perform one or more services
for each of a plurality of packets to be processed by the
LSC; and

transferring packet data corresponding to the plurality of
packets between VMs or containers to eflect the LSC
without using the virtual switch,

wherein the packet data 1s transterred from a first VM or

container including a first vINIC having a first receive
(Rx) buller and hosting a current virtual network appli-
ance 1n the LSC to a second VM or container including
a second vNIC having a second Rx builer and hosting
a next virtual network appliance 1n the LSC by writing
packet data directly to the second Rx buifler.

2. The method of claim 1, wherein the packet data 1s
copied from the first Rx bufler to the second Rx builer.

3. The method of claim 2, wherein at least a portion of the
first and second Rx bullers are configured as respective
First-in, First-out (FIFO) queues, and packet data for a given

5

10

15

20

25

30

35

40

45

50

55

60

65

22

packet 1s copied from one or more slots 1n a first FIFO queue

to one or more slots 1n the second FIFO queue.

4. The method of claim 1, further comprising:

implementing a plurality of LSCs on the compute plat-

form, each LSC comprising a unique sequence of
services to be performed on packets processed using
that LLSC; and
implementing, for each of the plurality of LSCs, a mecha-
nism to facilitate transfer of packet data for packets
assigned to that LSC, wherein, for each LSC the packet
data 1s transierred between VMSs or containers hosting
the virtual network appliances for that LSC 1n a chained
manner the does not traverse the virtual switch.
5. The method of claim 4, wherein the mechanism com-
prises a respective local flow table for each VM or container,
wherein the local tlow table for a given VM or container
identifies at least one of a vINIC receive (Rx) port or Rx
bufler for a VM or container hosting a next virtual network
appliance 1n the LSC.
6. The method of claim 5, further comprising configuring
the local tlow table for each VM or container using an SDN
controller.
7. The method of claim 1, further comprising:
allocating respective application memory spaces for each
of the plurality of VMs or containers, wherein an
application running 1n an application memory space of
a VM or container 1s not able to access the application
memory space ol another VM or container; and

allocating a shared memory space that 1s employed for
receive bullers employed by vNICs for each of the
VMs or containers, wherein each VM or container 1s
enabled to read from and write to the shared memory
space.

8. The method of claim 1, wherein the compute platiorm
includes a network interface including at least one network
port communicatively coupled to the compute platform, the
method further comprising:

recerving a packet at a network port of the network

interface:

determiming at least one of a flow the packet belongs to or

an LSC to be used to service the packet; and

forwarding the packet from the network interface to a

receive buller of a vNIC for a VM or container used to
host a first virtual network appliance defined for the

LSC.

9. The method of claim 8, wherein the packet 1s forwarded
by copying packet data for the packet from a receive buller
in a memory-mapped mput-output (MMIO) address space of
the network interface to the receive buller of the vINIC using
a Direct Memory Access (DMA) data transfer.

10. The method of claim 1, wherein the compute platform
includes a network interface including at least one network
port communicatively coupled to the compute platform, the
method further comprising;

for each packet received from a network at a predefined

network port of the network interface,

Tering packet data for the packet 1n a receive builer in
a memory-mapped input-output (IMMIO) address space
of the network interface; and

copying the packet data for the packet from the receive

bufler to a recerve buller of a vNIC for a VM or
container used to host a first virtual network appliance
defined for the LSC using a Direct Memory Access
(DMA) data transfer.

11. A non-transitory machine-readable medium, having a
plurality of instructions stored thereon that are configured to
be executed on a processor of a compute platform on which

bu

US 10,261,814 B2

23

a plurality of virtual machines (VMs) or virtualized con-
tainers (containers) are to be run and a software defined
network (SDN) including a virtual switch 1s to be 1mple-
mented, at least a portion of the VMs or containers including
a virtual network interface controller (VINIC) communica-
tively coupled to the virtual switch and hosting a virtual
network appliance, wherein execution of the plurality of
instructions causes the compute platform to:
implement a local service chain (LSC) via a plurality of
the virtual network appliances, each virtual network
appliance configured to perform one or more services
for each of a plurality of packets to be processed by the
LSC; and
transfer packet data corresponding to the plurality of
packets between VMs or containers by writing packet
data from a bufler accessible to a first VM or container
hosting a first virtual network appliance configured to

perform a current service in the LSC to a receive (Rx)

builer of a vINIC of a second VM or container hosting

a second virtual network appliance configured to per-
form a next service in the LSC.
12. The non-transitory machine-readable medium of
claim 11, wherein the Rx bufler of the vNIC of the second
VM or container comprises a second Rx bufler, and wherein
the packet data 1s copied from a first Rx builer of a vINIC for
the first VM or container to the second Rx bufler.
13. The non-transitory machine-readable medium of
claim 11, wherein execution of the plurality of instructions
turther causes the compute platform to:
conﬁgure at least a portion of the first and second Rx
buflers as respective first and second First-in, First-out
(FIFO) queues; and

copy packet data for a given packet from one or more slots
in a first FIFO queue to one or more slots 1n the second
FIFO queue.

14. The non-transitory machine-readable medium of
claim 11, wherein execution of the plurality of instructions
turther causes the compute platiform to:

implement a plurality of LSCs, each LSC comprising a

unmique sequence of services to be performed on packets
processed using that LSC; and

configure a local flow table for each VM or container

hosting a virtual network appliance, wherein the local
flow table for a given VM or container includes an
entry for each of the LSCs that include a service to be
performed by a virtual network appliance hosted by
that VM or container, and the entry for each LSC
identifies at least one of a vINIC receive (Rx) port or Rx
bufler for a VM or container hosting a next virtual
network appliance 1 the LSC.

15. The non-transitory machine-readable medium of
claim 11, wherein execution of the plurality of instructions
turther causes the compute platform to allocate a shared
memory space that 1s employed for receive bullers
employed by vNICs for each of the VMs or containers,
wherein each VM or container 1s enabled to read from and
write to the shared memory space.

16. The non-transitory machine-readable medium of
claim 11, wherein the compute platform includes a network
interface ncluding at least one network port communica-
tively coupled to the compute platiform, and wherein execu-
tion of the plurality of instructions further causes the com-
pute platform to:

determine at least one of a flow a packet received at the

network interface belongs to or an LSC to be used to

service the packet; and

5

10

15

20

25

30

35

40

45

50

55

60

65

24

torward the packet from the network interface to a receive
bufler of a vINIC for a VM or container used to host a
first virtual network appliance defined for the LSC.

17. The non-transitory machine-readable medium of
claim 16, wherein the packet 1s forwarded by copying packet
data for the packet from a receive buller 1n a memory-
mapped input-output (MMIQO) address space of the network
interface to the receive buller of the vNIC using a Direct
Memory Access (DMA) data transfer.

18. The non-transitory machine-readable medium of
claim 11, wherein the compute platform includes a network
interface including at least one network port communica-
tively coupled to the compute platform and memory, and
wherein execution of the plurality of instructions further
causes the compute platform to:

configure at least a portion of the memory on the network
interface as a memory-mapped mput-output (MMIO)
address space; and

configure the network interface to,

bufler packet data for each of a plurality of packets
received from a network at a predefined network port of
the network interface 1n a receive bufler in the MMIO
address space; and

copy packet data for each packet from the receive builer
to a recerve buller of a vINIC for a VM or container used
to host a first virtual network appliance defined for the
LSC using a Direct Memory Access (DMA) data
transier.

19. The non-transitory machine-readable medium of
claim 11, wherein execution of the plurality of instructions
further causes the compute platform to:

determine a flow a packet belongs to;

determine an LSC to be used to service packets belonging
to the flow; and

add indicia to the packet 1dentitying the LSC to be used
to service the packet.

20. A compute platform, comprising;

a processor, including a plurality of processor cores;

system memory, operatively coupled to the processor;

a network interface controller (NIC) including at least one
network port and memory, operatively coupled to the
processor; and

a storage device, having a plurality of instructions stored
thereon including instructions configured to be
executed via one or more of the processor cores to
cause the compute platiorm to,

instantiate a plurality of virtual machines (VMs) or vir-
tualized containers (containers), each VM or container
including a virtual network interface controller (VINIC),
at least a portion of the VMs or containers hosting a
virtual network appliance;

configure a software defined network (SDN) on the plat-
form including a virtual switch having virtual network
ports coupled to respective vNICs and at least one
network port on the NIC;

implement a local service chain (LSC) via a plurality of
the virtual network appliances, each virtual network
appliance configured to perform one or more services
for each of a plurality of packets to be processed by the
LSC; and

transier packet data corresponding to the plurality of
packets between VMs or containers by writing packet
data from a buller accessible to a first VM or container
hosting a first virtual network appliance configured to
perform a current service in the LSC to a receive (Rx)
bufler of a vINIC of a second VM or container hosting

US 10,261,814 B2

25

a second virtual network appliance configured to per-
form a next service in the LSC.

21. The compute platiform of claim 20, wherein execution
of the plurality of instructions further causes the compute
platform to:

implement a plurality of LSCs, each LSC comprising a

unmique sequence of services to be performed on packets
processed using that LSC; and

configure a local flow table for each VM or container

hosting a virtual network appliance, wherein the local
flow table for a given VM or container includes an
entry for each of the LSCs that include a service to be
performed by a virtual network appliance hosted

by that VM or container, and the entry for each LSC

identifies at least one of a vINIC receive (RxX) port or Rx
bufler for a VM or container hosting a next virtual
network appliance 1 the LSC.

22. The compute platiform of claim 20, wherein execution
of the plurality of instructions further causes the compute
platiorm to allocate a shared memory space that 1s employed
for receive bullers employed by vINICs for each of the VMs
or containers, wherein each VM or container 1s enabled to
read from and write to the shared memory space.

23. The compute platform of claim 20, wherein execution
of the plurality of instructions further causes the compute

platform to:

26

determine at least one of a flow a packet received at the
NIC belongs to or an LSC to be used to service the
packet; and

forward the packet from the NIC to a receive buller of a
vINIC for a VM or container used to host a first virtual
network appliance defined for the LSC.

24. The compute platform of claim 20, wherein execution
of the plurality of instructions further causes the compute

platiform to:
10

15

20

configure at least a portion of the memory on the NIC as
a memory-mapped input-output (MMIO) address

space; and
configure the NIC to,
bufler packet data for each of a plurality of packets

received from a network at a predefined network port of
the network interface in a receive builer in the MMIO

address space; and

copy packet data for each packet from the receive buller
to a recerve buller of a vINIC for a VM or container used
to host a first virtual network appliance defined for the

LSC using a Direct Memory Access (DMA) data
transier.

	Front Page
	Drawings
	Specification
	Claims

