12 United States Patent

Borne-Pons et al.

US010250394B1

US 10,250,394 B1
Apr. 2, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

CRYPTOLOGIC SELF-EXECUTING
BLOCKCHAIN EXPORT COMMITMENT

Applicant: Accenture Global Solutions Limited,
Dublin (IE)

Inventors: Hugo Borne-Pons, Juan-les-Pins (FR);
Giuseppe Giordano, Juan-les-Pins
(FR); Luca Schiatti, Juan-les-Pins
(FR); Naima Hamouma, Valbonne
(FR)

Assignee: ACCENTURE GLOBAL
SOLUTIONS LIMITED, Dublin (IE)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

Appl. No.: 16/136,700

Filed: Sep. 20, 2018

Int. CL

HO4L 9/32 (2006.01)

GO6F 17/30 (2006.01)

HO4L 9/06 (2006.01)

HO4L 9/08 (2006.01)

G060 20/38 (2012.01)

U.S. CL

CPC ... HO4L 9/3247 (2013.01); GO6F 17/30185

(2013.01); GO6F 1730194 (2013.01); GO6F
17/30283 (2013.01); G060 20/382 (2013.01);
HO4L 9/0643 (2013.01);

(Continued)

Field of Classification Search
CPC HO4L 9/32; HO4L 9/06; HO4L, 9/08; HO4L
9/3247; HO4L, 9/0819; HO4L, 9/0861;
HO4L 2209/38; HO4L 9/0643; GO6F
17/30; GO6F 17/30185; GO6F 17/30194:
GO6F 17/30283; G06Q 20/38; G06Q)

20/0643; G06Q 20/382
See application file for complete search history.

el T

- “Distributed ™ ~
4 Ladgar N\

/

/ 112
LEtockenaln
/ <<Parieipant> >
f Data Recaivar

—

'; ZFarticipanb> ‘\1 Y~ = Distributed Ledger™ ~
108 Data Fumisher | | o
\ /
/
<<Parficlpant>>
=]

—

102

(56) References Cited

U.S. PATENT DOCUMENTS

9/2016 Arnold et al.
6/2017 Androulaki

(Continued)

2016/0260169 Al

2017/0155515 AlL* GOO6F 21/64

ttttttttttttt

OTHER PUBLICATTONS

Mirko Boehm, “The Emerging Blockchain Innovation Landscape,”
dated Oct. 22, 2018, pp. 1-26, published by Open Invention Net-
work, Durham, NC.

(Continued)

Primary Examiner — Jayesh M Jhavern
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(37) ABSTRACT

A data furnisher may append, to a furnisher blockchain, an
interoperability smart contract comprising a cryptologic
committal. The cryptologic committal may include logic
configured to cause a data receiver to commit token data to
the recerver blockchain based on a pre-commit authoriza-
tion. The data furnisher may encrypt, based on a commuttal
key, a pre-commit authorization to transier token data stored
on the furnisher blockchain to the receiver blockchain. The
data furnisher may transmit the pre-commit authorization to
the data receiver. After transmission of the pre-commit
authorization, the data furmisher may receive a pre-commit
acknowledgement of the pre-commit authorization. The data
furmisher may lock the token data on the furnisher block-
chain in response to verification that the token data 1is
appended to the data receiver blockchain. The data furnisher
may send the predetermined committal key to the data
receiver to commit the token data to the data recerver

blockchain.

20 Claims, 11 Drawing Sheets

\ 104
\ i DY

\ 7 Distributed
Ledger \

<<Parlicipant>>
Data Receiver

<<Parlicipant>>

\-108 ! ~ P

| Data Fumisher ! ——

100

US 10,250,394 B1
Page 2

(52) U.S. CL
CPC ... HO4L 9/0819 (2013.01); HO4L 9/0861
(2013.01); HO4L 2209/38 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

2017/0243193 Al* 8/2017 Manian G06Q 20/3829
2017/0300978 Al 10/2017 Narasimhan et al.

2017/0372300 A1 12/2017 Dunlevy et al.

2018/0019879 Al 1/2018 Kravitz et al.

2018/0088928 Al* 3/2018 Smith HO4L 67/34
2018/0097635 Al 4/2018 Moses

2018/0204213 Al 7/2018 Zappier et al.

2018/0264347 Al* 9/2018 Tranccceevenn, G16H 50/20
2018/0285996 Al* 10/2018 Mac.ooeeeeenennnn, G06Q 50/184

OTHER PUBLICATIONS

Jon Wright et al., “Blockchain Innovation,” dated Oct. 19, 2018, pp.

1-4, published by Sterne Kessler, Washington, D.C.

Koen Lievens, “Examining Blockchain Inventions,” dated Oct. 22,
2018, pp. 1-7, published by the European Patent Office, Munich,
Germany.

Richard Bennett, “Scoping Roundtable for Blockchain,” dated Oct.
22,2018, pp. 1-2, published by the European Patent Oflice, Munich,
Germany.

“Blockchain,” dated Oct. 2018, pp. 1-12, published by Deutsche
Bank AG, Frankfurt, Germany.

“Interledger Architecture,” Interledger, Retrieved from Internet on
Aug. 27, 2018, pp. 1-8, published online by Interledger Team, URL.:
https://interledger.org/rfcs/000 1 -interledger-architecture/.

Jae Kwon et al., “A Network of Distributed Ledgers,” Cosmos,
dated Jul. 6, 2018, pp. 1-41, published online by Cosmos Network.
Notice of Allowance, and List of References, from U.S. Appl. No.
16/116,360, dated Dec. 17, 2018, pp. 1-15, U.S. Patent and Trade-
mark Oflice, Alexandria, VA.

Marieke Flament et al., “Blockchain Technology and Fields of
Application,” pp. 1-41, published by Circle Internet Financial
Limited.

Georg Weber, “Searching Blockchain Patents,” Furopean Patent
Oflice, dated Dec. 4, 2018, pp. 1-7, published by the European

Patent Office, Munich, Germany.

Yann Meniere, “The emerging blockchain patent landscape,” Euro-
pean Patent Ofhice, dated 4, 2018, pp. 1-10, published by the
European Patent Office, Munich, Germany.

Koen Lievens, “Examining Blockchain Inventions Based on our
established CII practice,” European Patent Oflice, dated Dec. 4,
2018, pp. 1-18, published by the Furopean Patent Oflice, Munich,
Germany.

Wang Xiny1, “How does CNIPA deal with Blockchain,” dated Dec.
2018, pp. 1-23, published by National Intellectual Property Admin-
istration, Hague, Netherlands.

Nobuyuki Taniguchi, “Evolution of Blockchain-related Patents in
Japan,” dated Dec. 4, 2018, pp. 1-15, published by Nakamura &
Partners, Tokyo, Japan.

* cited by examiner

201
001 -~

US 10,250,394 BI
O
Ll

/
/
/
/

- \
o T —
_M P 7 Dl [801 <quedioniedss
,_w /
2 /
2 [oLL 18AI808) BIE(]

—/ <<uedipneds>s
SN \ Jebpen
= N panqusg _ 7 \
3 ™S~ -
N o -ﬂ . 1411
s b0l \ i
z \ \

V0l \ Jabpea /
N Painauisig,

e -

U.S. Patent

US 10,250,394 Bl

¢ 9Old
001 J’
pad - TN ~ P - ST~ ~
Yo e \ ” ~
- / N / N
I / \ /
a / \ /
E / -
7 \ \
\
[
_
> A A ‘ | oLz
S \
e~ \ Jaysiuing BleCt
S \ T <uediopled>>
= \ p 801
N\ N 80¢ y, \ 90¢
J N\
™ ~ ..Im:v_._nu;.._mz ._mmmuml_ U@wjﬂ_bw_ﬂ\\ \ﬁ/ N . Y MJOMIBN ._mm_”u@l_ palnguisiq s

U.S. Patent

€ Ola

001 |
|
|
|
|
|
|

US 10,250,394 Bl

-
— ASY| [BRILILIOD
S
e
t L
> JusLLebpajMOUNOY JILUW0O-8ld
—
79
Jajlonuo)
EILILION 0 uoneziuoiyouAg Jaysiuing
o1boj0jdAIN

=\
m Ll 1aA1909Y eleQ (oUsInS BiEd
o
2-....
- " |
=3
< - |

- |

000000 _ UoOooo
cLe g ureyoxoolg “ 01¢ v uleyd 00|19
|

911G v 170
>— v0Cc ~ ¢0¢C —A

U.S. Patent

U.S. Patent Apr. 2,2019 Sheet 4 of 11 US 10,250,394 B1

<Furnisher>
START

Obtain an export smart contract.

402

404

Append the export smart contract to the furnisher blockchain

406

Send the export smart contract to the data receiver.

407

Send the export smart contract to the data receiver.

408

Recelve a pre-commit acknowledgement of the export smart
contract.

410

L ock the token data on the furnisher blockchain.

412

Send the predetermined key to the data receiver.

<Furnisher>
END

FIG. 4

G Old

001

US 10,250,394 Bl

= 805 oy 07

-~

=

Te

,_w JUsWaBpsMoUYOY

= 00-91

= 4O0I-81d

Jol0IU0D uonan.

N ¢ (0G UolRZIUCIYOUAS 18A1000Y oifo seysuel] | %007 0160

S 3801 Jaysiung ejeq
| 011 JBAI000Y Ble(10B1JU00 JIBWS Jodx3]

3 _-

S

e

!

0L¢ Vv Ul %o0ld

¥ 110
c0¢ A

g uteyoxooid

g 11 |

|
|
|
|
4X: “
|

U.S. Patent

U.S. Patent Apr. 2,2019 Sheet 6 of 11 US 10,250,394 B1
START
602
T

Append the export smart contract to the receiver
blockchain.

606
Send the export smart contract to the data -
furnisher.
608
Obtain the token data.
610
Receive a pre-lock acknowledgement.
612

Send a lock key to the data furnisher.
. . . 512

Commit the token data to the receiver blockchain.

END

FIG. 6

US 10,250,394 Bl

Sheet 7 of 11

Apr. 2,2019

U.S. Patent

18]j0JU0N 19}j0JJU0N
UONBZIUCIYOUAS UOIIBZIUOIYOUAS
a0y Il 807 jeysiuIng

01607 uoneziuoIyouAg

uononasuy yoo o1bojojdAln

01007 Jejsuel |

d__‘ JOAI809Y Ble(] ”

”

nnnnnnn

¢L¢ g ueynoolg

L 9Ol

Aoy [ERILWIOCD -
A8y Y007

— 40 A

IBjjoqjuoN I8jjouon
UONBZIUOIUOUAS H LIOIIBZIUOIYOUAS

Wi Jangoey || 907 19USIUIN

907 01007 UCREZIUOIYOUAS

Logonasu| %007 01bojoidAin

01007 Jejsuel |

[e]IWWo0 9160101dAIN

¥0¢ JORJJUOD JJBWwS Jiodx=

\ 801 sousiuing eleq /

DDDD@DD

Nw L WV ureyd yooig

US 10,250,394 Bl

Sheet 8 of 11

Apr. 2,2019

U.S. Patent

001

8 Ol

18[J0[UOD 18]j01U0N
UONBZIUOJUOUAS LUONBZIUOJYOUAS
1en2084 1 Q07 jeysiuIN

Z 01507 uolezIuoUoUAS

uononsu) yooyaibooydAn -

T e

01607 Joysueiy |..

.1
-
o

uononJisu) oo aibooidAn |

80¢

/
N\
R I
/.hw...nm._ PINGLISI(] 1~ v0z

Iiit

il L T
T

P i
e —

908

— T
T —
—_— e
——

.

08

JoJeJBUeL) 0B UON HeWIS

801

V IO0MSN

\. J8bpse7 penquisi|

.

—

._.l_.llill..l II.I.I-I

U.S. Patent Apr. 2,2019 Sheet 9 of 11 US 10,250,394 B1

START

Accessing a smart-contract factory. 902

Select parameters for export smart 903
contract.
, — 904
Generate export smart contract.
__ AN - ____~927
Append the export smari contract {o 905 Append the export smart contract to
furnisher blockchain recelver blockchain
906 Receivi it 928
_ . e eceiving an pre-commi
Generate a pre-commit authorization.
. — 908 930
Encrypt pre-commit authorization. Obtain the token data.
Jommunicate the encrypted pre- 910 _ # 032
commit authorization to the data Transmit pre-commit
receiver. acknowledgement
. 912 934
Communicate token data to the data Generating a pre-lock authorization.
receiver.
936
Receive pre-commit 914 Encrypt the pre-lock authorization.
acknowledgement
__ — 938
916 Communicate the pre-lock
, — authorization to the data furnisher.
Receive pre-lock authorization.
_ . 940
018 Receive the pre-lock
send pre-iock acknowledgement. acknowelagement _
' Send Lock Key
Receiving a lock key.
992 944
Unencrypt the cryptologic iock Receive committal key.
instruction.
- 946

924 Commit token data to receiver 4
Lock data on the furnisher blockchain

blockchain.
_ 926
Send the commitial key to the data
receiver,
END

FIG. 9

U.S. Patent Apr. 2,2019 Sheet 10 of 11 US 10,250,394 B1

<<Participant>> 1002

Participant service 41004

Transfer Initiator 1006

Transfer Validator 1008

Data Receiver 110
Smart Contract Factory 802

AN

100

FIG. 10

U.S. Patent Apr. 2,2019 Sheet 11 of 11 US 10,250,394 B1

System 100
Processor 1102
Memory 1104
<<Participant>> 1002

Participant service

Transfer Initiator 1006
Transfer Validator 1 008

MSP 112
Data Furnisher 108
Data Receiver 1

Smart Contract Factory 802

rran

FIG. 11

US 10,250,394 B1

1

CRYPTOLOGIC SELF-EXECUTING
BLOCKCHAIN EXPORT COMMITMENT

TECHNICAL FIELD

This disclosure relates to distributed ledger technology
and, 1n particular, to distributed ledger interoperabality.

BACKGROUND

A distributed ledger may include a consensus of replicated
and synchronized digital data across multiple nodes. Par-
ticipants of a distributed ledger may apply an agreed upon
protocol for, verilying, storing, and maintaining, and modi-
tying information stored in the distributed ledger. In many
examples, a distributed ledger may be implemented by way
of one or more blockchains implemented in a peer-to-peer
network. The unique protocol, technologies, and other
design considerations of a particular distributed ledger may
inhibit cohesive sharing, synchronization, and/or transfer-
ring of information with other distributed ledgers.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments may be better understood with refer-
ence to the following drawings and description. The com-
ponents 1n the figures are not necessarily to scale. Moreover,
in the figures, like-referenced numerals designate corre-
sponding parts throughout the different views.

FIG. 1 1llustrates a first example of an interoperable
cryptologic blockchain system:;

FIG. 2 illustrates a second example of an interoperable
cryptologic blockchain system:;

FI1G. 3 1llustrates a first example of the data furnisher 108
and data receiver for a system;

FI1G. 4 1llustrates a first flow diagram for example logic of
a system;

FIG. 5 illustrates a second example of a data furnisher and
a data receiver for a system;

FI1G. 6 1llustrates a second tlow diagram for example logic
ol a system;

FIG. 7 illustrates a third example of a data furnisher and
a data receiver for a system;

FIG. 8 illustrates an example of a smart contract factory
for a system;

FIG. 9 illustrates a third flow diagram for example logic
ol a system;

FIG. 10 1llustrates an example of an interoperable par-
ticipant of a distributed ledger technology network; and

FIG. 11 1llustrates an example of a system that includes a
processor and a memory.

DETAILED DESCRIPTION

A distributed ledger technology (DLT) may apply an
agreed upon protocol for interaction with a blockchain. The
unique protocol, technologies, and other design consider-
ations of a particular distributed ledger may inhibit cohesive
sharing, synchromization, and/or transierring of information
with other distributed ledgers and/or non-participants. In
some examples, sharing between distributed ledgers may
occur by a computing device becoming a participant of each
of the distributed ledgers. However, as more and more
distributed ledger technologies become ubiquitous among
various organizations, participation in multiple distributed
ledger networks to provide data sharing, transferring, and

10

15

20

25

30

35

40

45

50

55

60

65

2

synchronization between the distributed ledger networks
may become cumbersome, ineflicient, or otherwise undesir-
able.

Accordingly, there 1s disclosed digital systems and meth-
ods for cryptological blockchain interoperability. By way of
an 1introductory example, a data furnisher of a furnisher DLT
network may append, to a furnisher blockchain, an iterop-
crability smart contract comprising a cryptologic commaittal.
The cryptologic committal may include commit logic con-
figured to cause a data receiver to commit token data to the
receiver blockchain based on the pre-commit authorization.
The data furnisher may encrypt, based on a predetermined
committal key, a pre-commit authorization to transier token
data stored on the furnisher blockchain to the receiver
blockchain. The data furnisher may transmit the pre-commait
authorization to the data receiver. After transmission of the
pre-commit authorization, the data furnisher may receive a
pre-commit acknowledgement of the pre-commit authoriza-
tion. Responsive to the pre-commit acknowledgement, the
data furnisher may lock the token data on the furnisher
blockchain 1n response to verification that the token data 1s
appended to the recerver blockchain. Alternatively, the data
receiver may create and/or commit the token data to the
receiver blockchain in response to verification that the token
data 1s locked on the furnisher blockchain. The data fur-
nisher may send the predetermined committal key to the data
receiver. The data recetver may be configured to execute the
commit logic based on the pre-commit authorization unen-
crypted by the predetermined committal key and commit the
token data to the receiver blockchain based on the commait
logic.

In another aspect of the system and method described
heremn, a data receiver of a receiver DLT network may
receive an encrypted pre-commit authorization to transier
token data stored on a furnisher blockchain to a recerver
blockchain. The data receiver may access, from the receiver
blockchain, an interoperability smart contract comprising a
cryptologic committal. The cryptologic committal may
include commit logic configured to cause commaittal of the
token data to the receiver blockchain based on the pre-
commit authorization. The data receiver may generate the
token data. The data receiver may transmit a pre-commit
acknowledgement to a data furnisher in response to genera-
tion of the token data. After transmission of the pre-commit
authorization, the data recerver may receive a committal key
from the data furnisher, unencrypt the pre-commit authori-
zation, and commit the token data to the receiver blockchain
based on the unencrypted pre-commait authorization and the
cryptologic commuittal.

One example of a technical advancement achieved by the
systems and methods described herein may be that infor-
mation may be shared and/or exchanged between block-
chains on various DLT networks while compliance with the
DLT networks 1s maintained. The participants of each DLT
network may adhere to interoperability protocol(s) that
increases speed, security, and veracity of information shared
or transierred between various public or private DLT net-
works. For example, an interoperability smart contract may
provide cryptological instructions for committal locking
and/or transferring imformation between DLT networks.

Another technical advancement of the systems and meth-
ods described below may be that coupling of distributed
ledger technologies 1s minimized while cohesion between
distributed ledger technologies 1s maximized. For example,
participants of each of the DLT networks may validate
information exchanged between the DLT networks without
a gateway node between the DLT Networks and a smart

US 10,250,394 B1

3

contract may arbitrate communication between DLTs. Infor-
mation may be shared and/or exchanged between block-
chains of the DLT networks even when the rules, protocols,
and/or technology of the each of the DLT networks is
different.

An additional technical advancement achieved by the
system and methods described below 1s that token data may
be synchronously transferred between two independent DLT
networks 1 a manner that increases network efliciency,
decreases processing time, and decreases memory require-
ments. For example, participants of multiple DLT networks
may access a common set of criteria for exporting informa-
tion that reduces the overall amount of network communi-
cations, cross validation, network traflic, and/or processing
time. Additional benefits, efliciencies, and 1mprovements
over existing market solutions are made evident in the
systems and methods described below.

FIG. 1 1llustrates a first example of an interoperable
cryptologic blockchain system 100. The system 100 may
include one or more blockchain participants 102 that par-
ticipate 1n a DLT network 104. The blockchain participants
102 may include full or partial nodes of the DLT network
104. For example, each of the blockchain participants 102
may store and/or iteract with a complete or partial copy of
a blockchain 106 compliant with a DLT. The DLT network
104 may include a combination of the blockchain partici-
pants 102 that respectively communicate with a locally
stored blockchain via a protocol for the DLT.

The DLT network may include the participants of the DLT
network that access a blockchain 106, or blockchains. The
blockchain 106 may include datablocks 107 that are linked
according to a cryptography. The arrangement of data blocks
and associations between information stored in the data
blocks are established by a DLIT. For example, the block-
chain 106 may provide a growing, shared digital data tlow,
which serves as the source of truth between the blockchain
participants 102. Depending on the DLT, the datablocks 107
of the blockchain 106 may include a genesis datablock that
1s the initial datablock of the blockchain 106. Successive
datablocks may be appended to the blockchain 106 over
time. The blockchain 106 may provide a chronological
ledger of information. One or more of the successive data-
blocks may include a hash of a previous datablock. Modi-
fications to one or more datablocks in the blockchain 106
may cause inconsistencies in the hashed information stored
in the successive datablocks. The inconsistencies may be
detected and the blockchain participants 102 of the DLT
network 104 may prevent modification to previously
appended or existing information in the blockchain 106. In
some distributed ledgers, modifications to the blockchain
106 may be prohibited unless a majority, or some other
predefined number, of the blockchain participants 102 con-
sent to the modifications.

In some examples, the blockchain 106 may include token
data. As described herein, token data may refer to asset data
stored on a blockchain. Token data may have various types.
For example, token data may include native assets, pro-
grammed assets and/or other objects types applicable 1n
DLT. Native assets (such as, crypto-currency coins, hard
tokens, native token, and/or other spendable assets) may be
compliant with a particular distributed ledger.

Programmed assets may include code, scripts, smart con-
tracts, or other non-spendable and/or non-native token data.
Programmed assets may be replicated and their state can be
kept consistent where the underlying logic (e.g., in the case
of code or scripts) 1s independent resources or environment
tactors particularized to a specific DLI. For example, code

10

15

20

25

30

35

40

45

50

55

60

65

4

written 1n a language native to a first DT may be transterred
to a second DLT with a second, different native language
where the logical structure of the code may be translated to
the second native language or emulated within the environ-
ment of the second DLT.

Additionally or alternatively, programmed assets may be
transierable where a particular order of events does not
aflect the state of the programmed asset. DLTs may resolve
disagreements 1n event sequences through consensus. How-
ever, consensus on one DLT may be independent of con-
sensus on a second. Accordingly, different DL'Ts may not
necessarily agree upon a common order for the same events
because the DLTs may represent independent consensus
regions.

Therefore, for an order-dependent programmed
asset, the state of the asset on a first DT may not necessarily
inform the proper state for the order-dependent programmed
asset on another DLT. In some cases, a portion of an
order-dependent programmed asset may be order indepen-
dent.

At least one of the blockchain participants 102 may
include a data furnisher 108. The data furnisher 108 may
furmish particular information stored 1n the blockchain 106
to one or more recervers external to the DLT network 104.
In some examples, the data furnisher 108 may be authorized
to access and/or manage particular information stored in the
blockchain 106. Alternatively or in addition, the data fur-
nisher 108 may provide a human or non-human entity with
access to the DLT network 104. In some examples, the DLT
network 104 may include one data furnisher. Alternatively,
the DLT network 104 may include multiple data furnishers.

The data recerver 110 may include a non-participant of the
DLT network 104. Alternatively or in addition, the data
receiver 110 may include a participant of a separate DLT
network (See FIG. 2 for an example). Unlike the data
tfurmisher 108, the data receiver 110 may not have access to
the blockchain 106 for the DLT network 104. The data
receiver 110 may receirve the token data stored in the
blockchain 106 from one or more blockchain participants
102, such as the data furnisher 108.

In some examples, at least one of the blockchain partici-
pants 102 may further include a membership service pro-
vider 112. The membership service provider 112 may pro-
vide access to the identities and cryptological information
associated with the blockchain participants 102 of the DLT
network 104. Alternatively or in addition, the membership
service provider 112 may provide the i1dentities of partici-
pants and non-participants of the DLT network 104. For
example, the membership service provider 112 may receive
identification information and public key information pro-
vided by the data furnisher 108 and/or the data receiver 110.

The membership service provider 112 may include a
membership service repository 114. The membership ser-
vice repository 114 may include a database or memory that
stores the 1dentities and cryptological information associated
with participants and non-participants of the DLT network
104. For example, the membership service repository 114
may include associations between the identities and the
cryptological information. The identities may include IP
addresses, MAC addresses, host names, user names, and/or
any other information that identifies a participant or non-
participant of the DLT network 104. The cryptological
information may include any information that i1s used to
ensure the authenticity of a digital signature. For example,
the cryptological information may include a public key that
corresponds to a private key that i1s applied to generate a
digital signature.

US 10,250,394 B1

S

In some examples, the data furnisher 108 and/or the data
receiver 110 may communicate with the membership service
provider 112 to receive the public key of the data furnisher
108 or multiple data furnishers. In some examples, the data
receiver 110 may submit a message or query to the mem-
bership service provider 112. After receiving one or more
public key, the data receiver 110 may veniy the truth of
token data shared by or exported from the DLT network 104.
For example, the data receiver 110 may receirve authoriza-
tion mnformation from the data furnisher 108 (or some other
participant of the DLT network 104. The authorization
information may include a digital signature corresponding to
the token data. The digital signature may include a certifi-
cation that the data furnisher 108 and/or data receiver 110
consents to a particular action, such as exporting token data.
The signer of the digital signature may be confirmed based
on the public key that 1s paired with the private key used to
sign the signature.

In many circumstances, 1t may be desirable to share token
data stored 1n the blockchain 106 with external entities, such
as the data receiver 110, without adding participants to the
DLT network 104. In the example illustrated in FIG. 1,
sharing and/or exporting information to/with the data
receiver 110 presents technical challenges. Among other
challenges described here, the technical challenges may
include the ability for the data receiver 110 to verily that the
token data 1s valid and authorized for sharing/export, pre-
venting double spend between the blockchain participants
102 of the DLT network 104 and non-participants, and
ensuring synchronization of the token data between partici-
pants of the DLT network 104 and non-participants of the
DLT network 104.

FIG. 2 illustrates a second example of the interoperable

cryptologic blockchain system 100. In some examples, the
system 100 may include a furnisher DLT network 202 and/or
a recerver DLT network 204. The furnisher DLT network
202 and/or the receiver DLT network 204 may each be
examples of the DLT network 104 illustrated 1n FIG. 1. For
case ol explanation, the furmisher DLT network 202 1is
referred to herein as a DLT network with a participant that
exports token data to the receiver DLT network 204. In other
examples, the furnisher DLT network 202 may receive token
data exported from the receiver DLT network 204.

The furnisher DLT network 202 may include a furnisher
participant. The furnisher participant 206 as used herein may
refer to at least one of the participants 102 (FIG. 1) that
includes and/or accesses the data furnisher 108. The receiver
DLT network 204 may include a receiver participant 208.
The receiver participant may include an example of a
participant that includes and/or accesses the data receiver
110. The furnisher DLT network 202 is 1llustrated in FIG. 2
with one participant, but the furnisher DLT network 202
may, in other examples, include multiple participants that
include respective data furnishers. Likewise, the receiver
DLT network 204 may include multiple participants that
include respective data receivers.

The data furnisher 108 may store and/or access a furnisher
blockchain 210. The data receiver 110 may store and/or
access a receiver blockchain 212. The furnisher blockchain
210 and the receiver blockchain 212 may each be managed
and maintained according to the respective DLT for each
DLT network. The DLT for the furnisher DLT network 202
may be different than the DLT for the receiver DLT network
204.

The data furnisher 108 may share and/or export token data
with the data receiver 110. In some examples, multiple
participants of the furnisher DLT network 202 may have an

10

15

20

25

30

35

40

45

50

55

60

65

6

interest 1n the token data. The data receiver 110 may
determine whether all data furnishers have agreed to share or
export the token data from the furnisher DLT network 202.
The data receiver 110 and the data furnisher 108 may apply
cryptological security to ensure the secure, authorized, and
synchronized transierring of information between DLT net-
works. For example, the data furnisher 108 and/or other
participants of the furnisher DLT network 202 may each
generate a digital signature based on a private key and public
key patr.

In some examples, the one or more participants of the
tfurnisher DLT network 202 may include a furnisher Mem-
bership Service Provider (MSP). Alternatively or 1n addi-
tion, one or more participants ol the receiver DLT may
include a recerver MSP. The furnisher MSP and the receiver
MSP may exchange the public keys and/or 1dentities of the
participants of each respective DLT network. The furnisher
MSP may store the public keys and/or 1dentities of partici-
pants of the furnisher DLT network 202 and the receiver
DLT network 204. The recetver MSP may or store the public
keys and/or identities of participants of the receiver DLT
network 204 and the furnisher DLT network 202.

In some examples, the furmisher DLT network 202 and/or
the recetver DLT network 204 may apply a consensus
protocol to reach a consensus regarding authorized sharing
and/or authorized exporting of information between DLT
networks. For example, multiple participants of the furnisher
DLT network 202 may have an interest in data being shared
or exported from the furnisher DLT network 202. Alterna-
tively or in addition, multiple participants of the receiver
DLT network 204 may have an interest 1in data received by
the receiver DLT network 204. In an example, the partici-
pants of the furmisher DLT network 202 may include, for
example, branches of a bank that wish to transfer digital
currency. The participants of the receiver DLT network 204
may 1include participants that wish to receive digital cur-
rency from the furnisher DLT network 202. The bank
branches of the furnisher DLT network 202 may reach
consensus before transferring the digital currency to one or
more bank branches of the receiver DLT network 204.
Alternatively or in addition, the bank branches of the
receiver DLT network 204 may wish to reach consensus on
receiving the digital currency.

In some examples, 1t may be desired to ensure that the
token data 1s successiully and properly re-created by the
receiver DLT before the token data 1s locked on the furnisher
blockchain. Alternatively or 1n addition, consensus among
participants of the furnisher DLT network 202 and partici-
pants 1n the receiver DLT network 204 may be a precondi-
tion to transierring token data between DLT networks.
Accordingly, the committing the token data to the receiver
blockchain 212 and locking the token data on the furnisher
blockchain 210 may be synchronized and performed accord-
ing to an interoperability smart contract 304.

FIG. 3 illustrates a first example of the data furnisher 108
and data receiver 110. The data turnisher 108 may have
access to the furnisher blockchain 210 and the data receiver
110 may have access to the recerver blockchain 212. The
data furnisher 108 may export token data to the data receiver
110. In some examples, exportation ol token data may
involve token data on the furnisher blockchain 210 and/or
committing the token data to the recerver blockchain 212. In
many examples, various preconditions, authorizations, and
data manipulation may occur before the token data may be
locked on the furnisher blockchain 210 and/or commutted to
the recerver blockchain 212. Moreover, locking the token

US 10,250,394 B1

7

data without committing the token data, or vice versa, may
result 1n race conditions and/or a loss of ledger history for
the token data.

The data furnisher 108 may include a furnisher synchro-
nization controller (FSC) 302. The FSC 302 may coordinate
transier and exportation of token data to a remote block-
chain. For example, the FSC 302 may communicate token
data stored on the furmisher blockchain 210 to the data
receiver 110 for storage on the receirver blockchain 212.
Alternatively or in addition, the FSC 302 may determine
when a successtul transier 1s completed and lock the token
data on the furmisher blockchain 210.

Locking the token data may refer to adding a data block
to the furnisher blockchain 210 i1n accordance with the
turmisher DLT. The datablock may indicate that the token
data 1s locked. The data turnisher 108, and/or other partici-
pants of the furnisher DLT network 202, may restrict certain
information from being appended to the furmisher block-
chain 210 1n response to the token data being locked.
Alternatively or 1n addition, the participants of the furnisher
DLT network 202 may invalidate additional datablocks
comprising update information corresponding to the token
data.

The FSC 302 may access an interoperability smart con-
tract 304 to determine the criteria, conditions, and param-
eters that dictate exportation of token data between DLT
networks. The interoperability smart contract 304 may
include an authorization to transfer data stored on the
turnisher blockchain 210 according to a protocol for asyn-
chronous communication between the furnisher DLT net-
work 202, the recerver DLT network 204, and/or other DLT
networks. The interoperability smart contract 304 may
include terms, conditions, logic, and other information that
the data furnisher 108 and the data receiver 110 agree to. In
some examples, the interoperability smart contract 304 may
include identifiers corresponding to the token data in the
turmisher blockchain 210. Alternatively or in addition, the
interoperability smart contract 304 may include identifiers of
one or more data furnisher and/or one or more data receiver
110 that consent to the export.

In some examples, the interoperability smart contract 304
may include a cryptologic committal 306. The cryptologic
committal 306 may include commit logic configured to
cause the data recerver 110 to commiut the data to the receiver
blockchain 212. In general, token data may be considered
committed when the token data 1s appended to the receiver
blockchain 212. Alternatively or 1n addition, token data may
be considered committed to the receiver blockchain 212
when the token data 1s appended to the receiver blockchain
212 and after ownership of the token data 1s recorded on the
receiver blockchain 212. For example, the token data may be
created on the receiver blockchain 212 but not considered
committed until a commit record 1s added to the receiver
blockchain 212. The commit record may i1dentify the par-
ticipants, DLT networks, token data, and/or any other infor-
mation that records the transfer event.

The interoperability smart contract 304 may further
include transfer logic 308. The transier logic 308 may
include logic configured to cause the data receiver 110 to
receive, generate, and/or append the token data to the
receiver blockchain 212. For example, the transfer logic 308
may include instructions to require or validate information
received by the data receiver 110. In some examples, the
transfer logic 108 may determine whether, according to
predetermined rules, valid token data 1s received by the data
receiver. Alternatively or in addition, the transfer logic 308
may cause the data receiver 110 to re-create the token data

10

15

20

25

30

35

40

45

50

55

60

65

8

in a manner that 1s compliant with the receiver DLT. For
example, the receiver DT may impose a protocol that
defines data structure and rules for communicating, updat-
ing, and/or interacting with the receiver blockchain 212. The
transter logic 308 may re-generate the token data into a new
format that retains the same information, but organized for
compliance with the recerver DLT. For example, the transfer
logic may include or define a data structure. The data
structure may organize information in a format expected by
the recerver DLT. The data furnisher 108 may recreate the
token data based on the transfer logic prior to sending the
data to the data receiver. Alternatively, the data receiver may
recreate the data based on the transier logic after receiving,
the token data. In some examples, the transfer logic 308 may
append the token data to the receiver blockchain 212 for
compliance with the receiver DLT.

The FSC 302 may receive a pre-commit acknowledge-
ment 310. The pre-commit acknowledgement 310 may
include a verification that the token data was successiully
received and/or generated by the data receiver 110. Alter-
natively or in addition, the pre-commit acknowledgement
310 may indicate that the token data was successiully
appended to the receiver blockchain 212. In some examples,
the pre-commit acknowledgement 310 may include digital
signatures signed by one or more data receivers. For
example, the one or more data receiver 110 may be identified
in the interoperability smart contract 304. The digital sig-
natures may verily that the data 1s properly re-generated
and/or added to the recerver blockchain 212 1n compliance
with the receiver DLT and/or the criteria of the interoper-
ability smart contract 304.

To synchronize the locking and committal of the token
data transferred between DLT networks, the FSC 302 may
encrypt the interoperability smart contract 304, or portions
thereol, such that the data receiver 110 1s mitially receives
the interoperability smart contract 304 without the ability to
perform the commit according to the commuttal logic. Alter-
natively or in addition, the FSC 302 may encrypt informa-
tion that the interoperability smart contract 304 accesses to
perform the committal. For example, the FSC 302 may
encrypt the cryptological committal, other portions of the
interoperability smart contract 304, or information provided
to the interoperability smart contract 304 based on a hash
function and a committal key 312. In response to receipt of
the pre-commit acknowledgement 310, the FSC 302 may
communicate the committal key to the data receiver 110.
The data recerver 110 may decrypt the interoperability smart
contract 304, or other authorization provided to the interop-
crability smart contract 304, and perform the committal
according the commuittal logic.

FIG. 4 1llustrates a first flow diagram for example logic of
the system 100. The FSC 302 may obtain an interoperability
smart contract 304 (402). The interoperability smart contract
304 may include the cryptologic commaittal 306, as previ-
ously discussed 1n reference to FIG. 3. The interoperability
smart contract 304 may include commit logic configured to
cause the data receiver 110 to commit the token data to the
receiver blockchain 212. The commit logic and/or the
interoperability smart contract 304 may be encrypted based
on a predetermined committal key 312.

The FSC 302 may append the interoperability smart
contract 304 to the furmisher blockchain 210 (404). For
example, the FSC 302 may add a datablock to the furnisher
blockchain 210 that includes the iteroperability smart con-
tract 304. The datablock may further include a hash of a
previous datablock stored on the blockchain.

US 10,250,394 B1

9

The FSC 302 may send the interoperability smart contract
304 to the data recerver (406). For example, the FSC 302
may send the interoperability smart contract 304 to the data
receiver 110 and/or another participant of the receiver DLT
network 204 (407). In some examples, the FSC 302 may
send the token data with the interoperability smart contract
304. Alternatively, the transfer logic 308 of the interoper-
ability smart contract 304 may include 1nstructions config-
ured to regenerate the token data.

The FSC 302 may receive the pre-commit acknowledg-
ment of the interoperability smart contract 304 (408). In
response to the pre-commit acknowledgement, the FSC 302
may lock the data on the furnisher blockchain 210 (410). The
FSC 302 may send the committal key 312 to the data
receiver 110, or some other participant of the recerver DLT
network 204 (412). As described 1n reference to FIGS. 5-6,
the data receiver 110 may unencrypt the cryptological com-
mittal and perform the commuttal in response to receipt of
the committal key 312.

FIG. 5 illustrates a second example of the data furnisher
108 and data recerver 110. The data receiver 110 may
include a receiver synchromzation controller (RSC) 502.
The RSC 502 may coordinate transfer and importation of
token data from a remote blockchain. For example, the RSC
502 may receive token data stored on the furnisher block-
chain 210 from the data furnisher 108 for storage on the
receiver blockchain 212. Alternatively or in addition, the
RSC 502 may determine when a successiul transfer is
completed and commit the token data to the receiver block-
chain 212.

In some examples, the interoperability smart contract 304
may include a cryptologic lock instruction 504. The cryp-
tologic lock instruction 504 may be included 1n the export
contract 304 in addition to, or in alternative to, the crypto-
logic committal 306 described 1n FIG. 3. The cryptologic
lock struction 504 may include lock logic configured to
cause the data furnisher 108 to lock the token data on the
turmisher blockchain 210.

In some examples, the interoperability smart contract 304
and/or the recetver DLT may include certain pre-conditions
that define when and/or how token data may be committed
to the receiver blockchain 212. The RSC 502 may receive a
pre-lock acknowledgment 506. The pre-lock acknowledg-
ment 506 may include a venfication that various precondi-
tions for committing the token data to the receiver block-
chain 212 have been satisfied according to the
interoperability smart contract 304. Alternatively or in addi-
tion, the pre-lock acknowledgement may indicate that the
data furnisher 108 1s prepared to lock the token data on the
blockchain. For example, the pre-lock acknowledgement
may indicate that one or more data furnishers of the fur-
nisher DLT network 202 have reached consensus that the
token data was successtully recreated and/or generated by
the data receiver 110. Alternatively or in addition, the
pre-lock acknowledgement may indicate that the token data
that the data furnisher 108 acknowledges that the DLT
network may assume ownership of the token data. In some
examples, the pre-lock acknowledgement may include digi-
tal signatures signed by one or more data furnisher 108. For
examples, the one or more data furnisher 108 may be
identified in the interoperability smart contract 304. The
digital signatures may verily that the data furnishers agree to
lock the token data on the furnisher blockchain 210.

The RSC 502 may encrypt the cryptologic lock instruc-
tion 504 such that the data furnmisher 108 receives the
cryptologic lock instruction 504 without the 1nitial ability to
perform the lock according to the lock 1nstruction 504 and/or

10

15

20

25

30

35

40

45

50

55

60

65

10

the interoperability smart contract 304. For example, the
RSC 502 may encrypt the cryptologic lock instruction 504,

and/or other portions of the interoperability smart contract
304, based on a hash function and a lock key 3508. In
response to receipt of the pre-lock acknowledgement 506,

the FSC 302 may communicate the lock key 508 to the data
furmisher 108. The data furnisher 108 may decrypt the
cryptologic logic 1nstruction based on the lock key 508.
FIG. 6 illustrates a second flow diagram for example logic
of the system 100. The RSC 502 may obtain the interoper-
ability smart contract 304 (602). For example, the RSC 502

may receive the interoperability smart contract 304 from the
data furnisher 108. Alternatively or in addition, the RSC 502
may receive the interoperability smart contract 304 from
some other source and then communicate the iteroperabil-
ity smart contract 304 to the data furnisher 108. In some
examples, the interoperability smart contract 304 may have
been previously appended to the receiver blockchain 212,
and the RSC 3502 may obtain the interoperability smart
contract 304 from the receiver blockchain 212.

The RSC 502 may append the interoperability smart
contract 304 to the receiver blockchain 212 (604). For
example, the RSC 502 may append a datablock to the
receiver blockchain 212 that includes the interoperability
smart contract 304 and a hash to a previous datablock. In
some examples, the RSC 502 may determine whether vari-
ous participants of the recerver DLT network 204 consent to
the export. For example, the interoperability smart contract
304 may i1dentily various authorizing participants of the
receiver DLT network 204. The RSC 502 may determine
whether the 1dentified participants consent to the export. For
example, the RSC 502 may obtain digital signatures corre-
sponding to one or more participants that consent to the
interoperability smart contract 304 and append the digital
signatures to the receiver blockchain 212.

The RSC 502 may send the interoperability smart contract
to the data furnisher 108 (606). Alternatively or 1n addition,
the RSC 502 may obtain the token data (608). For example,
the transier logic 308 included in the interoperability smart
contract 304 may have logic for validating, generating,
and/or committing the token data, as discussed 1n reference
to FIG. 3. The RSC 3502 may execute and/or perform the
transter logic 308 to generate or recreate the token data. In
other examples, the data furnisher 108 may communicate
the token data to the RSC according to the transfer logic 308
of the interoperability smart contract 304.

The RSC 502 may receive the pre-lock acknowledgement
(610). In response to receipt of the pre-lock acknowledg-
ment 506, the RSC 502 may determine whether the
acknowledgement complies with the interoperability smart
contract 304. For example, the RSC 502 may determine
whether one or more participants of the furnisher DLT have
indicated a consensus to lock the token based on participant

identifiers included i1n the interoperability smart contract
304.

The RSC 502 may send the lock key 508 to the data
furnmisher 108 (612). The lock key 508 may provide a key for
locking the token data based on the cryptologic lock nstruc-
tion 504. For example, the cryptologic lock instruction 504
may be unencrypted based on the lock key 508. In some
examples, the RSC 502 may further receive verification that
the token data was locked in accordance with the lock
instruction 504. For example, the RSC 502 may receive
digital signatures from one or more data furnishers that
agree the token data i1s properly locked on the furnisher

blockchain 210.

US 10,250,394 B1

11

The RSC 502 may commit the token data to the receiver
blockchain 212 (614). For example, the RSC 502 may

append the token data or committal information to the
recerver blockchain 212, as discussed 1n reference to FIG. 3.
In other examples, the data receiver may wait to create the
token data until after verification that the token data 1s
locked on the furmisher blockchain. For example, creating
the token data may and committing may involve creating the
token data on the receive blockchain.

FI1G. 7 1llustrates a third example of the data furnisher 108
and data receiver 110. The interoperability smart contract
304 may be recetved by participants of respective DLT
networks to facilitate exportation of token data between the
respective DLT networks. For example, the data furnisher
108 and the data receiver 110 may receive the interoper-
ability smart contract 304. The interoperability smart con-
tract 304 may be appended to the furnisher blockchain 210
and the receiver blockchain 212 so that participants of the
respective DLT networks may access and consent to com-
plhiance with the interoperability smart contract. The data
turmisher 108 and/or the data recerver 110 may access the
interoperability smart contract for logic, parameters, and
other information that dictates how to export the token data.

The cryptologic commaittal 306 of the interoperability
smart contract 304 may commit the token data to a target
blockchain based on one or more authorizations provided by
the furnisher DLT network 202. For example, the crypto-
logic commuittal 306 may cause the data receiver 110 to
commit the token data to the receiver blockchain 212 based
on a pre-commit authorization 702 provided to the data
receiver 110 by the data furnisher 108.

Alternatively or in addition, cryptologic lock 1nstruction
504 of the interoperability smart contract 304 may cause the
data furnisher 108 to lock the token data in response to
receipt a pre-lock authorization 704 provided by the receiver
DLT network 204. For example, the cryptologic lock
istruction 504 may cause the RSC 502 to lock the token
data in response to receipt of the digital signatures of one or
more data receiver 110 that agree to import the token data or
that agree the furnisher DLT 1s complying with the mterop-
erability smart contract 304.

In some examples, asynchronous exchange of information
between the data receiver 110, the data furnisher 108, and/or
other participants may be coordinated based on synchroni-
zation logic 706. The synchronization logic 706 may include
rules, criteria, executable 1nstructions, and other parameters
that coordinate the transfer of information between the data
turmisher 108 and the data receiver 110. The synchronization
logic 706 may define the timing of when the pre-commiut
authorization 702, the token data, the pre-commit acknowl-
edgement, the pre-lock authorization 704, the pre-lock
acknowledgement, the lock key, and/or the commuttal key
are exchanged between the data furnisher and the data
receiver.

The data furnisher 108 and the data receiver 110 may
communicate with each other according the synchronization
logic 706. For example, the synchronization logic 706 may
define the timing and conditions 1 which the pre-commiut
authorization 702, the token data, the pre-commit acknowl-
edgment 310, the pre-lock authorization 704, the pre-lock
acknowledgment 506, the lock key 508, and/or the commut-
tal key 312 should be exchanged. In one example, the
synchronization logic 706 may specily that the commuttal
key 312 should not be communicated until the token data 1s
locked on the furnisher blockchain. In another example, the
synchronization logic 706 may specily that the commuittal

10

15

20

25

30

35

40

45

50

55

60

65

12

should not occur until after lock key 508 1s sent and/or
confirmation that the token data locked has been received.

In some examples, the synchronization logic 706 may
include the FSC 302, the RSC 502, and/or other examples of
synchronization controllers. Accordingly, the interoperabil-
ity smart contract 304 may be custom tailored for interop-
eration between two or more DLT networks based on the
synchronization logic 706, the transfer logic 308, the cryp-
tologic commuttal 306, the cryptologic lock instruction 504,
and/or any other parameters, criteria, and/or logic included
in the iteroperability smart contract.

FIG. 8 1illustrates an example of a smart contract factory
802 for the system 100. The smart contract factory 802 may
generate the interoperability smart contract 304 tailored with
logic, mstruction, parameters, and other information that 1s
compliant with a particular DLT or multiple DLTs. For
example, the furnisher DLT network 202 and the receiver
DLT network 204 may implement differing DL Ts. The smart
contract factory 802 may generate the cryptologic committal
306, the transter logic 308, the cryptologic lock instruction
504, and/or the synchronization logic 706, the FSC 302
and/or the RSC 502 1n a manner according to the furnisher
DLT and the receiver DLI. Accordingly, the smart contract
factory 802 may custom generate the interoperability smart
contract 304, according to the DLTs mvolved 1n interopera-
tion and/or the underlying token data exported between DLT
networks.

The smart contract factory 802 may include a DLT
repository 804. The DLT repository 804 may include various
sets ol logic, rules, criteria, and/or parameters that are
compliant with the respective DLTs. For example, the DLT
repository may include a table, or some other data structure,
that associates the cryptologic committal 306, the lock
instruction 504, the transter logic 308, and/or the synchro-
nization logic 706 with one or more DLT 1dentifiers.

The smart contract factory may further include an interop-
crability smart contract (ESC) generator 806. The ESC
generator 806 may access the DLT repository 804 to gen-
erate custom tailored interoperability smart contracts. For
example, the ESC generator 806 may receive DLT 1dent-
ifier(s), or other identifying parameters that identify of the
tfurmisher DLT and/or the receiver DLT. The ESC generator
806 may select logic, parameters, criteria, and other infor-
mation from the DLT repository 804 based on the 1dentify-
ing parameters.

In some examples, the DLT repository 804 may store a
plurality of cryptologic committals that are respectively
compliant with various DLTs. Alternatively or in addition,
the DLT repository 804 may store a plurality of lock
instructions, transier logic, and/or synchromization logic
respectively compliant with the various DLT networks. The
cryptologic committals, the lock instructions, and/or the

transier logic may be associated in the DLT repository with
DLT i1dentifiers.

The ESC generator 806 may access the DLT repository to
build and/or compile the interoperability smart contract 304.
The interoperability smart contract 304 may include logic
that 1s compliant with the furnisher DLT and/or the receiver
DLT. The ESC generator 806 may recerve an identifier of the
furnisher DLT and/or an identifier of the receiver DLT. The
ESC generator 806 select, from the smart contract reposi-
tory, the cryptologic committal 306 associated with the
identifier of the receiver DLT. The ESC generator 806 may
select the cryptologic lock instruction 504 associated with
the furnisher DLT. The ESC generator 806 may select the

transfer logic 308 associated with the identifier of the
turmisher DLT and/or the receiver DLT. The ESC generator

US 10,250,394 B1

13

806 may select the synchronization logic 706 associated
with the i1dentifier of the furnisher DLT and/or the receiver
DLT. The ESC generator 806 may generate the interoper-
ability smart contract 304 with logic that interacts with the
data receiver 110, the data furnisher 108, the receiver
blockchain 212 and/or the furnisher blockchain 210 accord-
ing to the recerver DLT and the furmisher DLT, respectively.

The ESC generator 806 may be included in or accessible
to the data furnisher 108 and/or the data receirver 110. For
example, the data furnisher 108 may generate the interop-
erability smart contract 304 based on the ESC generator 806
and communicate the interoperability smart contract 304 to
the data receiver 110. Alternatively, the data receiver 110
may generate the interoperability smart contract 304 based
on the ESC generator 806 and communicate the interoper-
ability smart contract 304 to the data furnisher 108. In other
examples, some other entity or participant may generate the
interoperability smart contract 304 based on ESC generator
806 and communicate the interoperability smart contract
304 to the data furnisher 108 and/or the data receiver 110.

FI1G. 9 illustrates a third flow diagram for example logic
of the system 100. Reference to FIGS. 7 and 8 are made
throughout the discussion of the operations for the example
logic. Operations 902-904 are related to generation of the
interoperability smart contract 304. Operations 905-926
refer to operations performed by the data furnisher accord-
ing the interoperability smart contract 304. Operations 927-
946 refer to operations performed by the data receiver 110
according to the interoperability smart contract 304.

Referring to operations 902-904, the data furnisher 108
and/or the data receiver 110 may access the smart contract
factory 802 (902). The data furnisher 108 and/or the data
receiver 110 may select the parameters for the interoper-
ability smart contract 304 (903). The smart contract factory
802 may generate the interoperability smart contract 304
(904).

For example, the parameters may include the cryptologic
committal 306, the transfer logic 308, the cryptologic lock
istruction 504, and/or the synchronization logic 706, the
FSC 302 and/or the RSC 502. The smart contract factory 802
may receirve an identifier of the furnisher DLT and/or an
identifier of the receiver DLT. The ESC generator 806 may
select, from the DLT repository 804, the cryptologic com-
mittal 306, the transter logic 308, the cryptologic lock
instruction 504, and/or the synchronization logic 706 based
on the furnisher DLT identifier and/or the receiver DLT
identifier. The smart contract factory 802 may compile the
interoperability smart contract 304 such that the interoper-
ability smart contract 304 includes the cryptologic commiut-
tal 306, the transfer logic 308, the cryptologic lock mnstruc-
tion 504, and/or the synchronization logic 706.

The data furnisher 108 and/or the data receiver 110 may
perform the respective operations according to the iterop-
erability smart contract 304. For example, the iteroperabil-
ity smart contract 304 may govern synchronized communi-
cations between the furnisher DLT and the receiver DLT.

Referring to operations 905-926, the data furmisher 108
may append the interoperability smart contract 304 to the
furmisher blockchain 210 (9035). For example, the data
furmisher 108 may append a datablock to the furnisher
blockchain 210 that includes the iteroperability smart con-
tract 304 and a hash to a previous datablock. The data
furmisher may generate a pre-commit authorization 702 to
the Turnisher blockchain 210 (906). The pre-commit autho-
rization 702 may include an authorization to export token
data stored on the furnisher blockchain 210 to the receiver
blockchain 212. Alternatively or in addition, the pre-commit

10

15

20

25

30

35

40

45

50

55

60

65

14

authorization 702 may include proofs that various condi-
tions, criteria, and rules defined 1n the iteroperability smart
contract 304 are satisfied. For example, the pre-commit
authorization 702 may include the digital signatures of one
or more participant of the furnisher DLT network 202 that
agree to export the token data. The data furnisher may
append a datablock to the furnisher blockchain 210 that
comprises the pre-commit authorization 702 and a hash of a
previous datablock.

-

The data furnisher 108 may encrypt the pre-commit
authorization 702 based on the commuittal key 312 (908).
Alternatively or i addition, the cryptologic commuittal 306
included 1n the interoperability smart contract 304 may be
previously encrypted based on the committal key 312, as
discussed 1n reference to FIGS. 3 and 4. The data furnisher

108 may communicate the encrypted pre-commit authori-
zation 702 to the data receiver 110 (910).

The data furnisher 108 may communicate the token data
to the data receiver 110 (912). The data furnisher 108 may
receive, from the data receiver 110, or some other participant
of the receiver DLT network 204, the pre-commit acknowl-
edgement 310 (914).

The pre-commit acknowledgement 310 may include a
verification that the token data was successiully recerved
and/or generated by the data receiver 110. Alternatively or 1n
addition, the pre-commit acknowledgement 310 may 1ndi-
cate that the token data was successiully appended to the
receiver blockchain 212. In some examples, the pre-commit
acknowledgement 310 may include digital signatures signed
by one or more data receivers. For example, the one or more
data recerver 110 may be identified in the interoperability
smart contract 304. The digital signatures may verily that the
data 1s properly re-generated and/or added to the receiver
blockchain 212 1n compliance with the receiver DLT and/or
the criteria of the interoperability smart contract 304. In
some examples, the data furnisher 108 may append the
pre-commit acknowledgement to the furnisher blockchain
210 1n accordance with the furnisher DLT.

The data furnisher 108 may receive a pre-lock authoriza-
tion 704 (916). The data furnisher 108 may receive the
pre-lock authorization 704 from the data receiver 110. The
pre-lock authorization 704 may include an authorization to
export token data stored on the furnisher blockchain 210 to
the recerver blockchain 212. Alternatively or in addition, the
pre-lock authorization 704 may include proofs that various
conditions, criteria, and/or rules defined 1n the interoperabil-
ity smart contract 304 are satisfied. For example, the pre-
commit authorization 702 may include a digital signature of
one or more participant of the recerver DLT network 204 that
indicate various provisions of the interoperability smart
contract 304 are satisfied. In some examples, the data
tfurmisher 108 may append the pre-lock authorization 704 to
the furnisher blockchain 210 in accordance with the fur-
nisher DLT.

The data furnisher 108 may communicate a pre-lock
acknowledgment 506 (918). The data furnisher 108 may
communicate the pre-lock acknowledgement 506 to the data
receiver 110, or some furnisher participant. The data fur-
nisher 108 may generate the pre-lock acknowledgement 506
in response to determination that token data has been
successiully recreated by the data recerver 110. Alternatively
or 1 addition, the data furnisher 108 may generate the
pre-lock acknowledgement 506 based on verification that
one or more data receivers agree that the token data was
properly recreated within the recerver DLT network 204. In
some examples, the interoperability smart contract 304 may

US 10,250,394 B1

15

identify the one or more data furnishers. The data furnisher
108 may receive and validate the digital signatures gener-
ated by the data receivers.

The data furnisher 108 may receive a lock key 508 from
the data recerver 110 (920). The data furnisher 108 may
unencrypt the pre-commit authorization based on the lock
key 508 (922). Based on the lock key 508 and the crypto-
logic lock instruction 504 of the interoperability smart
contract 304, the data furnisher 108 may lock the data on the
turmisher blockchain 210 (924). For example, as discussed 1n
reterence to FI1G. 7, the cryptologic lock mnstruction 504 may
cause the data furnisher 108 to perform the lock in response
to receipt of the pre-lock authorization 704. The pre-lock
authorization 704 may be encrypted until the data receiver
110 provides the lock key 508. The data furnisher 108 may
unencrypt the pre-lock authorization 704 based on the lock
key 508.

The data furmisher 108 may send the commuttal key 312
to the data receiver 110 (926). For example, the data
tfurmisher 108 may determine that various preconditions of
the interoperability smart contract 304 are satisfied. The
preconditions may include, for example, receipt of the
pre-commit acknowledgement 310. In some examples, the
data furnisher 108 may verily digital signatures receirved by
the recerver DLT based on public keys of the participants of
the recetver DLT available to the data furnisher 108. In
response to determination the pre-conditions of the mterop-
erability smart contract 304 are satisfied, the data furnisher
108 may communicate the committal key 312 to the data
receiver 110.

Referring to operations 927-946, the data receiver 110
may communicate with the data furnisher 108, or other
participants of the furnisher DLT network 202 to generate
and/or commit the token data to the receiver blockchain 212.

The data recerver 110 may append interoperability smart
contract 304 to the receiver blockchain 212 (927). The data
receiver 110 may receive the pre-commit authorization 702
(928). After receiving the authorization, the data receiver
110 may obtain the token data (930).

For example, the data receiver 110 may receive the
pre-commit authorization 702 from the data furnisher 108.
In response to receipt of the pre-commit authorization 702,
the data receiver 110 may receive the token data from the
data furmisher 108. Alternatively or in addition, the data
receiver 110 may access the transfer logic 308 included in
the interoperability smart contract 304. The data receiver
110 may generate and/or recreate the token data based on the
transier logic 308.

The data receiver 110 may transmit the pre-commit
acknowledgement 310 to the data furnisher 108 (932). For
example, after the token data 1s received and/or re-gener-
ated, the data recerver 110 may generate the pre-commit
acknowledgment 310 as proof of creation. Alternatively or
in addition, the pre-commit acknowledgement may include
the digital signatures of one or more participant of the
receiver DLT network 204. The digital signatures may be
indicative of consensus that the token data was properly
created and/or appended to the blockchain. Alternatively or
in addition, the digital signatures may be indicative of
consensus that the token data 1s ready for commattal.

The data receiver 110 may generate the pre-lock autho-
rization 704 (934). The data recerver 110 may encrypt the
pre-lock authorization 704 (936). The data receiver 110 may
communicate the pre-lock authorization 704 to the data
tfurmisher 108 (938). For example, the data receiver 110 may
encrypt the pre-lock authorization 704 based on the lock key
508. Since the cryptologic lock instruction may access the

10

15

20

25

30

35

40

45

50

55

60

65

16

pre-lock authorization 704 to lock the token data, the data
receiver 110 may control the timing of when the lock occurs.

The data receiver 110 may receive the pre-lock acknowl-
edgement (940). In response to the pre-lock acknowledge-
ment, the data receiver 110 may communicate the lock key
508 to the data furmisher 108 (942).

For example, the pre-lock acknowledgement may an
indication that the furnisher DLT network 202 is ready to
lock the token data on the blockchain. In some examples, the
pre-lock acknowledgement may include digital signatures of
one or more participant of the furnisher DLT network 202.
In response to verification of the pre-lock acknowledgement,

the data receiver may supply the lock key 508 to the data
tfurmisher 108.

The data receiver 110 may receive the committal key 312

from the data furnisher 108 (944). The data receiver 110 may
commit the token data to the receiver blockchain 204 (946).
For example, the data receiver 110 may access the export
cryptologic committal 306 from the interoperability smart
contract 304. The cryptologic committal 306 may include
committal logic configured to commit the token data to the
receiver blockchain 212 in response to the pre-commit
authorization 702. The data receiver 110 may decrypt the
pre-commit authorization 702 based on the committal key
312 and then perform the commuittal.

FIG. 10 1llustrates an example of an interoperable par-
ticipant 1002 of the DLT network 104. The interoperable
participant 1002 may include a participation service 1004
that causes the interoperable participant 1002 to be a full or
partial node of the DLT network 104. The DLT network 104
may 1nclude, for example, the furmisher DLT network 202,
the receiver DLT network 204, or some other DLT network.
The participant layer may access, modily, append, or oth-
erwise 1mnteract with the blockchain and other participants of
the DLT network 104 1n a manner that 1s compliant with the
protocols of the DLT network 104.

In some examples, the interoperability participant 1002
may include a transier mitiator 1006. The transfer mitiator
1006 may coordinate sending and receiving data between
blockchains as described herein. For example, the transier
initiator 1006 may include or access the data furnisher 108
and/or the data receiver 110.

In some examples, the interoperability participant 1002
may 1nclude a transter validator 1008. The transfer validator
1008 may validate token data being exchanged between
DLT networks. Depending on whether the DLT network 104
1s sending or receiving token data, the transfer validator may
validate diflerently. For example, the transier validator 1008
may authorize and/or validate with other participants of the
DLT network 104 to export or share information from the
DLT network 104 as described herein. For example, the
tfurmisher 1008 604 may reach consensus with a plurality of
other participants of the DLT network 104 that information
1s authorized to be exported or shared. Alternatively or 1n
addition, the transfer validator 1008 may reach consensus
with a plurality of other participants that participants of
another blockchain and/or the token data complies with the
terms, conditions, criteria, and parameters of the interoper-
ability smart contract 304.

Depending 1n on the implementation, the interoperable

participant 1002 may include some or all of the participant
service 1004, the blockchain 106, the MSP 112, the transfer

initiator 1006, transfer validator 1008, the data furnisher
108, the data recerver 110 and/or the smart contract factory
802. In examples, where the interoperable participant 1002
includes the MSP 112 and/or the smart contract factory 802,

US 10,250,394 B1

17

the interoperable participant 1002 may be a node of multiple
DLT networks and/or may be accessible to multiple DLT
networks.

FIG. 11 1illustrates an example of the system 100 that
includes a processor 1102 and a memory 1104. The proces-
sor 1102 may be in communication with the memory 1104.
In one example, the processor 1102 may also be 1n commu-
nication with additional elements, such as a network inter-
face (not shown). Examples of the processor 1102 may
include a general processor, a central processing unit, a
microcontroller, a server, an application specific integrated
circuit (ASIC), a digital signal processor, a field program-
mable gate array (FPGA), and/or a digital circuit, analog
circuit, or some combination thereof.

The processor 1102 may be one or more devices operable
to execute logic. The logic may include computer executable
istructions or computer code stored 1n the memory 1104 or
in other memory that when executed by the processor 1102,
cause the processor 1102 to perform the features imple-

mented by the logic of the interoperable participant 1002,
the participant service 1004, the blockchain 106, the MSP

112, the transfer initiator 1006, the data furnisher 108, the
data receiver 110, the transfer validator 1008, the smart
contract factory 802 and/or the system 100. The computer
code may include 1nstructions executable with the processor
1102.

The memory 1104 may be any device for storing and
retrieving data or any combination thereof. The memory
1104 may include non-volatile and/or volatile memory, such
as a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM), or flash memory. Alternatively or 1n addition, the
memory 1104 may include an optical, magnetic (hard-drive)
or any other form of data storage device.

The memory 1104 may include at least one the interop-
erable participant 1002, the participant service 1004, the
blockchain 106, the MSP 112, the transfer initiator 1006, the
data furnisher 108, the data receiver 110, the transter vali-
dator 1008, the smart contract factory 802 and/or the system
100. In addition, the memory may include any other com-
ponent, or subcomponent, previously discussed, such as, the
interoperability smart contract 304, the FSC 302, the RSC
502, the DLT repository 804, the ESC generator 806, and/or
other components of the system 100 described herein.

The system 100 may be implemented in many diflerent
ways. For example each component of the system may
include a logical component or logical components. Each
logical component or logical components may be hardware
or a combination of hardware and soiftware. The logical
component(s) may include the interoperable participant
1002, the participant service 1004, the blockchain 106, the
MSP 112, the transfer initiator 1006, the data furnisher 108,
the data receiver 110, the transfer validator 1008, the smart
contract factory 802, the system 100 and/or other compo-
nents and subcomponents of the system 100 described
herein. For example, each logical component(s) may include
an application specific integrated circuit (ASIC), a Field
Programmable Gate Array (FPGA), a digital logic circuit, an
analog circuit, a combination of discrete circuits, gates, or
any other type of hardware or combination thereof. Alter-
natively or in addition, each logical component may include
memory hardware, such as a portion of the memory 1104,
for example, that comprises instructions executable with the
processor 1102 or other processor to implement one or more
of the features of the logical component(s). When any one of
the logical components includes the portion of the memory
that comprises 1nstructions executable with the processor

10

15

20

25

30

35

40

45

50

55

60

65

18

1102, the logical component may or may not include the
processor 1102. In some examples, each logical component
may just be the portion of the memory 1104 or other physical
memory that comprises instructions executable with the
processor 1102 or other processor to implement the features
of the corresponding logical component without the logical
component including any other hardware. Because each
logical component includes at least some hardware even
when the included hardware comprises software, each logi-
cal component may be interchangeably referred to as a
hardware circuitry.

Some features are shown stored 1n a computer readable
storage medium (for example, as logic implemented as
computer executable instructions or as data structures 1in
memory). All or part of the system 100 and 1ts logic and data
structures may be stored on, distributed across, or read from
one or more types of computer readable storage media.
Examples of the computer readable storage medium may
include a hard disk, a floppy disk, a CD-ROM, a flash drive,
a cache, volatile memory, non-volatile memory, RAM, flash
memory, or any other type ol computer readable storage
medium or storage media. The computer readable storage
medium may include any type of non-transitory computer
readable medium, such as a CD-ROM, a volatile memory, a
non-volatile memory, ROM, RAM, or any other suitable
storage device.

The processing capability of the system 100 may be
distributed among multiple entities, such as among multiple
processors and memories, optionally including multiple
distributed processing systems. Parameters, databases, and
other data structures may be separately stored and managed.,
may be icorporated mnto a single memory or database, may
be logically and physically organized in many different
ways, and may implemented with different types of data
structures such as linked lists, hash tables, or implicit storage
mechanisms. Logic, such as programs or circuitry, may be
combined or split among multiple programs, distributed
across several memories and processors, and may be imple-
mented 1n a library, such as a shared library (for example, a
dynamic link library (DLL)).

All of the discussion, regardless of the particular imple-
mentation described, 1s illustrative in nature, rather than
limiting. For example, although selected aspects, features, or
components of the implementations are depicted as being
stored 1n memory(s), all or part of the system 100 or systems
may be stored on, distributed across, or read from other
computer readable storage media, for example, secondary
storage devices such as hard disks, flash memory drives,
floppy disks, and CD-ROMs. Moreover, the various mod-
ules, circuitry and screen display functionality is but one
example of such functionality and any other configurations
encompassing similar functionality are possible.

The respective logic, software or instructions for imple-
menting the processes, methods and/or techniques discussed
above may be provided on computer readable storage media.
The functions, acts or tasks illustrated in the figures or
described herein may be executed 1n response to one or more
sets of logic or structions stored 1 or on computer
readable media. The functions, acts or tasks are independent
of the particular type of instructions set, storage media,
processor or processing strategy and may be performed by
software, hardware, integrated circuits, firmware, micro
code and the like, operating alone or 1n combination. Like-
wise, processing strategies may include multiprocessing,
multitasking, parallel processing and the like. In one
example, the instructions are stored on a removable media
device for reading by local or remote systems. In other

US 10,250,394 B1

19

examples, the logic or instructions are stored in a remote
location for transfer through a computer network or over
telephone lines. In yet other examples, the logic or mstruc-
tions are stored within a given computer, central processing
unit (“CPU”), graphics processing unit (“GPU”), or system.

Furthermore, although specific components are described
above, methods, systems, and articles of manufacture
described herein may include additional, fewer, or different
components. For example, a processor may be implemented
as a microprocessor, microcontroller, application specific
integrated circuit (ASIC), discrete logic, or a combination of
other type of circuits or logic. Stmilarly, memories may be
DRAM, SRAM, Flash or any other type of memory. Flags,
data, databases, tables, entities, and other data structures
may be separately stored and managed, may be incorporated
into a single memory or database, may be distributed, or may
be logically and physically organized in many diflerent
ways. The components may operate independently or be part
ol a same apparatus executing a same program or different
programs. The components may be resident on separate
hardware, such as separate removable circuit boards, or
share common hardware, such as a same memory and
processor for implementing instructions from the memory.
Programs may be parts of a single program, separate pro-
grams, or distributed across several memories and proces-
SOIS.

A second action may be said to be “in response to” a first
action independent of whether the second action results
directly or indirectly from the first action. The second action
may occur at a substantially later time than the first action
and still be 1n response to the first action. Similarly, the
second action may be said to be 1n response to the first action
even 1l intervening actions take place between the first
action and the second action, and even 1f one or more of the
intervening actions directly cause the second action to be
performed. For example, a second action may be 1n response
to a first action 11 the first action sets a flag and a third action
later 1mitiates the second action whenever the flag 1s set.

To clarify the use of and to hereby provide notice to the
public, the phrases “at least one of <A>, , ... and <N>"
or “at least one of <A>, , . . . <N>, or combinations
thereot” or “<A>, , . .. and/or <N>"" are defined by the
Applicant 1n the broadest sense, superseding any other
implied defimitions heremnbefore or heremafter unless
expressly asserted by the Applicant to the contrary, to mean
one or more elements selected from the group comprising A,
B, . . . and N. In other words, the phrases mean any
combination of one or more of the elements A, B, . . . or N
including any one clement alone or the one element 1n
combination with one or more of the other elements which
may also include, 1n combination, additional elements not
listed.

While various embodiments have been described, 1t will
be apparent to those of ordinary skill 1n the art that many
more embodiments and implementations are possible.
Accordingly, the embodiments described herein are

examples, not the only possible embodiments and 1mple-
mentations.

In some examples, the systems and methods described
here may be related to the following aspects:
1. A method comprising:

appending, to a furnisher blockchain, an interoperability
smart contract comprising a cryptologic committal, the
cryptologic committal comprising commit logic configured
to cause a data recerver to commit token data to a receiver
blockchain based on a pre-commuit authorization;

10

15

20

25

30

35

40

45

50

55

60

65

20

encrypting, based on a predetermined committal key, the
pre-commit authorization to transier token data stored on the
furnisher blockchain to the receiver blockchain;
sending the pre-commit authorization to the data receiver;
after sending the pre-commit authorization, receiving a
pre-commit acknowledgement of the pre-commit authoriza-
tion; and
responsive to the pre-commit acknowledgement:
locking the token data on the furnisher blockchain in
response to verification that the token data 1s appended
to the receiver blockchain, and
sending the predetermined committal key to the data
receiver, the data receiver configured to execute the
commit logic based on the pre-commit authorization
unencrypted by the predetermined committal key and
commit the token data to the receiver blockchain based
on the commit logic.
2. The method of aspect 1, wherein the interoperability smart
contract further comprises a cryptologic lock instruction
configured to cause to the data receiver to lock to the token
data on the furnisher blockchain based on a pre-lock autho-
rization, wherein locking the token data on the furnisher
blockchain further comprises:
recerving the pre-lock authorization from the data
recelver; and
locking the token data based on the cryptologic lock
instruction and the pre-lock authorization.
3. The method of any of aspects 1-2, wherein the pre-lock
authorization 1s encrypted based on a predetermined lock
key for the data receiver, the method further comprising:
receiving the predetermined lock key from the data
recelver; and
unencrypting the pre-lock authorization based on the
received the predetermined lock key.
4. The method of any of aspects 1-3, wherein the furnisher
blockchain 1s compliant with a first distributed ledger tech-
nology and the receiver blockchain 1s compliant with a
second distributed ledger technology, the method turther
comprising;
accessing a smart-contract factory comprising DLT logic
associated with a respective distributed ledger technology;

selecting, from the DLT logic, the cryptologic commuttal;
and

generating the mteroperability smart contract, wherein the
interoperability smart contract includes the cryptologic com-
muattal.
5. The method of any of aspects 1-4, wherein locking the
token data on the furnisher blockchain in response to veri-
fication that the token data 1s appended to the receiver
blockchain further comprises:

appending, to the furnisher blockchain, a second data-
block comprising identifier of token data stored on the
furnmisher blockchain and a hash of a separate datablock
stored 1n the furnisher blockchain.
6. The method of any of aspects 1-5, wherein the interop-
erability smart contract further comprises transfer logic that
defines a data structure for the token data for the receiver
blockchain, the method further comprising:

recerving a request for the token data from the data
receiver; and

recreating the token data based on the data structure; and

communicating the recreated token data to the data
receiver 1n response to receipt of the request.
7. The method of any of aspects 1-6, wherein the furnisher
blockchain 1s compliant with a first distributed ledger tech-

US 10,250,394 B1

21

nology and the receiver blockchain 1s compliant with a
second distributed ledger technology, the method further
comprising;
receiving digital signatures ol one or more participants of
the second distributed ledger technology, the digital signa-
tures indicative of the token data being appended to the
receiver blockchain; and
veritying the digital signatures based on respective public
keys the one or more participants.
8. A system comprising:
a processor, the processor configured to:
append, to a furnisher blockchain, an interoperability
smart contract comprising a cryptologic committal, the
cryptologic committal comprising commit logic configured
to cause a data receiver to commit token data to a receiver
blockchain based on a pre-commit authorization;
encrypt, based on a predetermined committal key, the
pre-commit authorization to transfer token data stored on the
furnisher blockchain to the receiver blockchain;
transmit the pre-commit authorization to the data receiver;
after transmission of the pre-commit authorization,
receive a pre-commit acknowledgement of the pre-commit
authorization; and
responsive to the pre-commit acknowledgement:
lock the token data on the furnisher blockchain in
response to verification that the token data 1s appended
to the receiver blockchain, and
send the predetermined committal key to the data
receiver, the data receiver configured to execute the
commit logic based on the pre-commit authorization
unencrypted by the predetermined commuttal key and
commit the token data to the receiver blockchain based
on the commait logic.
9. The system of aspect 8, wherein the interoperability smart
contract further comprises a cryptologic lock instruction
configured to cause to the data receiver to lock to the token
data on the furmisher blockchain based on a pre-lock autho-
rization, wherein to lock the token data on the furnisher
blockchain, the processor 1s further configured to:
receive the pre-lock authorization from the data receiver;
and
lock the token data based on the cryptologic lock 1nstruc-
tion and the pre-lock authorization.
10. The system of any of aspects 8-9, wherein the pre-lock
authorization 1s encrypted based on a predetermined lock
key for the data receiver, wherein the processor 1s further
configured to:
receive the predetermined lock key from the data recerver;
and
unencrypt the pre-lock authorization based on the
received the predetermined lock key.
11. The system of any of aspects 8-10, wherein the furnisher
blockchain 1s compliant with a first distributed ledger tech-
nology and the receiver blockchain 1s compliant with a
second distributed ledger technology, wherein the processor
1s further configured to:
access a smart-contract factory comprising DLT logic
associated with a respective distributed ledger technology;
select, from the DLT logic, the cryptologic committal; and
generate the interoperability smart contract, wherein the
interoperability smart contract includes the cryptologic com-
mittal.
12. The system of any of aspects 8-11, wherein to lock the
token data on the furnisher blockchain in response to veri-
fication that the token data 1s appended to the receiver
blockchain, the processor 1s further configured to:

5

10

15

20

25

30

35

40

45

50

55

60

65

22

append, to the furnisher blockchain, a second datablock
comprising 1dentifier of token data stored on the furnisher

blockchain and a hash of a separate datablock stored in the
furmisher blockchain.
13. The system of any of aspects 8-12, wherein the interop-
erability smart contract further comprises transier logic that
defines a data structure for the token data for the receiver
blockchain, wherein the processor 1s further configured to:
recerve a request for the token data from the data recerver;
and

recreate the token data based on the data structure; and

communicate the recreated token data to the data receiver

in response to receipt of the request.
14. The system of any of aspects 8-13, wherein the furnisher
blockchain 1s compliant with a first distributed ledger tech-
nology and the receiver blockchain 1s compliant with a
second distributed ledger technology, wherein the processor
1s further configured to:

receive digital signatures of one or more participants of
the second distributed ledger technology, the digital signa-
tures indicative of the token data being appended to the
recerver blockchain; and

verity the digital signatures based on respective public
keys the one or more participants.

15. A non-transitory computer readable storage medium
comprising:

a plurality of instructions executable by a processor, the
instructions comprising instructions that cause the processor
to:

recerve an encrypted pre-commit authorization to transfer
token data stored on a furnisher blockchain to a receiver
blockchain;

access, from the recerver blockchain, an interoperability
smart contract comprising a cryptologic committal, the
cryptologic committal comprising commit logic configured
to cause committal of the token data to the receiver block-
chain based on the pre-commit authorization;

generate the token data;

transmit a pre-commit acknowledgement to a data fur-
nisher in response to generation of the token data; and

alter transmission of the pre-commit authorization:

receive a committal key from the data furnisher,
unencrypt the pre-commait authorization, and

commit the token data to the receiver blockchain based on

the unencrypted pre-commit authorization and the
cryptologic committal.
16. The non-transitory computer readable storage medium
of aspect 15, wherein the instruction executable by the
processor to commit the token data to the receiver block-
chain further cause the processor to:

append a datablock to the receiver blockchain indicative
of the committal of the token data to the receiver blockchain,
the datablock further comprising a hash to a previous
datablock on the receiver blockchain.

1’7. The non-transitory computer readable storage medium
of any of aspects 15-16, wherein the instructions executable
by the processor further cause the processor to:

access a smart-contract factory comprising DLT logic
associated with a respective distributed ledger technologies;

select, from the DLT logic, the cryptologic commuttal; and

generate the iteroperability smart contract, wherein the
interoperability smart contract includes the cryptologic com-
mittal.
18. The non-transitory computer readable storage medium
of any of aspects 15-177, wherein the mnstructions executable
by the processor further cause the processor to:

US 10,250,394 B1

23

generate, to the data furnisher, a pre-lock authorization
comprising an authorization to lock to the token data on the
furnisher blockchain;

encrypt the pre-lock authorization based on a lock key;

communicate the pre-lock authorization to the data fur-
nisher:

receive a pre-lock acknowledgement from the data fur-
nisher; and

communicate the lock key to the data furnisher to unen-
crypt the pre-lock authorization.

19. The non-transitory computer readable storage medium

ol of any of aspects 15-18, wherein the instructions execut-

able by the processor further cause the processor to:
receive the interoperability smart contract; and

append a datablock to the receiver blockchain comprising,

the interoperability smart contract and a hash of a separate
datablock on the receiver blockchain.
20. The non-transitory computer readable storage medium
of any of aspects 15-19, wherein the interoperability smart
contract comprises transfer logic that defines a data structure
for the recerver blockchain; wherein the instructions execut-
able by the processor to generate the token data further cause
the processor to:

communicate a request to the data furnisher for the token
data;

receive, from the data furnisher, the token data;

recreate the token data based on the data structure defined
in the transier logic; and

append a datablock to the receiver blockchain, the data-
block comprising at least a portion of the recreated token
data and a hash to at least one portion of a previous
datablock on the receiver blockchain.

What 1s claimed 1s:

1. A method comprising:

appending, to a furnisher blockchain, an interoperability

smart contract comprising a cryptologic committal, the
cryptologic committal comprising commit logic con-
figured to cause a data recerver to commuit token data to
a recerver blockchain based on a pre-commit authori-
zation;

encrypting, based on a predetermined committal key, the

pre-commit authorization to transfer token data stored
on the furnisher blockchain to the receiver blockchain;
sending the pre-commait authorization to the data receiver;

after sending the pre-commit authorization, receiving a

pre-commit acknowledgement of the pre-commit
authorization; and

responsive to the pre-commit acknowledgement:

locking the token data on the furnisher blockchain 1n
response to verification that the token data 1is
appended to the receiver blockchain, and

sending the predetermined commuittal key to the data
recerver, the data recerver configured to execute the
commit logic based on the pre-commit authorization
unencrypted by the predetermined committal key
and commit the token data to the recerver blockchain
based on the commit logic.

2. The method of claim 1, wherein the interoperability
smart contract further comprises a cryptologic lock instruc-
tion configured to cause to the data receiver to lock to the
token data on the furnisher blockchain based on a pre-lock
authorization, wherein locking the token data on the fur-
nisher blockchain further comprises:

receiving the pre-lock authorization from the data

recelver; and

locking the token data based on the cryptologic lock

instruction and the pre-lock authorization.

10

15

20

25

30

35

40

45

50

55

60

65

24

3. The method of claim 2, wherein the pre-lock authori-
zation 1s encrypted based on a predetermined lock key for
the data receiver, the method further comprising:

recerving the predetermined lock key from the data

recelver; and

unencrypting the pre-lock authorization based on the

received the predetermined lock key.

4. The method of claim 1 wherein the furnisher block-
chain 1s compliant with a first distributed ledger technology
and the receiver blockchain 1s compliant with a second
distributed ledger technology, the method further compris-
ng:

accessing a smart-contract factory comprising DLT logic

associated with a respective distributed ledger technol-
OgY;

selecting, from the DLT logic, the cryptologic commuttal;

and

generating the imnteroperability smart contract, wherein the

interoperability smart contract includes the cryptologic
commuttal.

5. The method of claim 1, wherein locking the token data
on the furmisher blockchain in response to verification that
the token data 1s appended to the receiver blockchain further
COmprises:

appending, to the furnisher blockchain, a second data-

block comprising identifier of token data stored on the
furnisher blockchain and a hash of a separate datablock
stored 1n the furnisher blockchain.

6. The method of claim 1, wherein the interoperability
smart contract further comprises transier logic that defines a
data structure for the token data for the recerver blockchain,
the method further comprising:

recerving a request for the token data from the data

recerver; and

recreating the token data based on the data structure; and

communicating the recreated token data to the data

receiver 1n response to receipt of the request.

7. The method of claim 1, wherein the furnisher block-
chain 1s compliant with a first distributed ledger technology
and the receiver blockchain 1s compliant with a second
distributed ledger technology, the method further compris-
ng:

recerving digital signatures of one or more participants of

the second distributed ledger technology, the digital
signatures mdicative of the token data being appended
to the receiver blockchain; and

veritying the digital signatures based on respective public

keys the one or more participants.

8. A system comprising;:

a processor and a memory, the processor configured to:

append, to a furmisher blockchain, an interoperability

smart contract comprising a cryptologic committal, the
cryptologic committal comprising commit logic con-
figured to cause a data recerver to commit token data to
a rece1ver blockchain based on a pre-commit authori-
zation;

encrypt, based on a predetermined committal key, the

pre-commit authorization to transier token data stored
on the furnisher blockchain to the receiver blockchain;
transmit the pre-commit authorization to the data receiver;
alter transmission ol the pre-commit authorization,
receive a pre-commit acknowledgement of the pre-
commit authorization; and
responsive to the pre-commit acknowledgement:
lock the token data on the furnisher blockchain in
response to verification that the token data 1s
appended to the receiver blockchain, and

US 10,250,394 B1

25

send the predetermined committal key to the data
recerver, the data recerver configured to execute the
commit logic based on the pre-commit authorization
unencrypted by the predetermined committal key
and commit the token data to the recerver blockchain
based on the commuit logic.

9. The system of claim 8, wherein the interoperability
smart contract further comprises a cryptologic lock instruc-
tion configured to cause to the data receiver to lock to the
token data on the furnisher blockchain based on a pre-lock
authorization, wherein to lock the token data on the furnisher
blockchain, the processor 1s further configured to:

receive the pre-lock authorization from the data recerver;

and

lock the token data based on the cryptologic lock 1nstruc-

tion and the pre-lock authorization.

10. The system of claim 9, wherein the pre-lock autho-
rization 1s encrypted based on a predetermined lock key for
the data receiver, wherein the processor 1s further configured
to:

receive the predetermined lock key from the data recerver;

and

unencrypt the pre-lock authorization based on the

received the predetermined lock key.

11. The system of claim 8 wherein the furnisher block-
chain 1s compliant with a first distributed ledger technology
and the receiver blockchain 1s compliant with a second
distributed ledger technology, wherein the processor 1s fur-
ther configured to:

access a smart-contract factory comprising DLT logic

associated with a respective distributed ledger technol-
OgY;

select, from the DLT logic, the cryptologic committal; and

generate the interoperability smart contract, wherein the

interoperability smart contract includes the cryptologic
commuttal.

12. The system of claim 8, wherein to lock the token data
on the furnisher blockchain 1n response to verification that
the token data 1s appended to the receiver blockchain, the
processor 1s further configured to:

append, to the turmisher blockchain, a second datablock

comprising 1dentifier of token data stored on the fur-
nisher blockchain and a hash of a separate datablock
stored 1n the furnisher blockchain.

13. The system of claim 8, wherein the mteroperability
smart contract further comprises transier logic that defines a
data structure for the token data for the recerver blockchain,
wherein the processor 1s further configured to:

receive a request for the token data from the data receiver;

and

recreate the token data based on the data structure; and

communicate the recreated token data to the data receiver

in response to receipt of the request.

14. The system of claim 8, wherein the furnisher block-
chain 1s compliant with a first distributed ledger technology
and the receiver blockchain 1s compliant with a second
distributed ledger technology, wherein the processor 1s fur-
ther configured to:

receive digital signatures of one or more participants of

the second distributed ledger technology, the digital

signatures indicative of the token data being appended
to the receiver blockchain; and

verily the digital signatures based on respective public
keys the one or more participants.

10

15

20

25

30

35

40

45

50

55

60

65

26

15. A non-transitory computer readable storage medium
comprising;
a plurality of instructions executable by a processor, the
istructions comprising instructions that cause the pro-
Cessor 1o:
receive an encrypted pre-commit authorization to transier
token data stored on a furnisher blockchain to a
recerver blockchain;
access, from the recerver blockchain, an interoperability
smart contract comprising a cryptologic commuttal, the
cryptologic committal comprising commit logic con-
figured to cause commuittal of the token data to the
receiver blockchain based on the pre-commit authori-
zation;
generate the token data;
transmit a pre-commit acknowledgement to a data fur-
nisher 1n response to generation of the token data; and
alter transmission of the pre-commit authorization:
receive a committal key from the data furnisher,
unencrypt the pre-commit authorization based on the
committal key, and

commit the token data to the receiver blockchain based
on the unencrypted pre-commit authorization and the
cryptologic commuttal.

16. The non-transitory computer readable storage medium
of claim 135, wherein the instruction executable by the
processor to commit the token data to the receirver block-
chain further cause the processor to:

append a datablock to the receiver blockchain indicative
of the committal of the token data to the receiver
blockchain, the datablock further comprising a hash to
a previous datablock on the receiver blockchain.

17. The non-transitory computer readable storage medium
of claiam 15, wheremn the instructions executable by the
processor further cause the processor to:

access a smart-contract factory comprising DLT logic
associated with a respective distributed ledger tech-
nologies;

select, from the DLT logic, the cryptologic commuttal; and

generate the iteroperability smart contract, wherein the
interoperability smart contract includes the cryptologic
committal.

18. The non-transitory computer readable storage medium
of claiam 135, wherein the instructions executable by the
processor further cause the processor to:

generate, to the data furnisher, a pre-lock authorization
comprising an authorization to lock to the token data on
the furnisher blockchain;

encrypt the pre-lock authorization based on a lock key;

communicate the pre-lock authorization to the data fur-
nisher:;

recerve a pre-lock acknowledgement from the data fur-
nisher; and

communicate the lock key to the data furnisher to unen-
crypt the pre-lock authorization.

19. The non-transitory computer readable storage medium
of claiam 135, wherein the instructions executable by the
processor further cause the processor to:

receive the interoperability smart contract; and

append a datablock to the receiver blockchain comprising
the interoperability smart contract and a hash of a
separate datablock on the receiver blockchain.

20. The non-transitory computer readable storage medium
of claam 15, wherein the interoperability smart contract
comprises transfer logic that defines a data structure for the
receiver blockchain; wherein the instructions executable by
the processor to generate the token data further cause the
processor to:

US 10,250,394 B1

27

communicate a request to the data furnisher for the token
data;

receive, from the data furnisher, the token data;

recreate the token data based on the data structure defined
in the transfer logic; and

append a datablock to the receiver blockchain, the data-
block comprising at least a portion of the recreated
token data and a hash to at least one portion of a
previous datablock on the receiver blockchain.

¥ ¥ # ¥ o

10

28

	Front Page
	Drawings
	Specification
	Claims

