12 United States Patent
Stankey

US010241950B2

US 10,241,950 B2
Mar. 26, 2019

(10) Patent No.:
45) Date of Patent:

(54) MULTIPATH 1/O PROXY DEVICE-SPECIFIC

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(51)

(52)

(58)

MODULE
Applicant: NetApp, Inc., Sunnyvale, CA (US)

Inventor: Robert Stankey, Wichita, KS (US)

Assignee: NETAPP, INC., Sunnyvale, CA (US)

Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 379 days.
Appl. No.: 15/081,478
Filed: Mar. 25, 2016

Prior Publication Data

US 2017/0277646 Al Sep. 28, 2017

Int. CI.

GO6F 13/40 (2006.01)

GO6F 9/4401 (2018.01)

U.S. CL

CPC ... GO6F 13/4022 (2013.01); GO6F 9/4406

(2013.01); GO6F 9/4411 (2013.

Field of Classification Search
CPC

01)

........ GO6F 13/40; GO6F 9/44; GO6F 13/4022;

GO6F 9/4406; GO6F 9/4411

See application file for complete search history.

100

(56) References Cited

U.S. PATENT DOCUMENTS

6,161,152 A * 12/2000 Gargccccovvvvnnnnne, GOO6F 13/22
709/224

6,412,015 B1* 6/2002 Navare GOO6F 9/45537
709/227

8,402,124 B1* 3/2013 Barnllaud GO6F 9/5055
709/223

2006/0010314 AL* 172006 Xu ...ccooovvevvvnnnnnn, GOO6F 9/45545
713/2

2006/0277383 Al* 12/2006 Hayden HO4L 67/1097
711/170

2015/0382042 Al* 12/2015 Wagenaar HOAN 21/26258
725/34

* cited by examiner

Primary Examiner — Henry Tsai
Assistant Examiner — Christopher A Daley
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

A method, non-transitory machine readable medium, and
system are provided for moditying a device-specific module
(DSM) corresponding to a storage device. In some embodi-
ments, the method includes registering a first device-specific
module (DSM) with a Multipath I/O (MPIO) module. The
MPIO module provides one or more interfaces of the first
DSM that redirect to one or more interfaces of a second
DSM. The second DSM 1s modified to a modified second
DSM. The MPIO module accesses the one or more inter-
taces of the first DSM and the accesses are redirected, by the
one or more interfaces of the first DSM, to one or more
interfaces of the modified second DSM.

20 Claims, 3 Drawing Sheets

Operating System 104

SM Proxy DSM MPIC
18 ™ 106 _}4—> 110 I#

I_HBAHEA_] ‘ HBA 1128 |
=~ s —r————————"
’ "ﬁ‘.

s

(—/ NETWORK N
, AN
;J' m 1\,\1)
N Ay 1.._»/""_‘/
F 4 LY
1 ﬂ 5"""‘-?"' \'-.
"\.
B f =
- r. - .
Storage System
18| Storage Controlier T Storage Centroller
1204 \\/_../ 1208

4 |

Storage Devices

126

- —

-

U.S. Patent Mar. 26, 2019 Sheet 1 of 3 US 10,241,950 B2

)

100

Host
102~

..... ! ﬁ
,/ NETWORK s
/ 114 "
f \% ______
116“%‘,’ %a
4 %\

Storage System ;
118~ | Storage Controller | Storage Controller
' 120A | 1208B

124

Storage Devices|

126

FIG. 1

U.S. Patent Mar. 26, 2019 Sheet 2 of 3 US 10,241,950 B2

200

-~ 202

Operating system locads DSM and proxy DSM

- 204

Operating system detects a new storage device ~ p— 200

| MPIO accesses inquiry interface of proxy DSMand is re- | _ 208
9 directed to inquiry interface of DSM |

| MPIO accesses compare interface of proxy DSM and is
redirected to compare interface of DSM

. 210

| MPIO accesses set path interface of proxy DSM and is | - 212

redirected to set path interface of DSM

MPIO accesses get path interface of proxy DSM andis | __ 214

redirected to get path interface of proxy DSM

Modify DSM to a modified DSM - 216

Redirect at least one MPIO access from the proxy DSM | 218
| to the modified DSM

FIG. 2

U.S. Patent Mar. 26, 2019 Sheet 3 of 3 US 10,241,950 B2

PrOXYBIgg Register

306

Get Path
314

Set Path
312

Compare
310

DSM
316~

Get Path
326

Compare
322

FIG. 3

US 10,241,950 B2

1

MULIIPATH IO PROXY DEVICE-SPECIFIC
MODULE

TECHNICAL FIELD

The present description relates to data storage, more
specifically, to systems, methods, and machine-readable
media for updating a multipath device module correspond-
ing to a data storage device.

BACKGROUND

Networks and distributed storage allow data and storage
space to be shared between devices located anywhere a
connection 1s available. These implementations may range
from a single machine offering a shared drive over a home
network to an enterprise-class cloud storage array with
multiple copies of data distributed throughout the world.

Larger implementations may incorporate Network Attached
Storage (NAS) devices, Storage Area Network (SAN)
devices, and other configurations of storage elements and
controllers 1n order to provide data and manage 1ts tlow.
Improvements in distributed storage have given rise to a
cycle where applications demand increasing amounts of data
delivered with high availability.

Host computing devices may include a multipath infra-
structure to simplity interoperability with storage devices
and provide high availability. At the host level, the approach
taken by operating system vendors may vary. However,
operating systems generally are consistent 1n that the generic
aspects of multipath management, such as virtualizing stor-
age devices, are handled by the operating system stack.
Features more specific to particular storage solutions, such
as /O routing, failover, load balancing, and other vendor-
specific behavior may be implemented by plug-ins to a
multipath management framework. With respect to the
WINDOWS operating system from Microsoit Corporation,
the multipath management framework includes Multipath
I/0 (MPIO) and the plug-ins include device-specific mod-
ules (DSMs).

It 1s advantageous to update DSMs to implement bug-
fixes and/or to add new features. However, MPIO i1s imple-
mented 1n a manner such that DSMs that are currently
managing storage devices may not be modified. Accord-
ingly, 1t 1s conventional to reboot the host computing
machine and/or to remove storage devices from the host
computing machine in, order to update the DSMs of the host
computing machine. Removing storage devices and/or
rebooting the operating system to modily DSMs 1s incon-
venient and an 1nethicient use of host computing resources.

It would be advantageous to modity DSMs without hav-
ing to remove storage devices and/or reboot host computing
machines. Therefore, to provide optimal multipath manage-
ment, a need exists for systems and techniques that more
ciiciently update DSMs. In particular, systems and methods
that allow DSMs to be updated without requiring that
storage devices be disconnected or host computing machines
to be rebooted would provide a valuable improvement over
conventional storage systems. Thus, while existing storage
systems have been generally adequate, the techmiques
described herein provide improved performance and efl-
ciency.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s best understood from the fol-
lowing detailed description when read with the accompany-
ing figures.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 1s a schematic diagram of an exemplary storage
architecture, according to aspects of the present disclosure.

FIG. 2 1s a flow diagram of a method for modilying a
device-specific module, according to aspects of the present
disclosure.

FIG. 3 1s a schematic diagram of interfaces provided by
a proxy device-specific module that act as a proxy for
interfaces of a device-specific module, according to aspects
of the present disclosure.

DETAILED DESCRIPTION

All examples and illustrative references are non-limiting
and should not be used to limit the claims to specific
implementations and embodiments described herein and
their equivalents. For simplicity, reference numbers may be
repeated between various examples. This repetition 1s for
clarity only and does not dictate a relationship between the
respective embodiments except where explicitly noted.
Finally, mm wview of this disclosure, particular features
described in relation to one aspect or embodiment may be
applied to other disclosed aspects or embodiments of the
disclosure, even though not specifically shown 1n the draw-
ings or described 1n the text.

Various embodiments provide a system, method, and
machine-readable medium for a host computing system to
provide device-specific modules (DSMs) and proxy DSMs
for one or more storage devices of a storage system. Spe-
cifically, the host computing system may provide a proxy
DSM that 1s accessed by MPIO and that redirects commu-
nications received from MPIO to a DSM. This 1s beneficial
for allowing the DSM to be updated while maintaining
high-availability of the host computing system and the
storage system.

The embodiments disclosed herein may provide several
advantages. First, a host computing system that 1s configured
to 1include the proxy DSM and the DSM may apply updates
to the DSM without requiring a reboot. Second, a host
computing system that 1s configured to include the proxy
DSM and the DSM may apply updates to the DSM without
requiring disconnection of the storage device managed by
the DSM. Of course, 1t 1s understood that these features and
advantages are shared among the various examples herein
and that no one feature or advantage i1s required for any
particular embodiment.

FIG. 1 1s a schematic diagram of an exemplary storage
architecture 100 according to aspects of the present disclo-
sure. The storage architecture 100 includes a host 102 1n
communication with a storage system 118. It 1s understood
that for clarity and ease of explanation, only a single host
102 and a single storage system 118 are 1llustrated, although
any number of hosts 102 may be 1n communication with any
number of storage systems 118. Furthermore, while the host
102 and storage system 118 are referred to as singular
entities, a host 102 and/or storage system 118 may include
any number of computing devices and may range from a
single computing system to a system cluster of any size.

Each host 102 and storage system 118 includes at least
one computing system that includes a processor such as a
microcontroller or a central processing unit (CPU) operable
to perform various computing instructions. The computing
system may also include a memory device such as random
access memory (RAM); a non-transitory computer-readable
storage medium such as a magnetic hard disk drive (HDD),
a solid-state drive (SSD), or an optical memory (e.g.,
CD-ROM, DVD, BD); a video controller such as a graphics

processing unit (GPU); a communication interface such as

US 10,241,950 B2

3

an Ethernet intertace, a Wi-F1 (IEEE 802.11 or other suitable
standard) interface, or any other suitable wired or wireless
communication interface; and/or a user /O interface
coupled to one or more user I/O devices such as a keyboard,
mouse, pointing device, or touchscreen.

The storage system 118 includes one or more storage
controllers 120A and 120B in communication with the
storage devices 126. The storage controllers 120A and 120B
exercise low-level control over the storage devices 126 1n
order to execute (perform) data transactions on behalf of the
host 102. In the 1llustrated embodiment, the storage system
118 includes two storage controllers 120A and 120B 1n
communication with a number of storage devices 126 via a
backplane 124.

In addition to data handling and processing resources,
storage controllers 120A and 120B may each include a
controller cache. Controller caches may be used to store data
to be written to or read from the storage devices 126. The
controller caches are typically much faster to access than the
storage devices 126 and provide mechanisms that expedite
transaction processing. The controller caches may include
any volatile or non-volatile storage medium and common
examples include resistive RAM (RRAM), phase-change
RAM (PCRAM), flash memory (e.g., NAND/NOR flash
memory), battery-backed DRAM, and/or other storage
media.

Controller caches are structured to hold data before the
data 1s written to storage 126. For example, an operation to
write data to storage 126 may first write the data to a
controller cache. The data may be temporarily stored in the
controller cache, to allow fast access to the data by the host
102 and/or storage system 118. Data stored 1n cache memory
1s associated with storage stripes, data segments, and/or data
sectors corresponding to locations of storage 126.

The first storage controller 120A may also provide the
data and/or metadata to the second storage controller 1208
over an inter-controller bus 122 for storing 1n the second
controller’s cache. This 1s referred to as mirroring, and
accordingly, the inter-controller bus 122 may be referred to
as a mirror channel. This duplication may take place before
the data 1s written to the storage devices 126. In this way, the
storage system 118 can recreate the transaction should either
storage controller 120A or 120B fail before the write to
storage 1s complete.

With respect to the storage system 118, the exemplary
storage system 118 contains any number of storage devices
126 and responds to data transaction requests from the host
102 and/or other hosts. In some examples, the storage
system 118 1s structured to make the storage devices 126
appear to be directly connected (local) to the host 102.

The storage system 118 may group the storage devices
126 for speed and/or redundancy using a virtualization
technique such, as RAID (Redundant Array of Independent/
Inexpensive Disks). At a high level, virtualization includes
mapping physical addresses of the storage devices into a
virtual address space and presenting the virtual address
space to the host 102. In this way, the storage system 118
represents the group of devices as a single device, often
referred to as a volume. Thus, a host 102 can access the
volume without concern for how 1t 1s distributed among the
underlying storage devices 118.

For example, a storage controller 120A and/or 120B of the
storage system 118 may be structured to store data on the
storage devices 126 using a data protection scheme such as
RAID 1 (mirroring), RAID 35 (striping with parity), or RAID
6 (striping with double parity). To do so, data 1s divided 1nto
stripes and divided again into data segments and parity

10

15

20

25

30

35

40

45

50

55

60

65

4

segments. Each data segment and parity segment represents
the portion of a stripe allocated to a particular storage device
126, and while the data segments and parity segments may
have any suitable size (e.g., 64K, 128K, 256K, 512K, etc.),
they are typically uniform across storage devices 126. Data
segments are again divided into data sectors, which are
typically umiform blocks of the data segments that are
allocated to store particular data.

In various examples, the underlying storage devices 126
include hard disk drives (HDDs), solid state drives (SSDs),
optical drives, and/or any other suitable volatile or non-
volatile data storage medium. In some examples, the storage
devices 126 include all-flash storage devices or all SSDs. In
other embodiments, storage devices 126 include hybnd
storage device configurations, such as by including both
HDDs and SDDs.

Turning now to the host 102, host 102 includes any
computing resource that 1s operable to exchange data with
the storage system 118 by providing (initiating) data trans-
actions with the storage system 118.

In an exemplary embodiment, a host 102 includes mul-
tiple host bus adapters (HBAs) 112A and 112B 1n commu-
nication with storage controllers 120A and 120B of the
storage system 104. In some examples, each HBA 1s con-
nected to one or more storage controllers of more than one
storage system. For example, HBA 112A may be connected
to storage controllers provided by multiple storage systems.
Each HBA 112A and 112B provides an interface for com-
municating with the storage controllers 120A and 120B, and
in that regard, may conform to any suitable hardware and/or
soltware protocol. In various embodiments, the HBAs 112A
and 112B include Serial Attached SCSI (SAS), 1SCSI,
InfiniBand, Fibre Channel and/or Fibre Channel over Eth-
emet (FCoE) bus adapters. Examples of other protocols
include SATA, eSATA, DATA, USB, Wi-F1 and FireWire.

Communications paths between the HBAs 112A and
112B and the storage controllers 120A and 120B are referred
to as links 116. A link 116 may take the form of a direct
connection (e.g., a single wire or other point-to-point con-
nection), a networked connection, or any combination
thereof. Thus, in some embodiments, one or more links 116
traverse a network 114, which may include any number of
wired and/or wireless networks such as a Local Area Net-
work (LAN), an Ethernet subnet, a PCI or PCle subnet, a
switched PCle subnet, a Wide Area Network (WAN), a
Metropolitan Area Network (MAN), the Internet, or the like.
In some embodiments, a host 102 has multiple links 116

with each storage controller for redundancy. The multiple
links 116 may be provided by a single HBA (e.g., 112A) or

multiple HBAs (e.g., 112A and 112B). In some embodi-
ments, multiple links 116 operate in parallel to increase
bandwidth.

To interact with (e.g., read, write, modily, etc.) remote
data, a host 102 sends one or more data transactions to the
respective storage system 118 via a link 116. Data transac-
tions are requests to read, write, or otherwise access data
stored within a data storage device such as the storage
system 118, and may contain fields that encode a command,
data (1.e., information read or written by an application),
metadata (1.e., information used by a storage system to store,
retrieve, or otherwise manipulate the data such as a physical
address, a logical address, a current location, data attributes,
etc.), and/or any other relevant information.

In the present example, the host 102 includes an operating,
system 104. The operating system 104 may be, for example,
a WINDOWS-based operating system. Of course, the scope
of embodiments 1s not limited to any particular operating

US 10,241,950 B2

S

system, and in fact may be applied to any operating system
having components similar to the DSMs and MPIOs of
FIGS. 1 and 2. The operating system 104 may further
include a Multipath /O (MPIO) 110 management frame-
work that 1s structured to provide multiple paths to one or
more storage systems and/or storage devices. Paths may
include, for example, 1SCSI or Fibre Channel, connections
between host 102 ports and storage system 118 ports. Paths
may include, for example, i1dentifications corresponding to
particular components ol the storage system 100. For
example, a path may 1dentity HBAs (e.g., HBA 112 A and/or
112B), particular links (e.g., link 116), and particular storage
controllers (e.g., storage controller 120A and/or 120B) and/
or particular storage devices (e.g., one or more storage
devices of the storage devices 126).

In the present example, MPIO 110 1s structured as one or
more software drivers that manage multiple paths between
the host 102 and the storage system 118. The operating
system 104 1s further configured with at least one device-
specific module (DSM) 108 and at least one proxy DSM
106. In some examples, the DSM 108 and proxy DSM 106
are structured as dynamically-loadable kermnel modules. In
the present example, the DSM 108 is structured as one or
more software drivers that are configured to identify par-
ticular paths and to manage path failure and recovery
corresponding to one or more storage devices. For example,
the DSM 108 may identity a path to a Logical Unit Number
(LUN) corresponding to the storage devices 126 that are
associated with the storage system 118. In the event of a
tailure of a path, the DSM 108 may 1dentily an alternate path
to the LUN corresponding to the storage devices 126.

The proxy DSM 106 1s structured to route communica-
tions from MPIO 110 to DSM 108 and from DSM 108 to
MPIO 110. In some examples, proxy DSM 106 1s structured
to include one or more functions that receive data from
MPIO 110 and forward the received data to DSM 108 for
processing. Similarly, proxy DSM 106 may receive data
from DSM 108 and forward the received data to MPIO 110.
Accordingly, proxy DSM 106 allows for an indirect com-
municative coupling of DSM 108 and MPIO 110.

FIG. 2 1s a flow diagram 1llustrating a method for modi-
tying a device-specific module, according to some examples
ol the present disclosure. The method 200 may be performed
by processing logic that may comprise hardware (e.g.,
circuitry, dedicated logic, programmable logic and micro-
code), software (such as instructions run on a computer
system, specialized hardware, dedicated machine, or pro-
cessing device), firmware, or a combination thereof. Addi-
tional steps can be provided before, during, and after the
steps of method 200, and some of the steps described can be
replaced, eliminated and/or re-ordered for other embodi-
ments of the method 200.

At action 202, during an operating system boot process,
the operating system (e.g., operating system 104) loads a
device specific module (DSM) (e.g., DSM 108) and a
corresponding proxy DSM (e.g., proxy DSM 106). In some
examples, the DSM and the proxy DSM are each structured
as drivers that are loaded into a kernel of the operating
system. Accordingly, loading of the DSM and the proxy
DSM may include allocating memory corresponding to the
kernel and storing code and/or data corresponding to the
DSM and the proxy DSM 1n the allocated memory.

In the present example, the DSM and the proxy DSM each
include a set of interfaces that are registered with the
operating system. Once the interfaces of the proxy DSM are
registered with the operating system, the operating system
notifies the proxy DSM. Similarly, once the interfaces of the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

DSM are registered with the operating system, the operating
system notifies the DSM. In some examples, the notifying 1s
performed by calling a notification 1nterface corresponding
to the proxy DSM and another notification interface corre-
sponding to the DSM. For example, once the operating
system has loaded the proxy DSM and registered the inter-
faces of the proxy DSM, the notification interface of the
proxy DSM may be used to notily the proxy DSM that the
proxy DSM has been loaded and its interfaces registered.
Similarly, once the operating system has loaded the DSM
and registered the interfaces of the DSM, the notification
interface of the DSM may be used to notify the DSM that the
proxy DSM has been loaded and 1its interfaces registered.

At action 204, after the proxy DSM has been notified that
its 1nterfaces are registered with the operating system, the
proxy DSM registers with MPIO. In the present example,
the proxy DSM registers with MPIO after the interfaces of
the DSM have been registered by the operating system.
Accordingly, once the proxy DSM is notified that its inter-
faces are registered by the operating system, the proxy DSM
may delay registering with MPIO until after the interfaces of
the DSM have been registered with the operating system. In
some examples, the proxy DSM delays registering with
MPIO until after the interfaces of the DSM are registered
with the operating system because MPIO may immediately
attempt to communicate with the proxy DSM as soon as the
proxy DSM 1s registered with MPIO. Accordingly, delaying
the registering of the proxy DSM with MPIO until the
interfaces of the DSM are registered with the operating
system may allow the proxy DSM to redirect the commu-
nications from MPIO to the DSM.

In the present example, the proxy DSM 1s configured to
route communications to and from MPIO and the DSM.
Accordmgly, the DSM does not register with MPIO so that
MPIO 1s not aware of the DSM and does not attempt to
communicate with the DSM directly. Thus, MPIO commu-
nicates with the DSM indirectly via the proxy DSM that 1s
registered with MPIO.

At action 206, an operating system discovery process
detects that there 1s a new storage device. In the present
example, the new storage device 1s detected after loading
one or more DSMs and/or proxy DSMs. In some examples,
the operating system detects the new storage device when a
storage system connects to a network and sends a signal onto
the network that 1s received by a host bus adapter of a host.
The host bus adapter then passes the signal to the host’s
operating system, which receives the signal sent from the
host bus adapter.

The operating system may 1ssue commands to the new
storage device via the storage system to collect information
such as a LUN and/or vendor product identifier correspond-
ing to the new storage device. This information may be
cached by the operating system for future use. The operating
system then notifies MPIO that the new storage device has
been detected and may provide the collected information to
MPIO. In some examples, a vendor product identifier
includes all of or a portion of a World Wide Name (WWN)
assigned to the storage device.

At action 208, MPIO accesses an inquiry interface of the
proxy DSM. In some examples, MPIO maintains a list of
one or more proxy DSMs and/or DSMs. The list may be
ordered based on an order in which the proxy DSMs and/or
DSMs registered with MPIO. When a new storage device 1s
detected, MPIO may iterate through the list, starting with the
first proxy DSM/DSM registered. For each proxy DSM/
DSM, MPIO may access the inquiry interface of the proxy
DSM/DSM to communicate the vendor product 1dentifier to

US 10,241,950 B2

7

the proxy DSM/DSM. Accordingly, MPIO provides the
vendor product identifier to the inquiry interface of the
proxy DSM.

The inquiry interface of the proxy DSM receives the
vendor product identifier from MPIO and accesses an
inquiry interface of the DSM. The proxy DSM provides the
vendor product identifier to the DSM. Accordingly, the
inquiry access by the MPIO 1s redirected from the proxy
DSM to the DSM. The mquiry iterface of the DSM
attempts to match the recetved vendor product identifier
with one or more vendor product 1dentifiers that are stored
in a data structure (e.g., a list) by the DSM.

If the received vendor product i1dentifier matches one of
the DSM’s vendor product identifiers, the DSM returns a
status to the proxy DSM that indicates that the DSM 1s a
manager of the storage device. In addition, the DSM may
also return a unique 1dentifier that may be used to access the
storage device. In some examples, the unique identifier
includes a memory address corresponding to the storage
device. Based on the proxy DSM receiving the indicating
from the DSM that the DSM 1s the manager of the storage
device, the proxy DSM then, responds to MPIO with a status
that indicates that the proxy DSM 1s a manager of the storage
device. The proxy DSM provides MPIO with the unique
identifier received from the DSM.

Otherwise, if the received product identifier does not
match one of the DSM’s vendor product identifiers, the
DSM returns a status to the proxy DSM that indicates that
the DSM 1s not a manager of the storage device and does not
provide a unique 1dentifier to the proxy DSM. The proxy
DSM then responds to MPIO with a status that indicates that
the proxy DSM 1s not a manager of the storage device and
does not return a unique identifier to MPIO.

In the present example, once MPIO has accessed the
inquiry interface of each proxy DSM and/or DSM that is
registered, MPIO has a set of one or more proxy DSMs/
DSMs that are identified as managers of the storage device
and a set of unique identifiers received from the proxy
DSMs/DSMs.

At action 210, MPIO 1terates through the proxy DSMs
and/or DSMs that 1dentified themselves as managers of the
storage device to access the compare interfaces of the proxy
DSMs and/or DSMs. In some examples, the iteration
includes listing the proxy DSMs and/or DSMs, and access-
ing a compare interface of each proxy DSM and/or DSM 1n
the list according to the ordering of the proxy DSMs and/or
DSMs 1n the list. In some examples, the ordering corre-
sponds to an order in which the proxy DSMs and/or DSMs
identified themselves as managers of the storage device.

To access the compare interfaces, MPIO sends to each of
the compare 1nterfaces of the proxy DSMs and/or DSMs two
or more of the unique 1dentifiers received from the inquiry
interfaces of the proxy DSMs and/or DSMs. MPIO may
iterate through each combination of pairs of unique 1dent-
fiers, sending the pairs to the compare interfaces until all of
the combinations have been sent to the compare iterfaces of
the proxy DSMs and/or DSMs. As an example, when the
compare interface of the proxy DSM 1s accessed by MPIO,
the proxy DSM receives a pair of unique 1dentifiers from
MPIO and accesses a compare interface of the DSM. The
proxy DSM communicates the pair of unique identifiers to
the compare interface of the DSM. The DSM determines
whether the pair of unique identifiers are a match and
communicates the determination to the proxy DSM. In some
examples, the identifiers are compared using a binary com-
parison. The proxy DSM and receives from the DSM the
communication indicating whether the pair of unique 1den-

10

15

20

25

30

35

40

45

50

55

60

65

8

tifiers 1s a match. The proxy DSM returns the indicator
regarding the match to MPIO.

Based on the match indicators received by MPIO from the
compare 1nterfaces, the MPIO associates proxy DSMs/
DSMs with virtual devices created by MPIO. A proxy DSM
and/or DSM may be associated with each virtual device. For
example, for the new storage device, MPIO may create a
virtual device that 1s associated with the proxy DSM.
Accordingly, 1n this step, MPIO determines relationships
between the virtual devices and the proxy DSMs/DSMs,
such that MPIO may route accesses of the virtual devices to
their associated proxy DSMs and/or DSMs.

At action 212, MPIO accesses a set path interface of the
proxy DSM and provides to the proxy DSM a default path
identifier. In some examples, the default path identifier
corresponds to an HBA (e.g., HBA 112A). The proxy DSM
accesses a set path interface of the DSM to provide the
default path i1dentifier to the DSM. The DSM stores the
default path i1dentifier recerved from the proxy DSM.

In some examples, a switch or other network device may
provide additional paths to a storage device. These addi-
tional paths may be stored by the DSM. Accordingly, to
exercise all of the paths, the DSM may determine an
appropriate path i1dentifier that 1s different from the default
path identifier received from MPIO. Responsive to the set
path interface of the DSM being accessed, the DSM may
return the determined path 1dentifier to the proxy DSM. The
proxy DSM may then pass the path identifier to MPIO so
that MPIO may replace the default path identifier with the
path identifier received from the proxy DSM.

At action 214, responsive to a device access request

received by MPIO, MPIO accesses a get path interface of the
proxy DSM. For example, MPIO may receive an access
request to access a virtual device that corresponds to a proxy
DSM and/or DSM. Accordingly, MPIO may then access a
get path, interface of a corresponding proxy DSM. In some
examples, the device access request includes the unique
identifier generated by the mnquiry interface 1n step 208. This
unique 1dentifier may be passed by MPIO to the get path
interface of the proxy DSM. In some examples, MPIO may
provide one or more parameters to the get path interface of
the proxy DSM.
The get path 1nterface of the proxy DSM accesses the get,
path interface of the DSM. In some examples, the get path
interface of the proxy DSM provides to the get path interface
of the DSM the unique identifier and the one or more
parameters.

The DSM performs processing to determine a path 1den-
tifier. For example, the DSM may return a first path identifier
as a default path, unless a recerved parameter indicates that
an alternate path identifier should be provided. The DSM
provides the determined path to the proxy DSM, which
returns the determined path to MPIO. Accordingly, MPIO
receives a path identifier that may be used to route 1/O to the
storage device. In some examples, the DSM includes one or
more algorithms to provide features such as a load balanc-
ing, failover, or other features that may be processed to
determine which path 1dentifier to provide to MPIO by way
of the proxy DSM.

While the above interfaces provide some examples of
interfaces that may be provided by proxy DSMs and DSMs,
these are merely some examples of the many interfaces that
may be provided by proxy DSMs and/or DSMs.

At action 216, the DSM 1s modified with one or more
updates. In some examples, bug-fixes and/or new features
may be implemented in the code and/or data of the DSM.
For example, an interface such as the get path interface of

US 10,241,950 B2

9

the DSM may be updated to provide a more eflicient
algorithm {for determining a path identifier. In some
examples, the DSM may be modified to a modified DSM
before and/or after any of the actions described with respect
to FIG. 2.

In the present example, the moditying of the DSM may
include changing a portion of the code and/or data of the

DSM. In some examples, the DSM 1s removed in 1ts entirety
and replaced by the modified DSM. For example, the DSM

may be unloaded from the kernel and the modified. DSM
may be loaded into the kernel. In other examples, portions
of the DSM are replaced by modified code and/or data and
other portions are maintained in the memory without being
replaced. For example, the DSM may be modified without
removing data stored by the DSM, such as path 1dentifiers.
Accordingly, the data that is maintained, such as path
identifiers, may be accessed by the modified DSM.

Because the DSM 1s indirectly communicatively coupled
with MPIO wvia the proxy DSM, the DSM may be modified
without the host requiring a reboot or the storage device
being disconnected from the host. In some examples, while
the DSM 1s being modified, the proxy DSM may delay
processing ol requests received from MPIO until the modi-
fied DSM 1s loaded and registered with the operating system.
Once the modified DSM 1s loaded and registered, the proxy
DSM may resume communications between MPIO and the
DSM.

At action 218, MPIO accesses one or more interfaces of

the proxy DSM, such as the get path interface of the proxy
DSM. The proxy DSM accesses the modified DSM to

redirect the accesses by MPIO to the modified DSM. The
proxy DSM may also receive responses from the modified
DSM that are provided to MPIO.

As will be recognized, the method 200 provides an
improved multipath I/O access technique that addresses a
technical challenge particular to networked storage systems.
In some embodiments, this improved multipath I/O access
technique allows for providing greater availability of the
host and/or storage systems. For example, by allowing
DSMs to be updated without removing storage devices from
the host or rebooting the host, the host may remain available
for access. The present technique addresses challenges pro-
vided by conventional storage system techniques and
thereby provides significant improvements over these con-
ventional storage system techniques.

In various embodiments, the mmproved multipath 1I/O
technique 1s performed by using various combinations of
dedicated, fixed-function computing elements and program-
mable computing elements executing software instructions.
Accordingly, it 1s understood that any of the steps of method
200 may be implemented by a computing system using
corresponding 1nstructions stored on or 1n a non-transitory
computer readable medium accessible by the processing
system. For the purposes of this description, a tangible
computer-usable or computer readable medium can be any
apparatus that can store the program for use by or in
connection with the mstruction execution system, apparatus,
or device. The medium may include non-volatile memory
including magnetic storage, solid-state storage, optical stor-
age, cache memory, and Random Access Memory (RAM).

FIG. 3 1s schematic diagram of interfaces provided by a
proxy device-specific module 304 that provide MPIO 302
with access to interfaces of a device-specific module 316,
according to aspects of the present disclosure.

MPIO 302 includes a framework that provides multipath
I/O functionality. In the present example, this may include
providing a plurality of virtual devices that, may be accessed

10

15

20

25

30

35

40

45

50

55

60

65

10

to perform I/O with one or more physical devices. In some
examples, MPIO 302 1s configured as one or more device
drivers that are installed 1n an operating system kernel to
provide the multipath I/O functionality.

To provide a path to each physical device, MPIO 302 1s
configured to access device-specific modules (DSMs),
which may be structured as vendor-provided device drivers
that are configured to be associated with physical devices.

A proxy DSM 304 1s provided that routes access requests

from MPIO 302 to DSM 316, and routes responses to the
access requests from DSM 316 to MPIO 302. The proxy
DSM 304 operates as a redirection layer that passes data
between MPIO 302 and DSM 316. For example, requests
received by interfaces of the proxy DSM 304 may be routed

to 1nterfaces of the DSM 316, and responses received at the
proxy DSM 304 from the interfaces of the DSM 316 may be

routed to MPIO 302.

In addition, the proxy DSM 304 includes a register
interface 306 that registers the proxy DSM 304 with MPIO
302 to recerve access requests from MPIO 302. The proxy
DSM 304 may include other interfaces 1n addition to those
shown, and 1n other examples interfaces may be modified or
omitted. In the present examples, the iterfaces include an
inquiry 1nterface 308 that 1s a proxy for the DSM’s imnquiry
interface 318, a compare interface 310 that 1s a proxy for the
DSM’s compare terface 322, a set path interface 312 that
1s a proxy for the DSM’s set path interface 324, and a get
path interface 314 that 1s a proxy for the DSM’s get path
interface 326.

In some examples, the interfaces are structured as func-
tions that may be called by external modules. For example,
the functions provided by the proxy DSM 304 may be called
by MPIO 302, and the functions provided by DSM 316 may
be called by proxy DSM 304.

In the present example, the mqury interface 318 1s
structured to determine a unique identifier corresponding to
a particular device and return the unique identifier to the
inquiry interface 308, which returns the unique identifier to
MPIO 302. The compare interface 322 is structured to
determine matches between unique i1dentifiers and return a
Boolean value to the compare intertace 310, which returns
the Boolean value to MPIO 302. The set path interface 312
1s structured to receive a path i1dentifier and store the path
identifier. The get path interface 326 1s structured to deter-
mine a path identifier from among one or more stored path
identifiers and return the path identifier to the get path
interface 314, which returns the path identifier to MPIO 302.
The DSM 316 may include other interfaces 1 addition to
those shown, and in other examples interfaces may be
modified or omitted.

The foregoing outlines features of several embodiments
so that those skilled in the art may better understand the
aspects of the present disclosure. Those skilled in the art
should appreciate that they may readily use the present
disclosure as a basis for designing or modilying other
processes and structures for carrying out the same purposes
and/or achieving the same advantages of the embodiments
introduced herein. Those skilled 1n the art should also realize
that such equivalent constructions do not depart from the
spirit and scope of the present disclosure, and that they may
make various changes, substitutions, and alterations herein
without departing from the spirit and scope of the present
disclosure.

What 1s claimed 1s:

1. A method comprising:

redirecting, by an interface of a proxy device-specific

module (DSM), a first access from a Multipath 1/O

US 10,241,950 B2

11

(MPIO) module, wherein the first access 1s redirected
to an interface of a first DSM different from the proxy
DSM, and wherein redirecting the first access includes

transmitting a first identifier from the proxy DSM to the
first DSM:

modilying the first DSM to a modified DSM; and

redirecting, by the interface of the proxy DSM, a second
access from the MPIO module, wherein the second
access 1s redirected to an interface of the modified
DSM, and wherein redirecting the second access
includes transmaitting a second 1dentifier from the proxy

DSM to the MPIO module.

2. The method of claim 1, wherein modifying the first
DSM comprises performing at least one modification

selected from the group consisting of: replacing the first

DSM with the modified DSM; unloading the first DSM from
a kernel and loading the modified DSM into the kernel; and
replacing a portion of the first DSM with modified code.
3. The method of claim 1, further comprising:
loading, by a host computing system during a boot
process, the proxy DSM and the first DSM, wherein the

first DSM 1s loaded prior to registering the proxy DSM

with the MPIO module.

4. The method of claim 1, wherein the first DSM 1s
modified to the modified DSM without rebooting a host
computing system.

5. The method of claim 1, wherein the first DSM provides
a path identifier corresponding to a storage device, and
wherein the storage device 1s not removed from a host
computing system between redirecting the first access to the
first DSM and redirecting the second access to the modified
DSM.

6. The method of claim 1, wherein the first DSM 1ncludes
a first device driver corresponding to a storage device, and
wherein the modified DSM includes a modified device
driver corresponding to the storage device.

7. The method of claim 1, wherein the proxy DSM
comprises a dynamically-loadable kernel module.

8. The method of claim 1, wherein the interface of the
proxy DSM redirects to

an mquiry interface of the DSM, wherein the inquiry

interface of the DSM matches an identifier of a storage
device with a stored identifier.
9. A non-transitory machine readable medium having
stored thereon instructions for performing a method com-
prising machine executable code which when executed by at
least one machine, causes the machine to:
register a proxy device-specific module (DSM) with a
Multipath I/O (MPIO) module;

send a first identifier from the MPIO module to the proxy
DSM;

provide the first identifier from the proxy DSM to a first
DSM different from the proxy DSM;

modily the first DSM to a modified DSM;

provide a second 1dentifier from the modified DSM to the

proxy DSM; and

send the second identifier from the proxy DSM to the

MPIO module.

10. The non-transitory machine readable medium of claim
9, wherein modifying the DSM comprises performing at
least one modification selected from the group consisting of:

replacing the first DSM with the modified DSM; unloading

10

15

20

25

30

35

40

45

50

55

60

12

the first DSM from a kernel and loading the modified DSM
into the kernel; and replacing a portion of the first DSM with
modified code.

11. The non-transitory machine readable medium of claim
9, having further machine executable code that causes the
machine to:

load, during a boot process, the proxy DSM and the first
DSM, wherein the first DSM 1s loaded prior to regis-
tering the proxy DSM with MPIO.

12. The non-transitory machine readable medium of claim

9, wherein the machine 1s not rebooted between sending the
first 1dentifier and sending the second identifier.

13. The non-transitory machine readable medium of claim
9, wherein the first DSM comprises a dynamically-loadable
kernel module.

14. The non-transitory machine readable medium of claim
9. wherein the first DSM includes a first device driver
corresponding to a storage device, and wherein the modified
DSM 1ncludes a modified device driver corresponding to the
storage device.

15. The non-transitory machine readable medium of claim
9, wherein the proxy DSM 1ncludes an inquiry interface.

16. A computing device comprising:

a memory contaiming machine readable medium compris-
ing machine executable code having stored thereon
istructions for performing a method of modifying a
device-specific module (DSM);

a processor coupled to the memory, the processor con-
figured to execute the machine executable code to
cause the processor to:

provide, to a Multipath I/O (MPIO) module, an interface
of a first device-specific module (DSM) that redirect to
an interface of a second DSM:

redirect, by the interface of the first DSM, a first access of
the MPIO module to the second DSM, and wherein
redirecting the first access includes transmitting a first
identifier from the first DSM to the second DSM;

modify the second DSM to a modified second DSM;

access, by the MPIO module, the interface of the first
DSM; and

redirect, by the interface of the first DSM, a second access
of the MPIO module to the modified second DSM, and
wherein redirecting the second access includes trans-
mitting a second identifier from the first DSM to the
MPIO module.

17. The computing device of claim 16, wherein modifying
the second DSM comprises performing at least one modi-
fication selected from the group consisting of: replacing the
second DSM with the modified second DSM; unloading the
second DSM from a kernel and loading the modified second
DSM 1into the kernel; and replacing a portion of the second
DSM with modified code.

18. The computing device of claim 16, the processor
further configured to:

load, during a boot process, the first DSM and the second
DSM, wherein the second DSM 1s loaded prior to
registering the first DSM with the MPIO module.

19. The computing device of claim 16, wherein the
computing device 1s not rebooted between redirecting the
first access to the second DSM and redirecting the second
access to the modified second DSM.

20. The computing device of claim 16, wherein the first
DSM comprises a dynamically-loadable kernel module.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

