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REDUCING POWER CONSUMPTION IN A
PROCESSOR

BACKGROUND

Technical Field

This disclosure relates to processor operation, and more
particularly to reducing power consumption associated with
various memory arrays ol the processor.

Description of the Related Art

Modern processors have become increasingly more
capable of performing diflicult tasks, and in shorter times. In
most applications, processor performance 1s a driving force
behind system design. However, along with the increased
capability has come a concomitant increase 1 power con-
sumption. In many systems, excess power consumption 1s
problematic. For example in battery operated systems such
as those found 1n mobile wireless and computing devices,
excess power consumption directly contributes to shorter
battery life. In the consumer electronics market, a short
battery life can be a game changer for sales. In other
contexts, excess processor power consumption may also be
unacceptable. For example, server systems that employ
NuUmMerous Processors Or processor cores per server, and
many hundreds and thousands of servers such as may be
found 1n a large data center may be sensitive to power
consumption. More particularly, more power consumption
means a bigger carbon footprint, more cooling requirements,
more direct power costs, and the like. Accordingly, inte-
grated circuit designers continually strive to find ways of
reducing power consumption.

SUMMARY OF THE EMBODIMENTS

Various embodiments of power reduction mechanisms of
a processor are disclosed. Broadly speaking, a processor
includes a branch prediction unit including a memory array
for storing conditional branch prediction mformation. The
processor may also include a next fetch prediction unit that
may include a number of entries. Fach entry may correspond
to a next instruction fetch group and may store an indication
of whether or not the corresponding the next fetch group
includes a conditional branch instruction. In response to an
indication that the next fetch group does not include a
conditional branch instruction, the fetch prediction unit may
be configured to disable, 1n a next instruction execution
cycle, the memory array of the branch prediction unait.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of one embodiment of a
Processor.

FI1G. 2 15 a block diagram depicting more detailed aspects
of one embodiment of the processor of FIG. 1.

FIG. 3 1s a flow diagram describing operational aspects of
the processor of FIG. 1 and FIG. 2.

FIG. 4 1s a block diagram illustrating more detailed
aspects ol another embodiment of the processor of FIG. 1.

FIG. 5 15 a block diagram depicting more detailed aspects
of another embodiment of the processor of FIG. 1.

FI1G. 6 15 a flow diagram describing operational aspects of
the processor and cache memory of FIG. 1 and FIG. 5.

FI1G. 7 1s a block diagram of one embodiment of a system

including the processor of FIG. 1, FIG. 2, FIG. 4, and FIG.
5.

Specific embodiments are shown by way of example 1n
the drawings and will herein be described 1n detail. It should
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2

be understood, however, that the drawings and detailed
description are not intended to limit the claims to the
particular embodiments disclosed, even where only a single
embodiment 1s described with respect to a particular feature.
On the contrary, the itention 1s to cover all modifications,
equivalents and alternatives that would be apparent to a
person skilled 1n the art having the benefit of this disclosure.
Examples of features provided 1n the disclosure are intended
to be 1llustrative rather than restrictive unless stated other-
wise.

As used throughout this application, the word “may™ 1s
used 1n a permissive sense (1.¢., meamng having the poten-
tial to), rather than the mandatory sense (1.e., meaning must).
Similarly, the words “include,” “including,” and “includes”
mean 1ncluding, but not limited to.

Various units, circuits, or other components may be
described as “configured to” perform a task or tasks. In such
contexts, “configured to” 1s a broad recitation of structure
generally meaning “having circuitry that” performs the task
or tasks during operation. As such, the unit/circuit/compo-
nent can be configured to perform the task even when the
unit/circuit/component 1s not currently on. In general, the
circuitry that forms the structure corresponding to “config-
ured to” may include hardware circuits. Similarly, various
units/circuits/components may be described as performing a
task or tasks, for convenience in the description. Such
descriptions should be mterpreted as including the phrase
“configured to.” Reciting a unit/circuit/component that is
configured to perform one or more tasks 1s expressly
intended not to mvoke 35 U.S.C. § 112, paragraph six,
interpretation for that unit/circuit/component.

The scope of the present disclosure includes any feature
or combination of features disclosed herein (either explicitly
or implicitly), or any generalization thereof, whether or not
it mitigates any or all of the problems addressed herein.
Accordingly, new claims may be formulated during pros-
ecution of this application (or an application claiming pri-
ority thereto) to any such combination of features. In par-
ticular, with reference to the appended claims, features from
dependent claims may be combined with those of the
independent claims and features from respective indepen-
dent claims may be combined 1n any appropriate manner and
not merely 1n the specific combinations enumerated 1n the
appended claims.

DETAILED DESCRIPTION

Processor Overview

Turning now to FIG. 1, a block diagram of one embodi-
ment of a processor 1s shown. The processor 10 includes a
fetch control unit 101, an instruction cache 102, a decode
umt 104, a mapper 105, a scheduler 106, a register file 107,
an execution core 108, and an interface unit 111. The fetch
control unit 101 1s coupled to provide a program counter
address (PC) for fetching instructions to the instruction
cache 102. The mstruction cache 102 1s coupled to provide
instructions (with PCs) to the decode unit 104, which 1s
coupled to provide decoded instruction operations (ops,
again with PCs) to the mapper 103. The instruction cache
102 may also be configured to provide a hit indication and
to generate 1nstruction data as an output in response to a PC
input. The mapper 105 1s coupled to the scheduler 106 and
to the fetch control umt 101. The scheduler 106 1s coupled
to the register file 107 and to the execution core 108. The
register file 1s coupled to the execution core 108. The
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execution core 108 1s coupled to the interface umit 111,
which 1s further coupled to an external interface of the
processor 200.

Fetch control umit 101 may be configured to generate
fetch PCs for instruction cache 102. In some embodiments,
tetch control unit 101 may include one or more types of
branch predictors (e.g., branch predictors 112 and {fetch
prediction unit 113). For example, fetch control unit 101
may include indirect branch target predictors configured to
predict the target address for indirect branch instructions,
conditional branch predictors configured to predict the out-
come of conditional branches, and/or any other suitable type
of branch predictor. More particularly, as described 1n more
detail below, fetch prediction unit 113 may include a fast
access next fetch prediction unmit (201 of FIG. 2) and a
sequential fetch prediction umit (203 of FIG. 2). During
operation, fetch control umt 101 may generate a fetch PC
based on the output of a selected branch predictor. If the
prediction later turns out to be incorrect, fetch control unit
101 may be redirected to fetch from a different address, and
the fetch pipeline may be flushed.

The instruction cache 102 may be a cache memory for
storing 1nstructions to be executed by the processor 10. In
various embodiments, the mstruction cache 102 may have
any capacity and construction (e.g. direct mapped, set asso-
ciative, fully associative, etc.). The instruction cache 102
may have any cache line size. For example, 64-byte cache
lines may be implemented in one embodiment. Other
embodiments may use larger or smaller cache line sizes. In
response to a given PC from the fetch control unit 101, the
instruction cache 102 may output up to a maximum number
of mstructions. It 1s contemplated that processor 10 may
implement any suitable instruction set architecture (ISA),
such as, e.g., the ARM™, PowerPC™, or x86 ISAs, or
combinations thereof. In one particular implementation, the
instruction cache 102 is a set associate cache that includes a
number of independently configurable ways. For example,
in one embodiment, the instruction cache 102 may be
implemented as a 4-way set associative cache. As shown 1n
FIG. 5, and described below, the instruction cache 102 may
include a tag array, used for indexing into the instruction
cache 102 main data storage array.

In some embodiments, processor 10 may implement an
address translation scheme in which one or more virtual
address spaces are made visible to executing software.
Memory accesses within the virtual address space are trans-
lated to a physical address space corresponding to the actual
physical memory available to the system, for example using,
a set ol page tables, segments, or other virtual memory
translation schemes. In embodiments that employ address
translation, the instruction cache 14 may be partially or
completely addressed using physical address bits rather than
virtual address bits. For example, mstruction cache 102 may
use virtual address bits for cache indexing and physical
address bits for cache tags.

To avoid the cost of performing a full memory translation
when performing a cache access, processor 10 may store a
set of recent and/or Irequently-used virtual-to-physical
address translations 1n a translation lookaside bufler (TLB),
such as Instruction TLB (ITLB) 103. During operation,
I'TLB 103 (which may be implemented as a cache memory
array, as a content addressable memory (CAM), or using any
other suitable circuit structure) may recerve virtual address
information and determine whether a valid translation 1s
present. If so, ITLB 103 may provide the corresponding
physical address bits to mstruction cache 102. If not, I'TLB
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4

103 may cause the translation to be determined, for example
by raising a virtual memory exception.

As described further below in conjunction with the
descriptions of FIG. 2 through FIG. 6, each of the branch
direction predictor and the indirect branch predictor of the
branch predictor 112, the instruction cache 102, and the
ITLB 103 may include one or more respective memory
arrays that may be enabled and disabled independently to
reduce power consumption. More particularly, when certain
istruction sequences occur repetitively such as in a code
loop that 1includes branch instructions, it may be possible to
identily whether or not a branch instruction 1s present 1n a
next fetch group, and 1n any sequential fetch groups after a
taken branch instruction. If there 1s no conditional branch
instructions present, the respective branch prediction arrays
may be disabled (or powered down), thereby saving power.
Similarly, 11 the mstruction cache 102 or the ITLB 103 1s not
accessed, the corresponding tag or memory arrays may be
disabled. Accordingly, in one embodiment disabling a par-
ticular memory array may refer to power gating or otherwise
disconnecting or reducing a supply voltage from one or
more circuits (such as sense amplifiers, output drivers,
memory cells, for example) within the array(s). In another
embodiment, disabling a particular array may refer to gating
or disabling any clocking of one or more circuits within the
particular array, or in other embodiments, simply disabling
or inhibiting the read enable signals to the arrays.

The decode umit 104 may generally be configured to
decode the 1nstructions 1nto instruction operations (ops). As
used herein, the terms micro-operations (micro-ops) and ops
may be used interchangeably. Generally, an struction
operation may be an operation that the hardware included 1n
the execution core 108 1s capable of executing. Each mnstruc-
tion may translate to one or more nstruction operations
which, when executed, result 1n the operation(s) defined for
that instruction being performed according to the instruction
set architecture implemented by the processor 10. In some
embodiments, each instruction may decode 1nto a single
instruction operation. The decode unit 104 may be config-
ured to 1dentify the type of mstruction, source operands, etc.,
and the decoded instruction operation may include the
instruction along with some of the decode information. In
other embodiments 1n which each instruction translates to a
single op, each op may simply be the corresponding instruc-
tion or a portion thereof (e.g. the opcode field or fields of the
instruction). In some embodiments 1n which there 1s a
one-to-one correspondence between instructions and ops,
the decode unit 104 and mapper 105 may be combined
and/or the decode and mapping operations may occur 1n one
clock cycle. In other embodiments, some instructions may
decode into multiple instruction operations. In some
embodiments, the decode unit 16 may include any combi-
nation of circuitry and/or microcoding in order to generate
ops for instructions. For example, relatively simple op
generations (e.g. one or two ops per instruction) may be
handled 1n hardware while more extensive op generations
(e.g. more than three ops for an 1nstruction) may be handled
in microcode.

Operations generated by the decode unit 104 may be
provided to the mapper 105. The mapper 105 may provide
the ops along with any dependency information to the
scheduler 106. In one embodiment, the mapper 205 may
implement register renaming to map source register
addresses from the ops to the source operand numbers
(SO#s) 1dentitying the renamed source registers. Addition-
ally, the mapper 105 may be configured to assign a scheduler
entry to store each op, identified by the SCH#. In an
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embodiment, the SCH# may also be configured to identily
the rename register assigned to the destination of the op. In
other embodiments, the mapper 105 may be configured to
assign a separate destination register number. Additionally,
in one embodiment, the mapper 105 may be configured to
generate dependency information for the ops.

The scheduler 106 may be configured to store the ops in
the scheduler entries identified by the respective SCH#s,
along with the SO#s and PCs. The scheduler may be

configured to store the dependency information 1 depen-
dency arrays that evaluate which ops are eligible for sched-
uling. The scheduler 106 may be configured to schedule the
ops for execution 1n the execution core 108. When an op 1s
scheduled, the scheduler 106 may be configured to read its
source operands from the register file 107 and the source
operands may be provided to the execution core 108. The
execution core 108 may be configured to return the results
of ops that update registers to the register file 107. In some
cases, the execution core 108 may forward a result that 1s to
be written to the register file 107 1n place of the value read
from the register file 107 (e.g. 1n the case of back to back
scheduling of dependent ops).

The execution core 108 may also be configured to detect
various events during execution of ops that may be reported
to the scheduler. Branch ops may be mispredicted, and some
load/store ops may be replayed (e.g. for address-based
contlicts of data being written/read). Various exceptions may
be detected (e.g. protection exceptions for memory accesses
or for privileged instructions being executed 1n non-privi-
leged mode, exceptions for no address translation, etc.). The
exceptions may cause a corresponding exception handling
routine to be executed.

The execution core 108 may be configured to execute
predicted branch ops, and may receive the predicted target
address that was originally provided to the fetch control unit
101. The execution core 108 may be configured to calculate
the target address from the operands of the branch op, and
to compare the calculated target address to the predicted
target address to detect correct prediction or misprediction.
The execution core 108 may also evaluate any other pre-
diction made with respect to the branch op, such as a
prediction of the branch op’s direction. If a misprediction 1s
detected, execution core 108 may signal that fetch control
unit 101 should be redirected to the correct fetch target. As
described further below, the way prediction unit 113 may be

trained during the redirection process. Other units, such as
the scheduler 106, the mapper 105, and the decode umit 104
may ftlush pending ops/instructions from the speculative
instruction stream that are subsequent to or dependent upon
the mispredicted branch.

As shown, the execution core 108 may include a data
cache 109, which may be a cache memory for storing data
to be processed by the processor 10. Like the instruction
cache 102, the data cache 109 may have any suitable
capacity, construction, or line size (e.g. direct mapped, set
associative, fully associative, etc.). Moreover, the data cache
109 may differ from the mstruction cache 102 1n any of these
details. As with instruction cache 102, in some embodi-
ments, data cache 109 may be partially or entirely addressed
using physical address bits. Correspondingly, a data TLB
(DTLB) 110 may be provided to cache virtual-to-physical
address translations for use 1n accessing the data cache 109
in a manner similar to that described above with respect to
I'TLB 103. It 1s noted that although ITLB 103 and DTLB 110

may perform similar functions, 1n various embodiments they
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6

may be implemented differently. For example, they may
store diflerent numbers of translations and/or diflerent trans-
lation information.

The register file 107 may generally include any set of
registers usable to store operands and results of ops executed
in the processor 10. In some embodiments, the register file
107 may include a set of physical registers and the mapper
105 may be configured to map the logical registers to the
physical registers. The logical registers may include both
architected registers specified by the instruction set archi-
tecture 1mplemented by the processor 10 and temporary
registers that may be used as destinations of ops for tem-
porary results (and sources of subsequent ops as well). In
other embodiments, the register file 107 may include an
architected register set containing the committed state of the
logical registers and a speculative register set containing
speculative register state.

The interface unit 111 may generally include the circuitry
for itertacing the processor 10 to other devices such as a
system memory (not shown in FIG. 1), for example, on the
external interface. The external interface may include any
type of interconnect (e.g. bus, packet, etc.). The external
interface may be an on-chip interconnect, if the processor 10
1s 1ntegrated with one or more other components (e.g. a
system on a chip configuration). The external interface may
be on ofl-chip interconnect to external circuitry, if the
processor 10 1s not integrated with other components.
Branch Prediction Power Reduction

Referring to FIG. 2, a block diagram illustrating more
detailed aspects of the processor of FIG. 1 1s shown. It 1s
noted that components that correspond to those shown in
FIG. 1 are numbered 1dentically for clarity and simplicity. As
mentioned above, and shown 1n FIG. 2, the processor 10
includes a fetch prediction unit 113, which includes a next
fetch prediction unit 201 and a sequential fetch prediction
unmit 203, both of which are coupled through a multiplexer
207 to the branch direction predictor (BDP) array 212 and
the indirect branch predictor (IBP) array 213 of the branch
predictor 112.

As mentioned above, 1t there 1s no conditional branch
instruction present 1n a fetch group, then no branch predic-
tion will be necessary for that fetch group. Thus, the branch
prediction arrays may be disabled (or powered down),
thereby saving power.

Accordingly, 1n one embodiment, the next fetch predic-
tion unit 201 may be configured to perform simple branch
direction and target prediction. The next fetch prediction
unit 201 may include a number of mndexed entries. Accord-
ingly, the next fetch prediction unit 201 may store, in each
entry, branch target information that 1s indexed and tagged
by the fetch address. A hit/miss indication represents the
taken/not taken prediction, and the output of a storage array
(not shown) within the next fetch prediction unit 201 rep-
resents the predicted target for the case of a hit. In the case
of a miss, the fetch control unit 101 may continue fetching
on the sequential path. In one embodiment, the next fetch
prediction unit 201 may be trained using the information that
drives the redirection process during, for example, a branch
mispredict. More particularly, information from branch pre-
diction unit 112, and branch targets predicted and computed
for direct, return, and indirect-not-return branches. Accord-
ingly, the next fetch prediction unit 201 may be a fast access
cache for the above predictors. In one embodiment, predic-
tions by the next fetch prediction unit 201 may be verified

by more accurate predictors such as the branch prediction
unit 112.
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The next fetch prediction unit 201 may also be configured
to store, 1n each entry, an indication of whether or not the
next fetch group includes another conditional branch
instruction or an indirect branch instruction. Accordingly, a
hit 1n the next fetch prediction unit 201 may produce as an
output, a branch target and an enable/disable signal to the
BDP array 212 and IBP array 213. As described further
below, this enable/disable 1indication may be used to enable
or disable the corresponding respective BDP and IBP array.
It 1s noted that 1f the branch instruction in the next fetch
group 1s an unconditional branch, the corresponding branch
indication will not indicate a branch since unconditional
branches do not need prediction.

In one embodiment, the sequential fetch prediction unit
203 may also include a storage array (not shown) having
some number of entries. Each entry 1n the sequential fetch
prediction unit 203 may store, among other things, an
indication of whether or not another branch instruction or an
indirect branch instruction 1s present within a particular
sequential fetch group to be executed 1n the cycles following
the taken branch 1nstruction. As described further below, this
indication may be used to enable or disable the correspond-
ing respective BDP and IBP array.

In one embodiment, the sequential fetch prediction unit
203 1s accessed using the same fetch address index that was
used to access the next fetch prediction unit 201 such that
there 1s a one-to-one correspondence between each entry in
the next fetch prediction unit 201 and a respective entry in
the sequential fetch prediction unit 203. In addition, in one
embodiment, each entry 1n the sequential fetch prediction
unit 203 may include a separate branch instruction indica-
tion for each fetch group that lies 1n the shadow of the taken
branch instruction. Accordingly, in such an embodiment, the
sequential fetch prediction unit 203 may provide a fixed
number of branch instruction indications after a hit in the
next fetch prediction unit 201 1n a previous cycle. The fixed
number corresponds to the number of fetch groups that
tollow the taken branch and each respective branch instruc-
tion 1ndication will be used 1n each consecutive cycle after
the taken branch. For example, in various implementations,
cach entry of the sequential fetch prediction unit 203 may
store four, e1ght, or sixteen branch mstruction indications. In
another embodiment, each entry may store one branch
instruction indication for all of the fetch groups 1n the
shadow of the taken branch.

In one embodiment, the sequential fetch prediction unit
203 1s only accessed 11 1n the previous cycle, there was a hit
in the next fetch prediction unit 201. Accordingly, 1n
response to a hit in the current cycle within the next fetch
prediction unit 201 the fetch prediction unit 113 may be
configured to generate a multiplexer selection signal that
selects the output of the next fetch prediction unit 201 to
enable the array of either the BDP array 212 or the IBP array
213. In addition, 1f there was a hit 1n the previous cycle, the
tetch prediction unit 113 may be configured to generate a
multiplexer selection signal that selects the output of the
sequential fetch prediction unit 203 to enable the array of
either the BDP array 212 or the IBP array 213.

In FIG. 3, a flow diagram depicting operational aspects of
the embodiments of the processor of FIG. 1 and FIG. 2 1s
shown. Referring collectively to FIG. 1 through FIG. 3, and
beginning 1n block 301 of FIG. 3, during an imitialization of
the fetch and execution pipelines the fetch unit 101 begins
fetching instructions. As each branch instruction 1s encoun-
tered, both the branch prediction unit 112 and the next fetch
prediction unit 201 will predict taken/not taken. However,
the prediction performed by the prediction unmit 112 1s
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typically very accurate and generally takes more than one
cycle. The prediction performed by the next fetch prediction
unit 201 1s done 1n one cycle, and as such 1t 1s considered a
fast access predictor as mentioned above.

As a first branch instruction 1s encountered, the branch
prediction unit 112 arrays are enabled, and because the next
tetch prediction umt 201 1s empty 1t will predict not taken.
If the branch prediction unit 112 agrees, then the fetch unit
will continue to fetch instructions sequentially. If however,
the branch prediction unit 112 predicts taken, then a mis-
predict occurs, and the pipeline may be flushed and the
redirection process begins. During the redirect process, the
instructions in each fetch group are refetched, and an entry
1s made 1n the next fetch prediction unit 201 that includes the
target address of the branch, along with a branch instruction
indicator. Upon the branch being taken, information such as
cache way mformation, for example, and branch instruction
indication corresponding to the instructions of the sequential
tetch groups following the taken branch are stored within a
corresponding entry the sequential fetch prediction umt 203.
In one embodiment, the sequential fetch group way infor-
mation will continue to be stored until either that entry of the
sequential way prediction unit 203 fills, or another branch
instruction 1s encountered. The branch mstruction indication
may be stored 1n the entry as described above (block 303).

Once the next fetch prediction unit 201 and the sequential
fetch prediction unit 203 have been initialized, the BDP
array 212 and IBP array 213 are kept disabled until a branch
instruction fetch 1s detected (block 321). If a subsequent
fetch of the branch instruction 1s detected (block 303), an
index 1s generated based upon the fetch address of the
branch instruction, and the BDP array 212 and IBP array 213
are enabled for the current fetch group (block 307). The
index 1s used to access the next fetch prediction unit 201. If
the index does not hit within the next fetch prediction unit
201 (block 309), 1t 1s considered a not taken prediction, and
the fetch unit 101 continues to fetch nstruction fetch groups
sequentially and BDP array 212 and IBP array 213 may stay
disabled (block 323). However, 1f the index hits within the
next fetch prediction umit 201 (block 309), 1t 1s considered
a taken prediction and the indexed entry provides the branch
target information and the branch instruction indication for
the next fetch group. If the branch instruction indication
indicates that there 1s a conditional branch instruction 1n the
next fetch group (block 311), the fetch prediction unit 113
may generate an enable signal to enable (or keep enabled)
the BDP array 212 or the IBP array 213 through multiplexer
207 for the next execution cycle (block 313). It 1s noted that
in one embodiment, one of the BDP array 212 and IBP array
213 may be enabled at a time dependent upon which type of
branch instruction 1s fetched. However, referring back to
block 311, 1t the branch instruction indication indicates that
there 1s no conditional branch instruction in the next fetch
group, the fetch prediction unit 113 may generate a disable
signal to disable the BDP array 212 or the IBP array 213
after the current cycle (block 319).

Once the branch target information and the branch
instruction indication 1s provided for the branch instruction,
the sequential fetch prediction unit 203 1s accessed based
upon the fetch addresses of the next sequential instruction
tetch groups. The branch instruction indication of the entry
that 1s accessed 1s checked to determine 1f there 1s a
conditional branch instruction 1n the sequential fetch groups
(block 315). If the branch instruction indication indicates
that there 1s a conditional branch instruction in the sequential
tetch groups (block 3135), the fetch prediction unit 113 may
generate an enable signal to enable (or keep enabled) the
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BDP array 212 or the IBP array 213 through multiplexer 207
for the execution cycles corresponding to the sequential
tetch groups having the branch instructions (block 317). If
the branch instruction indication indicates that there 1s no
conditional branch istruction 1n the sequential fetch groups
(block 315), the fetch prediction unit 113 may generate a
disable signal to disable the BDP array 212 or the IBP array
213 after the current cycle (block 323). It 1s noted that in one
embodiment, 1f the branch prediction unit 112 produces a
branch prediction that causes a mismatch between 1t and the
next fetch prediction umt 201, the execution pipeline may be
flushed and a redirect 1s 1nitiated.

It 1s noted that although various operational aspects have
been shown to occur 1n a particular sequence 1n FIG. 3, 1t 1s
contemplated that in other embodiments operations may be
omitted, other operations may be added, and/or the order of
the operations may be different than that shown in FIG. 3.

Turning to FIG. 4, a block diagram illustrating more
detailed aspects of another embodiment of the processor of
FIG. 1 1s shown. It 1s noted that components that correspond
to those shown 1n FIG. 1 are numbered 1dentically for clarity
and simplicity. As shown in FIG. 4, an indirect branch
detection unit 410, which includes a branch status unit 415
coupled to an OR function 425, which 1s 1n turn coupled to
an enable unit 420. The indirect branch detection unit 410 1s
coupled to the indirect branch predictor (IBP) array 213 of
the branch predictor 112.

In many cases, indirect branches occur inirequently.
Accordingly, and similar to the branch direction predictor
described above, 1 an eflort to reduce processor power
consumption 1t may not be necessary to keep the indirect
branch predictor (IBP) array 213 of the branch predictor 112
enabled when there are no indirect branches being fetched.

In one embodiment, the branch status unit 415 includes a
number of storage elements (e.g., tlip-tlops) that each store
a single bit. The storage elements form an m by n array. Each
clement represents a cache line and way within the ICache
102. In one embodiment, if a bit 1s set 1t indicates that an
indirect branch instruction 1s present in that cache line and
in the particular way.

During the time a line 1s filled mto the ICache 102, the
predecoding operation may detect whether an 1indirect
branch 1nstruction 1s present in the cache line. If there 1s, the
corresponding bit in the branch status unit 415 1s set. During
a fetch of a fetch group, the branch status unit 415 1s checked
to see 11 the fetch group 1includes an indirect branch and 11 so,
the IBP array 213 may be enabled.

In various embodiments, the ICache tag array index and
ICache way information may be used to access the branch
status unit 413. In one specific implementation, during a first
fetch stage, the I'TLB 103 may be accessed to get the
physical address for the ICache tag array lookup. The index
that 1s generated may be used to access the cache line 1n the
branch status unit 415. The outputs of all of the ways in the
branch status unit 415 for the indexed cacheline may be
OR’ed together in the OR function 425. In such a wire-OR
configuration, 11 any of the ways of the cacheline have a set
bit, then the enable unit 420 may generate an array enable
signal to enable the indirect branch predictor (IBP) array
213. However, 1n other embodiments, the cache way may be
determined during a lookup in the ICache tag array. The
specific cache way 1n the branch status unit 415 may then be
accessed, and the indication used to generate an array enable
signal.

Instruction Cache and TLB Power Reduction

Referring to FIG. 5, a block diagram depicting more

detailed aspects of another embodiment of the processor of
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FIG. 1 1s shown. It 1s noted that components that correspond
to those shown 1n FIG. 1 and FIG. 2 are numbered 1denti-
cally for clarity and simplicity. As shown i FIG. 5, the
processor 10 includes a fetch prediction unit 513, which
includes a next fetch prediction (NFP) unit 501, a cache
status unit 310, both of which are coupled to a bypass unit
515. As described above, the processor 10 also includes an
ITLB array 523 and ICache 102 which includes a tag array
521.

Similar to the embodiment described in 1n conjunction
with the description of the NFP unit 201 of FIG. 2, the NFP
umt 501 of FIG. § may be configured to perform simple
branch direction and target prediction, and may operate
similarly. Thus the NFP 501 may store branch target infor-
mation as well as cache way information corresponding to
the way 1n the ICache 1n which the target 1s stored.

As mentioned above, to reduce processor power con-
sumption 1t may be possible to disable the ICache tag array
521 and the ITLB array 523 when they are not needed. More
particularly, 1n some code loops once the ICache has been
filled and the code loop has been executed, the instructions
may all be in the ICache 102, and the translations may be
done. In addition, since the NFP 501 may include branch
instruction mnformation and cache way information, 1t may
be possible to disable or otherwise keep from using the

ICache tag array 521 and the ITLB array 523 if it can be

guaranteed that there has not been a cacheline fill for a
cacheline that has previously hit in the NFP, and there has
not been a translation update.

Accordingly, 1n one embodiment, the cache status unit
510 includes a cache status storage umt 511 and an NFP
status storage unit 312. Each of the storage units includes a
number of storage elements (e.g., tlip-tflops) that each store
a single bit. The storage elements form an m by n array. Each
clement 1n cache status storage unit 511 represents a cache

line and way within the ICache 102. In one embodiment, 1f
a bit 1s set 1t indicates that there has been a hit in the
corresponding cacheline and way and the cacheline has not
had a cacheline fill since the last hit. In a similar way, each
clement in NFP status storage unit 512 represents an NFP

entry and way in the NFP unit 501. In one embodiment, 1f
a bit 1s set 1t indicates that the corresponding cacheline has
hit 1n the ICache and the NFP has also hit on the cache line
and way.

Accordingly, as described 1n greater detail below 1n
conjunction with the description of FIG. 6, the cache status
storage 511 keeps track of whether the cachelines have been
filled or not, and the NFP status storage 512 ensures that a
hit 1n the NFP may not cause an access to a cache line that
has been filled. This 1s a secondary check due to the NFP 501
entries being indexed, and thus there exists a possibility of
aliasing of cacheline entries. Thus, when there 1s a cacheline
f1ll for any cacheline, the entire NEFP status storage 512 is
cleared, while only the bit 1n the cache status storage 511
corresponding to the cacheline and way 1s cleared.

Once the NFP unit 501 1s trained, 11 there 1s an NFP hait,
the branch target and way imnformation may be fed to the tag
array 521 and the ITLB array 523 through the PC Mux 517.
Concurrent with the access of the NFP unit 501, the cache
status unit 510 may also be accessed. 11 the bits correspond-
ing to the cacheline and way in the cache status storage 511
and the NFP bit in the NFP status storage 512 are both set,
the bypass unit 515 may inhibit the read enable signal to the
ITLB array 523 and the tag array 521. In such a case, the
target and way mformation from the NFP entry may be used
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to directly access the ICache array. In this way, the I'TLB
array 523 and the tag array 521 are not enabled and power
1s conserved.

FIG. 6 1s a flow diagram depicting operational aspects of
the embodiments of the processor of FIG. 1 and FIG. 5 1s
shown. Referring collectively to FIG. 1, FIG. §, and FIG. 6,

and beginning in block 601 of FIG. 6, during an imnitialization
of the fetch and execution pipelines the fetch unit 101 begins
fetching instructions. As each branch istruction 1s encoun-

tered, both the branch prediction unit 112 and the NFP umit
501 will predict taken/not taken. However, the prediction
performed by the prediction unit 112 1s typically very
accurate and generally takes more than one cycle. The cache
status storage 511 and NFP status storage 512 are cleared
and mitialized, and the read enabled signal to the ICache tag
array 521 and the ITLB array 523 are enabled upon a read
of those structures.

As a first branch instruction 1s encountered, the NFP unit
501 1s empty and will thus predict not taken. If the branch
prediction unit 112 agrees, then the fetch unit will continue
to fetch instructions sequentially. If however, the branch
prediction unit 112 predicts taken, then a mispredict occurs,
and the pipeline may be flushed and the redirection process
begins. During the redirect process, the instructions 1n each
tetch group are refetched, and an entry 1s made in the NEFP
unit 501 that may include the target address of the branch,
and cache way information, for example. During this NEFP
training sequence, and a NFP hit 1s registered on subsequent
passes through the code loop, and the sequential paths are
seen, the corresponding bit in each of cache status storage
511 and NFP status storage 512 are set (block 603).

Once the NFP unit 501 has been 1mitialized, 11 a subse-
quent fetch of the branch 1nstruction i1s detected (block 605),
an 1ndex 1s generated based upon the fetch address of the
branch instruction. The 1index 1s used to access the NFP unit
501. If the index does not hit within the NFP unit 501 (block
607), 1t 1s considered a not taken prediction, and the fetch
unit 101 continues to fetch mstruction fetch groups sequen-
tially. However, 1f the mdex hits within the NFP unit 501
(block 607), 1t 1s considered a taken prediction and the
indexed entry provides the branch target and way informa-
tion for the next fetch group (block 607). On the next cycle,
the cache status storage 511 and the NFP status storage 512
are checked to see 1 there have been any cache fills since the
last hit (block 611). If one or both bits are not set, then the
read enable 1s allowed to be enabled for accessing the I'TLB
array 3523 and the tag array 521 (block 615). However, 1f
both bits are set (block 615), the bypass unit 615 may inhibit
the read enable signal and the branch target and way
information from the NFP unit 501 may be used to access the
ICache array 102 directly (block 613).

In addition, although not shown in FIG. 3, the fetch
prediction unit 513 may also include a sequential fetch
prediction unit such as one similar to the sequential fetch
prediction unit 203 of FIG. 2. In this way, once there 1s a 1
in the NFP umt 501 and a branch 1s predicted taken, this
sequential fetch prediction unit may also be used to access
the ICache array directly for as many sequential fetch groups
as may be stored therein, or there 1s another NFP hit.

At any time, 1f a cache fill 1s detected (block 617), the bit
which corresponds to the cacheline and way being filled in
the cache status storage 511, and all the bits 1n the NFP status
storage 512 are cleared (block 619) and the NFP status
storage will need to be retrained as described above 1n block

601. Otherwise 11 no cacheline fill 1s detected (block 617),
operation continues as described above 1n block 605.
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Turning to FIG. 7, a block diagram of one embodiment of
a system that includes the processor 10 of FIG. 1, FIG. 2,
FIG. 4 and FIG. 5 1s shown. The system 700 includes at least
one instance of the processor 10 coupled to one or more
peripherals 707 and an external system memory 7035. The
system 700 also includes a power supply 701 that may
provide one or more supply voltages to the processor 10 as
well as one or more supply voltages to the memory 7035
and/or the peripherals 707. In some embodiments, more than
one instance of the processor 10 may be included.

The pernipherals 707 may include any desired circuitry,
depending on the type of system. For example, in one
embodiment, the system 700 may be included 1n a mobile
device (e.g., personal digital assistant (PDA), smart phone,
etc.) and the peripherals 707 may include devices for various
types of wireless communication, such as WiF1, Bluetooth,
cellular, global positioning system, etc. The peripherals 707
may also include additional storage, including RAM storage,
solid-state storage, or disk storage. The peripherals 707 may
include user interface devices such as a display screen,
including touch display screens or multitouch display
screens, keyboard or other input devices, microphones,
speakers, etc. In other embodiments, the system 700 may be
included 1n any type of computing system (e.g., desktop
personal computer, laptop, tablet, workstation, net top, etc.).

The system memory 705 may include any type of

memory. For example, the system memory 705 may be in
the DRAM family such as synchronous DRAM (SDRAM),

double data rate (DDR, DDR2, DDR3, efc.), or any low
power version thereof. However, system memory 705 may
also be implemented 1n SDRAM, static RAM (SRAM), or
other types of RAM, efc.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled i the art once the
above disclosure 1s fully appreciated. It 1s intended that the
following claims be interpreted to embrace all such varia-
tions and modifications.

What 1s claimed 1s:

1. A processor comprising;

a fetch prediction umit mncluding:

a next fetch prediction unit including a first plurality of
prediction entries for respective next instruction
fetch groups, wherein the next fetch prediction unit
1s configured to assert a first enable signal for a
memory of a branch prediction unit in response to a
determination that a particular one of the first plu-
rality of prediction entries indicates that a subsequent
next instruction fetch group includes a conditional
branch instruction; and

a sequential fetch prediction unit including a second

plurality of prediction entries, wherein the sequential

fetch prediction unit 1s accessed by the fetch prediction
unit after recerving an indication that a subsequent next
instruction fetch group includes a conditional branch
instruction, wherein each of the second plurality of
prediction entries corresponds to a respective entry of
the first plurality of prediction entries, and wherein, the
sequential fetch prediction unit 1s configured to, for
those entries 1n the first plurality that indicate a next
istruction fetch group having a conditional branch
istruction, assert a second enable signal for the

memory of the branch prediction unmit 1n response to a

determination that a particular entry in the second

plurality indicates that a sequential instruction fetch
group lollowing the conditional branch instruction
includes a further conditional branch instruction.
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2. The processor of claim 1, wherein 1n response to the
indication that the subsequent next instruction fetch group
includes a conditional branch instruction, a branch predic-
tion unit 1s configured to access the memory for performing
a branch prediction.

3. The processor of claim 1, wherein the indication
includes a plurality of bits, each bit corresponding to a
respective bank of the memory, and wherein in response to
the indication that the subsequent next instruction fetch
group includes a conditional branch instruction, the fetch
prediction unit 1s configured to enable a bank of the memory
indicated by the indication to allow a branch prediction unit
to access the indicated bank of the memory.

4. The processor of claim 1, further comprising a branch

prediction unit that includes:

the memory; and

a second memory for storing indirect branch prediction

information.

5. The processor of claim 4, wherein each entry of the first
plurality of prediction entries includes an indication of
whether a corresponding next instruction Ifetch group
includes an indirect branch instruction.

6. The processor of claim 5, wherein in response to an
indication that a next instruction fetch group includes an
indirect branch instruction, the fetch prediction unit 1s con-
figured to enable the second memory.

7. The processor of claim 1, wherein the second plurality
of prediction entries include a fixed number of indications
for one or more sequential fetch groups that follow a taken
conditional branch 1nstruction.

8. The processor of claim 1, wherein 1n response to an
access by the fetch prediction umit, the sequential fetch
prediction unit 1s further configured to update one or more
entries ol the second plurality of prediction entries.

9. The processor of claim 7, wherein the fetch prediction
unit further includes a multiplexing circuit, and wherein the
tetch prediction unit 1s configured to use the multiplexing
circuit to select either the first or the second enable signal to
cnable the memory of the branch prediction unait.

10. The processor of claim 4, wherein the sequential fetch
prediction unit 1s further configured to store, in each entry of
the second plurality of prediction entries, an indication of
whether or not a corresponding sequential instruction fetch
group includes an indirect branch instruction.

11. The processor of claim 10, wherein 1n response to an
indication that a particular sequential instruction fetch group
does 1nclude an indirect branch instruction, the sequential
fetch prediction unit 1s configured to assert, n a next
instruction execution cycle, the second enable signal for the
memory.

12. A method comprising:

asserting, by a next fetch prediction unit of a fetch

prediction unit, a first enable signal for a memory of a
branch prediction unit in response to a determination
that a particular entry of a first plurality of prediction
entries indicates that a subsequent next istruction fetch
group 1ncludes a conditional branch instruction,
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wherein the particular entry corresponds to a current
next instruction fetch group; and

accessing, by the fetch prediction unit, a sequential fetch

prediction unit in response to receiving, from the next
fetch prediction unit, an indication that a subsequent
next instruction fetch group includes a conditional
branch instruction,

asserting, by the sequential fetch prediction unit, a second

enable signal for the memory of the branch prediction
unit 1n response to a determination that a particular
entry of a second plurality of prediction entries, each of
the second plurality of prediction entries corresponding
to a respective entry of the first plurality of prediction
entries, indicates that a sequential instruction fetch
group following the conditional branch instruction
includes a further conditional branch instruction.

13. The method of claim 12, further comprising, in
response to the indication that the subsequent next instruc-
tion fetch group includes a conditional branch instruction,
accessing, by the branch prediction unit, the memory to
perform a branch prediction operation.

14. The method of claim 12, further comprising storing,
within a respective entry of the first plurality of prediction
entries of the next fetch prediction unit, an indication of
whether a corresponding next instruction Ifetch group
includes an indirect branch instruction.

15. The method of claim 14, further comprising, in
response to an 1indication that the corresponding next
instruction fetch group includes an indirect branch instruc-
tion, enabling a second memory array for storing indirect
branch information.

16. The method of claim 12, wherein the second plurality
of prediction entries include a fixed number of indications
for one or more sequential fetch groups that follow a taken
branch instruction.

17. The method of claim 12, further comprising updating,
by the sequential fetch prediction unit, one or more entries
of the second plurality of prediction entries 1n response to
the indication of a taken branch instruction by the particular
entry of the first plurality.

18. The method of claim 12, further comprising storing,
within each entry of the second plurality of prediction
entries, an indication of whether a corresponding sequential
instruction fetch group includes an indirect branch instruc-
tion.

19. The method of claim 18, further comprising, in
response to an indication that the corresponding sequential
istruction fetch group does include an indirect branch
instruction, enabling a second memory array for storing
indirect branch information.

20. The method of claim 12, further comprising, in
response to the indication that the subsequent next mnstruc-
tion fetch group includes a conditional branch instruction,
enabling a memory bank of the memory indicated by a
particular bit mncluded 1n the indication, and allowing per-
forming of branch predictions using the enabled memory

bank.
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