12 United States Patent

Guan et al.

US010235276B2

US 10,235,276 B2
“Mar. 19, 2019

(10) Patent No.:
45) Date of Patent:

(54) RUNTIME DETECTION OF UNINITIALIZED
VARIABLE ACROSS FUNCTIONS

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(72) Inventors: Xiao Feng Guan, Shanghai (CN);
JiuFu Guo, Shanghai (CN); Yu Xuan
Zhang, Shanghai (CN); Yuheng
Zhang, Shanghai (CN)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.
This patent 1s subject to a terminal dis-
claimer.
(21) Appl. No.: 15/285,861
(22) Filed: Oct. 5, 2016
(65) Prior Publication Data
US 2017/0337120 Al Nov. 23, 2017
Related U.S. Application Data
(63) Continuation of application No. 15/161,526, filed on
May 23, 2016, now Pat. No. 9,886,368.
(51) Int. CL
GO6I’ 11/36 (2006.01)
GO6l’ 9/44 (2018.01)
(52) U.S. CL
CPC e Go6l 11/3672 (2013.01)

FIRST FUNGTION
(CALLER)

—
/
SETTING flag b TO 1

! 0

S L

E th RESPFONSE TO INITIALIZATION
E OF o, SETTING Hag_ b 701

l A B0

PASSING AT LEAST flag b TQ '

310 !

(38) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,725,187 Bl 4/2004 Cheng et al.
7,487,321 B2 2/2009 Muthiah et al.
0,183,114 B2 11/2015 Rangarajan et al.
2002/0010911 Al 1/2002 Cheng et al.
2006/0143527 Al* 6/2006 Greycoeee..... GO6F 11/3672
714/33
2007/0150879 Al1* 6/2007 Rangarajan GO6F 9/44589
717/154
(Continued)

OTHER PUBLICATTONS

NPL: “Automatic Detection of Uninitialized Variables”, Nguyen et
al., International Conference on Compiler Construction, CC 2003:
Compiler Construction pp. 217-231, 2003 (Year: 2003).*

(Continued)

Primary Examiner — Daxin Wu
(74) Attorney, Agent, or Firm — Dmitry Paskalov

(57) ABSTRACT

The disclosure provides a method for detection of an unini-
tialized variable. The method includes running a first func-
tion, wherein the first function comprises a local variable
and a first flag associated with the local vanable for 1ndi-
cating an 1nitialization state of the local varniable; calling a
second function from the first function, with the local
variable as a parameter of the second function, wherein the
second function comprises a second flag associated with the
parameter for indicating an 1nitialization state of the param-
eter; and updating the first tlag based at least on the second
flag returned from the second function.

8 Claims, 5 Drawing Sheets

SECOND FUNCTION
(CALLEE)

CALL

THE CALLEE

. UPDATING flag_t BASED AT

l e 520

+ SETTING flag_pb BASED AT LEAST

ON Hag_b

l e 340

IN RESPONSE TO INITIALIZATION

OF pb, SETTING flag_pb TO 1

l e 530

IN RESPONSE TO & USE GF pb,

CHECKING flag_ph IS TRIGGERING
AN EVENTIF flag_pb 1S 0

l A e 250

' PASSING AT LEAST flag_ph TO THE
| CALLER

e e [roeeromeeeeee

LEAST ON flag_pia

IN BESPONSE TO A USE OF B,

E CHECKING flag_b AND TRIGGERING
' AN EVENT IF flag b (SO

RETURN

US 10,235,276 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2008/0216061 Al* 9/2008 Allenoooninie. GO6F 9/443
717/142
2008/0244536 Al* 10/2008 Farchi GOO6F 8/433
717/130
2012/0311533 A1 12/2012 Fanning et al.
2014/0130016 Al 5/2014 Menghrajani et al.
2015/0309776 Al 10/2015 Bates et al.
2017/0147475 Al1* 5/2017 Abadi GO6F 11/3664

OTHER PUBLICATIONS

IBM, List of IBM Patents or Patent Applications Treated as Related,

Appendix P, dated Dec. 21, 2017, 2 pages.

Pending U.S. Appl. No. 15/830,387, filed Dec. 4, 2017, entitled:
“Runtime Detection of Uninitialized Variable Across Functions™, 40

pages.

IBM: List of IBM Patents or Patent Applications Treated as Related
(Appendix P), Oct. 5, 2016, pp. 1-2.

Guan et al., Pending U.S. Appl. No. 15/161,526, filed May 23, 2016,
titled “Runtime Detection of Uninitalized Variable Across Func-

tions,” pp. 1-39.

* cited by examiner

US 10,235,276 B2

Sheet 1 of 5

Mar. 19, 2019

U.S. Patent

LiL-

9cl

'''''''''''''''''''''''''''''''''

vIaan

AHOMLAN

JOVHOLS
418vav3y
- ddind S_OO
Mde.EOn_

b
b
"
-
b
P
L]

b Ol

JOVAYIINI |
O d41dVaAV |
MHOMLAN | 30}

ll

||

VIAZIN 3OVvHO0LS
A18vavdd J41NdWN00

nmiaplepienenlenienenSenienSenS eSS’

SHIARA |
JOINIA |

U.S. Patent Mar. 19, 2019 Sheet 2 of 5 US 10,235,276 B2

7T 200

i : b
Lo :
."'-.a:*t t

RUNNING A FIRST FUNCTION, WHEREIN THE FIRST FUNCTION
COMPRISES A LOCAL VARIABLE AND A FIRST FLAG
ASSOCIATED WITH THE LOCAL VARIABLE FOR INDICATING AN
INITIALIZATION STATE OF THE LOCAL VARIABLE

WITH THE LOCAL VARIABLE AS A PARAMETER OF THE SECOND
 FUNCTION, WHEREIN THE SECOND FUNCTION COMPRISES A
SECOND FLAG ASSOCIATED WITH THE PARAMETER FOR
INDICATING AN INITIALIZATION STATE OF THE PARAMETER

~ UPDATING THE FIRST FLAG BASED AT LEAST ON THE SECOND
= FLAG RETURNED FROM THE SECOND FUNCTION ;

bb

U.S. Patent Mar. 19, 2019 Sheet 3 of 5 US 10,235,276 B2

FIRST FUNCTION
(CALLER)

e ad

- SETTING flag_b TO 0

(CALLEE)

IN RESPONSE TO INITIALIZATION |
 OFb, SETTING flag_bTO1

L e " W e " W e " W e T e " W e " W e " W e i e

 IN RESPONSE TO INITIALIZATION
. OF pb, SETTING flag pbTO 1

--

PASSING AT LEAST flag_pb TO THE
‘ CALLER

__

360

1

UPDATING flag_b BASED AT
LEAST ON flag pb

! 1
! 1
1 1
! 1
! 1
1 1
! 1
i
1 1
! 1
! 1
1 1
! 1
! 1
1 1
! 1
i
R B Ay |
e e o o o o o o o e o ! SRR AL
' 1
' 1
' 1
' 1
1
1
1
1
1

 INRESPONSETOA USE OF 8, |
~ CHECKING flag_b AND TRIGGERING
* AN EVENT {F flag_b IS0

RETURN

370

iy g g gEgt Ta¥ WR Wl WR Tl iy Ta¥ W Tl Tl Sy ¥ T

FIG. 3

US 10,235,276 B2

Sheet 4 of 5

Mar. 19, 2019

U.S. Patent

A 2 2 2 2 a2 a2 a2 s aaaaa
a & 2 b a bk a2 b a2k sk st oa
- -

A 2 2 2 2 a2 a2 a2 s aaaaa
a & 2 b a bk a2 b a2k sk st oa
- -

S)

(

- - a2 a2 & a2 a2 =
a & & b a8 & &2 & 2 b 2k ah

- - -
4 & & &8 b &2 b a b adh adoa

- -
a & a2 & 2 b a h ak ad adoa

A 2 2 2 2 a2 a2 a2 s aaaaa
a & 2 b a bk a2 b a2k sk st oa
- -

FLAG _PB

S

]
F

CALLEE

STACK
FRAME
CALLER'S

- & & & 2 & &2 b & &k 2 & &2 & a a & & & &2 & 2 & & b & &k a2 & 4 & & 2 & &2 b & & a2 & & & a a & & & &2 & 2 & &2 b &2 &k a2 & =

- - a & & a - Fl - a & & a - - a
l.rl.rl.rl.rl.rl.rl.r .rl.rl.rl.rl.rl.rl.rl

- - a2 a2 & a2 a2 = - a2 a2 & a2 a2 = - -
a & & b a8 & &2 & 2 b 2k ah 4 & & &8 b &2 b a b adh adoa

- - a & & a - Fl - a & & a
l.rl.rl.rl.rl.rl.rl.r .rl.rl.rl.rl.rl.r

2 b 2 b 2 h 2 & 2k 2 &k a2k 2 & 2 b 2 b 2 & 2 b &2k a
- a2 & & a - a2 & & a -

- Fl - a = - - a & & a - Fl - a & & a - - a - - -
2 & 2 b 2 h 2k 2k a2k =k o 2 b 2 b 2 h 2 & 2k 2 &k a2k 4 2 & 2 b 2 bk 2k xh ad s 2 b 2 h 2 h 2 b &2k 2 &k a2k
A & & 4 & & & a4 & & & a2 & a
4 2 2 2 2a a2 a2 aaaaaaaa

S

=

CALLE

TURE
(S)

/

SIGNA
FLAG _PB

STACK
FRAME

b & & & b &2 & &2 & =

= a - - -
d 2 & 2 & 2k a2k

= s - -
4 & & & & & & a2k &

= a - - -
d 2 & 2 & 2k a2k

Ll
d 2 & 2 & 2k a2k
Ll - -

= a - - -
d 2 & 2 & 2k a2k

= s - - a2 a2 & a2 a2 =
4 & & & & & & a2k &

A a & &

b &2 & &

a & & a
A 2 &k a

A a & &

a & & a
A 2 &k a

A 2 &k a
a2 & & a

a & & a
A 2 &k a

- - - - - -
a & & b &8 & &8 & & b 2k 2k 4 & & &2 & & b a2 & a2 &

s & & & 2 & &2 b &2 & 2 & & & a

- -
d 2 h 2 b =

- -
d 2 h 2 b =

- -
d 2 h 2 b =

A 2 & a2 &

A 2 & a2 &

A 2 & a2 &

- -
a & a2

- -
a & a2

- -
a & a2

a & & & &2 & 2 & &2 b &2 & a2 &

-
a h =

a & & a
A 2 & a2 &

- - - a
a & 2 b 2 &

- - - - - -
a & & b &8 & &8 & & b 2k 2k 4 & & &2 & & b a2 & a2 &

-
a h =

a h =
-

-
a h =

a & & a
A 2 & a2 &

a & & a
A 2 & a2 &

- - - a
a & 2 b 2 &

4 2 & 2 b 2 b 2k 3 s
- -

- - - a
a & 2 b 2 &

4 & & 2 & &2 b &2 & a2 & & & a

i a

U.S. Patent Mar. 19, 2019 Sheet 5 of 5 US 10,235,276 B2

FIRST FUNCTION
(CALLER)

SECOND FUNCTION
(CALLEE)

""

IN RESPONSE TO INITIALIZATION
. OFb,SETTING flag_ bTO 1

PASSING AT LEAST flag b 10
THE CALLEE

SETTING flag_pb BASED AT LEAST |
ON flag b ’

OF pb, SETTING flag_pb TO 1

_ .~ 530
IN RESPONSE TO A USE OF pb,
CHECKING flag_pb 15 TRIGGERING
AN EVENT IF flag pb 150

RETURN

370

| CHECKING flag_b AND TRIGGERING
: AN EVENT IF flag_b 1S 0

A e T T TP T T T P T T e P T T e T e T T T T e P T T T e T T P T T T P T T e P T T e T T T A e T T P T T T e T T P T P T T e T e T T T e T I T T e T I P A T T T I T A T T AT T T

{
i
}
i
§
1
i
§
1
i
§
1
{
$
1
{
¥
1
{
H
i
i
1
1
{
H
i
{
1
i
i
H
{
|
¥
!
H
1
i
§
1
i
§
1
i
§
1
i
H
1
i
i
1
i
g .
! .
; N RESPONSE TO INITIALIZATION
!
i
H
i
i
1
1
i
}
i
§
1
i
i
H
i
§
)
i
§
1
i
§
1
i
|
1
i
1
|
{
'
{
1
|
|
1
|
{
'
|
1
|
|
1
|
i
1
L
f
¥

US 10,235,276 B2

1

RUNTIME DETECTION OF UNINITIALIZED
VARIABLE ACROSS FUNCTIONS

BACKGROUND

The present disclosure relates to computer programming,
and more specifically to detection of uninitialized variables.

In computer programming, an uninitialized variable 1s a
variable that 1s declared but i1s not set to a definite value.
During program execution, an umnitialized varnable will
generally have an unpredictable value. As such, a use of a
variable before its mnitialization 1s a programming error and
a common source of bugs in software, and will sometimes
cause more severe results than software crash.

A compiler 1s a computer program that translates source
code from a high level programming language to a lower
level language such as assembly language or machine code.
Some compilers provide functionality of detecting uninitial-
1zed variables and reporting them as compile-time errors.
These compilers usually perform static data flow analysis on
program source code at a compile time

SUMMARY

Disclosed herein are embodiments of a method, comput-
ing system and computer program product for runtime
detection of an uninitialized variable across functions.

According to one embodiment of the present invention,
there 1s provided a computer-implemented method. The
method 1ncludes running a first function, wherein the first
function comprises a local variable and a first tlag associated
with the local variable for indicating an initialization state of
the local vaniable, and calling a second function from the
first Tunction, with the local vanable as a parameter of the
second function. The second function comprises a second
flag associated with the parameter for indicating an 1nitial-
ization state of the parameter. The method further includes
updating the first flag based at least on the second flag
returned from the second function.

According to another embodiment of the present mnven-
tion, there 1s provided a computing system comprising a
processor and a computer-readable memory unit coupled to
the processor. The memory unit includes instructions that
when executed by the processor perform actions of runmng,
a first function, wherein the first function comprises a local
variable and a first flag associated with the local variable for
indicating an 1mitialization state of the local vaniable; calling
a second function from the first function, with the local
variable as a parameter of the second function, wherein the
second function comprises a second tlag associated with the
parameter for indicating an 1nitialization state of the param-
cter; and updating the first tlag based at least on the second
flag returned from the second function.

According to still another embodiment of the present
invention, there 1s provided a computer program product
comprising a computer readable storage medium having
program 1nstructions embodied therewith. The program
istructions are executable by a processor to cause the
processor to run a first function, wherein the first function
comprises a local variable and a first flag associated with the
local varniable for indicating an initialization state of the local
variable; call a second function from the first function, with
the local varniable as a parameter of the second function,
wherein the second function comprises a second tlag asso-
ciated with the parameter for indicating an initialization state

10

15

20

25

30

35

40

45

50

55

60

65

2

of the parameter; and update the first flag based at least on
the second flag returned from the second function.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 shows an exemplary computer system, which 1s
applicable to implement the embodiments of the present
ivention.

FIG. 2 depicts a flow chart illustrating a method for
detecting an uninitialized variable across functions accord-
ing to some embodiments of the present invention.

FIG. 3 depicts an example of uninmitialization detection
across functions according to embodiments of the present
invention.

FIGS. 4A and 4B depict exemplary stack layouts during
the function call according to some embodiments of the
present 1nvention.

FIG. 5 depicts an example of unimitialization detection
across functions according to some embodiments of the
present 1nvention.

DETAILED DESCRIPTION

Detailled embodiments of the claimed structures and
methods are disclosed herein; however, it can be understood
that the disclosed embodiments are merely illustrative of the
claimed structures and methods that may be embodied 1n
various forms. This invention may, however, be embodied in
many different forms and should not be construed as limited
to the exemplary embodiments set forth herein. Rather, these
exemplary embodiments are provided so that this disclosure
will be thorough and complete and will fully convey the
scope ol this mvention to those skilled 1in the art. In the
description, details of well-known features and techniques
may be omitted to avoid unnecessarily obscuring the pre-
sented embodiments.

Reterences 1n the specification to “one embodiment™, “an
embodiment”, “an example embodiment”, etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic 1s described 1n connection
with an embodiment, 1t 1s submitted that 1t 1s within the
knowledge of one skilled 1n the art to aflect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of mtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a

random access memory (RAM), a read-only memory

US 10,235,276 B2

3

(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program 1nstructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone soitware package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act

specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality mvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks 1n
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

[Then start your discussion] The present invention will
now be described in detail with reference to the Figures.
FIG. 1 shows an exemplary computer system, designated
generally as computer system 100, which 1s applicable to
implement the embodiments of the present imvention. It
should be appreciated that FIG. 1 provides only an illustra-
tion of one implementation and does not imply any limita-
tions with regard to the environments in which different
embodiments may be implemented. Many modifications to
the depicted environment may be made.

Computer system 100 may include one or more proces-
sors 102, one or more computer-readable RAMs 104, one or
more computer-readable ROMs 106, one or more computer
readable storage media 108, device drivers 112, read/write
drive or interface 114, network adapter or interface 116, all
interconnected over a communications fabric 118. Commu-
nications fabric 118 may be implemented with any archi-
tecture designed for passing data and/or control information
between processors (such as microprocessors, communica-
tions and network processors, etc.), system memory, periph-
eral devices, and any other hardware components within a
system.

US 10,235,276 B2

S

One or more operating systems 110 and one or more
application programs 711 are stored on one or more of the
computer readable storage media 108 for execution by one
or more ol the processors 102 via one or more of the
respective RAMs 104 (which typically include cache
memory). In the illustrated embodiment, each of the com-

puter readable storage media 108 may be a magnetic disk
storage device of an internal hard drive, CD-ROM, DVD,
memory stick, magnetic tape, magnetic disk, optical disk, a
semiconductor storage device such as RAM, ROM,
EPROM, flash memory or any other computer-readable
tangible storage device that can store a computer program
and digital information.

Computer system 100 may also include a R/W drive or
interface 114 to read from and write to one or more portable
computer readable storage media 126. Application programs
111 on computer system 100 may be stored on one or more
of the portable computer readable storage media 126, read
via the respective R/W drive or interface 114 and loaded into
the respective computer readable storage media 108.

Computer system 100 may also include a network adapter
or mterface 116, such as a TCP/IP adapter card or wireless
communication adapter (such as a 4G wireless communica-
tion adapter using OFDMA technology) for connection to a
network 117. Application programs 111 on computer system
100 may be downloaded to the computing device from an
external computer or external storage device via a network
(for example, the Internet, a local area network or other wide
area network or wireless network) and network adapter or
interface 116. From the network adapter or interface 116, the
programs may be loaded onto computer readable storage
media 108. The network may comprise copper wires, optical
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers.

Computer system 100 may also include a display screen
120, a keyboard or keypad 122, and a computer mouse or
touchpad 124. Device drivers 112 interface to display screen
120 for imaging, to keyboard or keypad 122, to computer
mouse or touchpad 124, and/or to display screen 120 for
pressure sensing ol alphanumeric character entry and user
selections. The device drivers 112, R/W drive or interface
114 and network adapter or intertace 116 may comprise
hardware and software (stored on computer readable storage
media 108 and/or ROM 106).

Network 117 can be, for example, a local area network
(LAN), a wide area network (WAN) such as the Internet, or
a combination of the two, and can include wired, wireless,
or fiber optic connections. In general, network 117 can be
any combination of connections and protocols that will
support communications between computer system 100 and
other devices.

Embodiments of the present invention may be imple-
mented 1n the computer system/server 12 of FIG. 1. Now,
with reference to FIGS. 2-5, some embodiments of the
present mvention will be described below.

As described above, some compilers perform static data
flow analysis on the program source code at compile time.
However, 1t 1s diflicult for the static analysis to detect
variable uninitialization 1n many cases. For example, 1n the
case where the execution of mitialization operation of a local
variable depends on a condition that can be determined only
at runtime, 1t 1s usually hard at compile time to determine the
initialization state of the local variable. Furthermore, exist-
ing methods for uninitialization detection do not address
how to detect uninitialized wvariables across functions
although function calling 1s common 1 programming.

10

15

20

25

30

35

40

45

50

55

60

65

6

Therefore, existing methods for unimitialization detection
are relatively low 1n accuracy.

The disclosure of the present invention will describe
embodiments of a method, computing system and computer
program product for runtime detection of variable uninitial-
1ization across functions. It should be appreciated that, the
term “function” used here may refer to any subroutine 1n any
programming language, although it may be called a proce-
dure, a routine, a method or a subprogram in different
programming languages.

With reference now to FIG. 2, FIG. 2 1s a flow chart
illustrating a method 200 for detecting an uminitialized
variable across functions according to some embodiments of
the present invention. Method 200 may be performed at
runtime for a computer program, which includes at least a
function call. Some steps of method 200 may be performed
by executing extra program codes inserted by a compiler
during compilation of the source code of the computer
program. For example, the compiler may insert codes 1nto
the source code to enable method 200 at runtime. As another
example, the compiler may insert logic into the intermediate
result during the compilation of the source code to enable
method 200 at runtime. It should be appreciated that the
method according to the present invention can be applicable
to various programming languages, for example, but not
limited to, C, C++, FORTRAN and so on.

At step 210, method 200 may include running a first
function, wherein the first function comprises a local vari-
able and a first flag associated with the local vaniable for
indicating an 1nitialization state of the local varnable. In an
embodiment, the first function may be the main function of
the computer program. Alternatively, the first function may
be a function that 1s called by another function of the
computer program. It should be appreciated that, the term
“flag” used here may refer to any 1ndicator that can be used
to indicate an 1nitialization state of a variable or a parameter.
The flag may work like an anonymous local variable which
takes a memory space (e.g., 1 a stack).

The local varniable 1s a variable included 1n the source code
of the first function, while the first flag may be inserted by
the compiler into the first function during 1ts compilation for
the purpose of mdicating the 1mitialization state of the local
variable. Here, the “initialization state” of the local variable
means whether the local variable has been i1nitialized, 1.e.,
whether the local vanable has been set to a definite value.
Accordingly, the first flag may have two possible values: O
(or “false”), representing the local variable 1s unimitialized,
and 1 (or “true”), representing the local varniable has been
initialized. In an embodiment, the first flag may be mnitially
set to 0, and 1s set to 1 1n response to an 1nitialization of the
local variable. The term “imitialization” here refers to the
assignment of an 1nitial value for a local variable at runtime.
The setting of the first tlag may be performed by extra codes
inserted by the compiler during the compilation. For
example, the compiler may insert codes during compilation
to define a first flag with an 1nitial value of 0. The compiler
may further insert codes into the source code wherever there
1s an assignment statement for the local vanable, even
though the statement might not be executed at runtime 1if,
¢.g., the precondition for the statement 1s not satisfied. As a
result, 1f an 1mitialization of the local variable occurs at
runtime, the first tlag will be set to “1”. Once the first flag
1s set to <17, it will keep unchanged.

According to an embodiment, the compiler may configure
a flag for each of a plurality of local variables 1n the first
function during the compilation to indicate 1ts mitialization
state, such that the initialization state of all of the local

US 10,235,276 B2

7

variables may be detected. Alternatively, the flag may be
selectively 1nserted for some of the local variables according
to the actual needs.

In step 220, during the execution of the first function, the
first function may call a second function, with the local
variable of the first function as a parameter of the second
tunction. Here, the local variable 1s passed to the second
function 1 a way that changes to the parameter will be
reflected 1n the local variable. For example, the local vari-
able may be passed to the second function by reference or by
address, as 1s well known 1n the art. As a specific example,
in the following code segments, “b” 1s a local variable of the

first function (hereinatfter also referred to “the caller”), and
“pb” 1s a parameter of the second function (hereinafter also
referred to “the callee™) corresponding to the local variable
“b”. The local vaniable “b” 1s passed to the callee by
reference, 1.¢., using “&pb”, as shown below:

caller () {
int b;

callee (b);

callee (int &pb) {

h

The second function may comprise a second flag associ-
ated with the parameter corresponding to the local variable,
for indicating the imitialization state of the parameter. Like
the first flag, the second flag may also have two possible
values, O or 1, to respectively represent that the parameter 1s
uninitialized or has been mitialized.

According to an embodiment of the present invention, the
first tlag 1s not passed to the second function. In such a case,
the second flag may be mitially set to 0, and 1s set to 1 1n
response to an mitialization of the parameter in the second
function. A more specific example will be described later
with reference to FIG. 3.

According to another embodiment of the present inven-
tion, the first flag may be passed to the second function. For
example, the first flag may be put mnto a stack frame
associated with the second function before making the call,
which will be fetched from the stack frame during the
execution of the second function according to a predeter-
mined convention between the first and second functions.
The passing of the first tlag may be realized by extra codes
inserted by the compiler during the compilation, and the
convention may be defined by the compiler. In this embodi-
ment, the second flag may be 1itially set based at least on
the first flag, and 1s set to 1 1n response to an mnitialization
of the parameter in the second function. A more specific
example will be described later with reference to FIG. 5.

In the above embodiments, the setting of the second flag
may be performed by extra codes mserted by the compiler
during the compilation, which 1s similar to the first flag and
thus the description thereof 1s omitted. IT multiple local
variables are passed to the second function from the first
function as parameters, the second function will be provided
with multiple second flags respectively in association with
the parameters. Moreover, besides the tlags for the param-
cters, the compiler may also provide a flag for a local
variable (11 any) of the second function. Similarly, 1n the case
that the first function 1s not the main function and thus may
be a callee, the first function may be further provided with

10

15

20

25

30

35

40

45

50

55

60

65

8

flag(s) associated with parameter(s) passed from the caller,
for indicating the initialization state of the parameter(s). In
other words, each function, no matter whether 1t 1s the first
function (caller) or the second function (callee), may be
provided with flags for local vanables as well as flags for
parameters.

In step to 230, the first flag in the first function may be
updated based at least on the second flag returned from the
second function. For example, 11 the returned second flag
shows that the parameter has been initialized during the
execution of the second function, the first tflag associated
with the corresponding local variable 1s set to 1, regardless
ol 1ts previous value. More specifically, the first tlag will be
set to 1 11 the second flag 1s 1, and will be unchanged 1t the
second flag 1s 0. The updating may be performed by extra
codes inserted by the compiler 1n a position of the first
function after the function call. As such, the updated first flag
may indicate the mitialization state of the local variable with
both the caller and callee functions having been checked.
Theretore, a runtime detection of uninitialization i1s enabled
across functions, which can increase the accuracy of unini-
tialization detection.

A more specific example of ummitialization detection
across functions will be described with reference to FIG. 3.
The method of FIG. 3 may be performed at runtime for a
computer program including at least a function call, and may
be performed by executing extra program codes inserted by
a compiler during compilation of the source code of the
computer program.

In FIG. 3 under “First Function (Caller)” the operations
performed 1n the first function, 1.e., the caller, while under
“Second Function (Callee)” shows the operations performed
in the second function, 1.¢., the callee. In the example of FIG.
3, the first flag associated with the local variable 1n the first
function 1s not passed to the second function, and the second
function comprises a second tlag associated with the param-
cter corresponding to the local variable. In the following
descriptions, “b” and “pb” will respectively reter to the local
variable 1n the first function and the corresponding param-
eter 1n the second function, and “flag_b” and “tlag_pb” will
respectively refer to the first flag associated with “b™ and the
second flag associated with “pb™.

At block 310, flag_b 1s 1nitially set to 0, indicating that b
1s unminitialized. At block 320, during the execution of the
caller, 1f an mitialization of b occurs, flag_b will be set to 1
indicating that b has been mnitialized. Otherwise, tlag_b will
not change in 1ts value. It should be appreciated that,
although block 320 i1s shown in FIG. 3 to be prior to a
function call indicated by the arrowed line from block 320
to block 330, the operation of block 320 can be performed
any time when an mmtialization of b occurs during the
execution of the first function. For example, 1t can be also
performed after block 360. It should be also appreciated that,
there may be other operations between block 310 and the
function call, depending on the program instructions con-
tained 1n the caller.

During the execution of the caller, 1t may call another
function, 1.e., the callee, as shown 1n FIG. 3. Blocks 330-350
are performed 1n the callee 1n response to the function call,
in which the local variable b 1s passed as a parameter pb of
the second function. As mentioned above, b 1s passed to the
callee 1n such a way that changes to pb 1n the callee will be
reflected 1n b 1n the caller.

At block 330, flag_pb associated with the parameter pb 1s
initially set to 0, indicating that pb 1s uninitialized, regard-
less of the imitialization state of the local variable b in the
caller.

US 10,235,276 B2

9

At block 340, during the execution of the callee, 1t an
initialization of pb occurs, flag pb will be set to 1, which
indicates that pb has been mitialized. Otherwise, flag pb
will not change 1its value. It should be appreciated that, block
340 can be performed any time when an initialization of pb
occurs during the execution of the callee. It should be also
appreciated that, there may be other operations before and
after block 340 depending on the program instructions
contained 1n the callee.

At block 350, at least flag_pb 1s passed to the caller at the
end of the callee. According to an embodiment, flag_pb may
be passed to the caller via a stack according to a predeter-
mined convention between the caller and the callee. The
passing of tlag_pb may be realized by extra codes inserted
by the compiler during the compilation, and the convention
may be defined by the compiler.

It 1s well known 1n the art that a stack 1s a data structure
commonly used for storing information about active func-
tions of a computer program. The information includes, e.g.,
return address, parameters, local variables, and so on. The
stack 1s composed of stack frames. Fach stack frame cor-
responds to a call to a function that has not yet terminated
with a return.

In an exemplary embodiment, passing flag pb via the
stack will be described below with reference to FIG. 4A,
which shows an exemplary stack at the end of the callee. In
this embodiment, flag_pb 1s passed to the caller by putting
flag_pb 1nto a stack frame associated with the callee at the
end of the callee according to a predetermined convention
between the caller and the callee.

In FIG. 4A, the direction of stack growth 1s upwards, as
shown by the leftmost arrow. The stack frame associated
with the callee (hereinatfter referred to as “the callee’s stack
frame™) 1s on top of the stack frame associated with the
caller (hereinafter referred to as “the caller’s stack frame”).
The letft stack of FIG. 4A shows the stack layout at the time
when the program instructions contained 1n the callee other
than the extra codes inserted by the compiler at the end of
the callee have been executed. It can be seen that the callee’s
stack frame has been released or 1s ready to be released. In
other words, the callee’s stack frame would have been
useless at this point of time. According to an embodiment of
the present invention, flag pb i1s then put into the callee’s
stack frame by executing the extra codes inserted by the
compiler. I there 1s more than one flag associated with the
parameters 1n the callee, these flags will be put into the stack
frame sequentially according to a predetermined convention
between the caller and the callee. The right stack of FIG. 4A
depicts an example of the stack layout where flag_pb has
been put in the callee’s stack frame.

After putting flag pb and other data, i1 any, into the
callee’s stack frame, the function call returns. Upon the
return of the callee, flag_pb and the other data temporarily
stored 1n the callee’s stack frame are fetched by the caller
according to the predetermined convention. Therefore, by
utilizing the callee’s stack frame at the end of the callee to
pass flag pb, the otherwise useless callee’s stack frame 1s
reused without breaking existing conventions of function
calling.

It should be appreciated that although flag pb as illus-
trated 1s at the bottom of the callee’s stack frame 1n FIG. 4A,
it can be put elsewhere 1n the callee’s stack frame according
to the convention between the caller and the callee, and there
1s no limitation to the position of flag pb and the layout of
the stack. Moreover, it should be appreciated that there may
be other data that need to be put into the callee’s stack frame

10

15

20

25

30

35

40

45

50

55

60

65

10

in addition to the flags, an example of which will be
described below 1n reference to FIG. 4B.

It should be appreciated that, although the passing of
flag_pb to the caller has been described above as via the
stack, flag_pb can also be passed to the caller via other ways.
For example, a register or other storage units can be used to
pass flag_pb, which will also not break existing conventions

of function calling.
Referring to FIG. 3, at block 360, flag_b 1s updated based

at least on tlag_pb. For example, flag_b will be set to 1 1f
flag_pb 1s 1, and will be unchanged 11 flag_pb 1s O.

According to an embodiment of the present invention, a
global variable may be provided to indicate the availability
of flag_pb to the caller. In the case where flag_pb 1s passed
to the caller via the callee’s stack frame, the global variable
may indicate the existence of flag pb in the callee’s stack
frame. For example, the global variable may be set to 1 once
flag pb 1s put into the stack, indicating that flag pb 1is
available to the caller. Accordingly, at block 360 of FIG. 3,
the value of the global variable may be checked, and if the
global variable indicates flag pb is available to the caller,
flag b will be updated based on flag_pb. Then, the global
variable 1s reset to 0 so that the global variable will be used
for the next function call. On the other hand, 1f the global
variable indicates flag pb 1s unavailable, e.g., with a value
of 0, the method will not fetch data from the stack upon the
return of the callee and accordingly will not update tlag_b.
Again, the provision of the global variable and the above-
described determination at block 360 may be realized by
extra codes mserted by the compiler.

The provision of the global variable may help to address
the compatibility 1ssue when a callee 1s a legacy function
that will not return a result to indicate the mitialization state
of the parameter. For example, the caller may have flag_b
according to the present invention, while the callee may be
a legacy function without flag_pb. In this case, errors might
occur should the caller attempts to fetch data from the stack
to update flag_b upon the return of the callee. As described
above, the provision of the global variable can be advanta-
geous to address this 1ssue.

In addition or as an alternative to the global variable, a
signature can be provided for the callee to address the
compatibility issue according to an embodiment of the
present invention. The signature can be passed from the
callee to the caller along with flag_pb. According to an
embodiment, the signature can also be passed via the stack.
For example, the signature can be put into the callee’s stack
frame along with tlag pb (e.g., before or after flag pb,
depending on the convention between the caller and callee)
at the end of the callee, as shown in FIG. 4B. Thus the
existence of the signature in the stack can ensure the
availability of flag_pb 1n the stack. It should be appreciated
that although flag_pb and the signature are 1llustrated at the
bottom of the callee’s stack frame 1n FIG. 4B, they can be
put elsewhere 1n the callee’s stack frame according to the
convention between the caller and callee, and there 1s no
limitation to the positions of flag_pb and signature and the
layout of the stack. As an alternative to the stack, a register
or other storage units can be used to pass the signature.
Accordingly, at block 360 of FIG. 3, the method may verily
the signature and, if the verification 1s successtul, update
flag b based on flag_pb. On the other hand, i1 the verifica-
tion 1s failed, flag_b will not be updated. The provision of
the signature and the above-described determination at block
360 may be realized by extra codes inserted by the compiler.

According to an embodiment, the signature can be a value
specific to the callee and/or a value specific to the caller. For

US 10,235,276 B2

11

example, the signature can be the return address of the
callee, and the verification operation can check whether the
return address of the callee matches the corresponding
address 1n the caller. According to another embodiment, the
signature can be a predetermined value known by all the
functions, and the verification operation can check whether
the data fetched from the stack i1s the predetermined value.

Those skilled 1n the art should appreciate that verification
of signature 1s particularly useful for nested function calls
with mixed use of legacy functions without the present
invention, €.g., those functions without a flag configured at
time of compilation to indicate the initialization state of a
parameter, and functions according to the present invention,
as the signature can be used to check the availability of the
flag of the callee that 1s directly called by the caller. For
example, consider a case where a first function calls a
second function, the second function in turn calls a third
function and the first and the third functions are both
functions according to the present mnvention while the sec-
ond function 1s a legacy tunction. Upon return of the second
function, the first flag of the first function should not be
updated since the second legacy function did not provide
any second flag. The global variable might have been set to
1 at the end of the third function, while 1in contrast, the
verification of the signature of the second function will fail,
which avoids the updating of the first flag by mistake. It
should be appreciated that, the global vaniable and the
signature can be used separately or in combination for the
compatibility consideration.

Referring again to FIG. 3, after updating flag b, the
execution of the caller can continue. As mentioned above,
although not shown i FIG. 3, if an imtialization of b does
not occur until after the function call, flag_b may be changed
to 1 after block 360. At block 370, according to an embodi-
ment, 1f there 1s a use of b during the execution of the caller,
the method may check flag b. If flag b 1s 0, 1.e., the
checking result indicates an occurrence ol “use before
iitialization” of the local variable b, an event may be
triggered. The event can be, for example, a trap or a warning,
to alert the occurrence of “use before initialization”. Here,
the use of b refers to any operation that uses the value of b.
If b has not been initialized, 1ts use may cause uncertain
results. The checking and triggering at block 370 may be
realized by the compiler 1nserting extra code into the caller
wherever there 1s a possible use of b, such that 11 the *“use
betfore mitialization™ ol b occurs at runtime, a corresponding,
cvent will be trniggered. It should be appreciated that,
although block 370 1s shown 1n FIG. 3 after block 360, 1t can
be performed any time when a use of b occurs during the
execution of the caller. For example, it can be also per-
tormed before the function call. It should also be appreciated
that, there may be other operations between blocks 360 and
370 and after block 370, depending on the program instruc-
tions contained 1n the caller.

Referring to FIG. 5, FIG. 5 depicts an example of unini-
tialization detection across functions according to some
embodiments of the present invention. The method of FIG.
5 may be performed at runtime for a computer program
including at least a function call, and may be performed by
executing extra program codes nserted by a compiler during
compilation of the source code of the computer program.

In the descriptions with respect to FIG. 5, similar to FIG.
3, “caller” and ““callee” will be used to refer to the first and
second functions, “b” and “pb” will be used to refer to the
local variable 1n the first function and the corresponding
parameter 1 the second function, and “flag_b” and

10

15

20

25

30

35

40

45

50

55

60

65

12

“flag_pb” will be used to refer to the first and second flags
associated with the local varniable “b” and the parameter
“pb” respectively.

Some steps 1n FIG. § are the same as those i FIG. 3 and
are referenced with the same numbers; the description
thereof will be omitted. As seen 1n reference to FIG. 5,
flag_b 1s passed to the callee, and the initial value of flag_pb
in the callee 1s set based at least on flag_b, instead of set to
0. With this change, the occurrence of “use before 1mitial-
ization” for the parameter pb can be detected 1n the callee.

As shown at block 510 1n FIG. 5, just before the function
call, flag_b, which indicates the mitialization state of the
local variable b of the caller, 1s passed to the callee.
According to an embodiment, flag b can be put into the
callee’s stack frame before the function call and fetched
from the callee’s stack frame at the beginning of the callee
according to a predetermined convention between the caller
and the callee. According to an embodiment, a global
variable can be provided to indicate the availability of flag_b

in a way similar to the above-mentioned global variable for
flag_pb, 1n consideration of the compatibility with legacy
code. Alternatively or in addition, a signature of the caller
can be put into the stack along with tlag_b for verification by
the callee, which 1s similar to the signature of the callee as
described above. Then the caller calls the callee.

As shown 1n block 520, the 1nitial value of flag_pb can be
set based at least on flag_b, such that the mitialization state
ol b betore the call can be known by the callee. For example,
flag_pb can be mitially set to be equal to flag_b. Further, 1n
the case that the global vanable and/or the signature has
been provided for the caller, the mitial value of flag_pb 1s set
based on tlag_b 11 the global vaniable indicates that flag_b 1s
available and/or the signature 1s successfully verified; oth-
erwise, the 1nitial value of tlag_pb 1s set to 0. According to
an embodiment, block 520 can be performed at the begin-
ning of the callee so as not to break the existing calling
convention.

Then the execution of the callee will continue. As shown
in block 340, similar to FIG. 3, during the execution of the
callee, 11 an 1nitialization of pb occurs, tlag_pb will be set to
1, which indicates that pb has been 1mmitialized. Otherwise,
flag_pb will not change 1ts value.

As shown 1n block 530, if there 1s a use of pb during the
execution of the callee, the method may check flag pb. If
flag_pb 15 0, 1.¢., the checking result indicates an occurrence
of “use before mitialization” of the parameter pb, an event
may be triggered. The event can be, for example, a trap or
a warning to alert the occurrence of “use belfore nitializa-
tion”. The checking and triggering at block 3520 may be
realized by the compiler inserting extra code into the callee
wherever there 1s a possible use of pb, such that 11 the *“use
betore mitialization” of pb occurs at runtime, a correspond-
ing event will be triggered. Theretfore, with the knowledge
ol the mitialization state of the local variable b 1n the caller
betfore the call, the “use before 1mitialization” of the corre-
sponding parameter pb in the callee can be detected. It
should be appreciated that, although block 530 1s shown 1n
FIG. § as following block 340, it can be performed any time
when a use of the parameter pb occurs during the execution
of the callee. For example, it may be performed before block
340.

Then the execution of the callee will continue. It should
also be appreciated that, there may be other operations
during the execution of the callee, depending on the program
instructions contained in the callee. At the end of the callee,
at least flag_pb 1s passed to the caller, as shown at block 350.

US 10,235,276 B2

13

The operations 1n blocks 350-370 are the same as those 1n
FIG. 3 and will not be described.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions

thereon for causing a processor to carry out aspects of the
present invention.

According to an embodiment of the present invention,
there 1s provided a computing system comprising a proces-
sor and a computer-readable memory unit coupled to the
processor. The memory unit may include instructions that
when executed by the processor perform actions of runnming,
a first function, wherein the first function comprises a local
variable and a first flag associated with the local variable for
indicating an 1nitialization state of the local variable; calling
a second function from the first function, with the local
variable as a parameter of the second function, wherein the
second Tunction comprises a second flag associated with the
parameter for indicating an 1nitialization state of the param-
cter; and updating the first flag based at least on the second
flag returned from the second function.

According to an embodiment of the computing system,
wherein during execution of the second function, the second
flag 1s 1mitially set to indicate the parameter 1s unimitialized,
and 1s set to indicate the parameter has been initialized 1n
response to an initialization of the parameter.

According to an embodiment of the computing system,
wherein updating the first flag based at least on the second
flag returned from the second function comprises: setting the
first flag to indicate the local variable has been 1mitialized 1f
the returned second flag indicates the parameter has been
mitialized; and keeping the first flag unchanged 11 the
returned second flag indicates the parameter 1s umnitialized.

According to an embodiment of the computing system,
wherein the second flag 1s returned to the first function by
putting the second flag into a stack frame associated with the
second function at an end of the second function according
to a predetermined convention between the first and second
functions.

According to an embodiment of the computing system,
wherein a global vanable 1s provided to indicate availability
of the second flag to the first function, and wherein the first
flag 1s updated 1n response to the global variable indicating
the second flag 1s available to the first function.

According to an embodiment of the computing system,
wherein a signature of the second function 1s returned to the
first function along with the second flag, and wherein the
first flag 1s updated 1n response to a successiul verification
of the signature in the first function.

According to an embodiment of the computing system,
the memory unit may further comprise instructions that
when executed by the processor perform actions of, in
response to 1dentitying a use of the local variable 1n the first
function, checking the first tlag and triggering an event 1f the
first flag 1indicates the local variable 1s uninitialized.

According to an embodiment of the computing system,
wherein the first flag 1s passed to the second function before
execution of the second function, and wherein the execution
of the second function comprises: 1nitially setting the second
flag based at least on the first flag; 1n response to an
initialization of the parameter, setting the second flag to
indicate the parameter has been 1nitialized; and 1n response
to 1dentiiying a use of the parameter 1n the second function,
checking the second flag and triggering an event 1f the
second flag indicates the parameter 1s uninitialized.

10

15

20

25

30

35

40

45

50

55

60

65

14

According to an embodiment of the computing system,
wherein the first function further comprises a third flag
associated with a parameter of the first function for imndicat-
ing an 1nitialization state of the parameter in the first
function, wherein the parameter of the first function 1is
passed from a third function that calls the first function.

According to another embodiment of the present inven-
tion, there 1s provided a computer program product com-
prising a computer readable storage medium having pro-
gram 1nstructions embodied therewith. The program
instructions may be executable by a processor to cause the
processor to run a first function, wherein the first function
comprises a local variable and a first flag associated with the
local varniable for indicating an 1nitialization state of the local
variable; call a second function from the first function, with
the local variable as a parameter of the second function,
wherein the second function comprises a second flag asso-
ciated with the parameter for indicating an initialization state
of the parameter; and update the first flag based at least on
the second flag returned from the second function.

According to an embodiment of the computer program
product, wherein during execution of the second function,
the second flag 1s 1mitially set to indicate the parameter 1s
uminitialized, and 1s set to indicate the parameter has been
initialized 1n response to an 1nmitialization of the parameter.

According to an embodiment of the computer program
product, wherein updating the first flag based at least on the
second flag returned from the second function comprises:
setting the first tlag to indicate the local variable has been
initialized 11 the returned second flag indicates the parameter
has been mitialized; and keeping the first flag unchanged 1t
the returned second tlag indicates the parameter 1s uninitial-
1zed.

According to an embodiment of the computer program
product, wherein the second flag i1s returned to the first
function by putting the second flag into a stack frame
associated with the second function at an end of the second
function according to a predetermined convention between
the first and second functions.

According to an embodiment of the computer program
product, wherein a global vanable 1s provided to indicate
availability of the second flag to the first function, and
wherein the first tlag 1s updated 1n response to the global
variable indicating the second flag 1s available to the first
function.

According to an embodiment of the computer program
product, wherein a signature of the second function 1s
returned to the first function along with the second flag, and
wherein the first flag 1s updated 1n response to a successiul
verification of the signature in the first function.

According to an embodiment of the computer program
product, the program instructions executable by the proces-
sor may further cause the processor to, 1n response to
identifving a use of the local vanable 1n the first function,
check the first flag and triggering an event if the first flag
indicates the local variable 1s uninitialized.

According to an embodiment of the computer program
product, wherein the first flag 1s passed to the second
function before execution of the second function, and
wherein the execution of the second function comprises:
initially setting the second flag based at least on the first tlag;
in response to an mitialization of the parameter, setting the
second flag to indicate the parameter has been mmitialized;
and 1n response to identifying a use of the parameter 1n the
second function, checking the second flag and triggering an
event 1f the second flag indicates the parameter 1s uninitial-
1zed.

US 10,235,276 B2

15

According to an embodiment of the computer program
product, wherein the first function further comprises a third
flag associated with a parameter of the first function for
indicating an initialization state of the parameter 1n the first
function, wherein the parameter of the first function 1is
passed from a third function that calls the first function.

The programs described herein are identified based upon
the application for which they are implemented 1n a specific
embodiment of the invention. However, 1t should be appre-
ciated that any particular program nomenclature herein 1s
used merely for convenience, and thus the imnvention should
not be lmmited to use solely in any specific application
identified and/or implied by such nomenclature.

Based on the foregoing, a computer system, method, and
computer program product have been disclosed. However,
numerous modifications and substitutions can be made with-
out deviating from the scope of the present invention.
Therefore, the present invention has been disclosed by way
of example and not limitation.

What 1s claimed 1s:

1. A method for detecting uninitialized vanables, the
method comprising:

running a first function, wherein the first function com-

prises a local variable and a first flag associated with the
local variable for indicating an mnitialization state of the
local variable;
calling a second function from the first function, with the
local vaniable as a parameter of the second function,
wherein the second function comprises a second flag
associated with the parameter for indicating an 1nitial-
ization state of the parameter;
in response the local variable not indicating the initial-
ization state of the parameter, providing a global vari-
able to the second function as a second parameter,
wherein the global vanable indicates the availability
state of the second flag to the first function;

determining an availability state of the second flag to the
first function based on the global variable;

in response to the second flag to the first function deter-

mined as available, returning the second flag from the
second function to the first function; and

updating the first flag based at least on the second flag and

the global variable being available, wherein the global
variable 1s associated with the second flag returned to
the first function from the second function.

2. The method of claim 1, wherein during execution of the
second function, the second flag 1s initially set to indicate the

10

15

20

25

30

35

40

45

16

parameter 1s uninitialized, and 1s set to indicate the param-
eter has been initialized 1n response to an nitialization of the
parameter.

3. The method of claim 1, wherein updating the first tlag
based at least on the second flag returned from the second
function comprises:

setting the first flag to indicate the local variable has been

mitialized it the returned second flag indicates the
parameter has been 1mitialized; and

keeping the first flag unchanged if the returned second

flag 1indicates the parameter 1s uninitialized.

4. The method of claim 1, wherein a global variable 1s
provided to indicate availability of the second flag to the first
function, and wherein the first flag 1s updated in response to
the global variable indicating the second flag 1s available to
the first function.

5. The method of claim 1, wherein a signature of the
second function 1s returned to the first function along with
the second flag, and wherein the first flag 1s updated in
response to a successiul verification of the signature in the
first Tunction.

6. The method of claim 1, further comprising: 1n response
to 1dentifying a use of the local variable 1n the first function,
checking the first flag and triggering an event i1 the first flag
indicates the local variable 1s uninitialized.

7. The method of claim 1, wherein the first flag 1s passed
to the second function before execution of the second
function, and wherein the execution of the second function
COmprises:

imtially setting the second flag based at least on the first

flag;

in response to an initialization of the parameter, setting the

second flag to indicate the parameter has been 1nitial-
1zed; and

in response to identifying a use of the parameter 1n the

second function, checking the second flag and trigger-
ing an event if the second flag indicates the parameter
1s uninitialized.

8. The method of claim 1, wherein the first function
turther comprises a third flag associated with a parameter of
the first function for indicating an initialization state of the
parameter 1n the first function, wherein the parameter of the
first function 1s passed from a third function that calls the
first function.

	Front Page
	Drawings
	Specification
	Claims

