12 United States Patent

Xiao et al.

US010235234B2

US 10,235,234 B2
Mar. 19, 2019

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
DETERMINING FAILURE SIMILARITY IN
COMPUTING DEVICE

(71) Applicant: EMC IP HOLDING COMPANY
LLC, Hopkinton, MA (US)

(72) Inventors: Huibing Xiao, Beijing (CN); Jian Gao,
Beijing (CN); Geng Han, Beijing (CN);
Jibing Dong, Beijing (CN); Hongpo
Gao, Beljing (CN)

(73) Assignee: EMC IP Holding Company LLC,
Hopkinton, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 128 days.

(21) Appl. No.: 15/384,597

(22) Filed: Dec. 20, 2016
(65) Prior Publication Data
US 2017/0185467 Al Jun. 29, 2017
(30) Foreign Application Priority Data
Dec. 29, 2015 (CN) i 2015 1 1018824
(51) Int. CL
GO6l’ 11/00 (2006.01)
GO6F 11/07 (2006.01)
GO6I’ 11/36 (2006.01)
(52) U.S. CL
CPC GO6F 11/079 (2013.01); GO6F 11/0751

(2013.01); GO6F 11/0778 (2013.01); GO6F
113636 (2013.01)

(gdb)bs
#0 Qx00007f0[735¢3b35 in raise ()

(38) Field of Classification Search
CPC GO6F 11/3636; GOO6F 11/0778; GOO6F
11/0766; GO6F 11/079

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0005414 Al* 12003 Ellott GOO6F 11/0715
717/128
2004/0054991 Al* 3/2004 Harres GOO6F 11/3664
717/131
2011/0258604 Al* 10/2011 Drukman GOO6F 11/3636
717/125
2014/0258990 Al* 9/2014 Kliccceeeveenn, GOO6F 11/3636
717/128

* cited by examiner

Primary Examiner — Charles Ehne
(74) Attorney, Agent, or Firm — BainwoodHuang

(57) ABSTRACT

Embodiments of the present disclosure provide a method
and an apparatus for a computing device. The computing
device may generate stacks for crash dump 1n response to
tailures, each of the stacks may include a plurality of stack
frames from bottom to top, and each of the stack frames may
include function mformation associated with a correspond-
ing failure. The method may include: extracting correspond-
ing function name mformation from the stack frames in the
stacks; generating simplified stack frames based on the
corresponding function name information to obtain simpli-
fied stacks for the stacks; and determining a similarity
between the failures based on a similarity between the
simplified stacks of the failures.

17 Claims, 4 Drawing Sheets

.- 100
:*;..a-"'")

fromAmyp/; ;S04237- FNMOO137203264 2013-10-11 17 14 G8 B666/ih64/Hbe.go. 6

#1 Ox0000716f735e51 11 in abort ()

fromdmp/abodt/a/S6421 7-spa FNMO0131203264 20123-10-11 17 14 08 B666/lib64/hbe.so.6

#2 0X0Q007f6£7450447in csx_n_proc_do_abort ()

ar LSS

#3 0x0000746{74457966 1n csx_rt_assert_int_take wser space_panic_gction (

panic._action=1}

at F7 0 Jesx/eprgot/sre/esx_infrafesx rifesx 11 mmisciesx 5t assert.o 786
#4 0x0000716174a57313 10 osx it assert request panic with info (

failgre state mfo=0x}
(R3deh0™ cd workin

-kpt/safefcatmerge/EmePAL/Driver!

ar A4 s rsNEng infra

#5 Qx00007 670835502 in EmcpalBugCheck (BugCheckCode=0,

argraeter 1=0_BueCheckParan

eter2=100663296, BugCheckParamete

1idbox-kpisafe/catmerce/EmePAL/Drivet/EmcPAL Misc £:68

%28 0x0000786f74a6732¢ in csx_rt_cpi_thread command (thr_cantext=0xf380£c0)

at /700 fesxiesxrootisrciosxn mifrafcsx rtfesx it epdosx it coc: 178

#29-0x0000786f74a2a714 in.cex_rt_sked thread wrapper {context=0nf381090}

at /AL osxesxrootisrefosxinfraleex riesx 1t sked/esx 1t sked #p uic:2j4

#30 Ox00007F6173e43d26 in start_thread (}

frop fogp/abodt’al S642 | spg FINMO0O]3 1203264
Ot .

201 3-10-11 17 14 OF R666/HbO4/

ib64fibe.30.6

U.S. Patent Mar. 19, 2019 Sheet 1 of 4 US 10,235,234 B2

100
40 0x00007£61735e3b35 in raise ()
from/ump/abedt/a/S64217-spa FNM00131203264 2013-10-11 17 14 08 8666/lib64/libe.s0.6
#1 0x00007f6f735e5111 in abort {}

#2 :{)xﬁ-{}ﬁﬂ?f&ﬁ%mﬁﬁid-?m CSX r{._p.zts:};fa:__dg_;_ab@rt (}

at WAL Sosxiesxroot/srefesx infra‘esx riesx 1t ostlesx 1t proc 2450

#3 0x00007f6£74a57066 wm csx 1t _assert int tak&'__}&-ﬂﬂf__zsww_ﬁa-ﬂ:iiﬂmaiﬁtim(_

panic_action=l)

at /.7 0 L] fesx/esxroot/sre/esx infra‘esx rt/esx rt nmsc/esx it .a-ss,ertf.@;?'%ii

failure state info=0x1,

file=0x7{617083d6b0" /¢4 workmg/Coding/KH _sandbox-kpi/safe/catmerge/EmcPAL/Driver/
EmcPAL Misccl, - | |

hine=73 ar-gmmwéu

Y 6%@&867%?&835582 1 EmcpalBugC hes‘;k {81'1’ _'C hhck(‘ f}d&“‘

BueCheckParameter1=0, BugCheckParameter2=100663296, B;ttg_(lhﬁcki? arameter3=1.

BupCheckParameterd=0)
at led WOr k}nﬂri? e ,_ _ e 111818100 * i;‘g SEﬁé/ﬁ&m'lefgf?ffEﬁ'EﬂpALfDi’iVﬁI’r’fEﬂICPﬁLmﬁfj156(.‘: HX.

#Z8 {kﬁﬁﬂ@@?fﬁﬂ«iﬁé?i&ﬁﬁ i esx 1t opt thread command (thr context=0x{380{c0)
at.J.r.0 0 0 fesxk/osxrootsre/esx mifrasesx rbiosx xt cpiesx 1t cpicil78
#29 0x0000716174a2a7f4 mcsx_rt sked thread wrapper (context=0x1381090)

at ../ . d Jesx/esxrootiste/esx mifralcsx rticsx 1t sked/esx 1t sked Hp wuc:914

fmm tm fabcdt/&fnéiﬁi? -Spa_ %NMGQH%ZOQM 2013-10-11 17 14 08 8666/11h64/
hibpthread.so.0

#31 0x00007£617368a03d in clone ()
from /tmp/abedt/a/564217-spa FNMO00131203264 2013-10-11 17 14 08 8666/1ib64/libe.50.6
Fig. 1

U.S. Patent Mar. 19, 2019 Sheet 2 of 4 US 10,235,234 B2

L aan . Laaan = ")
o -.-.*:.*;nn-.-a.*:.*-;*-.*-;-;-L-.a1-,1-.~.-;-;-.ﬁa1-.*-.'-;-a-.*m*-;-.n-;H-a*:.*-,~.1-.w-.-..u*-,*-.~.'-a-.*.*;n.~.'-.-;-..1-.-51-;n-.-l-mn*-.1-.'-.-u-.ﬁu*.nn-w.*ﬁ1-.-.1-.'-;-..*.*:.*-;~.1-.-.*-;n-*-;~.-.'-.'-.L~.*:.'z.*-,*-.'u-;-.-:.*-;*-.*-;'-;-.-.*.u*-.'~..nﬂ-.-*-;“n-;n.““-ﬁﬁ““ﬁ-ﬁm-.ma*.mvﬁ-.-.-m““-ﬁ Pty ~!"‘§ {:}
]]
. -

EXIRACT CUOREESPONDING FLNUTHUNNAME
N o e 1 - r=t .a"'"
EATRALT N{?&RH%W LHNG FLNCTIUNNA
E £ ' , : EEEN Y E
}i» FORMATION FROM THE § fo K?&%}E SINTHE
S | g g
3 LALERS

ot

A L A L S A LA LA AL LT

phobd b ks m b rd dh s h b rd hh s hh kY

]
*
-
"y

F Al F o Ty

F
#ﬂ%%%%1ﬂt“'i-"'5."'r."lh"UUL"'L"'iq"r."'h"'n-*'ﬁ-‘L"'5."'5."h"l-."l-."L‘L"'-'r"'5."h"'h"'n-“ﬁ-ﬂ"'h“'i."'r."'h"'n-“ln.-"l-."h“'i-"'-."'h"lh"L"L"'-'r"'5."'r."l-."l-.-"||-"|-."h"'5."h"n"'h"'n-*'ln."'h“'i."'-."'-."l-.-"'IH-‘E“'L"'h"l-."'h"l-.-"l-."L"'5."5."r."l-.-"N-E"L"'L"'h"'r."'h"'n-"l-.‘"-."i."5."r."lh"l-.-"l-.‘L"'i."'5."'r."'h"'u-“\-‘L"'i."'5."'r."'h"'n-"ﬁ-t"'L"'5."'r."'h"ln-“'k-t"'5."'5."'r."'h"'n-“'ln.-"l."-'r"'5."h"'-r"la-"'n-"l-."-'r"'5."'r."'h"'u-“ln.-"l-."-'r"'5."'-."'hﬂhﬂﬂﬂﬂﬂﬂhﬂﬂﬂﬁ.ﬁﬂhﬂﬂﬂﬂﬂﬁﬁﬂﬁ ‘1."'.:-..1 "‘r%' 3 ""‘-'? ’
L] P}
A

hﬂﬁ?ﬁ“ﬁ’”ﬁ SIVMPLIFIED STACK PRAMES FROMTHE
*§"§ ACK FRAMES BASED ON THE CORBES ?Q}Xﬂiﬁh
FLANCTION NAME INFORMATION TQURIA
SIMPLIFIED STACKS FORL THE E"%&E’Rﬁ% .

‘.““11““‘11“‘Mlt“““t“““tk““l‘.“.““11‘.‘““1‘.““11‘.‘“‘.1‘\...ii“‘1‘.‘.““1.“‘hlt“.i‘h‘tk‘.i‘“ﬁ“i“lt“‘“‘11““‘1*“M““‘tk“‘L“tq‘i“‘"

..lr-.lll

A AT T Ak T A Al AT LA LS LT LA LS A,

'.l.I'ii-_l-l'l'i.I'ii-l-l..l.l.l'iirl..l'i.l-rl..l'i.l.li'l.lI'i.l-l'_l'

"'#
=
%
e e e e e e e e e e e e e e e e e E e R e e R :n:-r-:-:-:-*-:=-:-:~:-:-:-:-:=-:-:-:n:-:-:-:=-:=-:-:-»:-:-*-1-*-*-*n*-x*-:-*-hh*-*-*-ﬁ-ﬂ-*-*n*u*-:-z-:-:-:n:-:u:-z- *m‘*"":"" “‘N* %
] M

DETERMINE ASIMILARITY BETWEEN THE
FAILURES BASED ON A SIMILARITY BETWEEN THE
MPLIFIED STACKS FOR THE FAILURES

b L ek b om kL .jjll.‘i.l.i. N S e A i o koL kodom b ko ko koh okl L ow o bk omldoreon kLot :-j-i.l.l.-.jjl.‘l.i.l. :-iiii.l.:-,lii-i.l.--,ajji.i.l. .aiil.i.br'.ajil.i.r‘r-j--i.l.rljj-i.l..r 3 b om okl
g oyt " " w

A A AL A A A L LA AL LA S,
"'...""...""

o b hdwhdird s dch Al s ch b dld s e

L

sy ¢ oy

oA

U.S. Patent Mar. 19, 2019 Sheet 3 of 4 US 10,235,234 B2

L L L L o o o, o, o L o o o o o o O L T, o, o o L o L, o, o o L o L o I o o o L o L

¥

ﬁ g -
L i,
"‘i& NoA h}\._. y
LA N o
3 by
™, 3
N . ry a
gl'\"h""l""|."'h""l""l."'l.'l“l‘l“‘l“‘r"h"|."'|.""h""l"l“‘l‘l‘l‘l‘l“l“l‘r“‘r'\""|."'|-"'h"|."'|."'h""l.""u.""h"'I..""u."'h"'I..""i."'l."‘l..""i."'l"'l‘x“\\'l\'\‘l\ﬁ'l‘lﬁ'l‘l‘lﬁ‘l‘l“\“}: . F FAAL "Ik WAL T, b, b MR w m) m AN, ﬂ. :'
A _ N,
Y :EE: . 3 " " - ! §:
: 3 : T TR Y & T ¥
3 : ¢ L LAGCR ;
' Y . R L, ' o My Lol L gty N - A P WY - & N
TR SETRITL PTRYETE § y
% D ORENERATINGUNIT
. . . 1 . 1 1 .3 s
§ 11'\- - ? '.hﬂ'l - '\." ' h..' AWy - ";.’h. 'L.g- i\l‘h "}1- “r \.ﬁk §'
‘ILF - 1
» n ; .
: ' E:
i'.*Z‘h."-.'*.‘h."'-.'*.:*.-"-."'.."'.-"u"ﬁ";*.:'m.'*.'*-.*-".'*.'".H"-.'*.‘h'*'-.'*.‘h-"'-.:*-..'ﬁ.-“.‘*..'t'*:.'*."ﬂ.'*.'*-."@."'."'."@."-.'*.‘h"'-.:*-.‘h.'*::*..'ﬂ.-"-.'*.'*\-E\'ﬂ-‘!u‘*ﬁh\'*ﬁ\'*-.‘m'*.'*.‘*ﬁ*ﬁ*:.‘*.'ﬂ'.ﬁ“.L' et T R Cacata e s

: ol A, e
302 305
N P
¥ ,

N, .

o

- '..':.:-..'..'u:-..-..'u:-..-..'u':..-...'..':.."...'..':.:'..-..':.:-..-..'u:-.."..'u:-..-..'u:-.."..'u:-..\.-..':."..-..':.:'..'..':.:-..'..'u:-..".."..:-..\.'u:-.."...'u:-."...{w.'.':.u'.':.u'.':.um.'um.mm.uu.uu}‘ e A A S o B o i o o I o i"'g"‘ Srtv! eyt e
; ; ¢
3 = g
3 : . Lo
; L AMAPPING TABLE

4 iy by - n ! k -

L' L L] ﬁl" . L3 L . 3
3 b % S R el Bk W R RNt X

A nER R L " R SR ;q

E 1“‘1- -“hll -‘a‘l | M“ 1 : a ‘%Lh.' - i “.‘ L}' b - 1‘: ; ﬁwwhl u‘r&% ﬂ%{fi ‘i’wﬁ‘.} ‘E

" - i i A . L - I Ik N

] . o4 N 4 9

3 4 i A TN ALY SRR X f
3 o i
3 X :
) 3 §

) R .
1 e e P T T e e e e e e e A B e L T e

N

AR

%
o
¥

r ¥ "‘7"'1;

o

y
1\ i,

3 ¥
E“ﬂ“mmmmmvﬁmmmmmﬁmmmwmmmwnmmmmmm1-::5 " AR AN A et) MM, AR ,\;h,“‘r‘:" A) ‘;‘ WA, ""Hr
: s : -

F -
2 5 :g
e -
: " i ' - (] "?‘I % '
n. h LA S " : r b a :
e] . ! ! - .= 3 g] -]
3 " " -+ . 1’:; %
* - ~ SR ALANG UNITY ér
E B il i S Ak W 8 b o A L h : X, A Rk, e "L.n ~ - ‘
: R o g -l o B S T RN T owuwr R ¥ % ' ' "
i . ’ ’ : S L Ky = S] 4
5 s ; 3
ht :
i L : .
l‘l 0
P T o T o o o o i L i S T o e T B o e R e o e M e W B e T M T e T e M B ey M B oy M e T, T B S T B S i B T o B B P B i o T P '._I:I o) R RN AR AN m RN AN L A) _Jr

JIIJIJIIIffffffffffffffffl’f.l’fffffl'ﬂ'ff"ffffffd’ffd’ffffl'fd’fﬂ'ff"d"ffd’fl‘d’ff.l".i".i"J’d’.i".i’.i".f..l’d".i".lf.l".i".lhl".i".i"..l".i".i"l’.i"f.i’d".i"..l’d".i"..l"-f.i".lfl’f.ffffffffd’fﬂ'ff"ff.lf.l".l'..f..l".i"..fffffd'fﬂ'd"ffl’ffd’ffﬂ'f.lfJ’d’fﬂ'ffﬂ'd"f"d"ffd’ffffﬂffffffffffffﬂffffffﬁ
FASFASE AR A SN ST AN AT AR AR A AR NI FARTN AT AR N T AT PN RN S VAN NN F AN AR VNS F VN SN R AN A AR N AN F AN A N ANV NE N AN ASFARF AR VISR A Y F AT R NIRRT TN A

R R R R g s e e S S s R e o R T e e R e e e s g e s e e e e R T R e S e e e e R R L R e e e e e S e R R S R R L R R s g e g L R N s g s S s s e R RS RS R h b

US 10,235,234 B2

Sheet 4 of 4

Mar. 19, 2019

U.S. Patent

v 814

Lo
- q

A E AR

=

- -
Y

L L L J 4 aa
it A "'L-"F-'F

g

-y

.__-_..-__..____.._.1..__-.ﬁi&%ﬁﬁiﬁ‘ﬁﬁ.ﬁ“ﬁ“\.ﬁﬂ.‘tﬂﬂ\.‘\h— ..1-.-___..__11
.___._.u__h.___.,..

e Qe i,mm;w

xﬁf
.ﬁﬁ.
o«

'

-

. el
o &Fﬂr\-r‘nlnli Al 1

Ty _..._..-_
har PR :.__..m.___......_._...”h.__.........x.,._..,
r

i e "
xuxxxhiw-ﬁvﬁ-
%

E
E
g
5

wyd

&“.‘"
L

e ...r%
2

p e

P

TRV LN TYNERIND ot

:
4
:
m
:
.
m
4
m gL 2
:
4
:
m
:
4
:
“

e &

Lk

o ok g o o v e oo s o oo g o 'i.'lii.'i;'lii;ih:h.h

!

] uﬁ..ﬂi...ﬂ.l.t.._.__. T o i A T T o i i T A i o o A i T i .___-..._“_.

PARAE @mﬁm pt.

N N

A o o i o i il ol o o T \Nﬂl\n‘l‘u\s\l‘ﬁ o i,

n\M\\Mh\....\._.ﬂhh1.._E.i._.q..E_n..ﬂ\131111\1_.i._.,k..i.i.:1\x.in,.ﬂ.i,_.ﬂ._i__.,.m_.i__i.t.__.ﬂ1\1111..E.,.{xxmm&i&..i._i1&1%111_.im11&11%.11%1\11;\1{\111}

...1"&*.1.
® X
B e T, il
“ﬁ.,.h.__.__.,.. e
. L m x
A AL TNL A OO P PP OSSP 0 _n.m i
E _.__.H.__..H\H._..H_._f,..___f.._.__..__._.__..___F__..___._...}_,..___c_,Eﬂh&%ﬂh&hﬁxh\ﬂﬂh&ﬁtﬁuﬂ\? ,}_.H}-._..1._._.,1\}-}-...,’...._.1\13{1%}{11.& :
& r i
. ;‘t}um..}.u}..aka.xxm_ w_. &\.ﬁ-...ﬁ. ,,_n....... - ¥
. v ! _“,...f
T "m{t .__.m.» : s .m.u_.m w...__.
r Y ~ N L] .
”m L Ky & \W\ 7 e e o e o o A
o n&ﬂ#ﬂﬂh&ﬂﬂﬁaﬂﬂﬁ}u |1 - ‘N
x H....k\h..h.«ihh..h.ﬂik m T
ﬁ...._..{..{}‘.}__.}_.}j{. m o 0 A ol o M\M .n»
.H

L L]

A

A A A R \H;ﬁuqln\.\qhm.\.ﬂu‘hmﬁhqﬂh»d.u

ar

- YTTVETATEEEY

87 HIA VIS RIS AS HHINAWOD

A o o A o o A o A A o A o A o o B o B B o A o g o B A A o o P o B A o o A o A o o P A o P A o A o o o A Ao o A g o o A T A a ol d o A A AL PP P A

IV HKBRLIKE

gt

3
: "n‘u."a‘u";‘u"fu‘t‘u‘t‘n‘u‘.‘u‘u‘u&fn?‘-

3
§
]

“é
i

~
M

N Huh"il-*. "

-
Y

Fi¥

e e e)

o4 g

xxmxm...E..H...x\xxx\\\\\xh\x...xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxx_.t,.E.E...xxxx\\\\xxxxmxxxxx_iixx..E.....Exx\\x\x\11....\1...x\\\\xxxxxxxxxxxixixxxx\xxxxxxxixxx\xxxx\\.._E._H._.x_uxmxx\\x\xixxﬁ\xx\\x\\xxxxxxxxxmx\\x\xxxxxxxmh.

b AL AR b ALK

A i R s A A A A R T N

"‘“‘““‘ﬁ“
2.

-
-

Ay

v
5
2
§
5
¢
o
:
:
?

PISSEIYEY

AP o B A A o o P gl P A A B N o b A

i e e M

o e e

LY,

e

1%

.-..
%
5 %
7 ;
£ 2
i 2
“ s
; ;
w s
)
£ ’
.n_.. _n_....l.._. 1.wl_.. 1 L, W “
; m\w@ LR MRS HEE .
’ i, Wk, Gl R 4
7
“ K
¢
£ 2
: :
m 7
7
/2
4 :
m-y.-............\..._....\..._....\...-....__........t_..\t_........_1.....l_...-...._1..-...-.....\.:-.L..._1...__...._....\.......__....-....\...-..\\5\\.‘5‘\\&1\1{.\\.\“

"n-."h."n"'h"n"h'h"h'h"h'h‘h'!u.\.'ﬁ."n"ﬁ"‘nﬁ1‘*\%\'53.'!l."'l.'!1.‘\.11.\.11.1.\‘nﬁ‘n\.‘h\"n\"n\'ﬁ‘h'!l."h'Hﬂn.'!l."\.““\"n\"p.\"p.\"t"hﬂi‘h‘h‘h'!u."hﬁ‘h"h.‘n“"ﬂ\"n\"n‘h“t\'ﬁ.\.‘h"h'!l."'l."n‘\-.‘h‘n“‘!ﬂn\"n\"p.‘hﬂi‘h‘k‘hﬁ‘hﬁ‘hﬁ‘hﬁ‘h‘h.'\'\“

Tt e e e e T e B e it T T e T e

bt

yr

E R4
P A it

_.w

*.tt..‘..,.ﬁ

k

P

e
4
5
%
%
7
4
:
%
;
;
4
“

N N x..l.amx\ixx\xxxxxxxk‘.x

US 10,235,234 B2

1

METHOD AND APPARATUS FOR
DETERMINING FAILURE SIMILARITY IN
COMPUTING DEVICE

RELATED APPLICATIONS

This application claim prionty from Chinese Patent
Application Number CN201511018824.2, filed on Dec. 29,
2015 at the State Intellectual Property Oflice, China, titled
“METHOD AND APPARATUS FOR COMPUTING
DEVICE,” the contents of which 1s herein incorporated by
reference in 1ts entirety

TECHNICAL FIELD

The embodiments of the present disclosure generally
relate to the technical field of a computing device, and more
specifically relate to a method and an apparatus for deter-
mimng failure similarity 1n a computing device.

BACKGROUND

During an operation procedure of a computing device,
when an abnormal event or accident occurs, a user or a
system may perform crash dump to save useful context
information. In crash dump, stacks for crash dump is one of
most important information or signatures for crash dump,
and indicates a direct cause of a failure occurring to a
computing system/process. Stack frame backtracking with
respect to stacks for crash dump may provide a unique
explicit sequence of calling a code path that leads to occur-
rence of crash dump.

For a system under a heavy test, many crash dumps
having similar stacks may be generated, and it 1s likely
always needed to determine whether a new crash dump 1is
associated with other crash dumps that are being analyzed or
have been analyzed, so as to avoid repetitive work by
referring to the analysis of other crash dumps.

However, such a determination 1s not an easy job, because
even a similar code path 1s present 1n stacks for crash dump,
it 1s nearly impossible to find a completely matched crash
dump. This i1s because there are always many discrepancies
or noises in stacks for crash dump. It 1s also the same
situation for some other external communaities. For example,
when searching common and complete stacks for crash
dump of Linux/Windows open source applications or kernel
using popular web page browsers with a strong search

engine (e.g., Google, Baidu, etc.), usually no usetul results
can be found.

In the existing solutions, because a complete text of stacks
tor crash dump for each individual generally includes much
noise mformation, in order to determine a similarity between
two crash dumps, 1t may be needed a typical classification
algorithm (e.g., Bayesian classification algorithm) to con-
struct a specifically customized full-text search engine.

However, such approach has a drawback of introducing
much noise (from a variable part of the stack text), and also
losing the calling order information 1n the stacks. Even the
latter can be amended by considering a ranking or an order
of words 1n the stack text, but if the number of crash dumps
1s very large, the computational cost will also increase
accordingly. Because 1t 1s needed to compare the given stack
file with all of the existing stack files.

Besides, such approach also introduces a very large
complexity which makes 1t hard to be implemented and run
fast on a computer work station with limited resources. In
addition, a similarity derived according to such approach

10

15

20

25

30

35

40

45

50

55

60

65

2

cannot provide a simple understanding of a failure-related
problem, because 1t only takes individual words into account
and loses complete context information.

SUMMARY

In view of the above problems existing 1n the prior art, one
object of the embodiments of the present disclosure 1s to
provide a method and an apparatus for a computing device
to solve the above and other problems 1n the prior art.

According to a first aspect of the present disclosure, there
1s provided a method for a computing device. The comput-
ing device may generate stacks for crash dump 1n response
to failures, each of the stacks may include a plurality of stack
frames from bottom to top, and each of the stack frames may
include function information associated with a failure. The
method may include: extracting corresponding function
name 1nformation from the stack frames i1n the stacks:
generating simplified stack frames based on the correspond-
ing function name information to obtain simplified stacks for
the failures; and determining a similarity between the fail-
ures based on a similarity between the simplified stacks for
the failures.

According to some embodiments of the present disclo-
sure, generating simplified stack frames based on the cor-
responding function name information for the stack frames
may include: generating simplified stack frames only based
on the corresponding function name information for the
stack frames.

According to some embodiments of the present disclo-
sure, generating simplified stack frames based on the cor-
responding function name information for the stack frames
may include: generating the simplified stack frames based
on the corresponding function name information and corre-
sponding module name information for the stack frames.

According to some embodiments of the present disclo-
sure, the method may further include: extracting the corre-
sponding module name information from the stack frames,
or determining the corresponding module name information
by looking up function address information in the stack
frames.

According to some embodiments of the present disclo-
sure, the method may further include: setting separators
between the corresponding function name information and
the corresponding module name information in the simpli-
fied stack frames.

According to some embodiments of the present disclo-
sure, determining a similarity between the failures based on
a similarity between the simplified stacks includes: remov-
ing the simplified stack frames one by one from bottom
towards top ti1ll only the simplified stack frame at the top 1s
left, a sub-stack being generated in response to one of the
simplified stack frames being removed; and determining the
similarity between the failures based on a similarity between
the stmplified stacks and a similarity between the sub-stacks
of the simplified stacks.

According to some embodiments of the present invention,
the method further includes: determining the similarity
between failures based on common simplified stacks of the
failures or the sub-stacks having a largest number of com-
mon simplified stack frames.

According to some embodiments of the present disclo-
sure, the method may further include: obtaining simplified
stacks and sub-stacks of the simplified stack for a plurality
of failures; and generating a mapping table between the

US 10,235,234 B2

3

simplified stacks for the plurality of failures and the plurality
of failures, and between the sub-stacks and the plurality of

tailures.

According to some embodiments of the present disclo-
sure, determining a similarity between the failures based on
a similarity between the simplified stacks may include:
obtaining simplified stacks and sub-stacks of the simplified
stacks for a new failure; and searching for the simplified
stacks and the sub-stacks of the simplified stacks for the new
failure from the mapping table to determine a failure having
same simplified stacks or sub-stacks as the new failure.

According to some embodiments of the present disclo-
sure, the method may further include: adding into the
mapping table the simplified stacks and the sub-stacks for
the new failure that are missed 1n the mapping table into the
mapping table.

According to some embodiments of the present disclo-
sure, the method may further include: generating the map-
ping table using a Hash algorithm.

According to a second aspect of the present disclosure,
there 1s provided an apparatus for a computing device. The
computing device may generate stacks for crash dump 1n
response to failures, each of the stacks may include a
plurality of stack frames from bottom to top, and each of the
stack frames may include function immformation associated
with a corresponding failure. The apparatus may include: an
extracting umt configured to extract corresponding function
name information from the stack frames in the stacks; a
simplifying unit configured to generate simplified stack
frames from the stacks frames based on the corresponding
function name iformation to obtain simplified stacks for the
fallure; and a similarnity determining unit configured to
determine a similarity between the failures based on a
similarity between the simplified stacks for the failures.

According to a third aspect of the present disclosure, there
1s provided a computer readable storage medium with a
computer-readable program instruction stored thereon to
perform the method according to the first aspect.

According to a fourth aspect of the present disclosure,
there 1s provided a computer system including the apparatus
according to the second aspect.

The embodiments of the present disclosure provide a fast
manner with low-complexity to determine whether stacks
for a given crash dump have a higher similarity with stacks
for another crash dump, and 1f such stacks for crash dump
exists, an optimal crash dump list may be derived and the
impact of discrepancy or noise 1n the stacks for crash dump
may be eliminated.

The method provided in the embodiments of the present
disclosure 1s eflicient and the result obtained can provide a
similarity between crash dumps more accurately. With the
method and apparatus provided, similar stacks for crash
dump can be found efliciently, without constructing a cus-
tomized full-text search engine for a stack text to search; and
by deleting stack frames one by one according to time
sequence of the original stack frames 1n the stacks for crash
dump, a plurality of sub-stacks are formed, such that the
formed sub-stacks will not lose key time sequence informa-
tion in the original stack frames. Besides, the similarity
between failures can be easily quantized to filter for other
analysis.

BRIEF DESCRIPTION OF THE DRAWINGS

By reading detailed description below with reference to
the accompanying drawings, the above and other objects,
teatures, and advantages of the embodiments of the present

10

15

20

25

30

35

40

45

50

55

60

65

4

disclosure will become readily comprehensible. In the draw-
ings, a plurality of embodiments of the present disclosure are
shown 1n an exemplary but non-limitative manner, wherein:

FIG. 1 schematically shows typical stacks for crash dump
consisting of original stack frames.

FIG. 2 schematically shows a flow diagram of the method
according to the embodiments of the present disclosure.

FIG. 3 schematically shows a block diagram of the
apparatus according to the embodiments of the present
disclosure.

FIG. 4 schematically shows a block diagram of an exem-
plary computer system/server that may be used to implement
the embodiments of the present disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

Hereinaftter, the principle and spirit of the present disclo-
sure will be described with reference to a number of exem-
plary embodiments shown in the drawings. It should be
understood that these specific embodiments are described
only for enabling those skilled in the art to better understand
and 1mplement the present disclosure, not for limiting the
scope of the present disclosure in any manner.

FIG. 1 schematically shows a typical stack 10 for crash
dump consisting of orniginal stack frames. As mentioned
above, upon occurrence of crash dump, the stacks for crash
dump 1s one of the most important information or signatures
for crash dump and indicate a direct cause for failure of a
computing system/process. Stack frame backtracking of
stacks for crash dump may provide a unique explicit
sequence of calling a code path that results 1n occurrence of
crash dump.

As 1llustrated 1n FIG. 1, the exemplary stack 100 for crash
dump may include original stack frames #31 to #0 from
bottom to top, and each original stack frame may include
failure-related function information. For instance, the #0
stack frame includes the associated information of the
failure-related function Raise. For the sake of clanty, FIG. 1
only exemplarily shows the original stack frames #0 to #5
and #28 to #31, and omits the original stack frames #6 to
#277. Those skilled 1n the art may understand that the original
stack frames #6 to #27 may have a similar structure and
content to the onginal stack frames shown.

The orniginal stack 100 for crash dump may provide full
detail information related to a code path of a stack for a
tailure, however, a stmilarity between stacks for crash dump
can hardly be found through the full detail information,
because most contents included in each stack frame of stack
backtracking will always change at each time of the pro-
gram/process compiling, loading and analyzing. For
example, the stack 100 for crash dump comprises parts
underlined which are associated with addresses of the stack
frames and may change in response to performing module
loading, the code lines and directory mformation will also
possibly change 1n each real-time system or troubleshooting
system context.

In operations related to the computing device, it 1s always
possible needed to determine whether the new crash dump
has a higher similarity with other crash dumps that are being
analyzed or have been analyzed so as to avoid repetitive
work by referring to analysis of other crash dumps. This
needs an eflicient and simple manner to find similar stacks
for crash dumps in a large-yield system that possibly gen-
crate many crash dumps (e.g., an order of millions), and to
find the stacks for crash dumps with the highest similarity,
while the results can also be easily understood.

US 10,235,234 B2

S

From the perspective of algorithm, it 1s a pure text
similarity computation problem. Generally, a search engine
or a similar tool can be used to index a stack text based on
the words 1n the text, and then compute, during a process of
searching a given stack text, a cosine similarity between
word vectors of the given stack text and word vectors of all
other stacks for crash dumps. As discussed above, the
method 1n the prior art has various defects.

Various embodiments of the present disclosure provide a
fast manner with low-complexity to determine whether
stacks for a given crash dump has a high similarity with
stacks for another crash dump; 1f such stacks for crash dump
exists, an optimal crash dump list may be derived, and
impact of discrepancies or noises in the stacks for crash
dump may be eliminated.

The method provided in various embodiments of the
present disclosure 1s eflicient and the results obtained can
embody a good understanding of crash dump. With the
method provided, similar stacks for crash dump can be
ciliciently found without constructing a customized full text
search engine for the stack text to search.

FIG. 2 schematically illustrates a flow diagram of a
method 200 according to embodiments of the present dis-
closure. In some embodiments, the method 200 may be used
for a computing device, the computing device may generate
stacks for crash dump i response to failures; each of the
stacks may include a plurality of stack frames from bottom
to top; each stack frame may include function iformation
related to the failure. In some embodiments, an executive
body for the method 200 may be an entity associated with
the computing device. In some specific embodiments, the
executive body of the method 200 may be an apparatus 300
that will be described 1n conjunction with FIG. 3.

As 1llustrated 1n FIG. 2, the method 200 may proceed to
block 201 after start. In block 201, the executive body of the
method 200 may extract corresponding function name nfor-
mation from the stack frames 1n the stacks.

In specific embodiments, an original stack frame that
causes crash dump may be selected and be processed as
tollows. First, information that 1s always varied and 1s not so
important 1s removed from each original stack frame, with
only function name information of each original stack frame
being left. For example, such removable mformation may
include: numbers 1n the original stacks, such as function
address, which will vary 1n response to module loading, and
parameters delivered using run time of the context, and
source code directory and line imnformation during compila-
tion time, etc.

In some specific embodiments, for the stack 100 shown in
FIG. 1, corresponding function name information may be
extracted from stack frames #0 to #5: raise, abort, csx_rt_
proc_do_abort, sx_rt_assert_int_take user space, panic_ac-
tion, csx_rt_assert_request_panic_with_info, and Emcpal-
BugCheck. Further, corresponding function name informa-
tion may be extracted from stack frames #28 to #31:
csx_rt_cpi_thread_command, csx_rt_sked thread_wrapper,
start_thread, and clone.

5

10

15

20

25

30

35

40

45

50

55

6

Next, the method 200 may proceed to block 202. In block
202, the executive body of the method, 200 may generate the
corresponding simplified stack frames based on correspond-
ing function name information to obtain simplified stacks for
the failures.

In some embodiments, the simplified stack frames may be
generated only based on the corresponding function name
information for the stack frames. Those skilled in the art may
understand that 1n the stack frames of the stacks for crash
dump, the function name information associated with the
fallures may better embody the correlation between two
failures. Therelore, 1n a simple implementation way of the
method 200, simplified stack frames of stack frames may be
generated only based on function name information of stack
frames, while original time sequence of stack frames of the
stacks for crash dump 1s reserved, so as to obtain the
simplified stacks for failure through the corresponding sim-
plified stack frames of stack frames.

In some other embodiments, simplified stack frames may
also be generated based on corresponding function name
information and corresponding module name information
for the stack frames. Then, by reserving the original time
sequence ol stack frames in the stacks for crash dump,
simplified stacks of the stacks for failures may be derived
using the corresponding simplified stack frames for stack
frames. In these embodiments, besides the function name
information, the simplified stack frames may also include
corresponding module name information. This 1s always
helptul, because a same function may be statically associ-
ated with diflerent modules, and 1t 1s possibly advantageous
to determine which module has a problem 1n the stacks.

Module name information associated with the function for
fallure may be obtamned in different manners. In some
embodiments, 1f the stack frames include relevant module
name information, then the method 200 may include:
extracting corresponding module name information from the
stack frames.

I1 the module name information cannot be extracted from
the stack frames, this 1s always related to a checking/
troubleshooting situation. In some embodiments, corre-
sponding module name information may be determined by
looking up function address information from stack frames.
Specifically, 1t may be derived to which module the function
address belongs from some other sources by looking up this
function address from the addresses for crash dump of the
module.

In a specific exemplary embodiment, for the stack frame
#2 shown 1n FIG. 1, it may be seen that its function address
1s Ox0000716174ac0d7, and 1ts function name information 1s
csx_rt_proc_do_abort. Based on this information, by per-
forming crash dump to all crash dump address spaces, i1t can
be determined that the function address Ox0000716174ac0d7
falls 1mto the range of 0x000071614al3ccO-
0x0000716174b5Sbab8. It 1s known by query that this range 1s
a .text area of csx_urt.so. This process may be expressed by
code as follows.

(gdb) info files
Symbols from
“/disks/USD__dumps15/ARs/0564000-0564999/564217/10-11-2013/EMC/csx/ubin

64/ csx__1c_ std.x”.

Local core dump file:

“tmp/abedt/a/564217-spa. FNMO0131203264_ 2013-10-11__17__14_ 08__8666/s
afe _dump_ spa. FNMO00131203264_2013-10-11_17_14_ 08_ B8666_ safe’, file type

elf64-x86-64.

0x0000000000400000 - 0x0000000000404000 1s loadl

US 10,235,234 B2

7

-continued

0x0000000000603000 - 0x0000000000604000 1s load?2

0x00007f6174al11a8 - 0Ox0000716f74a13cb8 15 .plt 1In
/tmp/abcdt/a/564217-spa.
FNMO00131203264_2013-10-11__17__14_ 08_ 8666/EMC/csx/ulib64/csx__urt.so
0x000071{6174al3ccO - 0x0000716174b5bab8 1s .text 1
/tmp/abedt/a/564217-spa._
FNMO00131203264 2013-10-11__17_ 14 08 _ R666/EMC/csx/ulib64/csx_ urt.so
0x0000716174b5bacO - 0x0000716f74b3bdil 1s c¢sx_gx_ 1t 1n
/tmp/abedt/a/564217-spa._
FNMO00131203264_2013-10-11_17_14_08_ 8666/EMC/csx/ulib64/csx_ urt.so

In this exemplary embodiment, through the query proce- 15
dure above, 1t can be derived that a module name of the
function associated with the failure 1s csx_urt.so, this mod-
ule name information may form corresponding simplified
stack frames together with the function name information
csx_rt_proc_do_abort.

In order to better distinguish function name information
from module name information, 1n some embodiments, 1n
the simplified stack frames, separators may be set between
the corresponding function name information and the cor-
responding module name information. For example, in a
specific 1mplementation, a symbol “!” may be used as
separators. Those skilled 1n the art may understand that any
other symbol that will not cause confusion may be used as
separators between the corresponding function name infor-
mation and the corresponding module name information.

In an embodiment using “!” as separators, using a func-
tion name information and a module name information, the
stack frame #2 shown in FIG. 1 can be simplified mto the
following form: csx_urt.so!csx_rt_proc_do_abort. Those
skilled 1n the art may understand that the specific form 1s
only an example, and those skilled in the art may generate
vartous different simplified stack frames by adjusting
sequence ol mformation, using different separators, or add-
ing other variables or fixed information.

In one embodiment, for the stacks shown 1n FIG. 1, after
performing block 201 and block 202 of the method 200, the
following simplified new stack text will be denived. It
explicitly shows the functions and modules imvolved 1n the
stacks for crash dump. In addition, from a view of practice,
blocks 201-202 of the method 200 can be performed through

some automated tools/scripts.

20

25

30

35

40

45

libc.so.6raise

libc.so.6!abort

csx_urt.solcsx_ 1t proc_do_ abort

csx_urt.solcsx_ 1t assert_ int take user space_ panic_ action
csx_ urt.solcsx_ 1t assert request panic_ with_ info
EmcPAL.sys!EmcpalBugCheck

50

csx__urt.solcsx__rt_ cpi_ thread_ command 33

csx_ urt.solcsx_ 1t sked thread wrapper
libpthread.so.0!start__thread
libc.so.6!clone

Next, the method 200 may proceed to block 203. In block
203, the executive body of the method 200 may determine
a stmilarity between failures based on a similarity between
simplified stacks of the failures.

Those skilled 1n the art may understand that a similarity
between failures may be embodied by a similarity between
stacks for crash dump for the failures, while stacks for crash
dump includes a plurality of stack frames. After these stack

60

65

frames being simplified, the variable noise information has
been removed, while more crucial function name informa-
tion and/or module name information are reserved. There-
fore, 1n some embodiments, a similarity between failures
may be determined by directly comparing the number of
similar simplified stack frames between the simplified stacks
for two failures.

Besides, those skilled 1in the art will recognize that stack
frames 1n stacks for crash dump have time sequences,
therefore, when determining a similarity between failures,
the sequence of stack frames 1s considered, which can better
embody the similarity between two failures.

Therefore, 1n some embodiments, simplified stack frames
may be removed one by one from bottom towards top, until
only the simplified stack frame at the top 1s left, a sub-stack
being generated 1n response to one of the simplified stack
frames being removed; moreover, the similarity between
failures 1s determined based on the similarity between the
simplified stacks for failures and the similarity between the
sub-stacks for the simplified stacks.

An advantage of this practice 1s that these sub-stacks may
maintain sequence information of the stacks, because calling
sequence 1s a key branch of a code path that causes crash
dump. I a certain part of a problematic code can be called
by different upper-layer codes from same/diflerent modules,
the part after the problematic code probably causes similar
stacks with completely identical sub-stacks. For example,
the simplified stack shown above can have the following
sub-stacks.

Substack-0: <simplified stack per se>

libc.so.6!raise

libc.so.6labort

csx_ urt.solcsx__1t_ proc_ do_ abort

csx_ urt.solcsx_ 1t assert int take user space panic_ action
csx__urt.solcsx__rt__assert_ request_ panic_ with__info
EmcPAL.sys!EmcpalBugCheck

csx_ urt.solcsx_ 1t cpi_ thread command
csx__urt.solcsx__ rt_ sked_ thread wrapper

libpthread.so.0!start_ thread

libc.so.6!clone

SubStack-1:

libc.so.6!raise

libc.so.6tabort

csx__urt.solcsx_ 1t proc_do_ abort

csx__urt.solcsx__ rt__assert_ int_ take_ user space_ panic__action

csx_ urt.solcsx_ 1t assert request_ panic_ with_ info
EmcPAL.sys!EmcpalBugCheck

csx__urt.solcsx__rt_ cpi_thread command
csx_ urt.solcsx_ 1t sked thread wrapper
libpthread.so.0!start_ thread

libc.so.6!clone

SubStack-2:
libc.so.6!raise

US 10,235,234 B2

9

-continued

libc.so.6!abort

csx__urt.solcsx__ 1t proc__do__abort

csx_ urt.solcsx_ 1t assert_ int take user space_ panic_ action
csx_urt.solcsx_ 1t assert request panic_ with_ info
EmcPAL.sys!EmcpalBugCheck

csx_ urt.solcsx_ 1t cpi thread command

csx_ urt.solcsx_ 1t sked thread wrapper
libpthread.so.0!start__thread
libc.so.6!clone

Sub stack-29:
libc.so.6!raise
libc.so.6tabort

csx__urt.solcsx_ 1t proc__do_ abort
SubStack-30:
libc.so.6!raise

libc.so.6tabort

SubStack-31:
libc.so.6!raise

In some specific embodiments, a similarity between two
fallures may be determined based on the number of stack
frames 1n the sub-stacks having a largest number of common

stack frames for the stacks for crash dump. In another
scenario, it 1s possible that two failures have the completely
same simplified stack frames. Therefore, a similarity
between failures may be determined based on common
simplified stacks between failures or the sub-stack having a
largest number of common simplified stack frames.

In some embodiments, the corresponding simplified
stacks and sub-stacks for the simplified stacks for each of a
plurality of failures may be obtained, and a mapping table
between the simplified stacks for the plurality of failures and
the plurality of failures and between the sub-stacks for the
simplified stacks and the plurality of failures may be gen-
crated.

Those skilled in the art may understand, after generating,
such a mapping table, the mapping relation between sub-
stacks and failures (i.e., crash dump) can be determined by
looking up this table, thereby quickly determining how
many same or similar sub-stacks there are for any two
fallures, and determining the sub-stack having a largest
number of common stack frames for failures to determine
the similarity. In some specific embodiments, the mapping
table may be generated based on a Hash algorithm for a huge
number of crash dumps.

Therefore, in some embodiments, simplified stacks and
sub-stacks for the simplified stacks may be generated for a
new failure; moreover, the simplified stacks and sub-stacks
for the new failure are looked up 1n the mapping table so as
to determine a failure having the same simplified stack or
sub-stacks as the new failure.

Additionally, the simplified stacks and the sub-stacks of

the new failure which are not in the mapping table may be
added 1nto the mapping table. Theretfore, this mapping table
may be expanded constantly with increase of the number of
tailures, such that a possibility of finding a previous similar
failure to a subsequent failure will increase.
In a specific embodiment, simplified stacks may be first
decomposed 1nto sub-stacks, and the simplified stacks and
the sub-stacks may be hashed using the hash of the list or
array. Besides, a mark for crash dump may be attached to the
hash list or array with the same stacks or sub-stacks. The
mark for crash dump may be a crash dump name with a
certain timestamp or unique serial number iformation for
identifying the crash dump.

10

15

20

25

30

35

40

45

50

55

60

65

10

Then, sub-stacks for crash dumps may be hashed to group
crash dumps into a hash table based on their marks for crash
dump. It only needs to perform once when the system 1is
started for the first time; afterwards, it 1s only needed to add
the newly generated crash dump into the hash table. This
process may be expressed using a Perl language as follow-
ng.

%Stack hash;
$Stack Hash{$each sub_ stack} = [dump__1, dump_ 2, ...]

By circularly passing through all dumps, an exemplary
hash table for a specific dump having sub-stack 0 to sub-
stack N can be described as follows.

Sub-stack List of crash dumps
SubStack-0 dmpl dmp?2

SubStack-1 dmpl dmp?2 dmp3

SubStack-2 dmpl dmp?2 dmp3 dmp4 dmp3
SubStack-N dmpl dmp?2 dmp3 dmp4 dmp5

As shown 1n the table, the less the number of stacks 1n a
sub-stack 1s, the more various dumps will be associated
therewith. Therefore, if a completely 1dentical stack cannot
be found, partially identical stacks (i.e., having identical
sub-stacks) may be found, which have less stacks with
common code path part compared with the completely
identical stacks.

Besides, from a view of engineering, the query process
may stop at some points which are believed already enough.
For example, the query process may stop at a certain known
function that shares a same code path during most of time.

Once a new dump 1s generated, simplified stacks of this
new dump may be first looked up from the hash table to look
up whether any other (a plurality of) dump(s) has (have) the
same simplified stacks. If no, the sub-stacks of this new
dump may be looked up from the top of the simplified
stacks. In this way, an optimal matched stack can be defined
by the sub-stack having the largest number ol matched
sub-stack frames, and a similar crash dump ranking higher
may be selected 1n this manner.

By regarding a sub-stack as an undividable block having
a sequential context, a similarnty of selected similar stacks
may be better embodied. Besides, through the additional
module name nformation, the related modules may be
identified and a triage rule may be defined for automatic
triage.

As the sub-stack has more matched sub-stack frames, they
will have more common code paths, 1.e., share more simi-
larity between stacks for dumps. Therefore, a ratio of
matched code paths may be used to quantize the similarity.
Besides, these hash list results can be easily saved and
re-loaded 1nto the memory for quick search, so as to deter-
mine whether any newly generated dump has exactly 1den-
tical or similar stacks.

FIG. 3 schematically shows a block diagram of an appa-
ratus 300 according to the embodiments of the present
disclosure. In some embodiments, the apparatus 300 may be
used for a computing device. This computing device may
generate a stack for crash dump 1n response to failures; each
of stacks may include a plurality of stack frames from
bottom to top; each of stack frames may include function
information associated with a failure. In FIG. 3, a dotted-line
block 1s used to represent an optional unit.

US 10,235,234 B2

11

Those skilled 1n the art will appreciate that FIG. 3 only
shows the units or components of the apparatus 300, which
are closely related with the embodiments of the present
disclosure. In practice, the apparatus 300 may comprise
other function units or components that enable the apparatus
to operate normally. Besides, those skilled 1n the art will also
appreciate that necessary connection may exist between
cach unit of the apparatus 300.

As shown 1n FIG. 3, the apparatus 300 may comprise an
extracting unit 301, a simplitying unit 302, and, a similarity
determining unit 303. In some embodiments, the extracting
unit 301 may be configured to extract corresponding func-
tion name information from the stack frames in the stacks;
the simplifying umt 302 may be configured to generate
corresponding simplified stack frames from the stack frames
based on the corresponding function name information to
obtain simplified stacks for the failure; and the similarity
determining unit 303 may be configured to determine a
similarity between the failures based on a similarity between
the simplified stacks of the failures.

In some embodiments, the simplifying unit 302 may be
turther configured to generate the simplified stack frames
only based on the corresponding function name information
for the stack frames. In some embodiments, the simplifying
unit 302 may be further configured to generate the corre-
sponding simplified stack frames based on the correspond-
ing function name nformation and corresponding module
name information for the stack frames.

In some embodiments, the simplifying unit 302 may be
turther configured to extract the corresponding module name
information from the stack frames, or to determine the
corresponding module name nformation by looking up
function address information in the stack frames. In some
embodiments, the simplifying unmit 302 may be further
configured to set separators between the corresponding
function name nformation and the corresponding module
name information in the simplified stack frames.

In some embodiments, the apparatus 300 may further
comprise a sub-stack generating unit 304. The sub-stack
generating unit 304 may be configured to remove the
simplified stack frames one by one from bottom towards top
t1ll only the simplified stack frame at the top 1s leit, a
sub-stack being generated in response to one of the simpli-
fied stack frames being removed. In these embodiments, the
similarity determining unit 303 1s configured to determine
the similarity between the failures based on a similarity
between the simplified stacks and a similarity between the
sub-stacks of the simplified stacks.

In some embodiments, the simplifying unit 302 may be
turther configured to determine the similarity between the
tailures based on common simplified stacks of failures or the
sub-stack of failures having a largest number of simplified
stack frames.

In some embodiments, the simplifying unit 302 may be
turther configured to obtain simplified stacks and sub-stacks
of simplified stacks for a plurality of failures. In these
embodiments, the apparatus 300 may further comprise a
mapping table generating unit 305. The mapping table
generating unit 305 may be configured to generate a map-
ping table between the simplified stacks for the plurality of
tailures and the plurality of failures, and between the sub-
stacks and the plurality of failures.

In some embodiments, the simplifying unit 302 may be
turther configured to obtain simplified stacks and sub-stacks
of the simplified stacks for a new failure. In these embodi-
ments, the similarity determining unit 303 may be further
configured to search for the simplified stacks and the sub-

10

15

20

25

30

35

40

45

50

55

60

65

12

stacks of the simplified stacks for the new failure from the
mapping table to determine a failure having a same simpli-
fied stack or sub-stack as the new failure.

In some embodiments, the apparatus 300 may further
comprise an adding unit 306. The adding umt 306 may be
configured to add into the mapping table a simplified stack
and sub-stack of the new {failure that 1s missed 1n the
mapping table.

In some embodiments, the mapping table generating unit
3035 may be further configured to generate the mapping table
using a Hash algorithm.

Besides, those skilled in the art will appreciate that the
method according to the embodiments of the present dis-
closure actually utilizes a strict sequential order of the code
path included 1n a stack for crash dump, the method pro-
posed 1n the embodiments of the present disclosure can also
be extended to other serial events having a strict sequential
order to quickly find whether a series of events are similar
to another series of events. Generally each stack frame in the
embodiments of the present disclosure may be regarded as
an event.

FIG. 4 schematically shows a block diagram of an exem-
plary computer system/server that may be used to implement
the embodiments of the present disclosure. It should be
noted that the computer system/server 412 shown 1n FIG. 4
1s only an example, which should not make any limitation to
the functions and use scope of the embodiments of the
present disclosure.

As shown 1 FIG. 4, a computer system/server 412 1s
embodied 1n a form of a general purpose computing device.
Components of the computer system/server 412 may
include, but not limited to: one or more processors or
processing umts 416, a system memory 428, and a bus 418
connecting different system components (including the sys-
tem memory 428 and the processing unit 416).

The bus 418 represents one or more of several bus
structures, including a memory bus or a memory controller,
a periphery bus, a graphical acceleration port, a processor or
a local bus using any bus structure in a plurality of different
bus structures. For example, these architectures include, but
not limited to, an Industry Standard Architecture (ISA) bus,
a Micro Channel Architecture (MAC) bus, an enhanced ISA
bus, a Video Electronics Standard Association (VESA) local
bus, and a Peripheral Component Interconnect (PCI) bus.

The computer system/server 412 typically includes a
plurality of computer system readable mediums. These
mediums may be any available medium accessible by the
computer system/server 412, mncluding volatile and non-
volatile mediums, removable and irremovable mediums.

The system memory 428 may include a computer system
readable medium 1n a volatile memory form, e.g., a memory
430 and/or a bufler 432. The computer system/server 412
may further comprise other removable/irremovable, vola-
tile/non-volatile computer system storage mediums.
Although not shown 1n FIG. 4, a magnetic disk for reading
and writing a removable non-volatile magnetic disk (e.g.,
“floppy disk™) and an optical disk for reading and writing a
removable non-volatile optical disk (e.g., CD-ROM. DVD-
ROM or other optical medium) may be provided. In these
cases, each magnetic disk may be connected with the bus
418 via one or more data media interfaces. The memory 428
may include at least one program product, and the program
product has a group (e.g., at least one) of program modules.
These program modules are configured to execute functions
of each implementation of the present disclosure.

A program/utility tool 440 having at least one program
module 442 may be stored for example in a memory 428.

US 10,235,234 B2

13

Such program module 442 includes, but not limited to: an
operating system, one or more application programs, other
program modules and program data. Each or certain com-
bination of these examples may include implementation of
a network environment. The program module 422 generally
performs functions and/or methods in the implementations
described 1n the present disclosure.

As needed, the computer system/server 412 may also
communicate with one or more external devices (e.g., a
display device 424, a storage device 414, etc.), and may also
communicate with one or more devices that enable a user to
interact with the computer system/server 412, and/or com-
municate with any device (e.g., a network card, a modem,
ctc.) that enables the computer system/server 412 to com-
municate with one or more of other computing devices. This
communication may proceed via an input/output (I/O) inter-
face 422. Moreover, the computer system/server 412 may
also communicate with one or more of networks (e.g., a
local area network (LAN), a wide area network (WAN)
and/or public network, e.g., the Internet) via a network
adaptor 420. As shown 1n the figure, the network adaptor 420
communicates with other modules of the computer system/
server 412 via the bus 418. It should be understood that
although not shown 1in the figure, other hardware and/or
software modules may be used in conjunction with the
computer system/server 412, including but not limited to: a
microcode, a device disk, a redundancy processing unit, an
external magnetic disk driving array, a RAID system, a
magnetic tape, a magnetic disk, and a data backup storage
system, etc.

In a description of the embodiments of the present dis-
closure, the term “comprise/include” and the similar expres-
s1on should be understood as open inclusion, 1.¢., “including,
but not limited to.” The term “based on” should be under-
stood as “at least partially based on.” The term “one embodi-
ment” or “the embodiment” should be understood as “at
least one embodiment.”

It should be noted that the embodiments of the present
disclosure may be implemented by hardware, software or a
combination thereof. The hardware part may be imple-
mented using a specific logic; the software part may be
stored 1n a memory and executed by an appropriate instruc-
tion executing system, €.g., a mICroprocessor or a specific
designed hardware. Those skilled in the art may understand
that the apparatus and method above may be implemented
using a computer executable instruction and/or by being
embodied 1 a processor control code, e.g., such code 1s
provided 1n a programmable memory or in a data carrier,
such as an optical or electronic signal carrier.

Besides, although operations of the method of the present
disclosure are described 1n a specific order 1n the drawings,
it does not necessarily require or imply that to achieve a
desired result, these operations have to be executed accord-
ing to the specific order or all of the illustrated operations
have to be executed. On the contrary, blocks described 1n the
flow diagrams may change the execution order. Additionally
or alternatively, some blocks may be omitted; a plurality of
blocks may be combined into one block for execution,
and/or a block may be decomposed into a plurality of blocks
for execution. It should also be noted that features and
functions of two or more apparatuses of the present disclo-
sure may be embodied 1n one apparatus. In turn, features and
functions of one apparatus described above may be further
divided into a plurality of apparatuses to be embodied.

Although the present disclosure has been described with
reference to a number of specific embodiments, 1t should be
understood that the present disclosure 1s not limited to the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

specific embodiments as disclosed. The present disclosure
intends to cover various modifications and equivalent
arrangements 1ncluded within the spirit and scope of the
appended claims.

What 1s claimed 1s:

1. A method implemented 1 a computing device, the
computing device generating stacks for crash dump 1n
response to failures, each of the stacks including a plurality
of stack frames from bottom to top, and each of the stack
frames including function information associated with a
corresponding failure, the method comprising;:

extracting corresponding function name information from

the stack frames 1n the stacks;

generating simplified stack frames from the stack frames

based on the corresponding function name information
to obtain simplified stacks for the failures; and

determining a similarity between the failures based on a

similarity between the simplified stacks for the failures

by:

removing the simplified stack frames one by one from
the simplified stack from bottom towards top till only
a simplified stack frame at the top 1s left, a sub-stack
being generated in response to one of the simplified
stack frames being removed;

determining the similarity between the failures based
on a similarity between the simplified stacks and a
similarity between the sub-stacks of the simplified
stacks:

obtaining simplified stacks and sub-stacks of the sim-
plified stacks for a plurality of failures; and

generating a mapping table between the plurality of
tailures and the simplified stacks for the plurality of
tailures and between the plurality of failures and the
sub-stacks.

2. The method according to claim 1, wherein generating,
simplified stack frames based on the corresponding function
name information for the stack frames comprises:

generating the simplified stack frames only based on the

corresponding function name information for the stack
frames.

3. The method according to claim 1, wherein generating,
simplified stack frames based on the corresponding function
name information for the stack frames comprises:

generating the simplified stack frames based on the cor-

responding function name information and correspond-
ing module name mformation for the stack frames.

4. The method according to claim 3, further comprising:

extracting the corresponding module name information

from the stack frames, or

determining the corresponding module name information

by looking up function address information in the stack
frames.

5. The method according to claim 3, further comprising:

setting separators between the corresponding function

name nformation and the corresponding module name
information 1n the simplified stack frames.

6. The method according to claim 1, further comprising;:

determining the similarity between the failures based on

common simplified stacks of the failures or the sub-
stacks of the failures having a largest number of com-
mon simplified stack frames.

7. The method according to claim 1, wherein determining,
a similarity between the failures based on a similarity
between the simplified stacks comprises:

obtaining simplified stacks and sub-stacks of the simpli-

fied stacks for a new failure; and

US 10,235,234 B2

15

searching for the simplified stacks and the sub-stacks of
the simplified stacks for the new failure from the
mapping table to determine a failure having a same
simplified stack or sub-stack as the new failure.
8. The method according to claim 7, further comprising;:
adding 1nto the mapping table a simplified stack or a
sub-stack for the new {failure that 1s missed 1n the
mapping table.
9. The method according to claim 1, further comprising:
generating the mapping table using a Hash algorithm.
10. An apparatus for a computing device, the computing
device generating stacks for crash dump in response to
tailures, each of the stacks including a plurality of stack
frames from bottom to top, and each of the stack frames
including function nformation associated with a corre-
sponding failure, the apparatus comprising at least one
processor; and at least one memory comprising program
module, wherein the at least one memory and the program
modules are configured, with the at least one processor,
configured to:
extract, by an extracting unit, corresponding function
name information from the stack frames in the stacks:
generate, by a simplifying unit, simplified stack frames
from the stack frames based on the corresponding
function name information to obtain simplified stacks
for the failures;
determine, by a similarity determining unit, a similarity
between the failures based on a similarity between the
simplified stacks for the failures;
removing, by a sub-stack generating unit, the simplified
stack frames one by one from the simplified stack from
bottom towards top till only a simplified stack frame at
the top 1s lelt, a sub-stack being generated 1n response
to one of the simplified stack frames being removed;
and
wherein the similarity determining unit 1s further config-
ured to determine the similarity between the failures
based on a similarity between the simplified stacks and
a similarity between the sub-stacks of the simplified
stacks.
11. The apparatus according to claim 10, wherein the
simplifying unit 1s configured to:
generate the simplified stack frames only based on the
corresponding function name information for the stack
frames.

10

15

20

25

30

35

40

16

12. The apparatus according to claim 10, wherein the
simplifying unit 1s configured to:
generate the simplified stack frames based on the corre-

sponding function name information and correspond-
ing module name information for the stack frames.

13. The apparatus according to claim 12, wherein the
simplifying umt 1s further configured to:

extract the corresponding module name information from
the stack frames, or

determine the corresponding module name information
by looking up function address information 1n the stack
frames.

14. The apparatus according to claim 12, wherein the
simplifying unit 1s further configured to:

set separators between the corresponding function name
information and the corresponding module name infor-
mation in the simplified stack frames.

15. The apparatus according to claim 10, wherein the
simplifying umt i1s configured to:

determine the similarity between the failures based on

common simplified stacks of the failures or the sub-

stacks of the failures having a largest number of com-
mon simplified stack frames.

16. The apparatus according to claim 10, wherein the
simplifying unit 1s further configured to obtain simplified
stacks and sub-stacks of the simplified stacks for a plurality
of failures; and

wherein the apparatus further comprises a mapping table
generating unit configured to generate a mapping table
between the plurality of failures and the simplified
stacks for the plurality of failures and between the
plurality of failures and the sub-stacks.

17. The apparatus according to claim 16, wherein the
simplifying umt i1s further configured to obtain simplified
stacks and sub-stacks of the simplified stacks for a new
failure; and

wherein the similarity determining unit 1s further config-
ured to search for the simplified stacks and the sub-
stacks of the simplified stacks for the new failure from
the mapping table to determine a failure having a same
simplified stack or sub-stack as the new failure.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

