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r 650

Communicating, by ones of a first plurality of processing cores coupled to a

respective one of a first plurality of core interface modules, with the respective core
Interface module of the first plurality of core interface modules, the first plurality of
core interface modules being arranged in a first ring network; 654
communicating, by ones of a second plurality of processing cores coupled to a ‘/
respective ones of a second plurality of core interface modules, with the respective
core Interface module of the second plurality of core interface modules, the second

plurality of core interface modules being arranged 1n a second ring network; and
interfacing, by a global ring network, between the first ring network and the second

ring network

Recelving, by a first core interface module of the first plurality of core interface 658
modules from a corresponding first processing core of the first plurality of ‘/
processing cores, a transaction request to read data, a first cache being coupled to
the first core interface module

v

Transmitting, by the first core interface module, the transaction request to a second | g2
core Interface module of the first plurality of core interface modules to check If the </
data to be read I1s cached In a second cache that I1s coupled to the second core
interface module

Determining that the data to be read is not cached in the second cache and Is 666
potentially cached In a third cache of the second ring network; and
IN response to determining that the data to be read is not cached In the

second cache, transmitting, by the second core interface module, the transaction
request to a third core interface module of the second plurality of core interface
modules to check If the data to be read Is cached In a third cache that is coupled to
the third core interface module

Determining that the data to be read is not cached In the third cache; ana 670

IN response to determining that the data to be read 1s not cached in the third "/
cache, transmitting the transaction request to a memory interface module to fetch
the data from a memory that i1s coupled to the memory Iinterface module

Fig. 6E
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y 750
Communicating by ones of a plurality of processing cores with a respective core
interface module of a plurality of core interface modules, the plurality of core
. . . . . . 754
interface modules being configured as a first ring structure, wherein ones of the
plurality of core interface modules are coupled to a corresponding cache of a
plurality of caches;
758

Receiving, by a first core interface module of the plurality of core interface modules
from a corresponding first processing core of the plurality of processing cores, a
transaction request to read data

Checking, by the first core interface moduie, if the data to be read is cached in a

first cache that is coupled to the first core interface module; ana 762
while checking if the data to be read 1s cached in the first cache,
fransmitting, by the first core interface module, the transaction request {0 a second
core interface module to check if the data to be read is cached in a second cache |
that 1s coupled to the second core interface module

Determining that the data to be read is not cached in any of the first cache and the | 7a5
second cache: and
transmitting the transaction request to each of one or more other core
interface modules to check if the data to be read i1s cached in one or more other
caches respectively coupled to the one or more other core interface modules

'

Determining that the data to be read is not cached in any of the one or more other 70

caches: and
transmitting the transaction request to a memory interface module to fetch
the data from a memory that is coupled to the memory interface module

Fig. 7E
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y- 900

Recelving, by a memory interface module coupled to a memory, a first memory
access request to access data stored in the memory, the memory interface module 004
configured to control access to the memory; and
recelving, by the memory interface module, a second memory access request to 4/
access data stored in the memory

908

Based on the first and second memory access requests, generating a third ‘/

memory access request

912

Based on the third memory access request, accessing the memory to read data ‘)
from the memory

Fig. 9
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INTERCONNECTED RING NETWORK IN A
MULTI-PROCESSOR SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation of and claims
priority to U.S. patent application Ser. No. 14/155,773, filed
Jan. 15, 2014, which claims priority to U.S. Provisional
Patent Application No. 61/753,091, filed Jan. 16, 2013, and
to U.S. Provisional Patent Application No. 61/753,094, filed
Jan. 16, 2013, the entire specifications of which are hereby
incorporated by reference.

TECHNICAL FIELD

Embodiments of the present disclosure relate to a com-
puting system, and more specifically, to architecture of a
multi-processor system.

BACKGROUND

Unless otherwise indicated herein, the approaches
described 1n this section are not prior art to the claims in the
present disclosure and are not admitted to be prior art by
inclusion 1n this section.

A multi-processor system generally comprises a plurality
of processors. A multi-processor system can also comprise a
plurality of caches. In an example, a cache can be accessed
only by a corresponding single processor of the plurality of
processors. In another example, the cache can be shared, 1.¢.,
can be accessed by more than one of the plurality of
Processors.

SUMMARY

In various embodiments, the present disclosure provides
a system comprising a first plurality of processing cores,
ones of the first plurality of processing cores coupled to a
respective core interface module among a first plurality of
core interface modules, the first plurality of core interface
modules configured to be coupled to form in a first ring
network of processing cores; a second plurality of process-
ing cores, ones of the second plurality of processing cores
coupled to a respective core interface module among a
second plurality of core interface modules, the second
plurality of core interface modules configured to be coupled
to form a second ring network of processing cores; a first
global interface module configured to form an interface
between the first ring network and a third ring network by
transmitting data between the first ring network and the third
ring network, the third ring network interconnecting the first
ring network and the second ring network; and a second
global interface module configured to form an interface
between the second ring network and the third ring network
by transmitting data between the second ring network and
the third ring network.

In various embodiments, the present disclosure also pro-
vides a method comprising communicating, by ones of a first
plurality of processing cores coupled to a respective one of
a {irst plurality of core interface modules, with the respective
core mterface module of the first plurality of core interface
modules, the first plurality of core mterface modules being,
arranged 1n a {irst ring network; communicating, by ones of
a second plurality of processing cores coupled to a respec-
tive ones of a second plurality of core interface modules,
with the respective core interface module of the second
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2

plurality of core interface modules, the second plurality of
core 1terface modules arranged 1 a second ring network;
interfacing, by a first global interface module, between the
first ring network and a third ring network by transmitting
data between the first ring network and the third ring
network, the third ring network interconnecting the first ring
network and the second ring network; and interfacing, by a
second global interface module, between the second ring
network and a third ring network by transmitting data
between the second ring network and the third ring network.

In various embodiments, the present disclosure also pro-
vides a system comprising a plurality of processing cores; a
plurality of core iterface modules, wherein ones of the
plurality of processing cores are coupled to a respective core
interface module of the plurality of core intertace modules;
a plurality of caches, wherein ones of the plurality of core
interface modules comprises or 1s coupled to a respective
cache of the plurality of caches; a memory; and a memory
interface module coupled to the memory, the memory nter-
face module and the plurality of core interface modules
being configured as a first ring network, ones of the plurality
of core mterface modules configured to interface the respec-
tive processing core to the first ring network by transmitting
data between the respective processing core and the first ring
network, and the memory interface module configured to
interface the memory to the first ring network by transmiut-
ting data between the memory and the first ring network.

In various embodiments, the present disclosure also pro-
vides a method comprising communicating, by ones of a
plurality of processing cores coupled to a respective one of
a plurality of core interface modules, with the respective
core interface module of the plurality of core interface
modules; communicating, by ones of the plurality of core
interface modules coupled to a respective one of a plurality
of caches, with the respective cache of the plurality of
caches; and communicating, by a memory interface module,
with a memory that 1s coupled to the memory interface, the
memory interface module and the plurality of core interface
modules being configured as a first ring network, ones of the
plurality of core interface modules configured to interface
the respective processing core to the first ring network by
transmitting data between the respective processing core and
the first ring network, and the memory interface module
configured to interface the memory to the first ring network
by transmitting data between the memory and the first ring
network.

In various embodiments, the present disclosure also pro-
vides a method comprising communicating by ones of a
plurality of processing cores with a respective core interface
module of a plurality of core interface modules, the plurality
of core iterface modules being configured as a {first ring
network, wherein ones of the plurality of core interface
modules are coupled to a corresponding cache of a plurality
of caches; receiving, by a first core mterface module of the
plurality of core interface modules from a corresponding
first processing core of the plurality of processing cores, a
transaction request to read data; checking, by the first core
interface module, 1f the data to be read 1s cached 1n a first
cache that 1s coupled to the first core interface module; and
while checking if the data to be read 1s cached 1n the first
cache, transmitting, by the {first core interface module, the
transaction request to a second core interface module to
check 11 the data to be read 1s cached 1n a second cache that
1s coupled to the second core interface module.

In various embodiments, the present disclosure also pro-
vides a system comprising a plurality of processing cores;
and a plurality of core interface modules, ones of the
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plurality of processing cores coupled to a respective core
interface module of the plurality of core interface modules,
wherein ones of the plurality of core interface modules 1s
associated with a respective cache of a plurality of caches,
wherein a first core iterface module of the plurality of core
interface modules 1s coupled to a corresponding first pro-
cessing core of the plurality of processing cores, wherein the
plurality of core interface modules 1s configured as a first
ring network, wherein the first core interface module 1s
configured to receive, from the {first processing core, a
transaction request to read data, check to determine 11 the
data to be read 1s cached 1n a first cache that 1s coupled to
the first core interface module, and while checking to
determine if the data to be read 1s cached 1n the first cache,
transmit the transaction request to a second core interface
module to check 11 the data to be read 1s cached 1n a second
cache that 1s coupled to the second core interface module.

In various embodiments, the present disclosure also pro-
vides a method comprising communicating, by ones of a first
plurality of processing cores coupled to a respective one of
a {irst plurality of core interface modules, with the respective
core mterface module of the first plurality of core interface
modules, the first plurality of core mterface modules being,
arranged 1n a first ring network, ones of the first plurality of
core mterface modules configured to interface the respective
processing core to the first ring network by transmitting data
between the respective processing core and the first ring
network; communicating, by ones of a second plurality of
processing cores coupled to a respective ones of a second
plurality of core interface modules, with the respective core
interface module of the second plurality of core interface
modules, the second plurality of core interface modules
being arranged 1n a second ring network, ones of the second
plurality of core interface modules configured to interface
the respective processing core to the second ring network by
transmitting data between the respective processing core and
the second ring network; interfacing, by a global ring
network, between the first ring network and the second ring
network; receiving, by a first core interface module of the
first plurality of core interface modules from a correspond-
ing first processing core of the first plurality of processing
cores, a transaction request to read data, a first cache being
coupled to the first core interface module; and transmitting,
by the first core interface module, the transaction request to
a second core interface module of the first plurality of core
interface modules to check if the data to be read 1s cached
in a second cache that 1s coupled to the second core interface
module.

In various embodiments, the present disclosure also pro-
vides a system comprising a first plurality of processing
cores; a lirst plurality of core interface modules, ones of the
first plurality of processing cores coupled to a respective
core mterface module of the first plurality of core interface
modules, the first plurality of core interface modules being,
arranged 1n a first ring network, ones of the first plurality of
core interface modules configured to interface the respective
processing core of the first plurality of processing cores to
the first ring network by transmitting data between the
respective processing core and the first ring network; a
second plurality of processing cores; a second plurality of
core interface modules, ones of the second plurality of
processing cores coupled to a respective core interface
module of the second plurality of core interface modules, the
second plurality of core interface modules being arranged 1n
a second ring network, ones of the second plurality of core
interface modules configured to interface the respective
processing core of the second plurality of processing cores
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to the second ring network by transmitting data between the
respective processing core and the second ring network; and

a global ring network configured to interface between the
first ring network and the second ring network, wherein a
first core interface module of the first plurality of core
interface modules 1s configured to receive, from a corre-
sponding first processing core of the {first plurality of pro-
cessing cores, a transaction request to read data, a first cache
being coupled to the first core interface module, and trans-
mit, by the first core imterface module, the transaction
request to a second core terface module of the first
plurality of core interface modules to check 1t the data to be
read 1s cached 1n a second cache that 1s coupled to the second
core interface module.

In various embodiments, the present disclosure also pro-
vides a system comprising a memory; and a memory inter-
face module coupled to the memory, the memory nterface
module configured to control access to the memory, the
memory interface module comprising a request combination
module configured to: recerve a first memory access request
to access data stored in the memory; receive a second
memory access request to access data stored 1n the memory;
based on the first and second memory access requests,
generate a third memory access request; and based on the
third memory access request, access the memory to read data
from the memory.

In various embodiments, the present disclosure provides
a method comprising recerving, by a memory interface
module coupled to a memory, a first memory access request
to access data stored 1n the memory, the memory interface
module configured to control access to the memory; receiv-
ing, by the memory interface module, a second memory
access request to access data stored 1n the memory; based on
the first and second memory access requests, generating a
third memory access request; and based on the third memory
access request, accessing the memory to read data from the
memory.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

In the following detailed description, reference 1s made to
the accompanying drawings which form a part hereof
wherein like numerals designate like parts throughout, and
in which 1s shown by way of embodiments that 1llustrate
principles of the present disclosure. It 1s noted that other
embodiments may be utilized and structural or logical
changes may be made without departing from the scope of
the present disclosure. Therefore, the following detailed
description 1s not to be taken in a limiting sense, and the
scope ol embodiments in accordance with the present dis-
closure 1s defined by the appended claims and their equiva-
lents.

FIG. 1 schematically illustrates a multi-core processing
system comprising a plurality of processing cores arranged
in a plurality of ring networks.

FIG. 2 illustrates a system comprising a global ring
interconnecting a plurality of local rings.

FIG. 3 illustrates an example core interface module.

FIG. 4 1llustrates an example of contents stored 1n an entry
of an example distributed snoop filter.

FIG. 5§ illustrates an example remote line directory.

FIGS. 6 A-6D illustrate example read operations while a
multi-core processing system operates in a static mapped
cache architecture mode.

FIG. 6F 1s a tlow diagram 1llustrating an example method
for a read operation while a multi-core processing system
operates 1n the static mapped cache architecture mode.
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FIGS. 7A-7D illustrate example read operations while a
multi-core processing system operates 1n a dynamic mapped

cache architecture mode.

FIG. 7E 1s a flow diagram illustrating an example method
for a read operation while a multi-core processing system
operates 1n the dynamic mapped cache architecture mode.

FIG. 8 illustrates a system for combining a plurality of
memory access requests.

FIG. 9 15 a flow diagram 1llustrating an example method
for operating the system of FIG. 8.

DETAILED DESCRIPTION

FIG. 1 schematically illustrates a multi-core processing
system 100 (henceforth referred to as “system 100) com-
prising a plurality of processing cores arranged 1n a plurality
of ring networks (a “processing core” 1s also referred to
herein as a “processor”). The plurality of processors includes
a first plurality of processors 120aql, . . . , 12044, and a
second plurality of processors 120561, . . ., 12054. In an
embodiment, ones of the plurality of processors are coupled
to a respective core iterface module. For example, each of

the processors 120al, . . ., 120ad, 12051, . . . , 12064 15
respectively coupled to a corresponding one of core inter-
face modules 122al, . . ., 122a4, 122541, . .., 12254. In an

embodiment, each core interface module comprises (or 1s
coupled to) a corresponding cache. For example, the core
interface module 12241 comprises a corresponding cache
12441, the core interface module 12251 comprises a corre-
sponding cache 12451, and so on.

In an embodiment, the core interface modules
12241, . . ., 122a4 are arranged 1n a {irst ring network 160qa
(a “ring network™ hencelorth 1s also referred to as a “ring”),
and the core interface modules 12251, . . . , 12254 are
arranged 1n a second ring 160b. For example, the core
interface modules 12241, . . . , 122a4 are coupled or linked
using one or more communication links (along with various
other components of the system 100, as illustrated 1n FIG. 1)
to form the ring 160a. Similarly, the core interface modules
12251, . . ., 12264 are coupled or linked using one or more
communication links (along with various other components
of the system 100, as 1illustrated 1n FIG. 1) to form the ring
160b. Each core interface module forms an interface
between the corresponding processor and the corresponding
ring. For example, the core interface module 12241 forms an
interface between the corresponding processor 120aql1 and
the corresponding ring 160q, the core interface module
12061 forms an interface between the corresponding pro-
cessor 12061 and the corresponding ring 1605, and so on.

In an embodiment, a global ring 160g (e.g., illustrated
using dotted lines 1n FIG. 1) interconnects the rings 160a
and 160b. For example, the global ring 160g forms an
interface between the rings 160a and 1606. The global ring
160¢ comprises a global mterface module 112a configured
to interface between the ring 160q and the global ring 160g.
The global nng 160g further comprises a global interface
module 1125 configured to interface between the ring 1605
and the global ring 160¢g. In an example, the global interface
modules 1124 and 11256 are coupled or linked using one or
more communication links (along with various other com-
ponents of the system 100, as illustrated 1n FIG. 1) to form
the global nng 160g. To differentiate the rings 160a and
16056 from the global nng 160g, each of the rings 160a and
1605 1s also referred to herein as a local ring. Thus, 1n an
embodiment, a local ring comprises (1) one or more core
interface modules and (1) at least one global interface
module (for example, to interface the local ring to the global
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ring). In an embodiment, a global ring comprises one or
more global interface modules to interface with one or more
corresponding local rings.

In an embodiment, the system 100 comprises caches
123al, . . ., 12364, as illustrated 1n FIG. 1. For example,
ones of the processors 120al, . . . , 12064 comprise (or 1s
coupled to) a respective ones of caches 123al, . . ., 12354,
For example, the processor 120al comprises (or 1s coupled
to) the cache 12341, the processor 12061 comprises (or 1s
coupled to) the cache 12351, and so on. In an embodiment,
the caches 123al, . . . , 12354 are, for example, level 1 (LL1)
cache, level 2 (LL2) cache, and/or the like. In an example, the
cache 123al1 can be accessed by the processor 120al
directly, for mstance, without interfacing with any of the
rings of the system 100 (for example, by bypassing any of
the rings of the system 100). In an example, one or more of
the caches 12341, . . ., 12354 cache data from one or more
memories of the system 100 (for example, memories 128a,
1285, or the like).

In an embodiment, the caches 124al, . .., 12454 are, for
example, level 1 (LL1) cache, level 2 (LL2) cache, last level
cache (LLC), and/or the like. In an example, the cache
12441 1s accessible by the processor 120al directly, e.g., by
bypassing any of the rings 160 of the system 100. As will be
discussed in detail herein, for example, the cache 1244l 1s
also accessible by the processor 12043 via the ring 160a; and
the cache 124al 1s also accessible by the processor 120561
via the rings 160aq and 1605, and the global ring 160g. As
such, in embodiments described herein, access to any given
cache i system 100 1s hierarchical in the sense that the
cache 1s accessible to any processor 1n system 100, whether
directly or by way of communication over one or more rings
160.

In an embodiment, each of the rings 160a and 1605
comprises one or more corresponding memory 1nterface
modules. For example, the ring 160a comprises a memory
interface module 126a, and the ring 1605 comprises a
memory interface module 1265. The memory interface
modules 126a and 1265 are respectively coupled to memo-
rics 128a and 1285. The memory interface module 126a
forms an interface between the memory 128a and the ring
160a, and the memory interface module 1265 forms an
interface between the memory 1285 and the ring 16056. Ones
of the memories 128a, 128H are, for example, a random
access memory (RAM), a double data rate synchronous
dynamic random-access memory (DDR SDRAM), or the
like. In an embodiment, the caches 124al, . . . , 12453

selectively cache data from the memories 128a and 128b, as
will be discussed 1n detail herein below. In an embodiment,
data of, for example, a first memory address of the memory
128a can be cached 1n one or more caches of the local rings
160a and/or 1605, as will be discussed in detail herein
below.

In an embodiment, the system 100 further comprises one
or more mnput/output (I/O) interface modules. For example,
the global ring 160g comprises I/O interface modules 114¢1
and 114¢2. Although not illustrated 1n FIG. 1, 1n an embodi-
ment, one or both of the local rnngs 160a and 16056 also
comprise one or more corresponding 1/0O interface modules.
In an embodiment, an I/O interface module forms an inter-
face between the associated ring and one or more I/O
devices. For example, the I/O iterface module 1141 forms
an interface between the global ring 160g and one or more
I/O devices 118 (e.g., one or more 1/0 peripheral devices).
In another example, the I/O interface module 114g2 forms
an interface between the global ring 160g and a memory
management unit 119. The memory management unit 119 1s,
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for example, a virtual memory system architect (VMSA)
component that translates and exhibits security protection on
I/O transactions. In an example, the virtual memory system
architect (VMSA) component translates addresses between
a virtual address space and a physical space, and/or exhibits
security protection. In an example, the memory management
unit 119 1s coupled to one or more I/O devices ({or example,
one or more [/O devices, labeled as I/O devices 1194 1n FIG.
1), and exchanges data with the I/O devices 119q, as
illustrated in FIG. 1.

Unless otherwise mentioned and for the purposes of this
disclosure, an interface module refers to one of a core
interface module, a global interface module, a memory
interface module, and/or an 1/O interface module.

Unless otherwise indicated, a cluster refers to a corre-
sponding local ring and various components associated with
the local ring. For example, a first cluster refers to the local
ring 160a, and various components associated with the local
ring 160a (for example, the core terface modules
12241, . . ., 122a4, the processors 120al, . . ., 120a4, the
memory interface module 126a coupled to the local ring
160a, the memory 128a coupled to the memory interface
module 126a, and the like). Sitmilarly, a second cluster refers
to the local ring 1605, and various components associated
with the local ring 1605 (1.e., the core interface modules
12251, . . ., 12254, the processors 12001, . . . , 12064, the
memory interface module 1265 coupled to the local ring
1606, the memory 1285 coupled to the memory interface
module 1265, and the like).

Although FIG. 1 illustrates each of the rings 160a and
1606 comprising four respective core interface modules (and
four associated processors), in another embodiment, one or
both of the rings 160a and 1605 comprise any diflerent
number of core interface modules (and corresponding num-
ber of associated processors).

In an embodiment and as discussed, ones of the proces-
sors 120al, . . ., 120564 represents a corresponding process-
ing core. However, 1 another embodiment, a processor of
the system 100 of FIG. 1 represents more than one process-
ing core. As an example, the processor 120al represents a
group or cluster of processing cores. In such an example, the
cluster of processing cores (that 1s represented by the
processor 120al) 1s coupled to the local ring 160a via the
core mterface module 122al, and the cluster of processing
cores adheres to protocols associated with the corresponding
core interface module.

In an embodiment, the system 100 1s located in an
integrated circuit chip. For example, the system 100 1s a part
of a system-on-chip (SoC). In another embodiment, a {first
section of the system 100 (for example, various components
associated with the local ring 160q) 1s located in a first
integrated circuit chip, and a second section of the system
100 (for example, various components associated with the
local ring 1605) 1s located 1n one or more other integrated
circuit chips. In such an embodiment, for example, some
sections of the global ring 160g (e.g., the global interface
module 112a) 1s located 1n the first integrated circuit chip,
while other sections of the global ring 160¢g (e.g., the global
interface module 1125) 1s located 1n the one or more other
integrated circuit chips.

Although FIG. 1 illustrates the global ring 160g interfac-
ing two local rings 160a and 1605, 1n another embodiment,
the global ring 160g interfaces more than two rings. For
example, FIG. 2 illustrates a system 200 comprising a global
ring 260g interconnecting local rings 260q, . . ., 260d. The
global ring 260g comprises global terface modules
212a, . . ., 212d, that are respectively interconnected with
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the local rings 260q, . . . , 260d. Although each of the rings
260aq, . . ., 260d and the global ring 260g comprises various
other components (e.g., similar to the rings 160a, 1605, and
the global ring 160g of FIG. 1), these components are not
illustrated 1 FIG. 2 for purposes of illustrative clarity. For
example, the system 200 comprises a plurality of processors,
core interface modules, caches, memory 1nterface modules,
I/O 1nterface modules, etc., although these components are
not 1llustrated in FIG. 2. In the system 200 of FIG. 2, the
global ring 260g 1s connected to four local rings
260a, . . ., 260d, by respective global interface modules
212a, . . ., 212d. Thus, as illustrated 1n FIGS. 1 and 2, the
systems 100aq and 200 are readily scalable, e.g., more local
rings can be interfaced with the global ring, for example, by
adding corresponding global interface modules 1n the global
ring.

Referring again to FIG. 1, in an embodiment, various
components ol the system 100 can 1ssue a transaction
request. For example, ones of the processors 120al, . . .,
120563 of the system 100 can selectively 1ssue one or more
corresponding transaction requests. Various types of trans-
action requests can be issued in the system 100. For
example, a read transaction request can be 1ssued by a
processor to read data from a cache or from a memory, a
write transaction request can be issued by a processor to
write data to a cache or to a memory, a cache transaction
request can be 1ssued by a processor to perform an operation
on a cache (e.g., to evict a cache line from a cache, to update
a cache line), and so on.

If a processor of the system 100 1ssues a transaction
request, the corresponding core interface module receives
the transaction request and transmits the transaction request
to an appropriate destination via the corresponding ring. For
example, 11 the processor 120a1 1ssues a transaction request,
the corresponding core mterface module 124al receives the
transaction request and transmits the transaction request to
an appropriate destination, e.g., to another core interface
module or a memory interface module 1n the ring 160a, or
in the ring 1606. In an embodiment, the core interface
modules 124al, . . ., 12443 perform a coherency check on
the transaction request 1ssued by the processor 120al (as
well as any other processor), and/or track coherency infor-
mation of the transaction request. In an embodiment, the
core interface module 12441 becomes a local interface
module on the ring 160q for a transaction request 1ssued by
the associated processor 120aql. In an embodiment, one of
the core interface modules 124al, . . . , 124a3 become a
home 1nterface module on the ring 160a for a transaction
request 1ssued by the processor 120al (or any other proces-
sor in the ring 160a). For example, the transaction request
issued by the processor 12041 has a source address mapped
to the core interface module 1244q1, thereby making the core
interface module 122a1 the local interface module 1n the
ring 160qa for the transaction request. Thus, a core interface
module, from which a transaction request 1s initialized or
issued 1 a ring, 1s the local interface module for the
transaction request.

A transaction request mitialized 1n a core interface module
can also be mapped to another interface module in the
system 100. For example, the core interface module 12243
can be a destination of the transaction request 1ssued by the
processor 12041, and accordingly, the core interface module
12243 forms a home interface module for the transaction
request. For purposes of this disclosure and unless otherwise
mentioned, the another interface module (e.g., the core
interface module 12243), which forms a destination for a
transaction request, forms a home interface module of the
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transaction request. Thus, 1 an example, a transaction
request 1s 1nitiated i a local interface module, and 1s

transmitted to a corresponding home interface module for
handling and processing (e.g., to ensure coherency of the
transaction and/or coherency of the caches of the system
100). In an example, for a transaction request, a correspond-
ing home interface module and a corresponding local inter-
face module can be the same core interface module. For
example, 11 the processor 12041 1ssues a transaction request
that targets the cache 1244l of core interface module 122al,
the core interface module 12241 1s both the home interface
module and the local interface module for the transaction
request.

Referring again to FIG. 1, in an embodiment, the caches
124al, . .., 12453 sclectively cache data from the memories
128a and 1285b. Data from the memories 128a and 12856 can
be cached in the caches of the system 100 using static
mapping or dynamic mapping. For example, as illustrated in
FIG. 1, the memory 128a 1s coupled to the ring 1604, and the
memory 1286 1s coupled to the ring 1605. In static mapping,
data of a specific memory address of a memory (e.g.,
memory 128a) can be cached in specific caches, and the
mapping 1s static in nature. For example, as will be discussed
later, one or more tables (e.g., a distributed snoop filter
and/or a remote line directory) 1identily the specific caches in
which the data of the specific memory address of the
memory can be cached. In an embodiment, in the static
mapping, a first data stored 1n a first address of the memory
128a may be cached in more than one of the caches
124al, . .., 12454 of the system 100, and one or more tables
identify the caches in which the first data 1s potentially
cached. In an embodiment, there exists a static map of the
first address to one of the caches 124al, . . ., 12444 in the
ring 160a, and to one of the caches 124541, . . ., 12454 1n the
ring 1605.

In dynamic mapping, data of a specific memory address
of a memory (e.g., memory 128a) can also be cached 1n one
or more of the caches 124al, . . ., 12454 of the system 100.
However, unlike static mapping, the caches which can
potentially cache the data changes (e.g., 1s dynamic), and the
above discussed one or more tables (e.g., the distributed
snoop filter and/or the remote line directory) does not
necessarily identily the caches in which the data i1s poten-
tially cached. Static and dynamic mapping will be discussed
in more detail herein below.

Core Interface Module

FIG. 3 illustrates an example core interface module (for
instance, the core interface module 122a1) of the system 100
of FIG. 1. Although only the core interface module 12241 1s
illustrated 1in FIG. 3, various other core interface modules of
the system 100 may have structure that 1s at least 1n part
similar to that of FIG. 3, in an embodiment.

The example core interface module 12241 of FIG. 3
comprises the cache 124al, although in another embodi-
ment, the cache 124al 1s external to the core interface
module 12241 (e.g., directly coupled to the core interface
module 122a1). The core interface module 122a1 further
comprises a coherency control module 310a1. In an embodi-
ment, the coherency control module 310a1 ensures that the
cache 124al 1s coherent (e.g., synchronized) with other
caches and memories of the system 100.

In an embodiment, a memory address 1n a memory of the
system 100 1s mapped to one or more corresponding core
interface module of the system 100. For example, each of the
addresses of the memory 128a 1s assigned to at least one of

10

15

20

25

30

35

40

45

50

55

60

65

10

the correspondmg core imterface modules 12241, . . . |,
122a4. That 1s, the entire span of memory addresses of the
memory 128a 1s assigned among the core interface modules
12241, . . ., 122a4 of the ring 160a. In an example, 11 a first
address of a memory (e.g., the memory 128a) 1s mapped to
a specific core interface module, the specific core interface
module (e.g., the core mterface module 122q1) forms a
home interface module of the first memory address. Each
memory address of a memory has a corresponding home
interface module. If, for example, the first memory address
of the memory 128a has the core interface module 12241 as
the home interface module, then the core interface module
122al1 stores various information associated with cache
coherency of the first memory address of the memory 128a.

Also, a specific address of the memory 1284 may be
mapped to more than one core interface module. As an
example, a first address of the memory 128a 1s mapped to
core interface modules 12241 and 122561 1n an embodiment.
Thus, each of the core interface modules 12241 and 122541
form home interface modules for the first memory address.
Furthermore, the core interface module 12241 forms a local
home 1interface module for the first memory address 1n the
local ring 160qa, and the core interface module 12251 forms
a local home interface module for the first memory address
in the local ring 16056. As the memory 128a 1s coupled to the
ring 160a, the core iterface module 122a1 also forms a
global home interface module for the first memory address
of the memory 128a. For example, a local home interface
module stores various information associated with cache
coherency of the first memory address for the corresponding
local ring, and a global home interface module stores various
information associated with cache coherency of the first
memory address for the entire system 100. In an example,
one fourth of the addresses of the memory 128a are mapped
to the core interface modules 12241 and 122541, one fourth
of the addresses of the memory 128a are mapped to the core
interface modules 12242 and 122562, one fourth of the
addresses of the memory 128a are mapped to the core
interface modules 12242 and 12252, remaining one fourth of
the addresses of the memory 128a are mapped to the core
interface modules 12243 and 12253.

As discussed, 1n an embodiment, a first data stored 1n one
of the memories of the system (e.g., one of memories 128a
and 128b) can be cached in more than one of the caches of
the system 100. For example, a first data stored 1n a first
memory address of the memory 128a can be cached 1n one
or more of the caches 124al, . . ., 12454. Assume that the
core interface module 12241 1s the home 1nterface module
(e.g., the global home interface module) of the first memory
address of the memory 128a. In an embodiment, the core
interface module 122al1 tfurther comprises a distributed
snoop filter (DSF) 31441. In an example, the core interface
module 12241 being the home interface module of the first
memory address of the memory 128a, the DSF 314al keeps
track of all the caches 1n the local ring 160a that can store
the first data of the first memory address of the memory
128a. For example, 1f the first data can be stored (or are
stored) 1in the caches 123al and 12343 of the local ring 1604,
the DSF 314al indicates that the first data associated w1th
the first memory address of the memory 128a can be stored
by caches within the processors 120al and 120a3. For
example, FIG. 4 1llustrates an example of contents stored 1n
an entry of an example distributed snoop filter (e.g., an entry
in the DSF 314al of FIG. 3). The entry in the DSF 3144l
in FIG. 4 indicates that the first data associated with the first
memory address of the memory 128a can be stored by
caches included 1n the processors 120al and 12043 (i.e., can
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be stored 1n the caches 123a1 and 123a3). This indicates that
the first data of the first address of the memory 128a are held
by the processors 120a1 and 120a3. Put differently, if a DSF
1s 1ncluded 1n a first core interface module, then the DSF
entry indicates, for a memory address for which the first core
interface module 1s the home 1nterface module, one or more
processors, where one or more caches included 1n the one or
more processors can cache the first data.

In an embodiment, for a specific memory address of a
memory that 1s coupled to a first local ring, the correspond-
ing DSF only indicates the processors of the first local ring
that can hold the data of the specific memory address. For
example, referring to FIG. 4, even i the first data of the first
address of the memory 128a can be cached by caches of the
processors 120al, 12043 and 120562, the entry of the DSF
31441 only indicates processors 120al and 12043 (as only
these two processors are associated with the local ring
160a). That 1s, 1n this example, the entry of the DSF 3144l

does not indicate that the cache associated with the proces-
sor 12052 can store the first data of the first address of the
memory 128a.

Referring again to FIG. 3, 1n an embodiment, the core
interface module 122q1 tfurther comprises a remote line
directory (RLD) 31841. In an example, the core interface
module 12241 being the home intertace module (e.g., the
global home 1nterface module) of a first memory address of
the memory 128a, the RLD 318al keeps track of all the
remote clusters i the system 100 that store the first data of
the first memory address of the memory 128a, 1n an embodi-
ment. For example, assume the first data can be stored (or
are stored) in the caches 120al and 12043 of the local ring
160a, and 1n the cache 124562 of the local ring 1605. Then,
the RLD 318al indicates that the first data associated with
the first memory address of the memory 128a can be stored
in a cluster associated with the local ring 16056. That 1s, the
RLD 318a1 identifies one or more remote clusters (1.e., one
or more clusters that are remote to, or different from the
cluster associated with the local ring 160a) that can cache
the first data associated with the first memory address of the
memory 128a. FIG. 5 illustrates an example remote line

directory (e.g., the RLD 318al of FIG. 3). The RLD 318al
in FIG. 5 indicates that the first data associated with the first
memory address of the memory 128a can be stored in a
cluster 2 (e.g., which 1s associated with the local ring 1605).
Thus, the RLD 31841 1n FIG. 5 i1dentifies all the remote
clusters (and the associated remote local rings) 1n which the
first data associated with the first memory address of the
memory 128a can be stored. It 1s noted that although the
cluster associated with the local ring 160a can cache the first
data associated with the first memory address of the memory
128a, the RLD 31841 does not identily the cluster associated
with the local rnng 160a——rather, the RLD 318al only
identifies remote clusters (that 1s, clusters that are remote to,
or different from the cluster associated with the local ring
160a) that can cache the first data associated with the first
memory address of the memory 128a.

A first cluster associated with the local ring 160a 1s a
home cluster for the first memory address of the memory
128a (e¢.g., as the memory 128a i1s included in the first
cluster). A second cluster associated with the local rning 16056
1s a remote cluster for the first memory address of the
memory 128a. The RLD 318al seclectively identifies one or
more remote clusters for caching the first data stored in the
first memory address of the memory 128a, in an embodi-

ment.

Cache Architecture

As previously discussed, the cache architecture of the
system 100 comprises a multi-bank cache (e.g., a plurality of
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cache slices, including caches 124al, . . . , 12454 ), 1n which
cach cache can be accessed by more than one processor. In

L ] [

the system 100, the access time to different caches differs
and depends on a requesting processor (1.e., the processor
that requests the cache access). For example, a time taken for
the processor 120al to access the cache 124al 1s relatively
less compared to a time taken for the processor 120al to
access the cache 124q2. Similarly, the time taken for the
processor 120al to access the cache 124a2 1s relatively less
compared to a time taken for the processor 120al to access
the cache 12454. The cache architecture of the system 100
1s also referred to herein as Non Unified Cache Architecture
(NUCA), for example, as the time taken takes by ones of the
processors to access ones of the caches 1s non-uniform.

In an embodiment, the cache architecture of the system
100 can operate in one of a plurality of modes. For example,
the cache architecture of the system 100 can operate 1n one
ol a static mapped cache architecture mode and a dynamic
mapped cache architecture mode.

In the static mapped cache architecture mode, a specific
memory address of, for example, the memory 128a 1s
statically mapped to one of the caches 1n ring 160a and to
one of the caches 1n ring 1605. Furthermore, in the static
mapped cache architecture mode, the mapping of the spe-
cific memory address of the memory 128a to the cache 1s 1n
accordance with the corresponding DSF and RLD residing
in the home 1nterface module (e.g., the global home 1nterface
module) of the specific memory address. For example, in the
static mapped cache architecture mode, 11 the core interface
module 122a1 1s the home interface module of the specific
memory address of the memory 1284, then the DSF and
RLD residing 1n the core mterface module 12241 1dentifies
the specific caches 1n which the data of the specific memory
address can be cached. If a cache (e.g., the cache 12341) can
cache the data of the specific memory address of the memory
128a, then the corresponding processor (e.g., the processor
120a1) 1s said to hold the data of the specific memory
address of the memory 128a.

In the dynamic mapped cache architecture mode, a spe-
cific memory address of, for example, the memory 128a 1s
allocated dynamically to any cache of the system 100 for
caching, 1n an embodiment. Thus, 1n the dynamic mapped
cache architecture mode, data of the specific memory
address of the memory 128a can be dynamically allocated
and cached 1n any cache of the system 100 (e.g., to any cache
in the local ring 160a and/or the local ring 1605). In an
embodiment, in the dynamic mapped cache architecture
mode, the caching of the data of the specific memory address
of the memory 128a by one or more caches of the system
100 may not be in accordance with the DSF and RLD
residing 1n the home 1nterface module (e.g., the global home
interface module) of the specific memory address.

The following sections discuss operations of the system
100 in the static mapped cache architecture mode and the
dynamic mapped cache architecture mode in more details.

Static Mapped Cache Architecture Mode

FIG. 6A illustrates an example read operation while a
multi-core processing system (e.g., the system 100 of FIG.
1) operates 1n a static mapped cache architecture mode. FIG.
6A 15 a simplified version of FIG. 1. For example, in FIG.
6A, only one local nng 0 (e.g., which may be any one of the
rings 160a and 1605) 1s illustrated. Furthermore, for pur-
poses of simplicity, in FIG. 6A, the processors of the local
ring 0 are labeled as PO, . . . , P3, and the respective core

interface modules are labeled as CIM 0, , CIM 3.
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Furthermore, each of the core interface modules CIM
0, ..., 31sassociated with a corresponding one of the caches
0,....3, as illustrated 1n FIG. 6A. In FIG. 6A, each cache
1s 1llustrated to be external to the corresponding core inter-
face module, although in another embodiment (e.g., as
illustrated 1 FIG. 1), the cache can be included in the
corresponding core interface module. FIG. 6A also 1llus-
trates various transaction requests transmitted between vari-
ous components of the local ring 0.

In FIG. 6A and various subsequent figures (e.g., FIGS.
6B-7D), 1ssuance, processing and/or transmission of a trans-
action request (or data) 1s 1dentified by a number and a type
ol the transaction request. For example, each action 1n these
figures 1s labeled using a corresponding number and one or
more corresponding alphabets indicating a type of the
action. For example, FIG. 6 A illustrates 0AR, 1AR, etc. The
numbers indicate a sequence 1 which the associated action
occurs. For example, the action associated with the number
“1” occurs subsequent to the action associated with the
number “07. If two actions have the same number, the two
actions can at least in part occur simultaneously.

In the example of FIG. 6A, the processor P1 initiates a
transaction request, which may be an address request to read
data cached in a cache of the local ring 0. For example,
initially, the processor P1 1ssues an address request (labeled
as 0AR 1n FIG. 6A) to the corresponding CIM 1. Thus, the
CIM 1 1s the local iterface module of the transaction
request. In the example of FIG. 6A, assume that the CIM 3
1s the home 1nterface module (1.e., the CIM 3 1s the desti-
nation of the address request, and 1s to process the address
request). The address request 1ssued by the processor P1 has
an address of the home interface module (i.e., identifies the
CIM 3 as the home iterface module). In a static mapped
cache architecture mode, this implies that the cache 3
associated with the CIM 3 can cache the data that the
processor P1 wants to access. Accordingly, the CIM 1
torwards the address request to the CIM 2 (e.g., 1llustrated
as 1AR 1n FIG. 6A); and subsequently, the CIM 2 forwards
the address request to the CIM 3 (e.g., illustrated as 2AR 1n
FIG. 6A). Once the CIM 3 receives the address request, the
CIM 3 determines that the address request results 1n a cache
hit (e.g., illustrated as 3 cache hit in FIG. 6A). That 1s, the
requested data 1s cached 1n the cache 3. The CIM 3 access
and reads the data from the cache 3 (e.g., 1llustrated as 4RD
in FI1G. 6 A), and the cache 3 outputs the data (e.g., 1llustrated
as SDATA 1 FIG. 6A) to the CIM 3. The CIM 3 recerves the
data read from the cache 3, and transmits the data to the
processor P1 (1.e., to the mitiator of the request), via CIM 2
and CIM 1 (e.g., illustrated as 6R, 7R and 8R 1 FIG. 6A).

In FIG. 6 A, the read request was a hit at the cache 3 of the
home interface module. However, 1n another example, the
read request may not result 1n a cache hit 1n the cache of the
home interface module. FIG. 6B 1llustrates another example
read operation while a multi-core processing system (e.g.,
the system 100 of FIG. 1) operates in the static mapped
cache architecture mode. In FIG. 6B, the read request results
in a cache miss 1n the cache of the home interface module.
Similar to FIG. 6 A, 1n the example of FIG. 6B, the processor
P1 mitiates an address request (labeled as 0AR 1n FIG. 6B)
to, for example, read data. The data to be read 1s stored in a
specific address of the memory 0, which has the CIM 3 as
the home interface module. Accordingly, the CIM 1 1s the
local interface module of the address request and the CIM 3
1s the home interface module (1.e., the CIM 3 1s the desti-
nation of the address request, and 1s to process the address
request). The address request 1ssued by the processor P1

reaches the CIM 3, via CIM 1 and CIM 2 (e.g., 1llustrated as
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1AR and 2AR 1n FIG. 6B). Once the CIM 3 receives the
address request, the CIM 3 determines a cache miss (e.g.,
illustrated as 3 cache miss 1n FIG. 6B). That 1s, the cache 3
does not have a valid copy of the requested data.

In response to the cache miss 1n the cache 3, the CIM 3
then forwards the address request by the to the memory
interface module 0 (e.g., illustrated as 4 AR 1n FIG. 6B). The
memory interface module 0 reads the data from the memory
0 (e.g., 1llustrated as SRD 1n FIG. 6B), and transmits the data
read from the memory 0 to the processor P1, via the global
interface module 0, the CIM 0 and the CIM 1 (e.g., 1llus-
trated as 7R, 8R, 9R and 10R 1n FIG. 6B). The CIM 1 also
transmits the data read from the memory 0 to the CIM 3
(e.g., 1llustrated as 10R and 11R 1n FIG. 6B). Once the CIM
3 receives the data, the CIM 3 writes the data to the cache
3 (e.g., 1llustrated as 12W 1n FIG. 6B). Thus, 1n FIG. 3, 1n
response to the cache miss 1n the cache 3 associated with the
home 1nterface module, the requested data 1s directly fetched
from the memory 0.

In FIGS. 6 A and 6B, the local interface module and the
home interface module were 1n the same local ring. That 1s,
the processor P1 of the local ring 0 attempted to read data
cached 1n the cache 3 of the local ring 0.

FIG. 6C illustrates another example read operation while
a multi-core processing system (e.g., the system 100 of FIG.
1) operates 1n the static mapped cache architecture mode. In
the example of FIG. 6C, a processor of a local ring 0 reads
data from a different local ring (e.g., a local rning 1). Similar
to FIG. 6A, the system 1n FIG. 6C has the local ring 0,
associated processors P0, . . . , P3, associated CIMs
0,...,3,associated caches 0, . . . , 3, and memory interface
module 0. In addition, FIG. 6C 1llustrates a second local ring
1 comprising processors P10, . . ., P13, CIMs 10, ..., 13,
caches 10, . . ., 13, a memory interface module 1, and a
memory 1 coupled to the memory interface module 1. A
global ring (e.g., 1llustrated using dotted lines 1n FIG. 6C),
comprising global interface modules 0 and 1, interconnects
the two local rings 0 and 1.

In FIG. 6C, the processor P2 issues a transaction request
to read data that 1s stored 1n a specific memory address of the
memory 1. That 1s, the processor P2, which 1s 1n local ring
0, attempts to read data stored in the specific memory
address of the memory 1 that 1s coupled to the local ring 1.
The CIM 2 1s the local interface module, as the transaction
1s 1ssued 1n the processor P2.

Also assume that the data in the specific memory address
of the memory 1 can be cached by the caches 1 and 11. Thus,
the cache 1 1s the local home mterface module for the
specific memory address of the memory 0 1n the ring 0, and
the cache 11 is the local home interface module for the
specific memory address of the memory 1 in the ring 1.
Furthermore, as the memory 1 1s coupled to the local ring 1,
the cache 11 1s also the global home interface module for the
specific memory address of the memory 1. For example, a
DSF maintained by the global home interface module (i.e.,
the CIM 11) identifies that the cache 11 can potentially cache
the data of the specific memory address of the memory 1.
Furthermore, an RLD maintained by the global home inter-
face module (1.e., the CIM 11) identifies that the data of the
specific memory address of the memory 1 1s potentially
cached 1n caches of both the local nngs 0 and 1.

Referring again to FIG. 6C, when the processor P2 1ssues
the address request to the CIM 2 (e.g., 1llustrated as 0AR),
the cache 1 associated with the CIM 1 (i.e., the local home
interface module) 1s checked first to determine 1f the
requested data 1s stored 1n the cache 1. As illustrated 1n FIG.
6C, 1t 1s determined that the requested data 1s a miss 1n the
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cache 1 (e.g., illustrated as 2 cache miss 1 FIG. 6C). As the
requested data 1s not stored in cache 1 of the local home
interface module CIM 1 of the local ring 0, the cache 11 of
the CIM 11 (1.e., the global home interface module) 1s then
checked to determine 11 the requested data 1s cached therein.

For example, the transaction request 1s transmitted from the
CIM 1 to the CIM 11 via the CIM 0, the global interface

module 0, the global interface module 1, and the CIM 10
(e.g., illustrated as 3AR, ..., TAR 1 FIG. 6C).

In the example of FIG. 6C, the transaction request also
results 1n a cache miss 1n cache 11 of the global home
interface module CIM 11. Accordingly, the transaction
request 1s transmitted to the memory interface module 1,
¢.g., to fetch the requested data from the memory 1 (e.g.,
illustrated as 9AR, . . ., 12RD m FIG. 6C). Once the data
1s read by the memory interface module 1 from the memory
1, the requested data 1s transmitted to the processor P2 via
the global interface modules 1 and 0, and the CIMs 0, 1 and
2 (e.g., illustrated as 14R, . . . , 19R 1n FIG. 6C). In an
embodiment, the data read from the memory 1 may also be
transmitted to one or both of the caches 1 and 11 (1.e., to the
caches associated with the local and global home 1nterface
module), for caching the data (e.g., caching of the data in the
cache 1 1s illustrated as 18W 1n FIG. 6C).

It 1s noted that 1n FIG. 6C, 18W indicates transmaitting the
data from the CIM 1 to the cache 1, and 18R indicates
transmitting the data from the CIM 1 to the CIM 2. Both
these actions having the same numerical “18” indicates that
these two actions can be performed at least in part simul-
taneously.

FIG. 6D illustrates another example read operation while
a multi-core processing system (e.g., the system 100 of FIG.
1) operates 1n the static mapped cache architecture mode.
The system architecture of FIG. 6D 1s similar to that of FIG.
6C. For example, both FIGS. 6C and 6D illustrate the two
local rings 0 and 1, various components associated with the
local ring, and the global ring connecting the two local rings.

In FIG. 6D, the processor P2 1ssues a transaction request
to read data that 1s stored 1n a specific memory address of the
memory 0. That 1s, the processor P2, which 1s 1n local ring
0, attempts to read data stored in the specific memory
address of the memory 0 that 1s also coupled to the local ring
0. The CIM 2 1s the local interface module, as the transaction
1s 1ssued 1n the processor P2.

In the example of FIG. 6D, assume that the data in the
specific memory address of the memory 0 can be cached by
the caches 1 and 11. Thus, the CIM 1 i1s the local home
interface module 1n the local ring 0 for the specific memory
address of the memory 0, and the CIM 11 1s the local home
interface module 1n the local ring 1 for the specific memory
address of the memory 0. Furthermore, as the memory 0 1s
coupled to the local ring 0, the CIM 1 1s also the global home
interface module for the specific memory address of the
memory 0. An RLD maintained by the global home interface
module (1.e., the CIM 1) identifies that the data of the
specific memory address of the memory 0 1s potentially
cached in caches of the local ring 1.

In FIG. 6D, when the processor P2 1ssues the address
request to the CIM 2 (e.g., i1llustrated as 0AR), the cache 1
associated with the CIM 1 (1.e., the global home interface
module) 1s checked first to determine 11 the requested data 1s
stored in the cache 1. As illustrated in FIG. 6D, 1t 1s
determined that the requested data 1s a miss 1n the cache 1
(c.g., illustrated as 2 cache miss 1 FIG. 6D). As the
requested data 1s not stored in cache 1 of the global home
interface module CIM 1 of the local ring 0, the RLD
included in the CIM 1 1s looked up to check 1f the requested
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data 1s cached in a cache of a remote local ring. In the
example of FIG. 6D, the RLD of CIM1 returns a HIT

(1llustrated as 2RLD hit 1n FIG. 6D) and points to the local
ring 1. Accordingly, the cache 11 of the CIM 11 (i.e., the
local home interface module 1n the local ring 1) 1s then
checked to determine 11 the requested data 1s cached therein.
For example, the transaction request 1s transmitted from the

CIM 1 to the CIM 11 via the CIM 0, the global interface
modules 0 and 1, and the CIM 10 (e.g., 1illustrated as
3AR, ..., 7AR in FIG. 6D). In the example of FIG. 6D, the
transaction request results 1n a cache hit 1n cache 11 of the
local home interface module CIM 11 of the local ring 1 (e.g.,
illustrated as 8 cache hit in FIG. 6D). The requested data 1s
read by the CIM 11 from the cache 11 (e.g., illustrated as
9RD and 10DATA 1n FIG. 6D). Subsequently, the data read
from the cache 11 1s transmitted from the CIM 11 to the
processor P2, as 1illustrated in FIG. 6D (e.g., illustrated as
11R, . . ., 17R 1 FIG. 6D). Also, when the CIM 1 receives
the data read from the cache 11, 1n an embodiment, the CIM
1 may also store the data 1n the cache 1 (e.g., illustrated as
16W 1n FIG. 6D). It is to be noted that in FIG. 6D, 16 W
indicates transmitting the data from the CIM 1 to the cache
1, and 16R indicates transmitting the data from the CIM 1
to the CIM 2. Both these actions having the same numerical
“16” indicates that these two actions are performed at least
in part simultaneously, in an embodiment.

FIG. 6E 1s a flow diagram 1llustrating an example method
650 for a read operation while a multi-core processing
system (e.g., the systems illustrated in FIGS. 6 A-6D) oper-
ates 1n the static mapped cache architecture mode. Referring
to FIGS. 6 A-6E, at 654, ones of a first plurality of processing
cores (e.g., processors PO, . . ., P3) coupled to a respective
one of a first plurality of core interface modules (e.g., CIMs
0, ..., 3) communicates with the respective core interface
module of the first plurality of core interface modules, the
first plurality of core interface modules being arranged 1n a
first ring network (e.g., local ring 0); ones of a second
plurality of processing cores (e.g., processors P10, .. ., P13)
coupled to a respective ones of a second plurality of core
interface modules (e.g., CIMs 10, . . ., 13) communicates
with the respective core interface module of the second
plurality of core interface modules, the second plurality of
core mterface modules being arranged 1n a second ring
network (e.g., local ring 1); and a global ring network
interfaces between the first ring network and the second ring
network.

At 638, a first core mterface module (e.g., CIM 2 of FIG.
6C) of the first plurality of core interface modules receives
from a corresponding first processing core (€.g., processor
P2) of the first plurality of processing cores receives a
transaction request to read data, a first cache (e.g., cache 2)
being coupled to the first core mterface module.

At 662, the first core interface module transmits the
transaction request to a second core interface module (e.g.,
CIM 1, which 1s the local home interface module 1n the first
ring network) of the first plurality of core iterface modules
to check 11 the data to be read 1s cached 1n a second cache
(e.g., cache 1) that 1s coupled to the second core interface
module.

At 666, 1t 1s determined that the data to be read 1s not
cached in the second cache (e.g., illustrated as 2 cache miss
in FIG. 6C), and 1s potentially cached in a third cache of the
second ring network (e.g., based on an RLD hit); and 1n
response to determining that the data to be read 1s not cached
in the second cache (and 1s potentially cached 1n a third
cache of the second ring network), the second core 1nterface
module transmits the transaction request to a third core
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interface module (e.g., CIM 11 of FIG. 6C, which 1s the local
home interface module 1n the second ring network) of the

second plurality of core mnterface modules to check 1t the
data to be read 1s cached 1n the third cache (e.g., cache 11)
that 1s coupled to the third core interface module.

At 670, 1ts 1s determined that the data to be read is not
cached in the third cache (e.g., illustrated as 8 cache miss 1n
FIG. 6C); and 1n response to determining that the data to be
read 1s not cached in the third cache, the transaction request
1s transmitted to a memory interface module (e.g., memory
interface module 1) to fetch the data from a memory (e.g.,
memory 1) that 1s coupled to the memory interface module.

Dynamic Mapped Cache Architecture Mode

As previously discussed, in the static mapped cache
architecture mode, for a specific memory address of, for
example, the memory 128a of system 100, a corresponding
DSF keeps track of the caches included 1n the corresponding
processors (e.g., caches 123al, . . ., 123a4 of FIG. 1); and
a corresponding RLD keeps track of the caches included 1n
one or more remote rings (e.g., RLDs of CIMO, ..., CIM3
keeps track of caches in the CIMs of the local ring 1, 1.¢.,
CIM10, . . ., CIM13). Accordingly, 1n the static mapped
cache architecture mode, as discussed with respect to FIGS.
6 A-6D, caches associated with the home interference mod-
ules (e.g., one or more local and global home interference
modules), or any other cache as indicated 1n the correspond-
ing DSF and/or the RLD, are checked to determine 1f a data
requested by a processor 1s cached. That 1s, 1n the static
mapped cache architecture mode, a transaction checks a
pre-determined number of caches (e.g., based on the corre-
sponding DSF and/or the RLD) to determine if the data
requested 1s cached i1n any of these caches. If the data
requested by 1s not cached 1n any of these caches, the data
1s fetched from the memory, in an embodiment.

In contrast, in the dynamic mapped cache architecture
mode, for a specific memory address of, for example, the
memory 128a of system 100, the caches attached to the CIM
(e.g., caches 124al, . . ., 12453 1n FIG. 1) can hold data that
1s not tracked by the corresponding DSF and RLD of same
node. For example, 1n the dynamic mapped cache architec-
ture mode, one or more caches dynamically caches the data
of the specific memory address of the memory 128a, while
the RLD and DSF tracking the same data can be i a
different CIM. To locate a cached data, in the dynamic
mapped cache architecture mode, when a processor requests
data of a specific memory address of, for example, the
memory 128a, the caches associated with the local interface
module and the home interface modules are checked first. IT
the requested data 1s not stored in these caches, any other
number of caches i1n the system can also be checked to
determine 1f any of these other caches have cached the
requested data. The dynamic mapped cache architecture
mode 1s discussed 1n detail herein below.

FIG. 7A illustrates an example read operation while a
multi-core processing system (e.g., the system 100 of FIG.
1) operates 1n a dynamic mapped cache architecture mode.
The architecture presented 1n FIG. 7A 1s similar to FIG. 6A.
For example, FIG. 7A illustrates only one local ring 0 (e.g.,
any one of the rings 160aq and 1605) comprising processors

PO, . . ., P3, core interface modules CIM 0, . . ., CIM 3,
caches 0, . . . , 3, the memory interface module 0, and the
memory 0.

In the example of FIG. 7A, the processor P1 1nitiates an
address request to, for example, read data of a specific
memory address of the memory 0, which may be cached in
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one of the caches of the local ring 0. For example, mitially,
the processor P1 1ssues an address request (labeled as 0AR
in FIG. 7A) to the corresponding CIM 1. Thus, the CIM 1
1s the local intertace module of the transaction request. In the
example of FIG. 7A, assume that the CIM 3 1s the home

interface module of the transaction request (i.e., 1.e. the DSF
and RLD that track the address of the transaction are 1n
CIM3).

In dynamic mapped cache architecture mode, the data
requested by the processor P1 may, with relatively high
probability, be cached in the caches associated with the local
interface module and/or the home interface module. For
example, 1n an embodiment, a heuristic algorithm attempts
to ensure that the data, which 1s to be likely requested by a
processor, 1s cached 1n the cache coupled to the processor or
in a cache of the associated home interface module. The
heuristic algorithm, for example, 1s based on past data
requested by the processor, a prior knowledge about which
application runs on which processor (and which processor
may request data), and/or the like. For example, the data
requested by the processor P1 may, with relatively high
probability, be cached in the cache 1; and when a data 1s
found to be shared by multiple processors, the data may be
cached with relatively high priority in the cache of the home
interface module (e.g., cache 3 of the CIM 3). For example,
the data requested by the processor P1 may, with relatively
high probability, be cached 1n the caches 1 and 3. Accord-
ingly, the cache 1 (associated with the local CIM 1) and
cache 3 (associated with the home interface module CIM 3)
are checked first to determine 1f the data requested by the
processor P1 1s cached 1n one of the caches 1 and 3.

Accordingly, once the CIM 1 receives the address request,
the CIM 1 determines whether the address request 1s a cache
hit or a cache miss 1n the cache 1. In the example of FIG. 7A,
the address request results 1n a cache hit 1n the cache 1 (e.g.,
illustrated as 1 cache hit in FIG. 7A). While the CIM 1
determines whether the address request 1s a cache hit or a
cache miss in the cache 1, the CIM 1 also at least partially

simultaneously transmits the address request to the home
interface module CIM 3 (e.g., illustrated as 1AR and 2AR 1n

FIG. 7A). Thus, 1n FIG. 7A, the CIM 1 transmits the address
request to the CIM 3 irrespective ol whether the address
request results 1n a cache hit or a cache miss 1n the cache 1.
For example, the CIM 1 transmits the address request to the
CIM 3, while the CIM 1 checks to determine if the address
request results 1n a cache hit 1n the cache 1.

Also, the address request results 1n a cache miss, an RLD
miss and a DSF miss in CIM 3 (e.g., illustrated as 3 cache
miss, 3 DSF miss, 3 RLD miss mn FIG. 7A). The CIM 3
transmits a response to the CIM 1 (e.g., 1llustrated as 4Resp
and 5Resp 1n FIG. 7A), indicating that the address request
resulted 1 a cache miss 1 the cache 3. As the address
request results 1n a cache hit in the cache 1, the CIM 1 reads
the requested data from the cache 1 (e.g., 1llustrated as 2RD
and 3DATA m FIG. 7A). Prior to, subsequent to or while the
CIM 1 receives the response from the CIM 3 indicating the
cache miss 1n the cache 3, the CIM 1 transmits the requested
data, read from the cache 1, to the processor P1. In the
example of FIG. 7, subsequent to the CIM 1 recerving the
response from the CIM 3 indicating the cache miss 1n the
cache 3, the CIM 1 transmits the requested data, read from
the cache 1, to the processor P1 (e.g., illustrated as 6R in
FIG. 7A).

FIG. 7B illustrates another example read operation while
a multi-core processing system (e.g., the system 100 of FIG.
1) operates 1in the dynamic mapped cache architecture mode.
In FIG. 7A, the address request resulted in a cache hit 1n the
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cache of the local interface module, while resulting 1n a
cache miss 1n the home interface module. In contrast, in FIG.
7B, the address request results 1n a cache miss 1n the cache
of the local interface module, while resulting 1n a cache hit
in the home interface module.

Similar to FIG. 7A, 1in the example of FIG. 7B, the
processor P1 mnitiates an address request to, for example,

read data of a specific memory address of the memory 0.
Also, similar to FIG. 7A, in the example of FIG. 7B, the

CIM 1 1s the local interface module and the CIM 3 i1s the
home 1interface module.

In FIG. 7B, mitially, the processor P1 1ssues an address
request (labeled as 0AR 1n FIG. 7A) to the corresponding
CIM 1. Once the CIM 1 receives the address request, the
CIM 1 determines whether the address request 1s a cache hit
or a cache miss in the cache 1. In the example of FIG. 7B,
the address request results 1n a cache miss in the cache 1
(e.g., lllustrated as 1 cache miss 1n FIG. 7B). While the CIM
1 determines whether the address request 1s a cache hit or a
cache miss 1n the cache 1, the CIM 1 also transmits the
address request to the home 1nterface module CIM 3 (e.g.,
illustrated as 1AR and 2AR i FIG. 7B). Thus, in FIG. 7B,
the CIM 1 transmits the address request to the CIM 3
irrespective of whether the address request results in a cache
hit or a cache miss 1n the cache 1.

In the example of FIG. 7B, the address request results in

a cache hit in the cache 3 (e.g., 1llustrated as 3 cache hit 1n
FIG. 7B). The CIM 3 reads the requested data from the cache

3 (e.g., illustrated as 4RD and 5DATA in FIG. 7B), and
transmits the data read from the cache 3 to the processor P1
via the CIM 2 and the CIM 1 (e.g., 1llustrated as 6R, 7R and
8R 1n FIG. 7B).

FI1G. 7C 1llustrates another example read operation while
a multi-core processing system (e.g., the system 100 of FIG.
1) operates in the dynamic mapped cache architecture mode.
As discussed, in FIG. 7A, the address request resulted 1n a
cache hit in the cache of the local interface module, while
resulting 1n a cache miss 1n the home mterface module. Also,
in FIG. 7B, the address request resulted in a cache miss 1n
the cache of the local interface module, while resulting 1n a
cache hit in the home interface module. In contrast, in FIG.
7C, the address request results 1n a cache miss 1n the caches
of both the local interface module and the home 1nterface

module, as a result of which other caches of the local ring
0 are checked.

Similar to FIGS. 7A and 7B, i the example of FIG. 7C,
the processor P1 initiates an address request to, for example,

read data of a specific memory address of the memory 0.
Also, stmilar to FIGS. 7A and 7B, 1n the example of FIG.

7C, the CIM 1 1s the local interface module and the CIM 3
1s the home 1nterface module.

In FIG. 7C, mitially, the processor P1 issues an address
request (labeled as 0AR 1n FIG. 7C) to the corresponding
CIM 1. Once the CIM 1 receives the address request, the
CIM 1 determines whether the address request 1s a cache hit
or a cache miss 1n the cache 1. In the example of FIG. 7C,
the address request results 1n a cache miss i1n the cache 1
(e.g., illustrated as 1 cache miss 1n FIG. 7C). While the CIM
1 determines whether the address request 1s a cache hit or a
cache miss 1n the cache 1, the CIM 1 also transmits the
address request to the home 1nterface module CIM 3 (e.g.,
illustrated as 1AR and 2AR i FIG. 7C). Thus, in FIG. 7C,
the CIM 1 transmits the address request to the CIM 3
irrespective of whether the address request results in a cache
hit or a cache miss 1n the cache 1.

In the example of FI1G. 7C, the address request also results
in a cache miss 1n the cache 3 (e.g., illustrated as 3 cache hit
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in FIG. 7C), along with a DSF miss and RLD miss. The CIM
3 transmits a response to the CIM 1 (e.g., illustrated as
4Resp and SResp 1n FIG. 7C), indicating that the address
request resulted 1n a cache miss 1n the cache 3.

As the address request resulted 1n a cache miss in caches
ol both the local interface module and the home interface
module, the CIM 1 then transmits the address request to (1)
one or more other caches of the local ring 0 (e.g., to caches
of all the interface modules of the local ring 0, except the
local interface module and the home interface module), and
(11) to the memory interface module 0. For example, subse-
quent to receiving indication that the address request

resulted 1n a cache miss in the cache 3, the CIM 1 transmuits
address requests to each of CIM 0 and CIM 2 (e.g., 1llus-

trated as 6 AR and 6 AR 1n FIG. 7C), to check 11 the requested
data 1s cached 1n one or both of the caches 0 and 2. The
address request 1s also transmitted to the memory 1nterface
module 0. In an embodiment, the CIM 1 initiates the
transmission of the address requests to each of the CIM 0
and CIM 2 at least 1n part simultaneously. In an example, the
address request 1s transmitted to the memory interiace
module 0 via (1) the CIM 0 and (11) the global interface
module 0 (1llustrated as 7AR and 8AR 1n FIG. 7C).

In the example of FIG. 7C, the address requests also
results 1n a cache miss 1n the cache 0 (e.g., illustrated as 7
cache miss 1 FIG. 7C), while resulting 1n a cache hit in the
cache 2 (e.g., 1llustrated as 7 cache hit in FIG. 7C). The CIM
2 reads the requested data from the cache 2 (e.g., illustrated
as 8RD and 9DATA 1n FIG. 7C), and transmits the data read
from the cache 2 to the processor P1 via the CIM 1 (e.g.,
illustrated as 10R and 11R i FIG. 7C).

As discussed, the address request 1s also transmitted to the
memory interface module 0 via (1) the CIM 0 and (11) the
global 1nterface module 0 (illustrated as 7TAR and 8AR 1n
FIG. 7C). In response to the cache miss in the cache 0, the
CIM 0 transmits a response to the memory interface module
0, indicating that the address request resulted 1n a cache miss
(1llustrated as 8Resp(miss) and 9 Resp(miss) in FIG. 7C).
Also, 1n response to the cache hit in the cache 2, the CIM 2
transmits a response to the memory interface module 0,
indicating that the address request resulted 1n a cache hit 1n
the cache 2 (illustrated as 8Resp(hit) and 9 Resp(hit) in FIG.
7C). Based on receiving an indication that the address
request resulted 1n a cache hit 1n the cache 2, the memory
interface module 0 refrains from accessing the memory 0 to
fetch data corresponding to the address request (or from
transmitting data pre-fetched from the memory 0 to the
requesting processor).

In an embodiment, when the address request 1s transmit-
ted to the memory imterface module 0 (e.g., by the CIM 0,
indicated by 7TAR and 8AR 1n FIG. 7C), the address request
includes a number of responses that will follow the address
request. For example, in FIG. 7C, based on the cache miss
in caches 1 and 3 (i.e., caches associated with the local and
home interface modules), there are two other caches (e.g.,
caches 0 and 2) that are to be checked. Thus, two responses
indicating hit or miss (e.g., from the two caches 0 and 2) 1s
to be received by the memory interface module 0, subse-
quent to receiving the address request. Thus, the address
requested received by the memory interface module 0 1ndi-
cate that two responses will follow the address request. Once
the memory 1nterface module 0 recerves the address request,
the memory interface module 0 waits to receive the two
responses (e.g., and while waiting, 1n an embodiment, the
memory interface module 0 can pre-fetch the requested data
form the memory 0). If at least one of the two responses
received by the memory interface module 0 indicates a hat,
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the memory interface module 0 discards the address request.
For example, in FIG. 7C, one of the responses (e.g., response
from the CIM 2) 1s a hit—accordingly, the memory interface
module 0 discards the address request. However, as dis-
cussed herein later with respect to FIG. 7D, if both the 5
responses are miss, the memory interface module 0 access
the memory 0 (e.g., 1if the memory interface module 0 has
not already pre-fetched the requested data), and transmuts the
tetched data from the memory 0 to the requesting processor.

FI1G. 7D illustrates another example read operation while 10
a multi-core processing system (e.g., the system 100 of FIG.
1) operates 1in the dynamic mapped cache architecture mode.
As discussed, 1n FIG. 7A, the address request resulted 1n a
cache hit in the cache of the local interface module, while
resulting 1n a cache miss in the home interface module. In 15
FIG. 7B, the address request resulted 1n a cache miss in the
cache of the local interface module, while resulting 1n a
cache hit 1n the home interface module. In FIG. 7C, the
address request resulted 1in a cache miss in the caches of both
the local interface module and the home interface module, 20
but resulted 1n a cache hit in another cache of the ring 0. In
the example of FIG. 7D, the address request results 1n a
cache miss 1n all the caches of local ring 0, as a result on
which the data 1s read from the memory 0.

Similar to FIGS. 7TA-7C, 1n the example of FIG. 7D, the 25
processor P1 initiates an address request to, for example,

read data of a specific memory address of the memory 0.
Also, similar to FIGS. 7A-7C, 1n the example of FIG. 7D,
the CIM 1 1s the local interface module and the CIM 3 1s the
home interface module. 30

In FIG. 7D, mitially, the processor P1 1ssues an address
request (labeled as 0AR 1n FIG. 7D) to the corresponding
CIM 1. Once the CIM 1 receives the address request, the
CIM 1 determines whether the address request 1s a cache hit
or a cache miss 1n the cache 1. In the example of FIG. 7D, 35
the address request results 1n a cache miss in the cache 1
(e.g., llustrated as 1 cache miss in FI1G. 7D). While the CIM
1 determines whether the address request 1s a cache hit or a
cache miss in the cache 1, the CIM 1 also transmits the
address request to the home 1nterface module CIM 3 (e.g., 40
illustrated as 1AR and 2AR 1n FIG. 7D). In the example of
FIG. 7D, the address request also results 1n a cache miss 1n
the cache 3 (e.g., illustrated as 3 cache hit in FIG. 7D). The
CIM 3 transmits a response to the CIM 1 (e.g., 1llustrated as
4Resp and SResp i FIG. 7D), indicating that the address 45
request resulted 1n a cache miss 1n the cache 3.

As the address request resulted in a cache miss 1n caches
ol both the local interface module and the home interface
module, the CIM 1 transmits the address request to one or
more other caches of the local nng 0 (e.g., to caches of all 50
the mterface modules of the local ning 0, except the local
interface module and the home interface module). For
example, subsequent to receiving the indication that the
address request resulted 1n a cache miss 1n the cache 3, the
CIM 1 transmits address requests to each of the CIM 0 and 55
CIM 2 (e.g., illustrated as 6 AR and 6 AR in FIG. 7D), to
check 1t the requested data 1s cached in one or both of the
caches 0 and 2. In an embodiment, the CIM 1 transmuits the
address requests to each of the CIM 0 and CIM 2 at least 1n
part simultaneously. The address request 1s also transmitted 60
to the memory interface module 0 (e.g., 1llustrated as 7TAR
and 8AR 1n FIG. 7D). In the example of FIG. 7D, the address
requests also results 1n a cache miss 1n both the caches 0 and
1 (e.g., 1llustrated as 7 cache miss in FIG. 7D).

As the address request results in a cache miss 1n all the 65
caches of the local ring 0, the requested data 1s fetched from

the memory 0. For example, while the CIM 0 checks for a
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cache hit or a cache miss, the CIM 0 also transmits the
address request to the memory interface module 0, e.g., to
pre-fetch data, 1n case of a cache miss (e.g., 1llustrated as
7AR and 8AR 1n FIG. 7D). Subsequent to determinming that
the address request 1s a cache miss, the CIM 0 also transmits
a response to the memory interface module 0, indicating that
the address request 1s a cache miss 1n the cache 0 (e.g.,
illustrated as 8Resp(miss) and 9Resp(miss) i FIG. 7D).
Similarly, the CIM 2 also transmits a response to the
memory interface module 0, indicating that the address
request 1s a cache miss in the cache 2 (also 1illustrated as
8Resp(miss) and 9Resp(miss) in FIG. 7D).

As previously discussed with respect to FIG. 7C, the
address request received by the memory intertace module 0
in FIG. 7D also indicates that two responses (e.g., from
CIMs 0 and 2) will follow the address request. Once the
memory interface module 0 recerves the two cache miss
indication (e.g., from the CIM 0 and the CIM 2), the memory
interface module 0 fetches the requested data from the
memory 0 (e.g., 1llustrated as 10RD and 11DATA in FIG.
7D). The memory interface module 0 then transmits the data

fetched from the memory 0 to the processor P1, e.g., via the
global iterface module 0, the CIM 0 and the CIM 1 (e.g.,

illustrated as 12R, . . ., 15R 1n FIG. 7D).

Although FIGS. 7TA-7D illustrate checking the caches of
only the local ring 0 to determine if the address request 1s a
cache hit or a cache miss, 1n an embodiment, caches of
another local nng (e.g., a local nng 1 interconnected to the
local ring 0 via a global ring) can also be checked, e.g., 1n
case all the caches of the local ring 0 results in a cache miss.
Thus, 1n such an embodiment, access to a cache 1n the local
ring 1 1s performed via the global ring. In an embodiment,
a cache associated with a local interface module of the local
ring 1 1s checked first, prior to checking other caches of the
local ring 1.

FIG. 7E 1s a flow diagram 1llustrating an example method
750 for a read operation while a multi-core processing
system (e.g., the systems 1llustrated in FIGS. 7A-7D) oper-
ates 1n the dynamic mapped cache architecture mode.

At 754, ones of a plurality of processing cores (e.g.,
processors PO, . . ., P3 of FIGS. 7A-7D) communicates with
a respective core interface module of a plurality of core
interface modules (e.g., CIMs 0, . . ., 3), the plurality of core
interface modules being configured as a first ring network,
wherein ones of the plurality of core interface modules are
coupled to a corresponding cache of a plurality of caches
(e.g., caches 0, . . ., 3).

At 738, by a first core interface module (e.g., CIM 1 of
FIG. 7D) of the plurality of core interface modules recerves
from a corresponding first processing core (€.g., processor
P1) of the plurality of processing cores, a transaction request
to read data.

At 762, the first core interface module checks to deter-
mine 1f the data to be read 1s cached 1n a first cache (e.g.,
cache 1) that 1s coupled to the first core interface module;
and while checking 11 the data to be read 1s cached 1n the first
cache, the first core interface module transmits the transac-
tion request to a second core interface module (e.g., CIM 3
of FIG. 7D, which 1s the home interface module) to check 1f
the data to be read 1s cached 1n a second cache (e.g., cache
3) that 1s coupled to the second core interface module.

At 766, 1t 1s determined that the data to be read 1s not
cached 1n any of the first cache and the second cache (e.g.,
illustrated as 1 cache miss and 3 cache miss 1 FIG. 7D).
Accordingly, the transaction request 1s transmitted to each of
one or more other core mterface modules (e.g., CIMs 0 and
2) of the first ring network to check 11 the data to be read 1s
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cached 1n one or more other caches (e.g., caches 0 and 2)
respectively coupled to the one or more other core interface

modules.

At 770, 1t 1s determined that the data to be read 1s not
cached in any of the one or more other caches e.g., 1llustrated
as 7 cache miss 1 FIG. 7D). Accordingly, the transaction
request 1s transmitted to a memory interface module (e.g.,
memory interface module 0 of FIG. 7D) to fetch the data
from a memory (e.g., memory 0) that 1s coupled to the
memory interface module.

In an embodiment, the system operates in any one of the
static mapped cache architecture mode or the dynamic
mapped cache architecture mode. In an example, the static
mapped cache architecture mode 1s relatively less complex
to implement than implementing the dynamic mapped cache
architecture mode. In an example, a penalty for a cache miss
in the dynamic mapped cache architecture mode can be
higher 1n terms of power consumption and latency than a
miss penalty 1n the static mapped cache architecture mode.
However, 1n an example, in view of the above discussed
heuristic algorithm, the dynamic mapped cache architecture
mode can provide relatively better latency and better band-
width compared to the static mapped cache architecture
mode. In an embodiment, whether the system 100 operates
in the static mapped cache architecture mode or the dynamic
mapped cache architecture mode 1s configurable. For
example, a parameter of the system 100 1s configured to
selectively operate the system 100 1n one of the static
mapped cache architecture mode or the dynamic mapped
cache architecture mode. In another example, whether the
system 100 operates 1n the static mapped cache architecture
mode or the dynamic mapped cache architecture mode 1s
based on configuration or properties of various components
of the system 100. As an example, 11 the system 100 exhibits
a relatively small memory foot print per processor (and thus,
exhibit high hit ratio in the caches) and a relatively high
aflinity between memory and the processor, the system 100
operates 1n the dynamic mapped cache architecture mode. In
another example, 11 the system 100 has a memory that 1s
relatively largely shared between various processors, the
system 100 operates 1n the dynamic mapped cache archi-
tecture mode.

Combining Memory Access Requests

FIG. 8 illustrates a system 800 for combining a plurality
of memory access requests. The system 800 comprises a
memory interface module 808 coupled to a local ring 804.
The memory interface module 808 1s also coupled to a
memory 812. In an embodiment, the rnng 804, the memory
interface module 808 and the memory 812 are similar to the
corresponding components of the system 100 of FIG. 1 (or
corresponding components of FIGS. 6 A-6D and 7A-7D).
For example, the ring 804, the memory interface module 808
and/or the memory 812 are respectively similar to the ring
160a, the memory 1nterface module 1264, and the memory
128a of the system 100 of FIG. 1. FIG. 8 illustrates only a
part of the ring 804, and various components coupled to the
ring (e.g., as discussed with respect to FIG. 1) are not
illustrated 1 FIG. 8. In an embodiment, the memory inter-
tace module 808 acts as a memory controller for the memory
812, by controlling access to the memory 812.

The memory interface module 808 receives a stream of
memory requests. Some of these requests are memory access
requests, e.g., to read data from various memory addresses
of the memory 812. For example, the memory interface
module 808 receives a pre-fetch request 822 to pre-fetch
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data from an address of the memory 812. For example, the
pre-fetch request 822 1s 1ssued by a processor, prior to the
processor actually needing the data. For example, the pro-
cessor 1ssues the pre-fetch request 822, speculating that the
requested data may be needed some time soon. In an
embodiment, the pre-fetch request 822 1s a speculative read
request, e.g., to read data from the memory 812 based on a
speculation that the data might be needed 1n near future (for
example, based on a processor processing a first data, the
processor speculates that a second data may be needed in
near future by the processor).

The memory interface module 808 also receives a read
request 826 to fetch data from an address of the memory
812. For example, the read request 826 1s 1ssued by a
processor, when the processor wants to fetch data from the
address of the memory 812.

In an embodiment, the pre-fetch request 822 and the read
request 826 can be received from a single component (e.g.,
a processor). In another embodiment, the pre-fetch request
822 and the read request 826 can be received from two
different corresponding components (e.g., the pre-fetch
request 822 1s received from a first processor, and the read
request 826 1s recerved from a second processor).

FIG. 8 illustrates the memory interface module 808
receiving the pre-fetch request 822 over a first communica-
tion link (e.g., from a left side of the ring 804) and receiving
the read request 826 over a second communication link (e.g.,
from a rnight side of the rning 804). However, in another
embodiment and although not illustrated in FIG. 8, the
memory interface module 808 can receive the pre-fetch
request 822 and the read request 826 over a same commu-
nication link (e.g., from a same side of the ring 804).

In an embodiment, the memory interface module 808
receives the pre-fetch request 822 and the read request 826
simultaneously. Alternatively, 1n another embodiment, the
memory interface module 808 receives the pre-fetch request
822 prior to recerving the read request 826 (e.g., the memory
interface module 808 receives the read request 826 while the
memory interface module 808 processes the pre-fetch
request 822, receives the read request 826 while the pre-
fetch request 822 1s queued 1n the memory interface module
808 for processing, or receives the read request 826 prior to
fully executing the pre-fetch request 822 by the memory
interface module 808). Alternatively, 1n yet another embodi-
ment, the memory interface module 808 receives the pre-
fetch request 822 subsequent to receiving the read request
826 (e.g., the memory interface module 808 receives the
pre-fetch request 822 while the memory 1nterface module
808 processes the read request 826, receives the pre-fetch
request 822 while the read request 826 1s queued in the
memory interface module 808 for processing, or receives the
pre-fetch request 822 prior to fully executing the read
request 826 by the memory interface module 808).

In an embodiment, each of the read request 826 and the
pre-fetch request 822 are 1ssued to read data from a same
memory address of the memory 812. As an example, each of
the read request 826 and the pre-fetch request 822 aims to
read data from a first memory address of the memory 812.

In an embodiment, the memory interface module 808
comprises a request combination module 832 and a priority
assignment module 838. In an embodiment, the request
combination module 832 determines that (1) both the read
request 826 and the pre-fetch request 822 are currently
pending in the memory interface module 808 for execution,
and (11) each of the read request 826 and the pre-fetch
request 822 are i1ssued to read data from a same memory
address of the memory 812. In an embodiment, based on
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such determination, the request combination module 832
combines the read request 826 and the pre-fetch request 822.
For example, the request combination module 832 generates
a combined request 840 to fetch data from the memory 812,
and reads data from the memory 812. In an embodiment,
once the requested data 1s read form the memory 812, the
memory 1nterface module 808 transmits the data read form
the memory 812 to the mitiators of the read request 826 and
the pre-fetch request 822, thereby completing the processing,
of the read request 826 and the pre-fetch request 822. In an
embodiment, the combined request 840 comprises the read
request 826, and fetching of data 1n response to the pre-fetch
request 822 1s not executed. In an embodiment, the com-
bined request 840 comprises a request to fetch data from the
memory 812.

Thus, 1f the read request 826 and the pre-fetch request 822
were 1o be executed separately (that 1s, 11 the read request
826 and the pre-fetch request 822 were not combined by the
request combination module 832), the memory interface
module 808 would have needed to access the memory 812
twice, to read the same data twice from the same memory
address of the memory 812 (in other words once for pro-
cessing the read request 826, and once for processing the
pre-fetch request 822). However, by combining the read
request 826 and the pre-fetch request 822, the memory
interface module 808 needs to access the memory 812 only
once while processing the read request 826 and the pre-fetch
request 822.

In an embodiment, a request to access the memory 812
has a corresponding associated priority (for example, a
pre-defined priority based on a type of the request). For
example, a read request (e.g., the read request 826) received
by the memory interface module 808 has a first priority, and
a pre-fetch request (e.g., the pre-fetch request 822) received
by the memory interface module 808 has a second priority.
In an embodiment, the first priority 1s higher than the second
priority. That 1s, 1f a read request having the first priority 1s
residing 1in the memory interface module 808 for processing,
along with a pre-fetch request, the read request 1s to be
executed prior to an execution of the pre-fetch request (e.g.,
due to the first priority being higher than the second prior-
ity ). Thus, the first priority being higher than second priority
implies that the read request has a higher execution priority
compared to the pre-fetch request.

As discussed, in an example, the read request 826
received by the memory interface module 808 has the first
priority, and the pre-fetch request 822 received by the
memory interface module 808 has the second priority. In an
embodiment, the priority assignment module 838 assigns a
third priority to the combined request 840. In an embodi-
ment, the third priority 1s a higher of the first priority and the
second priority. In an example, the first priority i1s higher
than the second priority, and hence, the third priority 1s equal
to the first priority.

In an embodiment, as a higher priority (e.g., the first
priority) 1s assigned to the combined request 840, the
combined request 840 i1s executed by the memory interface
module 808 prior to execution of, for example, various other
pre-fetch requests residing 1n the memory interface module
808.

FIG. 9 1s a flow diagram 1llustrating an example method
900 for operating the system 800 of FIG. 8. At 904, a
memory interface module (e.g., memory interface module
808), which 1s coupled to a memory (e.g., memory 812),
receives a first memory access request (e.g., the pre-fetch
request 822) to access data stored in the memory, the
memory nterface module configured to control access to the
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memory; and the memory interface module receives a
second memory access request (e.g., read request 826) to
access data stored 1n the memory.

At 908, based on the first and second memory access
requests, the memory interface module (e.g., the request
combination module 832) generates a third memory access
request (e.g. the combined request 840), by, for example,
combining the first and second memory access requests. At
912, based on the third memory access request, the memory
interface module accesses the memory to read data from the
memory.

The description incorporates use of the phrases “in an
embodiment,” or “in various embodiments,” which may
cach refer to one or more of the same or diflerent embodi-
ments. Furthermore, the terms “comprising,” “including,”
“having,” and the like, as used with respect to embodiments
of the present disclosure, are synonymous.

Various operations may have been described as multiple
discrete actions or operations in turn, in a manner that is
most helptul in understanding the claimed subject matter.
However, the order of description should not be construed as
to 1mply that these operations are necessarily order depen-
dent. In actuality, these operations may not be performed 1n
the order of presentation. Operations described may be
performed 1n a different order than the described embodi-
ment. Various additional operations may be performed and/
or described operations may be omitted in additional
embodiments.

Although specific embodiments have been 1illustrated and
described herein, 1t 1s noted that a wide variety of alternative
and/or equivalent implementations may be substituted for
the specific embodiment shown and described without
departing from the scope of the present disclosure. The
present disclosure covers all methods, apparatus, and articles
of manufacture fairly falling within the scope of the
appended claims either literally or under the doctrine of
equivalents. This application 1s intended to cover any adap-
tations or variations of the embodiment disclosed herein.
Therefore, 1t 1s manifested and intended that the present
disclosure be limited only by the claims and the equivalents
thereof.

What claimed 1s:

1. A method comprising:

communicating by ones of a plurality of processing cores

with a respective core interface module of a plurality of
core 1terface modules, the plurality of core interface
modules being configured as a ring network, wherein
ones of the plurality of core interface modules are
coupled to a corresponding cache of a plurality of
caches, and wheremn the plurality of core interface
modules comprises (1) a first core mterface module, (11)
a second core interface module, (111) a third core
interface module, and (1v) a fourth core interface mod-
ule;

receiving, by the first core interface module from a first

processing core ol a plurality of processing cores, a
transaction request to read data, wherein the data to be
read 1s associated with a first memory address of a
memory, and wherein the second core interface module
1s a home 1nterface module for the first memory address
of the memory;

in response to the data not being cached in either a. first

cache or a second cache, receiving, by a memory
interface coupled to the memory, a memory read
request, wherein the memory read request comprises (1)
a request to read the data from the memory and (11) a
first number:
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subsequent to recerving the memory read request, receiv-
ing, by the memory interface, a first number of cache
miss 1ndications from the third core interface module;
and

in response to receiving the first number of cache miss
indications, executing, by the memory interface, the
memory read request.

2. The method of claim 1, further comprising;:

refraining, by the memory interface, from executing the
memory read request prior to receiving the first number
ol cache miss indications.

3. The method of claim 1, further comprising;:

in response to the data being cached in either the first
cache or the second cache, discarding, by the memory
interface, the memory read request.

4. The method of claim 1, further comprising:

based upon executing the memory read request, forward-
ing, by the memory interface, the data to the first
processing core.

5. A system comprising:

a plurality of processing cores;

a plurality of core interface modules, wherein ones of the
plurality of processing cores commumicate with a
respective core mterface module of the plurality of core
interface modules, and wherein the plurality of core
interface modules are configured as a ring network;

a plurality of caches, wherein ones of the plurality of core
interface modules are coupled to a corresponding cache
of the plurality of caches;

a memory; and

a memory interface;

wherein the core interface modules are configured to
receive transaction requests to read data from the
memory, wherein the transaction requests are recerved
from processing cores of the plurality of processing
cores, and wherein data to be read 1s associated with a
memory address of the memory,

wherein 1n response to the data not being cached in either
a first cache or a second cache of the plurality of caches,
the core interface modules are configured to send cache
miss indications to the memory interface,

wherein the memory interface 1s configured for receiving
a memory read request, wherein the memory read
request comprises (1) a request to read the data from the
memory and (1) a first number, and

wherein 1n response to receiving, by the memory inter-
face, the first number of cache miss indications from
one of the core interface modules, the memory 1nterface
1s configured to execute the memory read request to
read the data from the memory.

6. The system of claim 5, wherein the memory 1nterface
1s further configured to refrain from executing the memory
read request prior to recerving the first number of cache miss
indications.

7. The system of claim 5, wherein the memory interface
1s Turther configured to, i response to the data being cached
in either the first cache or the second cache, discard the
memory read request.

8. The system of claim 5, wherein the memory interface
1s Turther configured to, based upon executing the memory
read request, forward the data to a requesting processing,
core.
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9. The system of claim S, wherein ones of the plurality of
caches are included in a corresponding one of the plurality
ol core interface modules.

10. A method comprising:

communicating by ones of a plurality of processing cores
with a respective core interface module of a plurality of
core 1mterface modules, the plurality of core interface
modules being configured as a ring network, wherein
ones of the plurality of core interface modules are
coupled to a corresponding cache of a plurality of
caches;

recerving, by a first core mterface module of the plurality
of core interface modules from a first processing core
of the plurality of processing cores, a transaction
request to read data, wherein the data to be read 1is
associated with a memory address of a memory, and
wherein a second core interface module 1s a home
interface module for the memory address of the
memory;

checking, by the first core mterface module, if the data to
be read 1s cached 1n a first cache that 1s coupled to the
first core interface module or a second cache that 1s
coupled to the second core interface module; and

in response to the data not being cached 1n either the first
cache or the second cache, transmitting a memory read
request to a memory interface coupled to the memory,
wherein the memory read request comprises (1) a
request to read the data from the memory and (11) a first
number, wherein the memory interface 1s configured to
read the data from the memory 1f the memory interface
receives the first number of cache miss indications
subsequent to receiving the memory read request.

11. The method of claim 10, wherein the plurality of core
interface modules comprises (1) the first core interface
module, (11) the second core interface module, and (111) the
first number of other core interface modules, and wherein
the method. further comprises:

recerving, by the memory interface, the number of cache
miss mdications respectively from the first number of
other core interface modules; and

in response to receiving the first number of cache miss
indications, executing the memory read request and
reading the data from the memory.

12. The method of claim 11, wherein the first number 1s
in a range ol two to four.

13. The method of claim 11, further comprising:

refraining, by the memory interface, from executing the
memory read request prior to receiving the first number
of cache miss indications.

14. The method of claim 11, further comprising:

in response to the data being cached in either the first
cache or the second cache, discarding, by the memory
interface, the memory read request.

15. The method of claim 11, further comprising:

based upon executing the memory read request, forward-
ing, by the memory interface, the data to the first
processing core.
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