US010229077B2

12 United States Patent (10) Patent No.: US 10,229,077 B2

Jan et al. 45) Date of Patent: Mar. 12, 2019
(54) METHOD FOR DATA TRANSFER BETWEEN (52) U.S. Cl.

REAL-TIME TASKS USING A DMA CPC ..ccoco...... GOG6F 13/28 (2013.01); GO6F 3/061
MEMORY CONTROLLER (2013.01); GO6F 3/0647 (2013.01); GO6F
3/0673 (2013.01)

(71)  Applicant: COMMISSARIAT A L’ENERGIE (58) Field of Classification Search
ATOMIQUE ET AUX ENERGIES CPC .... GO6F 13/28; GOGF 13/385; GOG6F 12/1081;
ALTERNATIVES, Paris (FR) GOGF 2213/28; YO2B 60/1228

(Continued)

(72) Inventors: Mathieu Jan, Savigny-sur-Orge (FR);

Olivier Debicki, Saint-Vincent de (56) Reterences Cited
Mercuze (FR) U.S. PATENT DOCUMENTS
(73) Assignee: COMMISSARIAT A I’ENERGIE 3,925,766 A 12/1975 Bardott: et al.
ATOMIQUE ET AUX ENERGIES 5,644,784 A *  T7/1997 Peek ..coocoiiiiiiininl, GO6F 13/28
ALTERNATIVES, Paris (FR) | 710724
(Continued)
( *) Notice: Subject‘ to any dlsclalmer,i the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. WO 2007/003986 Al 1/2007
WO 2009/138928 Al 11/2009
(21) Appl. No.: 15/125,942

OTHER PUBLICATTIONS

(22) PCT Filed: Mar. 17, 2015 o _ _ _
Tai-Y1 Huang et al., “Bounding the Execution Times of DMA /O

Tasks on Hard-Real-Time Embedded Systems,” 9th International

(86) PCINo.- PCIT/EP2015/055512 Conference on Real-Time and Embedded Computing Systems and
§ 371 (c)(1), Applications, RTCSA 2003, Taiwan, Feb. 2003.
(2) Date: Sep. 13, 2016 (Con‘[inued)

(87) PCT Pub. No.: WO0O2015/144488 Primary Examiner — Brian T Misiura

PCT Pub. Date: Oct. 1. 2015 (74) Attorney, Agent, or Firm — Baker & Hostetler LLP

(57) ABSTRACT

The invention 1s directed a method for transferring at least

US 2017/0083465 Al Mar. 23, 2017 one datum between a real-time task producing a datum and

a real-time task consuming said datum. The method may

(30) Foreign Application Priority Data include, 1n response to initiation of a transter of a datum by
a current mstance of an mitiating task: creating at least one

Mar. 255 2014 (FR) ...................................... 14 52497 PDMA descrip‘[gr describing the DMA transfer expected for
said datum; 1nserting DMA descriptors into a list of descrip-

(51) Imt. CL tors awaiting processing by a DMA controller, said DMA
GO6F 13/28 (2006.01) descriptors being inserted in a manner sorted based on a

GO6F 3/06 (2006.01) (Continued)

(65) Prior Publication Data

- 3

DMA
CONTROLLE

f,""'" A0 ‘f‘
72

;
 FRODUCING ¢l
* DATUM |

3

TASK

!
b
¥

Fan 21

CONSUMING
TASK

b L L L N L o B o B B L ol o e e e

7 26

LIST OF DMA :
DESCRIPTORS ‘

QPERATING

SYSTEM

———
—

pssiE: 25

24
ACTIVATIO § VISIEBILITY [ : INE
j NI | ViSIBILY | DEADLINE |

.--.--.---.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.-i-.--.--.--.--.--.--.--.l

Phvsica g

F ot e e T - WL




US 10,229,077 B2
Page 2

sorting criterion relating to a visibility date of the data and/or
a temporal behavior of the tasks; processing t
on the list of DMA descriptors by executing DMA requests;

8,001,430

ne descriptors

8,037,213

and executing the following instance of the mitiating task

based on termination of the processing a predefined set of

DMA descriptors on the list of descriptors.

15 Claims, 5 Drawing Sheets

(58) Field of Classification Search

USPC

710/22, 308
See application file for complete search history.

8,200,340
8,271,700

8,831,024

9,148,819
9,734,085
9,785,587
2005/0165783
2008/0126601

(56) References Cited
U.S. PATENT DOCUMENTS
7,523,229 B2 4/2009 Hatakeyama
7,917,667 B2 3/2011 Hayashi

7,930,422 B2* 4/2011 Freimuth

tttttttttttttttt

GOOF 13/30
709/234

B2 *

B2 *

B2
Bl *

B2 *

B2 *
B2 *
B2 *
Al
Al

8/2011
10/2011

9/2012
9/2012

9/2014

9/2015
8/2017
10/2017

7/2005
5/2008

Shasha .................... GOO6F 13/28
714/42
Archer .................... GOO6F 13/28
370/389
Nagai et al.
Annem ................... GOO6F 13/28
710/22
Robinson ............ HO4L 12/2801
370/412
Lynch ................... HO4L 49/901
Lu .o, GO6F 12/1081
Jan ..., GOO6F 13/26
Hyser
Havyashi

OTHER PUBLICATIONS

C. Pitter et al., “Time Predictable CPU and DMA Shared Memory
Access,” International Conference on Field Programmable Logic
and Applications, pp. 317-322, Aug. 2007.

* cited by examiner



U.S. Patent Mar. 12, 2019 Sheet 1 of 5 US 10,229,077 B2

?R{}GESS{}R

-PR{)TECTK}M
 MECHANISM |\

CENTRAL
 MEMORY

| MEMORY |/
3 IPROTECTIONY |
= ME{:HAN!&;M

g
g
{2
&
-
&
L nd
R
D
-
-
S
o
3,
s
&

LA

controiier n

FIGURE 1




U.S. Patent Mar. 12, 2019 Sheet 2 of 5 US 10,229,077 B2

I 21

CONSUMING

PRODUGCING
N\ TADK

TASK

LIST OF DMA
DESCRIPTORS

Vi VISIBRITY r PN
1 NATE DEADLINEG .

Physina ime

FGURE 2



U.S. Patent Mar. 12, 2019 Sheet 3 of 5 US 10,229,077 B2

ya 301

303




¥ 3-WNDI

US 10,229,077 B2

Y wimep G
2e0 AUIGISIA 3y uey Jojeaif s
SUHPBSD DRIBIDOSSE SSOUM JBsURY
YA B0 UCISUadens gisey

IBBUBH
YNNG PRpUBASNS
AGISSOQ JO LIORTUWNSSY

YIANC

Sheet 4 of 5

UDINOBKS |+ SOUBISLY Vo OB | yonnooxs a0ueIsU

.................................................................................
-------------------------------------------------------------------------------------------

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
-----------------------------------------------------------------------------------------------

m&m of Eﬁwﬁﬁ wﬂwmu xmomwwwﬁw .\m &
10 o1ep AUHUISIA

ysej

Mar. 12, 2019

SIED UOHBAIDE |43 SOUBISUI DIBD UCHEALDR M SOUBISUS
BUHDEDD M SOUBISLY

U.S. Patent



US 10,229,077 B2

Y winep jo a3ep Agisn
Byl uryl Bieaub g aupesp
. e BIRIDOSSE SSOYM JBISUBS YING
ISISUL] YING pRpuUadsns DRIBIDORSE SSOUM I5SUES YING
Ajssod jo uodunNsey

Sheet 5 of 5

...............
---------------------------------------------------------------------
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
-------------------------------------------------------
llllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

r h q n 4 o o g F g a4 5 n 4 bk 4 a4 n a4 h A h ko q a4 q a4 a4 a4 4 4 4 4 a4 koo g Nk b e e e e e e e e oo . . . . _r @& . .« maak s aaxrkrhsbh}tasdkroasr.

Lo

0y wnep e W
j0 2P AHIGISIA - |

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

yse

Mar. 12, 2019

aUPEaD Y SoULISUY 218D UDHBAIIOR 3 S0URISU

U.S. Patent



US 10,229,077 B2

1

METHOD FOR DATA TRANSFER BETWEEN
REAL-TIME TASKS USING A DMA
MEMORY CONTROLLER

CROSS-REFERENCE TO RELATED
APPLICATIONS

1s a National Stage of International patent application
PCT/EP2015/055512, filed on Mar 17, 20135, which claims
priority to foreign French patent application No.

FR1452497, filed on Mar. 23, 2014, the disclosures of which
are incorporated by reference 1n their entirety.

TECHNICAL FIELD

The present mvention concerns real-time systems 1n a
general manner and particularly a method for transferring
data between real-time tasks using a direct memory access
controller.

BACKGROUND

Real-time systems, such as onboard or distributed sys-
tems, for example, support applications that are dependent
on compliance with time constraints of the environment. In
particular, in what are known as “strict” real-time systems,
where satisfaction of these time constraints 1s critical, pro-
cessing operations are grouped 1nto different execution units
that communicate among one another. Implementation of
these communications between execution units (or tasks) 1s
dependent on the underlying real-time operating system
(denoted by the acronym RTOS), which 1s used for execut-
ing multitask applications. There are two approaches for
implementing such an implementation of intertask commu-
nications:

in a {first approach, the RTOS explicitly implements
necessary data copies for the use ol memory copy functions
(for example “memcpy”);

in a second approach, the RTOS delegates to a direct
memory access controller (or DMA) the implementation of
necessary data transiers and 1s informed only of termination
of the transfers.

The second approach allows the processor to be relieved
ol execution of data transfers and allows additional proces-
sor time to be freed from executing application processing
operations. Nevertheless, the delegation of data copies to the
DMA controller has a fixed initial cost that 1s independent of
the size of the data to be copied and of linking of the
necessary DMA requests, which 1s dependent on the
memory organization of the executed application. Thus, 1T
the use of a DMA controller for transierring data proves
successiul from small or medium data sizes, this 1s not the
case for very small data sizes. Moreover, the use of such a
solution requires setup of a “contract” between the DMA
controller responsible for copying the data and the designer
of an application in order to ensure that the memory areas
that are the source and destination for memory movements
can no longer be modified by an application processing
operation during the implementation of the transfer by the
DMA controller.

Various solutions are known for controlling interference
due to the use of a DMA 1n a strict real-time system by a task
for communicating with a peripheral area. Thus, some
solutions are geared to the impact of the use of a task
performing an input/output (I/0) via a DMA on “worst case”™
execution times for the tasks that are executed on a processor
resource (for example in Tai-Yi1 Huang and Chih-Chieh

10

15

20

25

30

35

40

45

50

55

60

65

2

Chou and Po-Yuan Chen. Bounding the Execution Times of
DMA I/0 1asks on Hard-Real-Time Embedded Systems. 9th
International Conference on Real-Time and Embedded
Computing Systems and Applications, RTCSA 2003, Tai-
wan, February 2003). In a strict real-time system, these
“worst case” execution times must indeed be known. In
point of fact, a DMA can be programmed in CPU (acronym
for “central processing unit”) cycle steal mode for use of the
memory bus, which can cause memory access contlicts for
the processor and hence delay execution of application
processing operations. Other solutions relate to the use of a
DMA controller 1n sequencing tests for strict real-time tasks,
either explicitly through the inclusion of an additional task
or by increasing worst case execution times for each task (C.
Pitter and M. Schoeberl. Time Predictable CPU and DMA
Shared Memory Access. International Conference on Field
Programmable Logic and Applications, pp. 317-322, August
2007). Nevertheless, these solutions do not relate to the use
of a DMA controller for performing data transiers having
time constraints between communicating real-time tasks.

Other solutions relating to optimization of the order of
DMA requests 1n relation to their deadline are known. By
way ol example, U.S. Pat. No. 7,917,667 B2 describes a
method for computing the priority of the various DMA
requests and therefore their order of execution by the DMA
controller. Computation of the priority of a DMA request 1s
performed by hardware and/or by software, by relying
particularly on the imitially estimated time, the time taken
and an arbitrary margin. This patent relates particularly to
DMA requests 1n which a deadline 1s specified. Such a
method allows modification of the priority of a DMA request
on the basis of 1ts urgency (1.¢. 1ts real progress 1n relation
to 1ts deadline) 1n relation to other DMA requests 1n prog-
ress. Nevertheless, this document does not tackle data trans-
fers between communicating real-time tasks implemented
by DMA requests.

Another solution proposed 1n U.S. Pat. No. 3,925,766 A
relates to a DMA controller comprising a periodic surveil-
lance mechanism for the use of a bus shared between
computation resources and peripherals. This surveillance of
the use of a shared bus allows authorization or rejection of
access to the bus for DMA requests from or to peripherals so
as to share the bus proportionally 1n relation to the priority
of the various DMA requests. The famine situations that can
exist 1n a conventional DMA controller, in which the priority
of transfers 1s fixed statically and used to define the order of
execution of transfers, are thus avoided. This mechanism of
surveillance of the use of a bus 1s also used to detect whether
or not the transier 1s part of a real-time processing operation
and consequently to adapt the granularity of the data copied
by a DMA request.

Other solutions relating to optimization of DMA data
transfers relate to hardware extensions at DMA level n
order to link the triggering of DMA requests to an event or
to dates. By way of example, WO 2007003986 proposes a
method for programming temporarily cyclic DMA tasks in
order to perform data transiers (method for constant cycle
DMA ftransfer). A temporarily cyclic DMA task 1s a DMA
task having a defined periodicity, and each istance of this
periodic task 1s made up of a set of DMA requests, the
number of DMA requests being dependent on the total size
of the datum to be transferred and on the quantity of data that
1s transierrable 1n a DMA request. The use of such types of
DMA tasks for transferring data does not require interaction
for programming the DMA controller in each cycle. The
priority of a DMA request can be dynamically adapted on
the basis of the deadlines associated with the transfers, 11 an




US 10,229,077 B2

3

arbitration policy taking account of the deadlines of the
transiers 1s used. This document particularly describes the
use of three dates comprising the value of the current time,
the start date for imitialization of the transfer and a deadline.
Breach of the deadline can be used by the DMA controller
or a computation resource to implement various strategies,
such as, by way of example, to increase the priority of a
DMA request, to stop a DMA task, to force execution of
DMA requests, etc. Like the U.S. Pat. No. 7,917,667 B2, this

method allows a prior1 construction of a system 1n which it
1s possible to show that DMA requests will be terminated
before a certain deadline. Nevertheless, this solution does
not solve the problem of data transfer between communi-
cating real-time tasks implemented by DMA requests.

Another solution proposed 1n the patent U.S. Pat. No.
8,266,340 B2 describes a hardware extension at DMA

controller level 1n order to include a hardware counter of a
measuring time, a value comparator for the time counter and
a state comparator in relation to acquisition of the state of a
peripheral using DMA. On the basis of this information,
alter a match has been obtained between the time counter
and the value indicated 1n the value comparator of the time
counter, triggering of one or more DMA requests by the
DMA controller 1s determined by the obtainment of a match
between the state of the peripheral and the value indicated in
the state comparator. Such a method allows DMA requests
to be triggered without the need for logic operations of
polling type, and therefore the intervention of a computation
resource, thus avoiding an additional load at the level of this
computation resource.

Other solutions concerning the optimization of DMA data
transiers relate to hardware extensions in order to safeguard

the execution of DMA requests. By way of example, the
patent U.S. Pat. No. 7,523,229 B2 describes a solution in

which a hardware extension for access control 1s associated
with an 1nput/output controller, equipped with a DMA
controller, and 1s programmable via two types of registers.
The first type of register 1s accessible by means of any
application process 1 order to specily the destination or
source address in a DMA request between the input/output
peripheral and the memory of the system (transfer of
memory/peripheral type). The second type of register
describes the memory rights applicable 1n the memory area
specified 1n the first type of register. This second type of
register can be used only 1n execution mode, referred to as
“privileged”, by a computation resource, that 1s to say by a
trusted code. The mput/output controller extended 1n this
manner can then detect any unauthorized memory access
attempt at the time of a DMA request and can stop execution
thereol. In yet another approach, which 1s described 1n the
patent US 2005/0165783 Al, a hardware extension 1s pro-
posed 1 which the logic for controlling memory access
operations by the various masters on a bus (thus potentially
including DMA controllers) 1s situated at the access of the
bus (rather than at the input/output controller as 1n the patent
U.S. Pat. No. 7,523,229 B2). The table for describing
memory access rights 1s dependent on a privileged process,
typically the operating system, and 1s indicated on system
startup. Similarly, the patent application WO 2009138928
Al describes another organization for the hardware exten-
s10n necessary via use ol the conventional memory protec-
tion mechanism 1n an architecture not only for the compu-
tation resources but for all masters connected to the memory
system. Thus, any memory access, whether from a compu-
tation resource or from a DMA controller, 1s monitored
before being either authorized or rejected.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Thus, there are a certain number of solutions allowing the
use ol a DMA to be taken into account 1n the dimensioning

and sequencing of real-time systems, and/or making it
possible to ensure that data transfers by a DMA controller do
not adversely aflect the real-time constraints of the data,
and/or to sateguard DMA data transfers. When the approach
used to implement intertask communications relies on a
DMA controller, there 1s great freedom for transierring the
data between activation and the deadline of communicating
tasks, which can result in limited performance of the real-
time system, in overdimensioning of the necessary resources
or in compromise of the system 1f DMA requests are not
executed appropriately and in a safeguarded manner.

GENERAL DEFINITION OF THE INVENTION

The mvention mmproves the situation by proposing a
method for transferring at least one datum between a real-
time task producing a datum and a real-time task consuming
the datum, each datum being associated with a visibility
date. The method 1s implemented 1n a computer comprising
a central memory, at least one processor and at least one
direct memory access DMA controller, each DMA controller
being configured to handle data transfers between various
areas of the central memory under the control of an oper-
ating system that 1s executed on said processors. The method
comprises the following steps, 1n response to mitiation of the
transier of a datum by the current instance k of an 1nitiating
task:

creation, by the operating system, of at least one DMA
descriptor for describing the DMA transier expected for the
datum, after execution of a given 1nstance (k-1 or k) of the
task:

insertion, by the operating system, of the DMA descrip-
tors mto a list of descriptors awaiting processing by the
DMA controller, the DMA descriptors being inserted in a
manner sorted on the basis of a sorting criterion relating to
the visibility date of the data and/or on the basis of the
temporal behavior of the tasks;

processing of the descriptors on the list of DMA descrip-
tors by execution of DMA requests via the DMA controller;
and

execution of the following instance (k or k+1) of the
iitiating task by the operating system on the basis of
termination of the processing of a predefined set of the DMA
descriptors on the list of descriptors.

In some embodiments, the method can comprise a step of
verification, by the operating system, of termination of the
processing ol the predefined set of the DMA descriptors on
the list.

In a first embodiment, the mitiating task can be a data
producing task, the step of creation of the DMA descriptors
being triggered in response to termination of the execution
of the current instance k of the mmitiating task.

The sorting criterion may then be the wvisibility date
associated with the datum to be transferred.

In this first embodiment, the set of descriptors can com-
prise DMA descriptors that have a visibility date less than or
equal to the activation date of the next instance of the
initiating task, and the verification step 1s implemented by
determining whether the descriptors in said set are associ-
ated with end of processing information.

In a second embodiment, the imitiating task i1s a data
consuming task, and the step of creation of the DMA
descriptors then being triggered in response to termination
of the execution of the preceding instance (k—1) of the
initiating task.




US 10,229,077 B2

S

The sorting criterion may then be the expiry date of the
current mstance k of the nitiating task.

In the second embodiment, the set of descriptors com-
prises the set of DMA descriptors that were created in the
creation step, while the verification step 1s implemented by
determining whether the descriptors 1n the set are associated
with end of processing information.

The 1insertion step may moreover comprise temporary
suspension of DMA requests being executed by the DMA
controller, the suspension time being used by the operating
system to update the list of DMA descriptors.

The method may moreover comprise a termination step in
which the status bits of the DMA descriptors processed in
the execution step by the DMA controller are set to indicate
the end of processing of the DMA descriptors.

The method may likewise comprise a notification step in
which the DMA controller notifies the operating system of
the end of data transfers within the central memory, the
operating system being capable of storing end of transfer
information 1n a data structure in the form of a list of
terminated data transfers.

According to another feature of the invention, the verifi-
cation step on a datum can be delayed until the first instant
of use by the task of the memory area storing the datum.

In one embodiment, the computer can comprise at least
one hardware memory protection mechanism associated
with the DMA controller 1in order to safeguard data transters
by programming via hardware registers that are accessible
by the processor, the method comprising:

in the step of 1nsertion of the DMA descriptors, program-
ming of the hardware registers with the memory rights that
are necessary for performing transfer of the datum; or

on detection of an invalid access by the hardware memory
protection mechanism, verification that the corresponding
memory access belongs to one of the DMA descriptors
created in the creation step for transfer of the datum and
programming of the registers of the memory protection
hardware with the memory rights that are necessary for
performing transier of the datum.

In another embodiment, the computer can comprise at
least one hardware memory protection mechanism associ-
ated with the DMA controller 1n order to sateguard transfers
of a datum and using memory descriptors with which 1t 1s
provided by means of extensions in the format of a DMA
descriptor 1 order to include the description of the autho-
rized memory rights for the DMA requests associated with
the DMA descriptor, said memory rights being used in the
execution step via the DMA controller 1n order to program
the hardware memory protection mechanism with the
memory rights that are necessary so as to perform transier of
the datum.

The mvention also proposes a computer comprising a
central memory, at least one processor and at least one direct
memory access DMA controller, each DMA controller being,
configured to handle data transiers between various areas of
the central memory under the control of an operating system
that 1s executed on said processors, the computer being
configured to transfer at least one datum between a real-time
task producing a datum and a real-time task consuming the
datum, each datum being associated with a visibility date. In
response to iitiation of transfer of a datum by the current
instance k of an iitiating task:

the operating system 1s capable of creating at least one
DMA descriptor 1n order to describe the DMA transfer
expected for the datum, after execution of a given instance
of the task (k—1, k), and to msert DM A descriptors into a list
ol descriptors awaiting processing by the DMA controller,

10

15

20

25

30

35

40

45

50

55

60

65

6

the DMA descriptors being inserted 1in a manner sorted on
the basis of a sorting criterion relating to the visibility date
of the data and/or to the temporal behavior of the tasks;
the DMA controller 1s configured to process the descrip-
tors 1n the list of DMA descriptors by executing DMA
requests:
the operating system being moreover configured to execute
the following instance (k, k+1) of the imitiating task on the
basis of termination of the processing of a predefined set of
the DMA descriptors on the list of descriptors.

The proposed embodiments thus allow sequencing and
optimization of data transier, between communicating real-
time tasks, by relying on a DMA controller, from a temporal
behavior model of the tasks, while guaranteeing compliance
with the deadlines associated with the system. Additionally,
the proposed embodiments can safeguard data transiers. The
various processors are thus relieved of explicit management
of memory transfers, which allows additional processor time
to be freed for executing application processing operations.
This results 1n optimization of the use of execution resources
for the design of real-time systems and 1n particular “strict”
real-time systems.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the invention waill
become apparent with reference to the description that
follows and to the figures of the appended drawings, 1n
which:

FIG. 1 1s a diagram representing the architecture of a
computer, according to some embodiments;

FIG. 2 1s a diagram representing the interactions between
communicating real tasks;

FIG. 3 1s a flowchart for the method for transierring data,
according to some embodiments of the invention;

FIG. 4 illustrates the transter method for a real-time task
for producing a datum, according to an exemplary embodi-
ment of the invention; and

FIG. 5 illustrates the transfer method for a real-time task
consuming a datum, according to another exemplary
embodiment of the invention.

DETAILED DESCRIPTION

FIG. 1 schematically represents the elements of the archi-
tecture of a computer 10 according to some embodiments.
The computer 10 comprises one or more processors 2, one
or more DMA controllers 3 and a central memory 4. The
processors 2 and the DMA controllers 3 are connected by an
interconnection network 3 1n order to be able to communi-
cate among one another.

The processors 2 and the DMA controllers 3 form con-
trollers that are able to play the part of masters on the
interconnection network 5 of the architecture, that is to say
to mitiate requests on this network. Conversely, the central
memory 4 and the input/output peripherals (not represented)
are considered to be slaves in the interconnection network 5
that are unable to be behind requests on this network.

The remainder of the description will be provided with
reference to a computer comprising a single processor 2
executing a multitask system and a DMA (direct memory
access) controller, by way of nonlimiting example and 1n
order to facilitate comprehension of the invention. It should
be noted that FIG. 1 1s a simplified representation of the
computer 10 on which only the elements 2, 3, 4 and 5 appear
in order to facilitate comprehension of the invention. How-
ever, a person skilled 1n the art will easily understand that the




US 10,229,077 B2

7

computer 10 can comprise other conventional elements such
as input/output peripherals, a (cache) memory hierarchy and
that the mnvention 1s not limited to a computer comprising a
single processor 2 and a single DMA controller 3.

Each DMA controller 3 i1s configured to handle the data
transiers between various areas of the central memory 4
(these data transfers are also called memory to memory
transiers), under the control of an operating system executed
on the processors 2. For each datum, the operating system
particularly has the function of preparing one or more
transier requests by indicating one or more DMA descrip-
tors. Each DMA descriptor 1s then inserted into the list of
DMA descriptors of the DMA controller 3 1n order to be
processed by the DMA controller 3. The DMA controller
then processes the DMA descriptors by executing one or
more DMA requests for each DMA descriptor, the number
of DMA requests being dependent on the functionalities of
the controller 3.

The architecture of the computer 10 may particularly
comprise one or more hardware protection mechanisms 6, of
MMU (acronym for “memory management unit”) or MPU
(acronym for “memory protection unit”) type, in order to
protect the access to the interconnection network 5 that may
be efl

ected by one or more masters 1 such an architecture.
By way of example, such mechanisms allow guarding
against erroneous or malicious behavior by a master toward
an access to the central memory 4. The appropriate use of
such memory protection mechanisms can particularly guar-
antee 1solation between the various processing operations
that masters can perform on an interconnection network 3.

In some embodiments, the method for transferring data
can rely on the appropriate programming of such a memory
protection hardware mechanism 6 associated with a DMA
controller 3 1 order to isolate the memory to memory
transiers necessary for transferring data between communi-
cating real-time tasks.

FI1G. 2 illustrates the data transfer in a multitask system
made up of communicating real-time tasks. A communicat-
ing real-time task denotes a task that has time constraints,
that 1s to say activation dates and deadlines, and that
interchanges one or more datum/data with one or more other
communicating real-time task(s). Transier of a datum
between communicating real-time tasks can be initiated
cither by the task producing the datum 20 or by a task
consuming this very datum 21. There may be multiple
consuming tasks 21. However, 1t 1s advantageous to have a
single producing task 20 for a datum in order to avoid data
coherency problems. Each instance of a real-time task has an
associated activation date 23 and deadline 25. The activation
date 23 corresponds to the date from which the mstance of
the task 1s eligible to access a processor 2 1n order to be
executed by the operating system. The deadline 25 corre-
sponds to the date before which the instance of the task
needs to be terminated. The temporal behavior of a given
real-time task thus denotes all of the activation dates and
deadlines of all of its instances. Furthermore, each datum 22
can have an associated visibility date 24 corresponding to
the date from which this datum i1s rendered visible to the
consuming tasks 21 1 order to be used in application
processing operations. The visibility date 24 of a datum 1s
generally greater than or equal to the deadline 235 of the task
producing this datum.

When an instance of a task producing a datum 20 termi-
nates 1ts execution, the data are no longer able to be modified
by the producing task 20 and one or more DMA descriptors
26 are created by the operating system 200 in order to
describe the data transiers that the DMA controller 3 will

10

15

20

25

30

35

40

45

50

55

60

65

8

have to perform. The manner in which the list of DMA
descriptors 26 1s stored may be dependent on the underlying
implementation (hardware and RTOS).

The method for transierring data can be mitiated by a task
producing data 20 or, as a variant, by a task consuming data
21 (the producing task 20 or consuming task 21 that iitiates
the transfer will commonly be referred to by the expression
“mitiating task” below).

Accordmg to one feature of the invention, when the
transfer 1s 1nitiated by a producing task 20, the DMA
descriptors 26 are inserted into a list of the DMA descriptors
in a manner sorted on the basis of the deadline 25 associated
with the instance of the producing task 20 by the operating
system 200 so as to be processed by the DMA controller. The
DMA controller then generates the DMA requests to be
executed from the list of descriptors in order to transfer the
data.

Before execution of the next instance of the producing
task 20, the operating system 200 verifies whether the DMA
controller 3 has processed the various DMA requests of the
DMA descriptors created by the producing task 20 whose
visibility date 24 1s less than the activation date 23 of the
current istance of the producing task 20 (activation corre-
sponds to the instant from which the mstance of the task can
potentially be executed). If the various DMA requests have
not all terminated, the system can then be notified of an
error. Furthermore, in accordance with the temporal behav-
1or of the tasks, multiple instances of the producing task can
be activated/executed before the visibility date of a datum 1s
reached: identification of the state of the DMA requests
associated with this datum (in the course of execution or
awaiting execution) then allows optimization of transfer of
the datum by potentially avoiding the execution of unnec-
essary DMA requests. It 1s worth noting that 1f the DMA
controller 3 1s configured to vernity that execution of a DMA
request has terminated before a certain date, then this
functionality can be used optionally with the visibility dates
of the associated data as a deadline for the DMA requests.
The step of verification of the termination of DMA requests
can then:

cither imvolve verification that no deadline infringement
has been detected at the time of execution of the DMA
requests, 11 the DMA controller 1s configured to indicate only
the state of the DMA requests by setting status bits provided
for this purpose, or

not be implemented, 11 the DMA controller 1s configured
to provide an i1dentification of an error by means ol an
interruption to the processor when a deadline iniringement
1s detected at the time of execution of a DMA request.

A task consuming a datum 21 can also be an initiator of
DMA data transfers. In this case, the DMA descriptors 26 are
created at the end of execution of the preceding 1nstance k-1
of the consuming task by the operating system 200. The
DMA descriptors created are inserted 1n a manner sorted on
the basis of the deadline 25 associated with the current
instance k of the consuming task 21 imitiating the transfers,
by the operating system 200 on the activation date 23 of the
consuming task (or “release date”) so as to be processed by
the DMA controller 3 and therefore generate the DMA
requests necessary for transierring the data. This deadline 25
for the task does not correspond to the visibility date of the
datum but allows specification of an order between the
various DMA requests stemming from the processmg of the
DMA descriptors 26 by the DMA controller 3 1n a multitask
system. Before real execution of the current instance k of the
consuming task 21, the operating system 200 verifies ter-
mination of all of the imitiated DMA requests. This makes 1t




US 10,229,077 B2

9

possible to guarantee particularly that the DMA transiers
have terminated betfore any use of the data by an application.

In some embodiments, whatever the nature of the task
(producing or consuming) initiating the DMA transiers,
verification of the termination of the DMA requests can be
delayed until the moment of modification of the datum by
the current instance of the mitiating task, for example by
using a suitable programming interface. This makes 1t pos-
sible to extend the length of the time interval during which
execution of DMA requests 1s possible for transferring a
datum by DMA.

Furthermore, 1n particular embodiments, the information
according to which DMA requests required by the instance
of the initiating task have not terminated can be used by the
sequencer ol an operating system 200 as additional infor-
mation for delaying execution of the instance of this task
(with mitially equal priority between two tasks), regardless
of the nature of the task (producing or consuming) 1nitiating
the DMA transfers.

In a variant embodiment of the transfer method and when
the 1mtiating task 1s a consuming task, the step of insertion
of a DMA descriptor can be anticipated on the visibility date
24 of the datum, which also makes 1t possible to extend the
length of the time interval during which execution of the
DMA requests 1s possible 1f the activation date 23 of the
consuming task 1s strictly later than the visibility date 24 of
the datum.

It 1s worth noting that the various embodiments of the
method of execution implemented by the producing task and
by the consuming task can be combined 1n order to obtain a
multitask system relying on a DMA controller 3 for data
transier between real-time tasks. Advantageously, 1 data
transier 1s performed in multiple steps requiring a transier
initiated by a producing task and then a transfer iitiated by
a consuming task, the step of insertion of a DMA descriptor
by a consuming task can be anticipated at the moment of
termination of the DMA transfer imtiated by the producing,
task 1n order to extend the length of the time interval during
which execution of DMA requests 1nitiated by the consum-
ing task 1s possible.

It 1s also worth noting that the various embodiments of the
method of execution can alternatively apply to a subset of
the various data that the various tasks of an application can
interchange. Such a subset can be selected on the basis of
various selection criteria, such as on the basis of the size of
the data, for example.

Optionally and regardless of the nature of the task (pro-
ducing or consuming) initiating the DMA transfers, static
knowledge of the various interchanges of intertask data
allows a memory protection hardware device associated
with the DMA controller 3 to be programmed. In accordance
with the capabilities of such a memory protection hardware
device 6 associated with the DMA controller 3, 1t 1s possible
for safeguarding of the data transfers between communicat-
ing tasks to be performed 1n various ways.

In one embodiment, the computer 10 can use a piece of
memory protection hardware 6 that 1s programmable by
means of registers that are accessible by processors 2. For
cach transfer, one or more registers ol the memory protec-
tion hardware 6 associated with the DMA controller can be
indicated by the task initiating the DMA transier in order to
describe the memory rights applicable for data transfer
between a source memory area and a destination memory
area. It 1s worth noting that, in such an embodiment,
isertion of a DMA descriptor into the list of the DMA
descriptors of the DMA controller 3 1s then dependent on the
number of registers ol the memory protection hardware 6

10

15

20

25

30

35

40

45

50

55

60

65

10

that are available (the number of said registers being lim-
ited). If this number 1s 1nsuflicient to describe the memory
rights applicable to the data transfer, then the DMA descrip-
tor 1s put on hold. When processing of all the DMA requests
linked to a DMA descriptor has terminated, the registers of
the memory protection hardware 6 that are used are consid-
ered to be free, that 1s to say can be reused to describe the
memory rights for other data transfers. If one or more DMA
descriptors are awaiting processing, then 1t 1s verified
whether they can be inserted into the list of the DMA
descriptors on the basis of the freeing of registers of the
memory protection hardware 6.

In another embodiment, instead of making the memory
right changes at the time of insertion of a DMA descriptor
(like the embodiment described above), the memory right
changes can take place when an 1mvalid memory access 1s
detected by the memory protection hardware mechanism 6
during execution of the DMA requests. In such an embodi-
ment, the operating system 200 then verifies whether the
DMA request executed and imitiating the invalid memory
access corresponds to a valid DMA descriptor. If the
memory rights of this DMA descriptor have not already been
indicated to the memory protection mechanism 6, then
registers of the memory protection hardware 6 are indicated
by the operating system 200 1f a suflicient number of these
registers ol the memory protection hardware 6 are available.
Otherwise, the DMA descriptor 1s put on hold for a subse-
quent processing operation when the necessary number of
registers of the memory protection hardware 6 1s reached. IT
the memory rights of the DMA descriptor have already been
indicated to the memory protection mechanism 6, the
memory access 1s then considered to be genuinely 1nvalid.

In yet another embodiment, the values that need to be
applied to the registers of the memory protection hardware
6 that are used by the DMA controller 3 can be provided for
the memory protection hardware 6, by means of extensions
in the format of a DMA descriptor. Thus, a DMA descriptor
comprises, 1n addition to the source and destination memory
addresses and the size of the memory area to be transferred,
for example, the memory nights associated with these
memory areas. The DMA controller 3 can then initiate the
memory right changes associated with a DMA descriptor
without requiring the intervention of the operating system
200, unlike conventional solutions relating to safeguarding
of DMA ftransiers. The processors 2 are thus relieved of
implementation of this safeguarding of DMA transiers. The
memory rights associated with the DMA requests can be
calculated in advance by a device that 1s independent of the
applications and implemented using a trusted code, such as
when the links of the application are edited by analyzing the
needs of the application in relation to the various memory
arcas ol the application binary, for example. Thus, the
application 1s not capable of taking over the additional
memory rights.

The description below of some embodiments will thus be
able to rely on some of the following assumptions:

in accordance with a first assumption, 1t may be supposed
that the temporal behavior of the tasks forming an applica-
tion, that 1s to say the activation dates 23 (also called

“release date”) and the deadlines 25 of the various instances
of the tasks, 1s known beforechand (offline knowledge).
Generally, most strict real-time systems fulfill such an
assumption on account of the certification constraints that
apply 1n their fields of use and that demand the provision of
a demonstration of sequenceability of the tasks aiming to




US 10,229,077 B2

11

prove compliance by real-time tasks with their time con-
straints, for example by analyzing “worst case” response
times;

in accordance with a second assumption, 1t may be

supposed that a mechanism of DMA type i1s capable of >

implementing memory transiers that are iterruptable with
stoppage 1 a coherent state and that allow subsequent
resumption from this coherent state, as 1s the case for most

DMA controllers:

very optionally, 1n accordance with a third assumption, 1t
may be considered that the DMA controller 3, which by
definition can act as a master on the interconnection infra-
structure of the components of a hardware map, 1s associated
with a dedicated memory protection mechanism having a
limited number of memory descriptors that 1s potentially
active at a given instant and allows the memory rights
(reading, writing, etc.) of memory areas to be described. The
programming ol such a memory protection mechanmism
allows some memory accesses to the DMA controller to be
controlled and prohibited, so as to avoid error propagation
from the DMA controller to the memory of the system.
However, a person skilled 1n the art will understand that the
proposed embodiments are not dependent on such memory
protection mechamsms that can be used particularly to
ensure a property of nonpropagation of errors from an
erroneous use or from a hardware fault of the DMA con-
troller, and therefore ensuring that the data transfers imple-
mented by a DMA controller are sateguarded;

in accordance with a fourth assumption, it may be con-
sidered that the configuration of the wvarious memory
descriptors that are necessary for authorizing data transiers
between the tasks of an application are calculable before
execution ol the system. Such an assumption 1s generally
tulfilled 1n strict real-time systems on account of the certi-
fication constraints, which prescribe static knowledge of the
behavior of the tasks, particularly of the interchanges of data
between tasks.

FIG. 3 1s a flowchart providing a more detailed represen-
tation of the method for executing data transfer (also called
“data transfer method” below) between communicating real-
time tasks implemented within the central memory of the
computer 10, 1n accordance with certain embodiments.

The method for executing DMA data transiers relies
particularly on use of the temporal behavior of the tasks for
the transier of data between real-time tasks that 1s based on
a DMA controller, which allows an improvement in the
performance of the real-time system 1n which 1t 1s 1mple-
mented or, conversely, a decrease 1n the resources necessary
for equal performance.

In step 301, one or more DMA descriptors are created by
the operating system 200. The descriptors are used to specily
the data transiers to be performed by DMA. They particu-
larly comprise the source and destination memory addresses
and the size of the memory area to be transierred. The
general format of the DMA descriptors may be dependent on
the type of controller 3 used. Moreover, the number of DMA
descriptors created may be dependent on various parameters
or criteria, such as on the capacity of the DMA controller 3,
on the size of the data, etc., for example.

The data transfer method can be mitiated by a task
producing data 20 or, as a variant, by a task consuming data
21.

If the imtiating task 1s a task producing data 20, then the
creation of DMA descriptors 1n step 301 1s performed once
the application code of the current instance k of the produc-
ing task 20 1s executed.

10

15

20

25

30

35

40

45

50

55

60

65

12

If the initiating task 1s a task consuming data 21, then the
creation of DMA descriptors 1n step 301 1s performed once
the application code of the preceding instance k-1 of the
consuming task 21 1s executed.

In step 302, the DMA descriptors describing the data
transiers to be performed are inserted by the operating
system 200 1nto the list of the DMA requests to be processed
by the DMA controller 3, thus transferring responsibility for
the DMA descriptors between the processor 2 and the DMA
controller 3. If the imitiating task 1s a producing task 20, then
step 302 1s implemented immediately after step 301. 1T the
initiating task 1s a consuming task 21, then step 302 1is
executed on the activation date of the instance k of the
consuming task 21. Advantageously, the DMA descriptors
are 1nserted 1n a manner sorted on the basis of a sorting
criterion relating to the visibility date 24 of the data and/or
on the basis of the temporal behavior of the tasks. In
particular, the DMA descriptors are inserted in a manner
sorted on the basis of the visibility date 24 of the data (1.e.
the list of the DMA requests 1s thus sequenced 1n accordance
with an order chosen on the basis of the visibility date of the
data) 1f the method 1s executed on the imitiative of a task
producing data 20. As a variant, 1f the method 1s executed on
the mitiative of a task consuming data 21, then the DMA
descriptors are inserted 1n a manner sorted on the basis of the
deadline of the consuming task.

In accordance with the capabilities of the DMA controller,
step 302 can be implemented by hardware elements of the
DMA controller or by software elements or a combination of
the two. The DMA request being executed by the DMA
controller 3 can be temporarily suspended if the updating of
the list of the DMA descriptors determines that another
DMA descriptor has a priority higher than that of the
descriptor that 1s usually processed. The implementation of
such suspension of the DMA requests 1s particularly depen-
dent on the specifics of the DMA controller used. In embodi-
ments 1n which this step 1s implemented at software level,
the DMA controller can be temporarily suspended, that 1s to
say that the responsibility for the DMA descriptors 1s
transierred to a processor 2 when the operating system 200
starts execution of the processing code in order to update the
list of the DMA descriptors. The aim of such an update 1s to
allow execution of this code over a fixed state of the various
DMA descriptors awaiting processing by the DMA control-
ler 3.

It 1s worth noting that the criterion used to sort the DMA
descriptors can also advantageously be used in a method for
detecting nfringement of a deadline by a DMA request
stemming from the processing of the DMA descriptors. In
embodiments in which the transier method 1s on the nitia-
tive ol a consuming task 21, the order of execution of the
DMA requests 1s dependent on the deadline for the real-time
tasks consuming data.

In the embodiments 1n which a hardware memory pro-
tection mechanism 6 associated with the DMA controller 3
1s used by the computer 10 to sateguard DMA transfers and
said computer 1s programmed at the time of 1nsertion of the
DMA descriptors 1n step 302, the number of DMA descrip-
tors 1nserted 1s also dependent on the number of registers
available in the memory protection hardware mechanism 6
associated with the DMA controller. The descriptors that are
not inserted i step 302 can then be put on hold for
processing by the DMA controller 3.

In the embodiment in which the values for the registers of
the memory protection mechanism 6 are provided therefor
by means of extensions in the format of a DMA descriptor,
the format of a DMA descriptor 1s extended with the




US 10,229,077 B2

13

description of the memory rights of the memory areas space
accessible by the DMA controller in order to process this
DMA descriptor.

Additionally, 1f the number of DMA descriptors inserted
1s less than the number of DMA descriptors created 1n step
301 (the list of the DMA descriptors of the DMA controller
being of limited size), then steps 302, 303 and 304 can be
repeated until suflicient entries in the list of the DMA
descriptors 26 of the DMA controller have been freed in
order to process the DMA descriptors put on hold.

In step 303, the DMA descriptors are processed by the
DMA controller 3 by executing the DMA requests. In the
embodiment 1 which a hardware memory protection
mechanism 6 associated with the DMA controller 3 1s used
to sateguard the data, and receives the values for the
registers of the memory protection mechanism 6 by means
of extensions i1n the format of a DMA descriptor, the
execution of a DMA request 1n step 303 may comprise,
optionally, the memory rights described 1n the DMA descrip-
tor being set on the memory protection mechanism 6.

As a vanant, 1f a hardware memory protection mechanism
6 1s used for sateguarding DMA transiers so as to change the
memory rights only when the memory protection mecha-
nism 6 detects an invalid memory access, execution of a
DMA request can thus lead to detection of invalid access. In
this case, the operating system 200 verifies whether the
DMA request corresponds to an authorized DMA descriptor
and reprograms memory rights of the memory protection
hardware mechanism 6 with the memory rights of this DMA
descriptor, 11 these rights have not already been indicated to
the memory protection mechanism 6, so that the DMA
request(s) can take place. If said rnights have already been
indicated, then the memory access 1s genuinely nvalid.

In step 304, the DMA controller 3 sets a status bit 1n each
DMA descriptor 1n order to indicate that a DMA descriptor
has been processed 1n step 303, that 1s to say that all of the
DMA requests stemming from this DMA descriptor have
been executed. Additionally, 1t can notify the operating
system 200, 1n step 304, of the end of the data transfers
within the central memory 4. If there 1s no provision for
programming of the behavior of the DMA controller to
provide notification of the end of processing of each DMA
descriptor 1n an implementation of this method, then the
entries ireed 1n the list of the DMA descriptors of the DMA
controller cannot be used immediately for other data trans-
ters. The DMA descriptors can then be used only after the
step of verification 305 of processing thereof.

In the embodiment 1n which notifications of the end of
processing of the DMA descriptors are sent 1n step 304, a
data structure can be used by the operating system 200 1n
order to store a list of transiers of the processed descriptors
therein.

In particular, the notification 1n step 304 can be triggered
on the basis of a predetermined number of DMA descriptors
processed by the DMA controller and/or on the basis of a
timeout from the processing of a descriptor before the
sending of the notification (with a zero reset at the end of
processing of the DMA descriptor).

In step 303, the operating system 200 verifies termination
of the DMA ftransfers of the datum before triggering the

execution of the following instance of the mitiating task
(following instance k+1 for an iitiating task of producing
type or current instance k for an iitiating task of consuming,

type).

5

10

15

20

25

30

35

40

45

50

55

60

65

14

To that end, the operating system 200 can verily, in the
embodiment in which the DMA controller 1s not pro-
grammed to provide notification of the end of processing of
the DMA descriptors:

for an mitiating task of producing task type 20, whether
the DMA descriptors used for the data transfer having a
visibility date 24 less than or equal to the activation date of
the producing task 20 have status bits indicating the end of
processing, in which case execution of the following
instance k+1 can be nitiated, or

for an mitiating task of consuming task type 21, whether
all of the DMA descriptors created in step 301, for a
consuming task 21, have status bits indicating the end of
processing, in which case execution of the current instance
k can be 1mitiated.

As a variant, in the embodiment in which the DMA
controller 1s programmed to provide notification of the end
of processing of the DMA descriptors, the operating system
200 can verily:

for an mitiating task of producing task type 20, whether
the DMA descriptors used for the data transfers having a
visibility date 24 less than or equal to the activation date of
the producing task 20 are entirely present in the data
structure of the processed descriptors, 1n which case execu-
tion of the following instance k+1 can be mitiated, or

for an 1mitiating task of consuming task type 21, whether
all of the DMA descriptors created i step 301, for a
consuming task 21, are entirely present in the data structure
of the processed descriptors, 1n which case execution of the
current instance k can be mitiated.

According to yet another variant of the embodiment 1n
which the DMA controller 1s configured to monitor compli-
ance with the deadlines associated with the DMA descrip-
tors, step 305 can:

cither mvolve verification, for an initiating task of pro-
ducing type, that no deadline iniringement has been
detected, 11 the DMA controller 1s configured to indicate
only the state of DMA requests by setting status bits for that
purpose, or

not be implemented, 1t the DMA controller 1s configured
to provide notification of an error by means of an 1nterrup-
tion to the processor 2 when a deadline infringement 1s
detected.

In a particular embodiment, the verification in step 305 on
a datum can be delayed until the first instant of use, by the
application code of the task, of the memory area storing this
datum, be 1t for a producing task 20 or consuming task 21.
In another embodiment, the information according to which
DMA requests associated with DMA descriptors required by
a consuming or producing task are not terminated (such a
piece ol information being determined 1f the condition of
step 303 1s not verified for some DMA descriptors) can be
transmitted additionally to the task sequencer of the oper-
ating system 200. The task sequencer can then use this
information on the non-terminated transfers as an additional
decision criterion for determining the order of the tasks to be
executed.

If the condition of step 305 1s not verified, an error 1s
detected. The additional steps that can be executed in this
case are dependent on the area of origin of the application.
Additional steps of this kind can comprise the execution of
tasks, despite the detected error, with well defined values,
stoppage of these tasks, etc., for example.

The visibility date 24 of each datum, which 1s dependent
on the execution model of the real-time tasks, can be
provided in advance and stored 1n memory for subsequent
use when a DMA transfer 1s implemented.



US 10,229,077 B2

15

The embodiments of the invention therefore provide an
optimum solution for transferring data between real-time
tasks on the basis of a DMA controller. Such a solution can
moreover be adapted to safeguard data transfers between
communicating tasks so as to identily and/or contain any
operating abnormality of a DMA controller, when the com-
puter 10 comprises at least one memory protection mecha-
nism 6 associated with the DMA controller 3.

Although not limited to such applications, the computer
10 and the data transfer method in accordance with the
various embodiments of the invention are particularly suited
to use 1n “strict” real-time systems 1n which 1t 1s necessary
to provide the capability to demonstrate correct operation of
the DMA memory controller for the implementation of data
transiers.

The method of execution thus allows the processor to be
relieved of the copies of said datum by using the DMA
controller to execute real-time tasks while allowing verifi-
cation of the compliance or noncompliance with time con-
straints that are applicable to these interchanges and, option-
ally, safeguarding these interchanges.

It 1s worth noting that the flowchart in FIG. 3 1s a
simplified view of the method of execution and that some
additional steps may be provided on the basis of the execu-
tion model for the tasks and communications between tasks.

Although the method in FIG. 3 1s described for the
transier of data between real-time tasks of an application, it
can be applied 1n a similar manner to any subset of data to
be transierred between such tasks. The set of data to which
the method of execution applies can be defined in advance
by the application designer on the basis of various param-
cters, such as, by way of example, the quantity and fre-
quency of production of the various data, and/or the capacity
of the DMA controllers 1n terms of the number of transiers
that are possible.

The description of some embodiments of the method for
executing data transfers above has been provided with
reference to a single communication channel of a DMA
controller shared between all the tasks of a given applica-
tion. However, the mvention can be applied in a similar
manner whatever the capabilities, which are dependent on
the implementations, for multiplexing of various DMA
requests via a DMA controller by means of the notion of
communication channels. In particular, the method {for
executing data transiers can be applied in a similar manner
by distributing the data transiers over all the communication
channels provided by a DMA controller or some of these
channels. FIG. 4 1s an example of implementation of the
method for executing data transfer, in an embodiment in
which the istance k of a producing real-time task 20
initiates the method to transfer a datum A.

As represented in the example in FIG. 4, the producing
task 20 1s associated with:

an activation date 23 for the instance k of the task:

a deadline 25 for the mstance k of the task corresponding
to the activation date 23 for the instance k+1 of the task and
to the visibility date 24 of the datum A.

The data transfer 1s performed 1n accordance with the
following steps:

the operating system 200 creates a DMA descriptor for the

datum A once the instance k 1s executed (301) and
iserts 1t 1nto the list of the DMA descriptors (302) 1n
a manner sorted on the basis of the visibility date 24 of
the datum A:

10

15

20

25

30

35

40

45

50

55

60

65

16

the operating system 200 may possibly request suspen-
sion of a DMA request associated with a DMA descrip-
tor whose deadline 235 1s greater than the visibility date
24 of the datum A;

the DMA controller executes the DMA requests (303)
according to the updated list of the DMA descriptors;

the DMA controller provides notification of the end of
execution of the DMA requests (304) for the operating
system 200, and the possibly suspended DMA request
can be resumed:

the operating system 200 verifies that the DMA descrip-

tors have been processed (305) before mitiating execu-
tion of the instance k+1 of the task.

FIG. 5 1s another example of implementation of the
method for executing data transfer, in an embodiment in
which the mstance k of a consuming real-time task initiates
the method to transfer a datum A.

As represented i FIG. 5, the consuming task 21 1is
associated with:

an activation date 23 for the instance k of the task, which
corresponds to the visibility date 24 of a datum C;

a deadline 235 for the instance k of the task.

The data transier 1s performed in accordance with the
following steps:

the operating system 200 creates a DMA descriptor for the
datum C once the instance k-1 of the consuming task 1is
executed (301), and 1nserts it 1n sorted fashion, on the basis
of the deadline 25 of the mstance k of the consuming task,
into the sorted list of the DMA descriptors (302) on activa-
tion of the instance k;

the operating system 200 can possibly suspend another
DMA transfer whose associated deadline 1s greater than the
deadline of the instance k of the task consuming the datum
C,

the DMA controller executes the DMA requests (303)
according to the updated list of the DMA descriptors;

the DMA controller provides notification of the end of
execution of the DMA requests (304) for the operating
system 200, and the possibly suspended DMA request can be
resumed;

the operating system 200 verifies that the DMA descrip-
tors have been processed (305) before mnitiating the execu-
tion of the current instance k of the consuming task.

Thus, in the embodiments 1n which the transfer 1s initiated
by a consuming task 21, the DMA ftransfer takes place
between activation and execution of the instance k, whereas
in the embodiments in which the transfer 1s mitiated by a
producing task 20, the DMA transier takes place between the
deadline of the 1nstance k and execution of the instance k+1.

The embodiments of the invention thus allow sequencing,
and optimization of the data transfers between communi-
cating real-time tasks, by relying on a DMA controller, from
the temporal behavior model of the tasks, while ensuring
compliance with the deadlines associated with the system
and, 11 need be, safeguarding transfer of said deadlines. The
various processors 2 can therefore be relieved of explicit
management of memory transiers. The additional processor
time that 1s thus freed can be devoted to the execution of
various application processing operations. Use of the execu-
tion resources 1s consequently optimized for strict real-time
system design.

A person skilled in the art will understand that the method
for executing data transier can be implemented 1n various
ways by hardware, soitware or a combination of hardware
and software.

The invention 1s not limited to the embodiments described
above by way of nonlimiting example. It includes all variant



US 10,229,077 B2

17

embodiments that might be envisaged by a person skilled 1n
the art. In particular, the invention 1s not limited to one
particular type of processor or DMA controller, nor to
particular capabilities for multiplexing of various DMA
requests by a DMA controller by means of communication
channels.

The invention claimed 1s:

1. A method for transferring at least one datum between
a real-time task producing a datum and a real-time task
consuming said datum, each datum being associated with a
visibility date, said method being implemented 1n a com-
puter comprising a central memory, at least one processor
and at least one direct memory access DMA controller, each
DMA controller being configured to handle data transfers
between various areas of the central memory under the
control of an operating system that 1s executed on said
processors, wherein the method comprises the following
steps, 1n response to mitiation of the transfer of a datum by
the current instance of an mitiating task:

creating, by the operating system, of at least one DMA

descriptor for describing the DMA transier expected for
said datum, after execution of a given instance of the
task:

iserting, by said operating system, of the DMA descrip-

tors 1nto a list of descriptors awaiting processing by
said DMA controller, said DMA descriptors being
inserted 1n a sorted manner based on a sorting criterion
relating to the visibility date of the data and/or on the
temporal behavior of the tasks;

processing the descriptors on said list of DMA descriptors

by executing DMA requests via the DMA controller;
and

executing of the following instance of the mitiating task

by the operating system based on the termination of the
processing a predefined set of the DMA descriptors of
said list of descriptors.

2. The method as claimed 1n claim 1, comprising a step of
verilying, by the operating system, of the termination of the
processing said predefined set of the DMA descriptors of
said list.

3. The method as claimed 1n claim 1, wherein 1nitiating,
includes producing data, and wherein creating the DMA
descriptors 1s triggered 1n response to termination of the
execution of the current instance of the mitiating task.

4. The method as claimed 1n claim 3, wherein said sorting
criterion 1s the visibility date associated with the datum to be
transferred.

5. The method as claimed 1n claim 2, wherein said set of
descriptors comprises DMA descriptors that have a visibility
date less than or equal to the activation date of the next
instance of the imitiating task, and wherein the verification
step 1s implemented by determining whether the descriptors
in said set are associated with end of processing information.

6. The method as claimed 1n claim 1, wherein the 1niti-
ating task 1s a data consuming task, and wherein the step of
creation of the DMA descriptors 1s triggered 1n response to
termination of the execution of the preceding instance of the
initiating task.

7. The method as claimed 1n claim 6, wherein the sorting
criterion 1s the expiry date of the current instance of the
initiating task.

8. The method as claimed 1n claim 6, wherein said set of
descriptors comprises the set of DMA descriptors that were
created 1n the creation step, and wherein the verification step
1s 1implemented by determining whether the descriptors 1n
said set are associated with end of processing information.

10

15

20

25

30

35

40

45

50

55

60

65

18

9. The method as claimed in claim 1, wherein said
insertion step moreover comprises temporary suspension of
DMA requests being executed by the DMA controller, said
suspension time being used by the operating system to
update the list of DMA descriptors.

10. The method as claimed i claim 2, comprising a
termination step in which the status bits of the DMA
descriptors processed in the execution step by the DMA
controller are set to indicate the end of processing of the
DMA descriptors.

11. The method as claimed 1n claim 1, comprising noti-
tying, by the DMA controller, the operating system of the
end of data transters within the central memory, wherein the
operating system 1s capable of storing end of transfer
information 1n a data structure in the form of a list of
terminated data transiers.

12. The method as claimed i1n claim 2, wherein the
verification step on a datum 1s delayed until the first instant
of use by the task of the memory area storing the datum.

13. The method as claimed 1n claim 1, wherein the
computer comprises at least one hardware memory protec-
tion mechanism associated with the DMA controller in order
to safeguard data transiers by programming via hardware
registers that are accessible by said processor, said method
comprising;

in the step of msertion of the DMA descriptors, program-

ming of the hardware registers with the memory rights
that are necessary for performing transfer of said
datum; or

on detection of an 1mvalid access by the hardware memory

protection mechanism, verification that the correspond-
ing memory access belongs to one of the DMA descrip-
tors created in the creation step for transfer of said
datum and programming of the registers of the memory
protection hardware with the memory rights that are
necessary for performing transier of said datum.

14. The method as claimed 1in claim 1, wherein the
computer comprises at least one hardware memory protec-
tion mechanism associated with the DMA controller in order
to safeguard transfers of a datum and using memory descrip-
tors with which it 1s provided by means of extensions in the
format of a DMA descriptor 1n order to include the descrip-
tion of the authorized memory rights for the DMA requests
associated with the DMA descriptor, said memory rights
being used 1n the execution step via the DMA controller in
order to program the hardware memory protection mecha-
nism with the memory rights that are necessary so as to
perform transier of said datum.

15. A computer comprising a central memory, at least one
processor and at least one direct memory access DMA
controller, each DMA controller being configured to handle
data transiers between various areas of the central memory
under the control of an operating system that 1s executed on
said processors, the computer being configured to transier at
least one datum between a real-time task producing a datum
and a real-time task consuming said datum, each datum
being associated with a visibility date, wherein, 1n response
to 1nitiation of transier of a datum by the current instance of
an 1mnitiating task: the operating system 1s capable of creating
at least one DMA descriptor in order to describe the DMA
transier expected for said datum, after execution of a given
instance of the task, and to msert DMA descriptors into a list
of descriptors awaiting processing by said DMA controller,
said DMA descriptors being inserted i a manner sorted
based on a sorting criterion relating to the visibility date of
the data and/or to the temporal behavior of the tasks; the
DMA controller 1s configured to process the descriptors 1n




US 10,229,077 B2

19

said list of DMA descriptors by executing DMA requests;
and wherein the operating system 1s moreover configured to
execute the following instance of the imtiating task based on
termination of the processing of a predefined set of the DMA

descriptors of said list of descriptors. 5

G e x Gx ex

20



	Front Page
	Drawings
	Specification
	Claims

