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1

PERFORMING MULTI-CONVOLUTION
OPERATIONS IN A PARALLEL
PROCESSING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of the U.S. Provisional

Patent Application having Ser. No. 62/043,901 and filed on
Aug. 29, 2014. The subject matter of this related application
1s hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

Embodiments of the present invention relate generally to
computer processing and, more specifically, to performing
multi-convolution operations in a parallel processing sys-
tem

Description of the Related Art

Convolutional Neural Networks (CNNs) are used to efli-
ciently and reliably solve a wide range of classification
problems. For example, CNNs are included 1n many image
recognition, handwriting recognition, and speech translation
algorithms. In operation, CNNs can substantially reduce
error rates compared to many simpler machine learning
techniques. However, the time required for CNNs to execute
usually exceeds the time required for simpler machine
learning techniques to execute. Consequently, time-sensitive
applications may be structured to i1mplement simpler
machine learning techniques at the expense ol producing
inferior results.

The time required for a CNN to execute 1s dominated by
the time required for the CNN to perform “multi-convolu-
tion” operations. A multi-convolution operation 1s a gener-
alized form of a two-dimension convolution operation
between an 1image and a filter. The multi-convolution opera-
tion 1s oftentimes implemented using a direct calculation
method or using Fast Fourier Transforms (FFTs). While
direct calculation techniques and FFT-based techniques may
cnable some multi-convolution operations to be 1mple-
mented more ethiciently, such techniques normally are
unable to cause multi-convolution operations to execute
ciiciently over the wide range of dimensions and additional
parameters associated with standard CNNs.

More specifically, a CNN typically includes multiple
“convolution layers,” where each convolution layer per-
forms convolution operations across four dimensions of an
image batch and four dimensions of a filter stack. The four
dimensions of the image batch include the image width, the
image height, the number of color planes per image, and the
number of 1mages 1n the image batch. The four dimensions
of the filter stack include the filter width, the filter height, the
number of feature planes per filter, and the number of filters
in the filter stack. Additional parameters may further cus-
tomize the multi-convolution operations. For example, a
horizontal filter stride and a vertical filter stride may reduce
the overall computational load by decreasing the size of the
subset of pixels mvolved in the convolution operation.
Notably, the dimensions of the image batch and the filter
batch as well as the additional parameters often vary
between convolution layers.

Direct calculation techniques are typically tuned to opti-
mize multi-convolution operations across a relatively small
subset of dimensions and parameters. However, the perfor-
mance of direct calculation techniques across other dimen-
sions and parameters usually exceeds the time required to
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execute simpler machine learning techniques. Consequently,
the time required to execute many CNNs using direct

calculation techniques 1s typically unacceptably long. The
time required to execute many CNNs using FFT-based
approaches also varies dramatically based on the values of
the parameters. In particular, 11 the horizontal stride or the
vertical stride associated with a multi-convolution operation
1s greater than one, then the time required to execute the
multi-convolution operation using FFT-based techniques
may be prohibitively long.

In one approach to reducing the time required to execute
CNNs across a wide range of parameter values, a convolu-
tion engine “unrolls” the multi-convolution operations by
replacing the conventional processing of each convolution
layer with matrix-based operations. In operation, the con-
volution engine converts the image stack mto a column
major image matrix and expresses the filter stack as a filter
matrix. To reduce the performance degradation associated
with fetching data from ofl-chip memory, the convolution
engine stores the 1image matrix and the filter stack 1n on-chip
memory. Subsequently, the convolution engine performs
matrix multiplication operations between the 1image matrix
and the filter stack. Notably, the dimensions of the image
matrix and the filter matrix correlate to products of subsets
of the mndependent parameters of the CNN 1instead of the
individual parameters. Consequently, matrix-based tech-
niques exhibit relatively uniform performance characteris-
tics across the different mput dimensions and parameters.
Further, because many processing units include highly-
tuned implementations of matrix multiplication functions,
the time required to execute a CNN wvia the foregoing
approach may be significantly less than the time required to
execute the CNN using direct calculation or FFT-based
techniques.

One drawback of matrix-based convolution engines 1s
that, as part of converting the 1mage stack to properly set up
the matrix multiplication operations, the convolution engine
has to copy the 1image data to multiple locations included 1n
the 1mage matrix. Consequently, the size of the image matrix
may 1ncrease to the point where the available on-chip
memory 1s completely consumed. For example, suppose that
the 1image width were W, the image height were H, the
number of color planes per image were C, and the number
of 1images in the image batch were N. Further, suppose that
the dimensions of each of the output 1mages were (PxQ). In
such a scenario, the dimensions of the 1mage matrix would
be (NxPxQ)x(CxRxS). Notably, for many applications, the
memory required to store the 1mage matrix may exceed the
available on-chip memory. Consequently, those applications
are relegated to implementing either less eflicient CNN
techniques or less accurate machine learning techniques.

As the foregoing illustrates, what 1s needed 1n the art 1s a
more eflective approach to performing multi-convolution
operations.

SUMMARY OF THE INVENTION

One embodiment of the present immvention sets forth a
computer-implemented method for performing a multi-con-
volution operation. The method 1ncludes calculating a first
source location included 1n an 1image batch that 1s stored 1n
a first memory based on a first destination location included
in a first image tile that 1s stored 1n a second memory;
copying data from the first source location to the first
destination location; copying data from a filter source loca-
tion included in a filter stack that i1s stored in the first
memory to a filter destination location included 1n a first
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filter tile that 1s stored 1n the second memory; and performs-
ing one or more matrix multiplication operations between
the first image tile and the first filter tile to generate a first
output tile associated with an output matrix that is stored 1n
the second memory.

Further embodiments provide, among other things, a
non-transitory computer-readable medium and a system
configured to implement the method set forth above.

One advantage of the disclosed techniques i1s that appli-
cations can exploit optimized implementations of matrix
multiplication functions to ethciently perform multi-convo-
lution operations while optimizing on-chip memory usage.
More specifically, by processing each image tile of a virtual
image matrix independently of the other image tiles, on-chip
memory usage 1s minimized. Notably, applications may
implement convolutional neural networks (CNNs) based on
the disclosed techniques to minimize error rates while
optimizing both on-chip memory usage and execution time.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner 1n which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are 1llustrated in the appended drawings. It 1s to be
noted, however, that the appended drawings 1illustrate only
typical embodiments of this mvention and are therefore not
to be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1 1s a block diagram illustrating a computer system
configured to implement one or more aspects of the present
invention;

FIG. 2 1s a block diagram of a parallel processing unit
included 1n the parallel processing subsystem of FIG. 1,
according to one embodiment of the present invention;

FIG. 3 1s a block diagram of a general processing cluster
included 1n the parallel processing unit of FIG. 2, according
to one embodiment of the present invention;

FIG. 4 illustrates an 1image batch, a filter stack, and an
output batch associated with a multi-convolution operation,
according to one embodiment of the present invention.

FIG. 5 illustrates the relationships between the image
batch 410 of FIG. 4, a virtual image matrix, and a set of
image tiles, according to one embodiment of the present
invention;

FIG. 6 illustrates the streaming multiprocessor of FIG. 3
configured to perform a multi-convolution operation,
according to one embodiment of the present invention;

FI1G. 7 illustrates indexing operations that the convolution
engine of FIG. 1 may implement to generate the image tiles
of FIG. § during a multi-convolution operation, according to
one embodiment of the present invention; and

FIG. 8 1s a flow diagram of method steps for performing
a multi-convolution operation in a parallel processing sys-
tem, according to one embodiment of the present invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding of the
present invention. However, 1t will be apparent to one of
skill 1n the art that the present invention may be practiced
without one or more of these specific details.

System Overview

FIG. 1 1s a block diagram 1illustrating a computer system
100 configured to implement one or more aspects of the
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present invention. As shown, computer system 100 includes,
without limitation, a central processing unit (CPU) 102 and
a system memory 104 coupled to a parallel processing
subsystem 112 via a memory bridge 105 and a communi-
cation path 113. Memory bridge 105 1s further coupled to an
I/O (anput/output) bridge 107 via a commumnication path 106,
and I/0 bridge 107 1s, 1n turn, coupled to a switch 116.

In operation, I/O bridge 107 1s configured to receive user
input information from mmput devices 108, such as a key-
board or a mouse, and forward the input information to CPU
102 for processing via communication path 106 and memory
bridge 105. Switch 116 1s configured to provide connections
between 1I/O bridge 107 and other components of the com-
puter system 100, such as a network adapter 118 and various
add-in cards 120 and 121.

As also shown, I/O bridge 107 1s coupled to a system disk
114 that may be configured to store content and applications
and data for use by CPU 102 and parallel processing
subsystem 112. As a general matter, system disk 114 pro-
vides non-volatile storage for applications and data and may
include fixed or removable hard disk drives, flash memory

devices, and CD-ROM (compact disc read-only-memory),
DVD-ROM (digital versatile disc-ROM), Blu-ray,

HD-DVD (high definition DV D), or other magnetic, optical,
or solid state storage devices. Finally, although not explicitly
shown, other components, such as universal serial bus or
other port connections, compact disc drives, digital versatile
disc drives, film recording devices, and the like, may be
connected to I/O bridge 107 as well.

In various embodiments, memory bridge 105 may be a
Northbridge chip, and I/O bridge 107 may be a Southbrige
chip. In addition, communication paths 106 and 113, as well
as other communication paths within computer system 100,
may be implemented using any technically suitable proto-
cols, including, without limmitation, AGP (Accelerated
Graphics Port), Hyperlransport, or any other bus or point-
to-point communication protocol known 1n the art.

In some embodiments, parallel processing subsystem 112
comprises a graphics subsystem that delivers pixels to a
display device 110 that may be any conventional cathode ray
tube, liqud crystal display, light-emitting diode display, or
the like. In such embodiments, the parallel processing sub-
system 112 incorporates circuitry optimized for graphics and
video processing, including, for example, video output cir-
cuitry. As described 1n greater detail below 1n FIG. 2, such
circuitry may be incorporated across one or more parallel
processing units (PPUs) included within parallel processing
subsystem 112. In other embodiments, the parallel process-
ing subsystem 112 incorporates circuitry optimized for gen-
eral purpose and/or compute processing. Again, such cir-
cuitry may be incorporated across one or more PPUs
included within parallel processing subsystem 112 that are
configured to perform such general purpose and/or compute
operations. In yet other embodiments, the one or more PPUs
included within parallel processing subsystem 112 may be
configured to perform graphics processing, general purpose
processing, and compute processing operations.

As shown, the system memory 104 includes at least one
device driver 103 and a convolution engine 125. The device
driver 103 1s configured to manage the processing operations
of the one or more PPUs within parallel processing subsys-
tem 112. The convolution engine 125 configures the parallel
processing subsystem 112 to efliciently perform multi-con-
volution operations. Notably, such multi-convolution opera-
tions dominate the time required to execute Convolutional
Neural Networks (CNN). Although not shown, the system

memory 104 also includes any number of software applica-
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tions that execute on the CPU 102, may 1ssue commands that
control the operation of the PPUs, and may leverage the
convolution engine 125 to efliciently execute CNNs.

In various embodiments, parallel processing subsystem
112 may be integrated with one or more other the other
clements of FIG. 1 to form a single system. For example,
parallel processing subsystem 112 may be integrated with
CPU 102 and other connection circuitry on a single chip to
form a system on chip (SoC).

It will be appreciated that the system shown herein 1s
illustrative and that variations and modifications are pos-
sible. The connection topology, including the number and
arrangement of bridges, the number of CPUs 102, and the
number of parallel processing subsystems 112, may be
modified as desired. For example, in some embodiments,
system memory 104 could be connected to CPU 102 directly
rather than through memory bridge 105, and other devices
would communicate with system memory 104 via memory
bridge 105 and CPU 102. In other alternative topologies,
parallel processing subsystem 112 may be connected to 1I/O
bridge 107 or directly to CPU 102, rather than to memory
bridge 105. In still other embodiments, I/O bridge 107 and
memory bridge 105 may be integrated into a single chip
instead of existing as one or more discrete devices. Lastly,
in certain embodiments, one or more components shown 1n
FIG. 1 may not be present. For example, switch 116 could
be eliminated, and network adapter 118 and add-in cards
120, 121 would connect directly to I/O bridge 107.

FIG. 2 1s a block diagram of a parallel processing unit
(PPU) 202 1ncluded 1n the parallel processing subsystem 112
of FIG. 1, according to one embodiment of the present
invention. Although FIG. 2 depicts one PPU 202, as 1ndi-
cated above, parallel processing subsystem 112 may include
any number of PPUs 202. As shown, PPU 202 1s coupled to
a local parallel processing (PP) memory 204. PPU 202 and
PP memory 204 may be implemented using one or more
integrated circuit devices, such as programmable processors,
application specific integrated circuits (ASICs), or memory
devices, or 1n any other technically feasible fashion.

In some embodiments, PPU 202 comprises a graphics
processing unit (GPU) that may be configured to implement
a graphics rendering pipeline to perform various operations
related to generating pixel data based on graphics data
supplied by CPU 102 and/or system memory 104. When
processing graphics data, PP memory 204 can be used as
graphics memory that stores one or more conventional frame
butlers and, 1f needed, one or more other render targets as
well. Among other things, PP memory 204 may be used to
store and update pixel data and deliver final pixel data or
display frames to display device 110 for display. In some
embodiments, PPU 202 also may be configured for general-
purpose processing and compute operations.

In operation, CPU 102 1s the master processor of com-
puter system 100, controlling and coordinating operations of
other system components. In particular, CPU 102 1ssues
commands that control the operation of PPU 202. In some
embodiments, CPU 102 writes a stream of commands for
PPU 202 to a data structure (not explicitly shown in either
FIG. 1 or FIG. 2) that may be located in system memory 104,
PP memory 204, or another storage location accessible to
both CPU 102 and PPU 202. A pointer to the data structure

1s written to a pushbuller to mitiate processing of the stream
of commands in the data structure. The PPU 202 reads

command streams from the pushbufler and then executes
commands asynchronously relative to the operation of CPU
102. In embodiments where multiple pushbuflers are gen-
erated, execution priorities may be specified for each push-
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bufler by an application program via device driver 103 to
control scheduling of the diflerent pushbuflers.

As also shown, PPU 202 includes an I/O (input/output)
unmt 205 that communicates with the rest of computer system
100 via the communication path 113 and memory bridge
105. I/O unit 205 generates packets (or other signals) for
transmission on communication path 113 and also receives
all incoming packets (or other signals) from communication
path 113, directing the incoming packets to approprate
components of PPU 202. For example, commands related to
processing tasks may be directed to a host interface 206,
while commands related to memory operations (e.g., reading
from or writing to PP memory 204) may be directed to a
crossbar unit 210. Host interface 206 reads each pushbuiler
and transmits the command stream stored 1n the pushbutler
to a front end 212.

As mentioned above i conjunction with FIG. 1, the
connection of PPU 202 to the rest of computer system 100
may be varied. In some embodiments, parallel processing
subsystem 112, which includes at least one PPU 202, 1s
implemented as an add-in card that can be mnserted into an
expansion slot of computer system 100. In other embodi-
ments, PPU 202 can be integrated on a single chip with a bus
bridge, such as memory bridge 105 or IO bridge 107. Again,
in still other embodiments, some or all of the elements of
PPU 202 may be included along with CPU 102 in a single
integrated circuit or system of chip (SoC).

In operation, front end 212 transmits processing tasks
received from host interface 206 to a work distribution unit
(not shown) within task/work unit 207. The work distribu-
tion unit receives pointers to processing tasks that are
encoded as task metadata (1 MD) and stored in memory. The
pointers to TMDs are included 1n a command stream that 1s
stored as a pushbufler and receirved by the front end unit 212
from the host interface 206. Processing tasks that may be
encoded as TMDs include 1indices associated with the data to
be processed as well as state parameters and commands that
define how the data 1s to be processed. For example, the state
parameters and commands could define the program to be
executed on the data. The task/work unit 207 receives tasks
from the front end 212 and ensures that GPCs 208 are
configured to a valid state before the processing task speci-
fied by each one of the TMDs 1s 1nitiated. A priority may be
specified for each TMD that 1s used to schedule the execu-
tion of the processing task. Processing tasks also may be
received from the processing cluster array 230. Optionally,
the TMD may include a parameter that controls whether the
TMD 1s added to the head or the tail of a list of processing
tasks (or to a list of pointers to the processing tasks), thereby
providing another level of control over execution priority.

PPU 202 advantageously implements a highly parallel
processing architecture based on a processing cluster array
230 that includes a set of C general processing clusters
(GPCs) 208, where Cz1. Each GPC 208 1s capable of
executing a large number (e.g., hundreds or thousands) of
threads concurrently, where each thread 1s an instance of a
program. In various applications, different GPCs 208 may be
allocated for processing diflerent types of programs or for
performing different types of computations. The allocation
of GPCs 208 may vary depending on the workload arising
for each type of program or computation.

Memory interface 214 includes a set of D of partition
units 215, where D=1. Each partition unit 215 1s coupled to
one or more dynamic random access memories (DRAMs)
220 residing within PPM memory 204. In one embodiment,
the number of partition units 215 equals the number of
DRAMs 220, and each partition unit 215 i1s coupled to a
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different DRAM 220. In other embodiments, the number of
partition units 215 may be diflerent than the number of
DRAMs 220. Persons of ordmnary skill i the art will
appreciate that a DRAM 220 may be replaced with any other
technically suitable storage device. In operation, various
render targets, such as texture maps and frame builers, may
be stored across DRAMs 220, allowing partition units 215
to write portions of each render target in parallel to efli-
ciently use the available bandwidth of PP memory 204.

A given GPCs 208 may process data to be written to any
of the DRAMs 220 within PP memory 204. Crossbar unit
210 15 configured to route the output of each GPC 208 to the
input of any partition unit 2135 or to any other GPC 208 for
turther processing. GPCs 208 communicate with memory
interface 214 via crossbar unit 210 to read from or write to
various DRAMs 220. In one embodiment, crossbar unit 210
has a connection to I/O unit 205, 1n addition to a connection
to PP memory 204 via memory interface 214, thereby
enabling the processing cores within the different GPCs 208
to communicate with system memory 104 or other memory
not local to PPU 202. In the embodiment of FIG. 2, crossbar
unit 210 1s directly connected with I/O umt 205. In various
embodiments, crossbar umit 210 may use virtual channels to
separate tratlic streams between the GPCs 208 and partition
units 2135.

Again, GPCs 208 can be programmed to execute process-
ing tasks relating to a wide variety of applications, includ-
ing, without limitation, linear and nonlinear data transforms,
filtering of video and/or audio data, modeling operations
(e.g., applying laws of physics to determine position, veloc-
ity and other attributes of objects), image rendering opera-
tions (e.g., tessellation shader, vertex shader, geometry
shader, and/or pixel/fragment shader programs), general
compute operations, etc. In operation, PPU 202 1s config-
ured to transfer data from system memory 104 and/or PP
memory 204 to one or more on-chip memory units, process
the data, and write result data back to system memory 104
and/or PP memory 204. The result data may then be
accessed by other system components, including CPU 102,
another PPU 202 within parallel processing subsystem 112,
or another parallel processing subsystem 112 within com-
puter system 100.

As noted above, any number of PPUs 202 may be
included in a parallel processing subsystem 112. For
example, multiple PPUs 202 may be provided on a single
add-in card, or multiple add-in cards may be connected to
communication path 113, or one or more of PPUs 202 may
be mtegrated mto a bridge chip. PPUs 202 in a multi-PPU
system may be 1dentical to or different from one another. For
example, different PPUs 202 might have different numbers
of processing cores and/or different amounts of PP memory
204. In mmplementations where multiple PPUs 202 are
present, those PPUs may be operated 1n parallel to process
data at a higher throughput than i1s possible with a single
PPU 202. Systems incorporating one or more PPUs 202 may
be mmplemented in a varniety of configurations and form
factors, including, without limitation, desktops, laptops,
handheld personal computers or other handheld devices,
servers, workstations, game consoles, embedded systems,

and the like.

FIG. 3 1s a block diagram of a GPC 208 included 1n PPU
202 of FIG. 2, according to one embodiment of the present
invention. In operation, GPC 208 may be configured to
execute a large number of threads in parallel to perform
graphics, general processing and/or compute operations. As
used herein, a “thread” refers to an instance of a particular
program executing on a particular set of input data. In some
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embodiments, single-instruction, multiple-data (SIMD)
instruction 1ssue techniques are used to support parallel
execution of a large number of threads without providing
multiple independent instruction units. In other embodi-
ments, single-mnstruction, multiple-thread (SIMT) tech-
niques are used to support parallel execution of a large
number of generally synchronized threads, using a common
instruction unit configured to issue instructions to a set of
processing engines within GPC 208. Unlike a SIMD execu-
tion regime, where all processing engines typically execute
identical 1nstructions, SIMT execution allows diflerent
threads to more readlly follow divergent execution paths
through a given program. Persons of ordinary skill in the art
will understand that a SIMD processing regime represents a
functional subset of a SIMT processing regime.

Operation of GPC 208 1s controlled via a pipeline man-
ager 305 that distributes processing tasks received from a
work distribution unit (not shown) within task/work unit 207
to one or more streaming multiprocessors (SMs) 310. Pipe-
line manager 305 may also be configured to control a work
distribution crossbar 330 by specilying destinations for

processed data output by SMs 310.
In one embodiment, GPC 208 includes a set of M of SMs

310, where M=1. Also, each SM 310 includes a set of
functional execution units (not shown i FIG. 3), such as
execution units and load-store units. Processing operations
specific to any of the functional execution units may be
pipelined, which enables a new 1nstruction to be 1ssued for
execution before a previous instruction has completed
execution. Any combination of functional execution units
within a given SM 310 may be provided. In various embodi-
ments, the functional execution umts may be configured to
support a variety ol different operations including integer
and floating-point arithmetic (e.g., addition and multiplica-
tion), comparison operations, Boolean operations (AND,
OR, XOR), bit-shifting, and computation of various alge-
braic functions (e.g., planar interpolation and trigonometric,
exponential, and logarithmic functions, etc.). Advanta-
geously, the same functional execution unit can be config-
ured to perform different operations.

In operation, each SM 310 1s configured to process one or
more thread groups. As used herein, a “thread group” or
“warp” refers to a group of threads concurrently executing
the same program on different input data, with one thread of
the group being assigned to a diflerent execution unit within
an SM 310. A thread group may include fewer threads than
the number of execution units within the SM 310, 1n which
case some of the execution may be 1dle during cycles when
that thread group 1s being processed. A thread group may
also include more threads than the number of execution units
within the SM 310, 1n which case processing may occur over
consecutive clock cycles. Since each SM 310 can support up
to G thread groups concurrently, 1t follows that up to G*M
thread groups can be executing in GPC 208 at any given
time.

Additionally, a plurality of related thread groups may be
active (in different phases of execution) at the same time
within an SM 310. This collection of thread groups 1s
referred to herein as a “cooperative thread array” (“CTA”) or
“thread array.” The size of a particular CTA 1s equal to m*k,
where k 1s the number of concurrently executing threads in
a thread group, which 1s typically an integer multiple of the
number of execution units within the SM 310, and m 1s the

number of thread groups simultaneously active within the
SM 310.
Although not shown 1n FIG. 3, each SM 310 contains a

level one (LL1) cache or uses space in a corresponding L1
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cache outside of the SM 310 to support, among other things,
load and store operations performed by the execution units.

Each SM 310 also has access to level two (L2) caches (not
shown) that are shared among all GPCs 208 1n PPU 202. The
[.2 caches may be used to transfer data between threads.
Finally, SMs 310 also have access to off-chip “global”
memory, which may include PP memory 204 and/or system
memory 104. It 1s to be understood that any memory
external to PPU 202 may be used as global memory.
Additionally, as shown i1n FIG. 3, a level one-point-five
(L1.5) cache 335 may be included within GPC 208 and
configured to recerve and hold data requested from memory
via memory interface 214 by SM 310. Such data may
include, without limitation, instructions, uniform data, and
constant data. In embodiments having multiple SMs 310
within GPC 208, the SMs 310 may beneficially share
common 1nstructions and data cached 1n L1.5 cache 335.

Each GPC 208 may have an associated memory manage-
ment unit (MMU) 320 that i1s configured to map virtual
addresses 1nto physical addresses. In various embodiments,
MMU 320 may reside either within GPC 208 or within the
memory interface 214. The MMU 320 includes a set of page
table entries (PTEs) used to map a virtual address to a
physical address of a tile or memory page and optionally a
cache line index. The MMU 320 may include address
translation lookaside buflers (TLB) or caches that may
reside within SMs 310, within one or more L1 caches, or
within GPC 208.

In graphics and compute applications, GPC 208 may be
configured such that each SM 310 1s coupled to a texture unit
315 for performing texture mapping operations, such as
determining texture sample positions, reading texture data,
and filtering texture data.

In operation, each SM 310 transmits a processed task to
work distribution crossbar 330 i order to provide the
processed task to another GPC 208 for further processing or
to store the processed task in an L2 cache (not shown),
parallel processing memory 204, or system memory 104 via
crossbar unit 210. In addition, a pre-raster operations
(preROP) unit 325 1s configured to receive data from SM
310, direct data to one or more raster operations (ROP) units
within partition umts 215, perform optimizations for color
blending, organize pixel color data, and perform address
translations.

It will be appreciated that the core architecture described
herein 1s illustrative and that vanations and modifications
are possible. Among other things, any number of processing
units, such as SMs 310, texture units 313, or preROP units
325, may be included within GPC 208. Further, as described
above 1n conjunction with FIG. 2, PPU 202 may include any
number of GPCs 208 that are configured to be functionally
similar to one another so that execution behavior does not
depend on which GPC 208 receives a particular processing
task. Further, each GPC 208 operates independently of the
other GPCs 208 in PPU 202 to execute tasks for one or more
application programs. In view of the foregoing, persons of
ordinary skill in the art will appreciate that the architecture
described i FIGS. 1-3A 1n no way limits the scope of the
present mvention.

Generating Image Tiles

In general, the SM 310 may be configured to execute a
large number of threads in parallel to perform graphics,
general processing and/or compute operations. Notably, the
concurrency and dedicated memory resources provided by
the SM 310 typically allow the SM 310 to optimize the
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execution of computationally-intensive operations. One
computationally-intensive operation that 1s particularly
well-suited for execution by the SM 310 1s the multi-
convolution operation. Typically, conventional techniques
that leverage parallel processing subsystems to perform
multi-convolution operations exploit optimized implemen-
tations of matrix multiplication functions provided by the
SMs 310.

One limitation of such matrix-based approaches to per-
forming multi-convolution operations is that the memory
required to set-up eflicient matrix multiplication operations
may strain the available on-chip memory dedicated to the
SM 310, such as the L1 cache. Such on-chip memory 1s also
referred to herein as “shared” memory. More specifically, to
ecnable the SM 310 to efliciently perform matrix multiplica-
tion operations while reducing time-consuming data fetches
from off-chip memory (e.g., the PP memory 204), matrix-
based approaches typically create and store an 1mage matrix
in the shared memory. However, the image matrix that 1s the
input to the matrix multiplication 1s a bloated version—
containing significant redundant data—of the 1image batch
that 1s the mput to the multi-convolution 1image. Accord-
ingly, to exploit the optimized matrix multiplication func-
tions 1mplemented i the SM 310 without straining the
shared memory, the convolution engine 1235 configures the
SM 310 to execute matrix multiplication operations on
sub-matrices, referred to herein as tiles, of the image stack.

FIG. 4 1llustrates an 1mage batch 410, a filter stack 440,
and an output batch 470 associated with a multi-convolution
operation, according to one embodiment of the present
invention. In the context of FIG. 4, the streaming multipro-
cessor (SM) 310 1s configured to perform a multi-convolu-
tion operation between the 1mage batch 410 and the filter
stack 440 to produce the output batch 470. The multi-
convolution operation corresponds to the predominant cal-
culation involved 1n executing a particular convolution layer
included 1 a CNN.

As shown, the 1image batch 410 includes, without limita-
tion, any number of input images 420(0:N-1). For explana-
tory purposes, multiple instances of like objects are denoted
with reference numbers i1dentifying the object and paren-
thetical numbers i1dentifying the instance where needed.
Further, a range of “X” like objects are denoted with a
parenthetical range (i.e., (0:X-1)). Each of the input images
420 includes, without limitation, any number of color planes
430(0:C-1). For example, each of the input images 420 may
include three color planes 430: the color plane 430(0)
“red”,” the color plane 430(1) “green,” and the color plane
430(2) “blue.” Each of the input images 420 1s associated
with an 1mage height, shown as “H.,” and an 1image width,
shown as “W.” Notably, the image height and the image
width define the dimensions of each of the color planes 430.
Accordingly, the image batch 410 includes (NxCxHxW)
unmique values.

In a complementary fashion, the filter stack 440 includes,
without limitation, any number of filters 450(0:K-1). In
some embodiments, each of the filters 450 may represent a
triggering search 1tem associated with the layer of the CNN.
For example, the CNN may be included 1n a face recognition
algorithm, and the filter 450(0) may represent an ear. Each
of the filters 450 includes, without limitation, features planes
460(0:C-1), where the number of the feature planes 460 1s
equal to the number of the color planes 430. Each of the
filters 450 1s associated with a filter height, shown as “R.,”
and an filter width, shown as “S.” The filter height and the
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filter width define the dimensions of each of the feature
planes 460 and, therefore, the filter stack 440 includes
(KxCxRxS) umique values.

As also shown, there are nine parameters 465 associated
with the multi-convolution operation. The dimensions of the
image batch 410 and the filter stack 440 represent five
independent parameters of the multi-convolution operation:
N (the number of the input 1images 420 1n the image batch
410), C (the number of the color planes 430 1n each of the

input 1images 420 and the number of the feature planes 460
in each of the filters 450), H (the image height), W (the

image width), K (the number of the filters 450 1n the filter

stack 440), R (the filter height), and S (the filter width). The
parameters 465 also include, without limitation, V (a hori-

zontal filter stride), U (a vertical filter stride), PAD_H (a
padding height), and PAD_W (a padding width). The hori-
zontal filter stride and the vertical filter stride reduce the
computational load by decreasing the size of the subset of
pixels involved 1n the multi-convolution operation. Notably,
the horizontal filter stride and the vertical filter stride not
only reduce the time required to perform the multi-convo-
lution operation, but also reduce the size of the output batch
4’70 produced by the multi-convolution operation. The pad-
ding height (PAD_H) and the padding width (PAD_W)
append, respectively, rows of zeros and columns of zeros to
output 1mages 480 included in the output batch 470 for any
technical reason, such as formatting for future operations.

The output batch 470 includes, without limitation, the
output 1mages 480(0:N-1), where the number of the output
images 480 equals the number of the input images 420. Each
of the output images 480 includes, without limitation, fea-
ture maps 490(0:K-1), where the number of the feature
maps 490 equals the number of the filters 450. Each of the
output 1mages 480 1s associated with an output height,
shown as “P,” and an output width, shown as “Q.” The
output height and the output width define the dimensions of
the features maps 490. Accordingly, the output batch 470
includes (NxKxPx()) unique values.

As previously disclosed herein, the convolution engine
125 leverages the optimized matrix multiplication capabili-
ties of the SM 310 to efliciently perform the multi-convo-
lution operation. As persons skilled 1n the art will recognize,
the multi-convolution operation between the input batch 410
and the filter stack 440 may be converted to matrix multi-
plication operations between an 1mage matrix and a filter
matrix. The conversion operations are well-known 1n the art
and result 1n deterministic relationships between the values
included 1n the mput batch 410 and the values included 1n
the 1mage matrix. In a complementary fashion, the conver-
s10n operations result in deterministic relationships between
the values 1ncluded in the filter stack 440 and the values
included 1n the filter matrix. To optimize the use of the
shared memory, the convolution engine 125 does not create
cither the 1mage matrix or the filter matrix, however the
convolution engine 125 configures the SM 310 based on
these deterministic relationships.

FIG. S 1llustrates relationships between the image batch
410 of FIG. 4, a virtual image matrix 510, and a set of image
tiles 542, according to one embodiment of the present
invention. FIG. § also illustrates relationships between the
filter stack 440 of FIG. 4, a virtual filter matrix 540, and filter
tiles 544. For explanatory purposes, the parameters 463, and
consequently the dimensions of the image batch 410, the
virtual image matrix 510, the filter stack 440, and the virtual
filter matrix 540, are: N=1, C=2, H=3, W=3, K=2, R=2, S=2,
U=1, V=1, PAD_H=0, and PAD_W=0.
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As part of the conversion between the image batch 410
and the virtual 1image matrix 510, each of the rows of the
virtual 1mage matrix 510 1s associated with the values
included in the image batch 410 that are required to compute
one or more of the output images 480 included 1n the output
batch 470. Such a conversion includes duplication of some
of the values included 1n the 1mage batch 410. For example,
as depicted for the value “D4,” the center of each of the
three-by-three color planes 410 1s used four times to com-
pute each of four feature maps 490 and, consequently, each
of the center values (e.g., the “D4” values) 1s associated with
four separate rows of the virtual 1image matrix 510. As a
result, multiple locations in the virtual image matrix 510 are
associated with a single location in the 1image batch 410. In
a complementary manner, each of the columns of the virtual
filter matrix 540 contains the values included in the filter
stack 440 that are required to compute one or more of the
output 1mages 480 included 1n the output batch 470.

In general, 11 the dimensions of the iput batch 410 are
(NxCxHxW), the dimensions of the filter stack 440 are
(KxCxRxS), and the dimensions of the output batch 470 are
(NxKxPx(Q), then the dimensions of the virtual image
matrix 510 are (CxRxS)x(NxPxQ)), the dimensions of the
virtual filter matrix 5340 are Kx(CxRxS), and the dimensions
of the output matrix (not shown) are Kx(NxPxQ). For the
example shown 1n FIG. §, the dimensions of the mput batch
410 are (1x3x3x3), the dimensions of the filter stack 440 are
(2x3x2x2), and the dimensions of the output batch 470 are
(1x2x2x2). Consequently, the dimensions of the virtual
image matrix 510 are (12x4), the dimensions of the virtual
filter matrix 540 are (2x12) and the dimensions of the output
matrix (not shown) are (2x4).

Notably, because the dimensions of the virtual image
matrix 510 are products of the independent parameters
associated with the multi-convolution operation, the matrix-
based multi-convolution operation exhibits relatively uni-
form behavior across varying parameters. For example,
although the parameters C, R, and S may individually vary
dramatically across the multi-convolution operations asso-
ciated with different layers of a particular CCN, the products
of the parameters C, R, and S typically do not vary dramati-
cally across the multi-convolution operations. Consequently,
the optimized performance of the matrix-based multi-con-
volution operation 1s relatively consistent across changes in
the values of imndividual parameters.

As the (CxRxS)x(NxPx(Q) dimensions of the virtual
image matrix 510 1llustrate, stmultaneously and redundantly
storing the values associated with all the locations included
in the wvirtual image matrix 510 may strain the shared
memory. Consequently, the convolution engine 1235 config-
ures the SM 310 to manifest and process the virtual image
matrix 510 1 a “lazy” manner. More specifically, the con-
volution engine 125 partitions the virtual image matrix 510
into separate 1mage tiles 542, and then configures the SM
310 to process the image tiles 542. Further, the convolution
engine 123 associates each of the locations included 1n each
of the image tiles 542 with a virtual location included in the
virtual image matrix 510. For example, as depicted 1n FIG.
5, the convolution engine 125 associates the four locations
include in the image tile 542(11) with the four locations
included 1n the lower right corner of the virtual image matrix
510.

Each of the locations included in the virtual image matrix
510 1s related deterministically to a location included in the
image batch 410. Consequently, each of the locations
included 1n the 1image tiles 5342 1s deterministically related to
a location 1included 1n the 1image batch 410. Accordingly, the
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convolution engine 125 may perform indexing operations
that enable the convolution engine 1235 to copy the proper

data from the image batch 410 directly to each location
included 1n each of the image tiles 542 without creating the
virtual mmput matrix 510. An example of such indexing
operations 1s described 1n greater detail in FIG. 7.

As part of processing each of the image tiles 542, the SM
310 loads data from the image batch 410 to form the image
tile 542, and loads data from the filter stack 440 to form the
corresponding filter tile 544. The SM 310 then performs
matrix multiplication operations between the 1mage tile 542
and the filter tile 544, stores the result as an output tile 1n the
shared memory, and then discards the data include in the
image tile 542 and the filter tile 544. Consequently, at any
given point i time, the shared memory includes the image
tiles 542 that the SM 310 1s currently processing, does not
include the image tiles 542 that the SM 310 has already
processed, and does not include the image tiles 342 that the
SM 310 has not begun processing.

The convolution engine 125 may set the size of the image
tile 542 1n any technically feasible fashion that optimizes the
capabilities of the SM 310. For example, the convolution
engine 125 may set the size of the image tile 542 based on
any number and combination of the size of the shared
memory (e.g., the L1 cache), the number of threads 1n each
thread group, and so forth. In alternate embodiments, the
convolution engine 125 may receive the size of the image
tile 542 as an auxiliary mput to the multi-convolution
operation. The convolution engine 1235 sets the size of the
filter tile 544 based on the size of the image tile 542. More
specifically, the convolution engine 125 sets the size of the
filter tile 545 such that the matrix multiplication between
cach the image tiles 542 and the corresponding filter tile 544
produces the data to properly populate an output tile.

In alternate embodiments, the convolution engine 125
may configure the SP 310 based on any technically feasible
implementation of the virtual 1mage matrix 510 and the
virtual filter matrix 540 that facilitate performing the multi-
convolution operation via matrix multiplication operations.
Further, the convolution engine 125 may partition the data
included 1n the virtual image matrix 510 and the virtual filter
matrix 540 into image tiles 542 and filter tiles 544 1n any
technically feasible, consistent fashion.

Performing Matrix-Based Multi-Convolution
Operations

FIG. 6 illustrates the streaming multiprocessor 310 of
FIG. 3 configured to perform a multi-convolution operation,
according to one embodiment of the present invention. In the
context of FIG. 4, the convolution engine 125 configures
functional units (e.g., execution units, load-store units, etc.)
included 1n the streaming multiprocessor (SM) 310 to per-
form operations that implement multi-convolution opera-
tions. For explanatory purposes, operations performed by
the SM 310, including the functional execution units, that
are configured by the convolution engine 125 are also
referred to herein as operations performed by the convolu-
tion engine 125.

In operation, to exploit the parallel processing capabilities
of the SM 310, the convolution engine 1235 assigns the
processing ol each of the image tiles 542 to a thread group
or a thread array. Further, for each of the image tiles 542, the
convolution engine 125 assigns the processing of each of the
locations included 1n the 1image tile 542 to a thread included
in the assigned thread group. As persons skilled 1n the art
will recognize, the convolution engine 1235 may assign any
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number of 1mage tiles 342 to a single thread group and/or
may assign any number of locations to a single thread. If a
thread group 1s assigned to process multiple 1mage tiles 542,
then the thread group may sequentially process the assigned
image tiles 542 or may distribute the processing in any
technically feasible fashion between the threads included in
the thread group. I a thread 1s assigned to process multiple
locations included 1n the image tile 542, then the thread may
sequentially process the assigned locations.

Advantageously, the convolution engine 125 may config-
ure the SM 310 to pipeline the processing of the image tiles
542 to mimmize the latency associated with accessing the
input data included in the PP memory 210. More specifi-
cally, the convolution engine 125 may configure the SM 310
to copy data included 1n the 1mage batch 410 and the filter
stack 440 to, respectively, the image tile 542(0) and the filter
tile 544(0). The convolution engine 125 may configure the
SM 310 to then perform matrix multiplication operations
between the 1image tile 542(0) and the filter tile 544(0) and,
substantially in parallel, copy data included in the image
batch 410 and the filter stack 440 to, respectively, the image
tile 542(1) and the filter tile 544(1). In alternate embodi-
ments, the convolution engine 125 may orchestrate any type
of pipelining in any technically feasible fashion. For
example, and without limitation, the convolution engine 125
may strategically assign the processing the image tiles 542
to thread groups to facilitate a two stage (loading data and
performing matrix multiplication operations) pipeline.

As shown, the SM 310 includes, without limitation, an
integer umt 620, an .1 cache 640, and a floating-point unit
650. In operation, the SM 310 accesses data 1n the 1image
batch 410 and a filter stack 440, performs a tile-based
multi-convolution operation between the 1mage batch 410
and the filter stack 440, and stores the results as the output
batch 470. The image batch 410, the filter stack 440, and the
output batch 470 are included in the PP memory 210. For
explanatory purposes, solid lines indicate the operations
performed by a single thread group within the SM 310
during the processing of each of the image tiles 542. By
contrast, dotted lines indicate the operations performed by
any number of thread groups within the SM 310 after the SM
310 has finished performing the matrix multiplication opera-
tions associated with the multi-convolution operation.

The integer unit 620 1includes, without limitation, an input
tile generator 630 that implements indexing operations 635.
As used herein, the mput tile generator 630 refers to a thread
executing the indexing operations 635 within the integer unit
620 as part of populating one or more locations included 1n
the 1input tile 542 and the filter tile 544. In general, given a
destination location included in the virtual input matrix 510,
the indexing operations 635 return the source location 1n the
image batch 410 that 1s associated with the destination
location.

In operation, for each thread, the mput tile generator 630
determines the virtual location in the virtual mput matrix
510 that 1s associated with the location in the image tile 542
that 1s assigned to the thread. As disclosed previously herein,
as part of partitioming the virtual image matrix 510, the
convolution engine 125 associates each of the locations 1n
cach of the image tiles 542 with a virtual location included
in the virtual image matrix 510. Subsequently, the input tile
generator 630 executes the indexing operations 635 to
calculate the source location based on the virtual location.
The imndexing operations 6335 may be implemented 1n any
technically feasible fashion that 1s consistent with the deter-
ministic relationships that the convolution engine 125 estab-
lishes between the image batch 410, the virtual image matrix
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510, and the image tiles 542. FIG. 7 describes one imple-
mentation of the mndexing operations 635. After determining
the source location, the mput tile generator 630 coordinates
with a load-store unit (not shown) to copy the data included
in the source location 1n the image batch 410 included 1n the
PP memory 210 to the destination location 1n the 1image tile
542 included in the L1 cache 640 (1.e., shared memory).

The mput tile generator 630 may copy data from the filter
stack 440 included 1n the PP memory 210 to the filter tile 544
included in the L1 cache 640 1n any technically feasible
tashion that 1s consistent with the data included in the image
tile 542. For example, the mput tile generator 630 may
implement a linear mapping between the filter stack 440 and
the filter tile 544 based on the source locations associated
with the 1mage tile 542.

After each thread group has finished generating the
assigned 1mage tile 542 and the corresponding filter tile 544,
the thread group executes within the floating-point unit 650,
implementing the functionality of “per tile matrix multipli-
cation” 655. More specifically, each of the thread groups
configures the floating-point unit 650 to perform matrix
multiplication operations between the assigned image tile
542 and the corresponding filter tile 544. The thread group
turther configures the tloating-point unit to store the results
of the matrix multiplication as a tile included 1n an output
matrix 660 that the SM 310 stores 1n the L1 cache 640.

After the thread groups have finished generating all the
output tiles included in the output matrix 660, one or more
of the thread groups configure the integer unit 620 to
implement an output formatter 670. The output formatter
670 coordinates with load store units to perform operations
that transpose the output matrix 660 into the output batch
470 included 1in the PP memory 210. The output formatter
670 may implement any number formatting operations that
generate the output batch 470 based on any organization or
any subset or superset of the data included in the output
matrix 660. Typically, the output batch 470 timplements a
format that 1s consistent with the format of the image batch
410, thereby enabling the output batch 470 to be used as the
input batch 410 for the multi-convolution operation that
implements the next convolution layer included in the CNN.

In general, components included 1n the computer system
100 may store any of the image batch 410, the filter stack
440, and/or the output batch 470 1n any type of memory
structure 1included in the PP memory 210. For example, any
number, including zero, of the image batch 410, the filter
stack 440, and the output batch 470 may be included 1n a
frame bufler. In other embodiments, components included 1n
the computer system 100 may store the image batch 410, the
filter stack 440, and/or the output batch 470 1n any type of
memory instead of the PP memory 210.

In alternate embodiments, the convolution engine 125
may store the image tiles 442, the filter tiles 444, and/or the
output matrix 460 in any type of “shared memory” instead
of the L1 cache 440. The shared memory may include any
one or more technically feasible memories, including, with-
out limitation, a local memory shared by one or more SMs
310, an on-chip memory accessible via the memory interface
214, or a cache memory. Further, as used herein, references
to cache memory may include any one or more technically
feasible memories, including, without limitation, the L1
cache 440, the [.1.5 cache 335, and L2 caches.

FIG. 7 illustrates the indexing operations 633 that the
convolution engine 125 of FIG. 1 may implement to gen-
crate the 1image tiles 542 of FIG. 5 during a multi-convolu-
tion operation, according to one embodiment of the present
invention. As shown, FIG. 7 depicts the indexing operations
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635 as pseudocode that the convolution engine 125 may
configure the SM 310 to implement. FIG. 7 turther depicts
image tile mappings 710 and filter tile mappings 720.

The indexing operations 635 specily a mapping from a
location associated with the virtual 1mage matrix 510 to a
location included 1n the image batch 410. Since the convo-
lution engine 123 associates each of the locations in each of
the 1mage tiles 542 with a virtual location in the virtual
image matrix 510, the convolution engine 125 may leverage
the indexing operations 625 to properly populate the image
tiles 542. In particular, for each destination location 1n each
of the 1image tiles 542, the 1mnput tile generator 630 performs
the indexing operations 635 to determine the corresponding
source location 1n the 1mage batch 410. In alternate embodi-
ments, the indexing operations 635 may include any number
ol operations specified 1n any technically feasible fashion
that 1s consistent with the deterministic relationships that the
convolution engine 125 establishes between the image batch
410, the virtual image matrix 510, and the image tiles 542.

The 1mage tile mappings 710 depicts the mappings of
locations 1n 1n the 1mage batch 410 to locations 1n the image
tile 542(11) of FIG. 5. Referring to FIG. 5, the image tile
542(11) 1s associated with the (2x2) submatrix that forms the
lower right corner of the virtual 1mage matrix 510. Conse-
quently, the convolution engine 125 performs the indexing
operations 625 that determine the source locations in the
image batch 410 that correspond to the lower right corner
destination locations 1n the virtual 1image matrix 510.

Retferring back now to FIG. 7, based on the indexing
operations 625, the convolution engine 125 copies the data
at three source locations D3, D4, and D5 to the four
destination locations included in the image tile 542(11).
More specifically, the convolution engine 125 maps the data
at the source location D3 to a single destination location, the
data at the source location D4 to two destination locations,
and the data at the source location D3 to a single destination
location.

In a complementary fashion, the filter tile mappings 720
depict the mapping of the filter stack 440 to the filter tile
544(11) that corresponds to the image tile 542(11). The
image tile mappings 710 depicts the mapping of the filter
stack 540 to the filter tile 544(11) of FIG. 5. Referring to
FIG. 5, the filter tile 544(11) 1s associated with the (2x1)
submatrix that forms the rightmost side of the virtual filter
matrix 540 and includes the source locations F3 and G3.
According, referring back now to FIG. 7, the convolution
engine 123 copies the data at two source locations F3 and F4
in the filter stack 440 to two destination locations 1n the filter
tile 544(11).

FIG. 8 1s a tlow diagram of method steps for performing
a multi-convolution operation 1n a parallel processing sys-
tem, according to one embodiment of the present invention.
Although the method steps are described 1n conjunction with
the systems of FIGS. 1-7, persons skilled in the art will
understand that any system configured to implement the
method steps, 1n any order, falls within the scope of the
present 1vention.

As shown, a method 800 begins at step 802, where the
convolution engine 125 receives the image batch 410 and
the filter stack 440. At step 804, the convolution engine 1235
determines the size of the 1mage tile 542, and defines the
image tiles 542—associating the locations in each of the
image tiles 542 with locations 1n the virtual 1mage matrix
510 associated with the image batch 410. At step 806, the
convolution engine 125 assigns the processing of each of the
image tiles 542 to a thread group. For each of the image tiles
542, the convolution engine 123 also assigns the processing
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ol each of the locations 1n the 1mage tile 542 to a thread 1n
the assigned thread group. The convolution engine 125 then
configures the SM 310 to execute the thread groups.

At step 808, for each location in each of the image tiles
542, the assigned thread executing in the integer unit 620
performs the mdexing operations 635. Notably, each of the
threads determines the source location in the 1mage stack
410 based on the virtual location 1n the virtual image matrix
510 that 1s associated with the assigned location. At step 810,
for each of the image tiles 542, the threads 1n the assigned
thread group copy data from the source locations in the
image batch 410 included in the PP memory 210 to the
assigned locations 1n the assigned image tile 5342 included 1n
the L1 cache 640. At step 810, for each of the image tiles
542, the threads 1n the assigned thread group copy data from
the filter stack 440 included in the PP memory 210 to the
filter tile 344 included 1n the L1 cache 640 that corresponds
to the assigned 1mage tile 542.

At step 814, the SM 310 wazits for the threads for finish
loading (1.e., copying data to) at least one of the image tiles
514 that has not been fully processed. More specifically, as
persons skilled in the art will recognize, the threads may
execute 1 the SM 310 concurrently, sequentially, or 1n any
combination thereof. For example, at a given point 1n time,
one thread may have finished performing matrix multipli-
cation between the image tile 514(3) and the filter tile 544(3)
and, consequently, fully processed the image tile 514(3).
Another thread may have finished copying data to the image
tile 514(4) and the filter tile 544(4) and a third thread may
be copying data to the image tile 514(5).

At step 818, for each of the partially-processed, loaded
image tile 514, the SM 310 performs matrix multiplication
operations between the image tile 514 and the corresponding
filter tile 544. At step 820, the SM 310 determines whether
the SM 310 has generated all the output tiles included 1n the
output matrix 660. If, at step 820, the SM 310 determines
that the output matrix 660 i1s not complete, then the method
800 returns to step 814, where the SM 310 waits for the
threads to finish loading at least one of the image tiles 514
that has not been fully processed. The SM 310 continues in
this fashion, cycling through steps 814-820, until the threads
configured by the convolution engine 125 (at step 806) have
finished generating the output matrix 660.

If, however, at step 820, the SM 310 determines that the
output matrix 660 1s complete, then the method 800 pro-

ceeds to step 822. At step 822, threads configured by the
convolution engine 125 copy the data included 1n the output
matrix 660 to the output batch 470 included in the PP
memory 120. As part of step 820, the threads may configure
the SM 310 to mmplement the output formatter 670. The
output formatter 670 may perform any number of formatting
operations (e.g., transposition, translation, formatting, pad-
ding, and the like) to convert the data included 1n the output
matrix 660 to a specified format for the output batch 470. In
particular, the output formatter 670 may generate the output
batch 470 1n a format that enables the convolution engine
125 to use the output batch 470 as the mput batch 410 for a
subsequent multi-convolution operation.

In sum, the disclosed techniques enable a convolution
engine to efliciently perform multi-convolution operations
in a parallel processing system. In general, the convolution
engine 1mplements a virtual image matrix conforming to a
column major format that enables a matrix-based convolu-
tion operation. Notably, to optimize on-chip memory, the
convolution engine configures the parallel processing sys-
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tem to maintain only currently relevant image tiles of the
virtual 1image matrix n the on-chip memory istead of the
entire virtual 1mage matrix.

In operation, the convolution engine divides the virtual
image matrix into separate image tiles and then assigns the
processing ol each image tile to a different thread group. For
cach thread group, the threads included in each thread group
configure the integer unit to perform indexing operations
that determine source locations in the 1image stack—stored
in oif-chip memory—based on the location of the assigned
image tile within the virtual image matrix. The threads then
copy the data from the 1mage stack to the assigned image tile
included 1 on-chip memory. Subsequently, the threads
configure the floating-point unit to perform matrix multipli-
cation operations between the image tile and the correspond-
ing filter tile to generate data included 1n an output tile of the
output matrix.

Notably, since the threads included 1n the different thread
groups may operate substantially in parallel, the integer unit
may generate one 1mage tile while the floating-point unit
performs matrix multiplication operations between another
image tile and a filter tile. After the thread groups have
finmished generating all the output tiles, the convolution
engine configures the threads to copy the data included in the
output matrix to an output stack included in the off-chip
memory. As part of the copying operation, the threads,
executing 1n the mteger unit, perform operations that trans-
pose the output matrix into an output batch. The output batch
typically implements a format that 1s consistent with the
format of the image batch, thereby enabling the output batch

to be used as the mput batch for the multi-convolution
operation that implements the next convolution layer
included 1n the CNN.

At least one advantage of the disclosed approach i1s that
the convolution engine fully exploits the benefits inherent in
parallel processing systems to achieve the high accuracy
provided by CNNs while optimizing execution speed and
on-chip memory usage. More specifically, by configuring
the parallel processing pipeline to process each 1image tile of
a virtual 1mage matrix independently of the other image
tiles, the convolution engine reaps the benefits of optimized
matrix multiplication implementations while minimizing
on-chip memory usage Further, since the dimensions of the
virtual image matrix and the virtual filter matrix correlate to
products of subsets of the imndependent parameters of the
CNN 1nstead of the individual parameters, the convolution
engine exhibits relatively uniform performance characteris-
tics across the mput parameters. Consequently, an applica-
tion may use the convolution engine to efliciently and
reliably solve problems of any size, across the entire range
of layers of the CNN.

The descriptions of the various embodiments have been
presented for purposes of illustration, but are not intended to
be exhaustive or limited to the embodiments disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the described embodiments.

Aspects of the present embodiments may be embodied as
a system, method or computer program product. Accord-
ingly, aspects of the present disclosure may take the form of
an enfirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-
code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects
of the present disclosure may take the form of a computer
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program product embodied 1n one or more computer read-
able medium(s) having computer readable program code
embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

Aspects of the present disclosure are described above with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, enable the implementation of the
functions/acts specified 1n the flowchart and/or block dia-
gram block or blocks. Such processors may be, without
limitation, general purpose processors, special-purpose pro-
cessors, application-specific processors, or field-program-
mable processors or gate arrays.

The flowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed 1n
the reverse order, depending upon the Ifunctionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks 1n the block diagrams and/or flowchart illustration,
can be mmplemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations ol special purpose hardware and computer
instructions.

While the preceding 1s directed to embodiments of the
present disclosure, other and further embodiments of the
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disclosure may be devised without departing from the basic
scope thereol, and the scope thereof 1s determined by the
claims that follow.

The mvention claimed 1s:

1. A computer-implemented method for performing a
multi-convolution operation, the method comprising:

calculating a first source location included 1n an 1mage

batch that 1s stored 1n a first memory based on a first
destination location included 1n a first image tile that 1s
stored 1n a second memory, wherein the first image tile
comprises a subset of the 1image batch, wherein calcu-
lating the first source location comprises associating the
first destination location with a first virtual location
included 1n a virtual 1mage matrix and performing one
or more indexing operations that map the first virtual
location to the first source location;

copying data from the first source location to the first

destination location;

copying data from a filter source location included in a

filter stack that 1s stored 1n the first memory to a filter
destination location included 1n a first filter tile that 1s
stored 1n the second memory; and

performing one or more matrix multiplication operations

between the first 1image tile and the first filter tile to
generate a first output tile associated with an output
matrix that 1s stored 1n the second memory.

2. The computer-implemented method of claim 1,
wherein the first memory comprises off-chip memory and
the second memory comprises on-chip memory.

3. The computer-implemented method of claim 1,
wherein associating the first destination location comprises
performing one or more arithmetic calculations based on at
least one of a size of the second memory and the number of
threads included 1n a thread group.

4. The computer-implemented method of claim 1, further
comprising, assigning the first image tile to a first thread
group, and configuring a first thread included in the first
thread group to calculate the first source location based on
the first destination location.

5. The computer-implemented method of claim 4, turther
comprising, assigning a second 1mage tile to a second thread
group, and configuring a second thread included in the
second thread group to calculate a second source location
included 1n the image batch based on a second destination
location included 1n the second 1mage tile.

6. The computer-implemented method of claim 1, further
comprising performing one or more output formatting
operations based on the output matrix to generate an output
batch, and storing the output batch in the first memory.

7. The computer-implemented method of claim 6,
wherein the 1image batch comprises a first layer included in
a convolutional neural network, and the output batch com-
prises a second layer included in the convolutional neural
network.

8. The computer-implemented method of claim 1,
wherein the 1mage batch 1s partitioned into a plurality of
image tiles, each image tile comprising a subset of the 1mage
batch.

9. The computer-implemented method of claim 1,
wherein:

the 1mage batch 1s partitioned into a plurality of image

tiles; and

tfor the plurality of image tiles, the second memory stores

only a current image tile that 1s currently being pro-
cessed for matrix multiplication operations.

10. The computer-implemented method of claim 9,
wherein:
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for the plurality of image tiles, the second memory does
not store any previous image tiles that are processed for
matrix multiplication operations previous to the current
image tile; and

for the plurality of 1mage tiles, the second memory does

not store any subsequent 1mage tiles that are processed
for matrix multiplication operations after the current
image tile.

11. The computer-implemented method of claim 1, further
comprising;

calculating a second source location included in the image

batch based on a second destination location included
in a second image tile that 1s stored in a second
memory, wherein the second image tile comprises a
subset of the 1mage batch, wherein the first image tile
1s discarded from the second memory prior to calcu-
lating the second source location.

12. A non-transitory, computer-readable storage medium
including instructions that, when executed by a processor,
cause the processor to perform a multi-convolution opera-
tion, by performing the steps of:

calculating a first source location included in an 1mage

batch that 1s stored 1n a first memory based on a first
destination location included 1n a first image tile that 1s
stored 1n a second memory, wherein the first image tile
comprises a subset of the image batch, wherein calcu-
lating the first source location comprises associating the
first destination location with a first virtual location
included 1n a virtual 1mage matrix and performing one
or more indexing operations that map the first virtual
location to the first source location;

copying data from the first source location to the first

destination location;

copying data from a {filter source location included 1n a

filter stack that 1s stored 1n the first memory to a filter
destination location included 1n a first filter tile that 1s
stored 1n the second memory; and

performing one or more matrix multiplication operations

between the first image tile and the first filter tile to
generate a first output tile associated with an output
matrix that 1s stored 1n the second memory.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the first memory comprises
ofl-chip memory and the second memory comprises on-chip
memory.

14. The non-transitory computer-readable storage
medium of claim 12, further comprising, assigning the first
image tile to a first thread group, and configuring a {first
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thread included 1n the first thread group to calculate the first
source location based on the first destination location.

15. The non-transitory computer-readable storage
medium of claim 14, further comprising, assigning a second
image tile to a second thread group, and configuring a
second thread included in the second thread group to cal-
culate a second source location included in the image batch
based on a second destination location included in the
second 1mage tile.

16. 'The non-transitory computer-readable storage
medium of claim 12, wherein a plurality of dimensions of
the 1mage batch comprise a batch size, a total number of
color planes, an 1mage width, and an 1mage height.

17. The non-transitory computer-readable storage
medium of claim 12, wherein a plurality of dimensions of
the filter stack comprise a total number of filter sets, a total
number of feature planes, a filter width, and a filter height.

18. A system configured to perform a multi-convolution
operation, the system comprising:

a first memory;
a second memory; and

a convolution engine coupled to both the first memory and
the second memory, and configured to:

calculate a first source location included 1n an 1mage
batch that 1s stored in the first memory based on a
first destination location included 1n a first image tile
that 1s stored in the second memory, wherein the first
image tile comprises a subset of the 1mage batch,
wherein calculating the first source location com-
prises associating the first destination location with a
first virtual location included in a wvirtual 1mage
matrix and performing one or more mdexing opera-
tions that map the first virtual location to the first
source location,

copy data from the first source location to the first
destination location,

copy data from a filter source location included in a

filter stack that 1s stored 1n the first memory to a filter
destination location included 1n a first filter tile that

1s stored in the second memory, and

perform one or more matrix multiplication operations
between the first image tile and the first filter tile to
generate a first output tile associated with an output
matrix that 1s stored 1n the second memory.

% o *H % x
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