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(57) ABSTRACT

Methods, systems, and computer readable media for per-
forming 1image compression are disclosed. According to one
exemplary method, the method includes i1dentifying a
canonical 1mage set from a plurality of 1images uploaded to
or existing on a cloud computing and/or a storage environ-
ment. The method also includes computing an 1mage rep-
resentation for each image 1n the canonical image set. The
method further includes recerving a first image. The method
also includes 1dentifying, using the image representations
for the canonical 1image set, one or more reference 1mages
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that are visually similar to the first image. The method
turther includes compressing the first image using the one or
more reference 1mages.

19 Claims, 3 Drawing Sheets
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METHODS, SYSTEMS, AND COMPUTER
READABLE MEDIA FOR PERFORMING

IMAGE COMPRESSION

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 62/018,829 filed Jun. 30, 2014;

the disclosure of which 1s incorporated herein by reference
in 1ts entirety.

TECHNICAL FIELD

The subject matter described herein relates to data com-
pression. More specifically, the subject matter relates to
methods, systems, and computer readable media for per-
forming 1mage compression.

BACKGROUND

The advent of affordable consumer-grade digital cameras
has caused the quantity of personal photographs to explode
over the past two decades. Since then, consumers have been
largely responsible for managing and maintaining their own
personal photo collections. In recent years, cloud storage
systems such as Google Drive, Microsoit OneDrive, and
Facebook have gained popularity as convenient services for
hosting personal media files. For example, recently Face-
book revealed that its 1.15 billion users upload over 350
million new photos every day. As the size and number of
photos continues to grow, hosting billions or trillions of
photos will become a very expensive task for cloud plat-
torms due to hardware, software, and power constraints. For
example, 1t has been estimated that maintaining billions of
photos 1n the cloud can cost tens of millions of dollars each
year before even considering server power, cooling, space,
and manpower. Thus, finding ways to minimize these rap-
1dly increasing storage costs 1s a priority for any cloud
service.

Accordingly, there exists a need for improved methods,
systems, and computer readable media for performing image
Compression.

SUMMARY

Methods, systems, and computer readable media for per-
forming 1image compression are disclosed. According to one
method, the method 1ncludes identifying a canonical image
set from a plurality of 1images uploaded to or existing on a
cloud computing and/or a storage environment. The method
also includes computing an 1mage representation for each
image 1n the canonical image set. The method further
includes receiving a first image. The method also includes
identifving, using the image representations for the canoni-
cal 1image set, one or more reference images that are visually
similar to the first image. The method further includes
compressing the first 1mage using one or more reference
1mages.

According to one system, the system includes a memory
and an 1mage compression module (ICM) mmplemented
using a memory. The ICM 1s configured to identily a
canonical 1mage set from a plurality of 1images uploaded to
or existing on a cloud computing environment and/or a
storage environment, to compute an 1mage representation
for each 1mage in the canonical 1mage set, to receive a {first
image, to 1dentily, using the 1mage representations for the
canonical 1mage set, one or more reference 1images that are
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2

visually similar to the first 1mage, and to compress the first
image using the one or more reference 1mages.

The subject matter described herein can be implemented
in soitware in combination with hardware and/or firmware.
For example, the subject matter described herein can be
implemented 1n software executed by a processor. In one
exemplary implementation, the subject matter described
herein may be implemented using a computer readable
medium having stored thereon computer executable mnstruc-
tions that when executed by the processor of a computer
cause the computer to perform steps. Exemplary computer
readable media suitable for implementing the subject matter
described herein include non-transitory devices, such as disk
memory devices, chip memory devices, programmable logic
devices, and application specific integrated circuits. In addi-
tion, a computer readable medium that implements the
subject matter described herein may be located on a single
device or computing platform or may be distributed across
multiple devices or computing platforms.

As used herein, the terms “node” and “host” refer to a
physical computing platform or device including one or
more processors and memory.

As used herein, the term “module” refers to hardware,
firmware, or software 1n combination with hardware and/or
firmware for implementing features described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the subject matter described
herein will now be explained with reference to the accom-
panying drawing, wherein like reference numerals represent
like parts, of which:

FIG. 1 1s a diagram 1illustrating an environment for
performing image compression according to an embodiment
of the subject matter described herein;

FIG. 2 includes example images associated with 1image
compression according to an embodiment of the subject
matter described herein; and

FIG. 3 1s a diagram 1llustrating a process for performing,
image compression according to an embodiment of the
subject matter described herein.

DETAILED DESCRIPTION

The subject matter described herein relates to methods,
systems, and computer readable media for performing 1mage
compression. In the last few years, the number of 1mages
being stored in the “cloud” has dramatically increased and,
similarly, the costs associated with storing such large num-
ber of 1images have also increased. Hence, finding ways to
minimize rapidly increasing storage costs 1s a priority for
any cloud service.

Image compression can be a viable option for minimizing,
storage costs associated with storing images. For example, a
given 1image may be recomposed on a pixel or patch basis
using several different photographs which have already been
stored 1n the cloud. Personal photo collections are prime
candidates for redundant pixel removal since they often
depict the same subjects 1n common locations. Repeated
pixel arrangements across multiple photographs can be
identified and reused to prevent storing the same information
multiple times. An extension of this 1dea 1s to utilize the big
photo data on the web to find near-duplicates of a given
photo, using the content found 1n the near-duplicate 1images
to reconstruct the current photo.

In addition to personal photo collections, photo redun-
dancy 1s especially prevalent 1n web-hosted datasets, which
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include specific monuments, landmarks, or frequently geo-
tagged areas. Many 3D reconstruction techniques (e.g.,
methods, algorithms, and/or processes) use such datasets for
precisely this reason [S5]. These datasets tend to be prime
candidates for large-scale image compression because they
have an incredible amount of photos and may include many
photos of the same general subjects and structures.

Conceptually, two 1mages with high appearance redun-
dancy can be seen as two subsequent video frames. Using
this insight, 1mage compression techniques may leverage
cilicient state of the art video compression methods, for
example H.265 [18], or any other multi-image compression
methods, all those compressions are collectively referred to
as video compression or video codec. In fact, these tech-
niques are implemented in hardware which can be found
e¢ven 1n mobile phones.

For example, 1n one such scheme, each frame of an 1image
sequence may be categorized as an I-frame, P-frame, or
B-frame. The amount that each frame can be compressed 1s
dependent upon the frame type. I-frames are compressed
independently and can be recovered without information
from other 1mages in the sequences. P-frames and B-frames,
on the other hand, can reference macroblocks of pixels 1n
one or more reference images, respectively, i order to
compress the image. As such, P-frames and B-frames can
obtain higher compression rates than I-frames [15]. A bal-
ance must be struck between compression rate and visual
quality; systems which are willing to accept small amounts
of compression artifacts would be able to 1ncrease compres-
sion rates by changing the compression parameters of the
video codec. For example, these parameters may be set to
maintain the original (visual) image quality.

The challenge, then, 1s to find images which have sufli-
cient visual similarity to allow a video compression format
to maximize the bit savings and minimize the visual artifacts
and the time taken to encode and decode each photo. To
accomplish this, previously uploaded or existing photos 1n
the cloud may be used as a canonical set of 1mages, which
can be used to compress the pixel data of future image
uploads. This canonical image set 1s finite 1n size and may
represent a majority of commonly photographed subjects. It
should be noted that images found within the canonical set
can also undergo compression themselves.

In accordance with some aspects of the present subject
matter, an image compression technique (e.g., method, algo-
rithm, and/or process) may utilize a canonical set of 1images
comprising 1images uploaded to a cloud computing environ-
ment or a storage environment. For example, an exemplary
image compression technique may receive a newly
uploaded, uncompressed query image, and may find its most
visually similar counterparts within the canonical set by
performing a k-nearest neighbors (KNN) search over a
binarized GIST representation of all photos [11]. Then, a
video compression scheme, such as H.265, may be applied
to neighbor-query i1mage pairs, forcing each neighboring
image from the canonical image set to be the I-frame 1n each
two-frame video. Finally, the portion of the resulting bit-
stream may be saved, which corresponds to the query image
(along with other metadata describing the canonical image
that was used to compress the query 1mage).

Techniques to remove redundant pixel data between
images can be broken down into two classes: representative
signal techniques [1, 20], and visual clustering techmques
[8, 16, 22]. Representative signal techniques operate by first
aligning a set of 1images and finding a low frequency signal
to best describe each pixel. Then, each 1image 1s stored as a
difference 1mage between 1tself and the low-frequency sig-
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nal. The compression rate for this class of technique 1s
highly dependent upon the ability to align all images within
the set. As such, it 1s more useful for 1images 1n the realms
of medical and satellite 1magery, which commonly have
multiple accurate and photoconsistent 1images in a given
image set.

Visual clustering techniques, on the other hand, do not
require tight alignment between 1mages. Instead, they focus
on sharing and reusing pixel data between multiple images.
Visual clustering techniques model the relationship between
images as a directional graph. The nodes of the graph are
cither the 1mages or a set of 1mage representations, whereas
the edges represent a quantifiable distance between the
nodes (usually using local feature descriptor matching cri-
teria). Following a path through this directional graph
describes an 1image pseudosequence for use 1n 1mage recon-
struction [16, 21, 22]. Image reconstruction consists of one
of the following: 1) the warping, correction, and combina-
tion of one or more reference 1mages to produce a target
image [16], or 2) the stitching and blending of one or more
unwarped patches from diflerent reference 1images to form a
target 1mage [21, 22]. Generally speaking, these pseudose-
quences act as chains of frames, which are used to create
interdependent encodings and decodings to maximize bit
savings [16]. Many recent visual clustering techniques
require a set of local features to identity patches from
different 1mages that can be combined to form a target
image. However, some techniques in large-scale image
completion have reported success with creating directed
graphs for i1mages using GIST instead of local image
descriptors [6]. Most of the visual clustering compression
papers only compare their results to H.265 intra-coding but
forgo the benefits of H.2635 inter-coding [8, 22], which the
present subject matter leverages. Shi et al. [16] claim that
H.2635 inter-coding outperforms H.2635 intra-coding.

In most modern cloud storage systems, photos are saved
as JPEG files [19]. One important reason why cloud storage
systems haven’t migrated to more memory etlicient com-
pression techniques 1s because random access 1s important to
maintaining low latency access times for users. Due to
alignment difficulties, representative signal techniques do
not translate well to arbitrary photographs across multiple
users. However, visual clustering techniques tend to be too
slow and have too many decoding steps to provide random,
on-demand access of any particular photo. By maintaining
one-to-many correspondences between canonical i1mages
and query 1mages, and by never compressing query images
with photos outside of the canonical set, the time and
complexity of multiple encoding and decoding steps may be
avoided.

Systems which create and compress pseudosequences out
of a single user’s photos obtain high quality versus com-
pression rates but are slow performers for compression and
image serving. This 1s because psuedosequences are usually
compressed with video codecs which assume that the 1images
are causal and, thus, directional 1n time. Direct random
access of a frame 1n a video compressed psuedosequence has
high overhead because most frames in the pseudosequence
will be P-frames or B-frames, and these frames are depen-
dent upon the successiul decoding of previous or future
frames 1n the pseudosequence. Additionally, 1 geometric
and photometric transformations need to be performed for
cach image decoding step then decoding a random 1mage of
an H.265 compressed image set will take a non-trivial
amount of time to complete.

Zou et al. [22] attempt to manage and compress personal
photo collections by building a minimum spanning tree
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(MST) out of the photo collection and using paths from the
MST’s root as compressible image pseudosequences. They
define their similarity metric by an all pairs patch-wise SSD
computation. Each image pseudosequence 1s then subject to
H.2635 compression. Their technique performs well for small 5
photo sets, but the all-pairs nature of the technique does not
allow for scalability. Additionally, focusing only upon indi-
vidual users’ photo collections does not allow use of the
redundant data from other users” photo collections, which
may contain more visually similar photos. In contrast, an 10
exemplary technique 1n accordance with some aspects of the
present subject matter leverages millions of pre-existing
images 1n the cloud 1n order to pick the best candidate for
H.265 compression. Building an MST may be avoided by
compressing images using a large canonical image set, so an 15
exemplary technique 1n accordance with some aspects of the
present subject matter may be more robust to adding and
removing photos; there are no album specific encoding or
decoding dependencies generated by such an exemplary
technique. 20

Most recently, Shi et al. [16] propose an 1mage recon-
struction technique whose 1mage quality outperforms results
produced by H.2635 video compression on the same 1mages.
They achieve state of the art results and show robustness to
small, sparse datasets with challenging geometric variations 25
between 1mages. However, 11 millions of users” photos are
leveraged during compression, 1t 1s much more realistic to
assume that a given photo has a visually similar neighbor 1n
the canonical image set. This should drastically improve
H.2635’s performance. Although an exemplary technique 1 30
accordance with some aspects of the present subject matter
may be less robust to challenging photometric and geometric
deformations, the exemplary technique may attempt to avoid
these deformations altogether by taking full advantage of the
sheer number of photos present in the cloud. This also 35
reduces the run time of an exemplary technique 1 accor-
dance with some aspects of the present subject matter by
orders ol magnitude.

Given that aspects of the present subject matter relate to
an 1mage compression technique that identifies a visually 40
similar 1mage or images out of millions or billions of
existing photo uploads, brute-force local feature matching 1s
impractical. Although Shi et al. [16] perform a clustering
step to find visually similar images betfore performing local
feature matching, their clusters can grow in an unconstrained 45
manner. Additionally, Shi et al. [16] cluster based on SIFT
descriptors which 1s not scalable by practical means since 1t
bears high computational cost. On the other hand, Douze et
al. [4] showed that GIST descriptors are an eflicient and
scalable choice for finding near-duplicate 1mages 1n web- 50
scale 1image sets. Frahm et al. [5] also showed that GIST 1s
ellective for performing viewpoint grouping based upon
appearance clustering. For these reasons, it may be more
cilicient to represent all images as GIST descriptors for the
purposes ol finding near-duplicates of a query image from 55
within a particular canonical image set.

Yue et al. [21] propose an 1mage reconstruction technique
which leverages local patches from more than one thousand
images. Patches are mapped from a canonical set of 1491
images to various patches on the query image by using 60
large-scale SIFT matching. While their technique produces
excellent visual results, their local feature extraction and
matching operation 1s far too expensive to allow the tech-
nique to scale. Additionally, such a small canonical set
severely limits the number of photos that they can recon- 65
struct. Their technique fails 1f no visually similar photos
exist since a lack of similar pixel patches prevents target

6

image reconstruction, whereas the compression rate of an
exemplary technique 1n accordance with some aspects of the
present subject matter gracefully degrades under the same
circumstances. Moreover, using GIST over SIFT may allow
matching a query image to visually similar images within a
large canonical set, improving scalabaility.

In some embodiments, an exemplary technique 1n accor-
dance with some aspects of the present subject matter may
clliciently compress a user’s photos at cloud-scale by reus-
ing similar 1image data that already exists 1n the cloud (e.g.,
a canonical image set). In the following sections, how to
obtain a canonical set and how 1t can be leveraged for
cloud-scale 1image compression are discussed. For example,
a single canonical set may be built and utilized for a single
geographic region. In another example, multiple canonical
sets may be used for multiple geographic regions by using
mput 1mage geotag metadata or by inferring geographic
information from the mput 1image’s contents [3, 7].

It 1s assumed that many photographs uploaded to the
cloud are highly likely to have similar pixel patches, espe-
cially near landmarks and other commonly geotagged
areas—even within the home of the user. As such, a canoni-
cal set may be a randomly selected, finite set of photos that
1s composed of tens or hundreds of millions of images
depicting commonly photographed subjects and/or struc-
tures. Constructing such a set can be done, for example, by
randomly sampling all photos currently stored 1n the cloud.
Alternatively, techniques like Frahm et al. [5] and Raguram
et al. [13] can be used to construct such a canonical set
through 1conic scene graphs. This process should naturally
yield many views of popular subjects as more photos of
those subjects are uploaded to the cloud. A sufliciently large
canonical set contains enough photos to have a visually
similar 1mage for a large majority of photos uploaded in the
future. In some embodiments a general canonical set may be
supplemented with a user-specific canonical set if desired.

One important detail observed by Hays et al. [6] 1s that,
because GIST does not encode high-level semantic infor-
mation, a sutliciently large canonical image set must be used
in order to allow visually similar images to be consistently
returned during a visual similarity search. Their empirical
results show that significant amounts of data enables GIST
to perform well as a mechanism to find visually similar
images. In short, larger canonical 1image sets will contain
visually similar images with higher probability at the
expense of slightly longer search times. Note that 1t has been
empirically observed that, even with the search time
increase, search times for a visually similar image are
dwarted by the time taken to execute H.265 on the frames.

An mitial construction of a canonical 1mage set may not
contain visually similar images for all future queries. Pick-
ing an entirely new, larger canonical set 1s impractical as 1t
would require many 1mages to be recompressed against new
canonical 1images. Even if the current image upload rates
remained constant, this would be computationally prohibi-
tive and likely cause further degradation of 1image quality. As
such, various methods may be utilized for growing a pre-
existing canonical set in a controlled manner while still
maximizing the bit savings.

One promising way of growing the canonical set 1s to
make a best-etlort attempt at compressing all query images
and then analyze each query image’s resulting compression
rate. If the compression rate 1s not high enough then that
query 1mage could be added to the canonical set and used as
a potential reference 1image for future uploads. Alternatively,
it may be the case that several new i1mage queries do not
compress well. In this scenario, 1t may be worthwhile to add
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one or more iconic images from this set of new 1mage
uploads to the canonical set; this 1conic image could then be
used as an I-frame 1n another query photo’s compression.

In some embodiments, methods, techniques, and/or
mechanisms may be utilized for finding a visually similar
image 1n a canonical set. Given a recently uploaded 1mage,
Q, retrieve the k most visually similar images, N,, from the
canonical image set, C. To do this, a technique may pre-
process the canonical data set 1n order to allow for a very fast
k-nearest neighbors (KNN) query. The technique may com-
pute a GIST representation of each image of the canonical
set 1n parallel using a CUDA-optimized GIST implementa-
tion [10]. Still, storing a 368-float GIST descriptor for every
clement of the canonical set, C, 1s not memory eflicient when
handling multiple millions of 1images. Additionally, when
performing a KNN operation, 1it’s important to fit as many
GIST descriptors into GPU-memory as possible 1 order to
mimmize the computation time. In some embodiments, a
technique may compress the GIST descriptors through a
binarizing process using a locality sensitive scheme [2, 12].
For example, each GIST descriptor may be reduced to a 512
bit binarized string. In this example, a 512 bit feature vector
may be selected because 1t has been shown to produce a
good balance between descriptor size and discriminative
ability [5].

After precomputing all binarized GIST descriptors for the
clements 1n the canonical set, C, the technique can perform
KNN on the query image, Q. The technique may compute
the query 1mage’s 512 biat binarized GIST representation and
use 1t to find its nearest neighbors among the binarized GIST
descriptors of the images in the canonical set. The KNN
output will describe a set of 1images from the canonical set,
which are visually similar to the query image, N,. The
nearest neighbors may be near-identical to the query image.
Each of these k most visually similar images will be used to
compress the query image by use of a video codec, as
described in subsection 3.3.

To combat the issues associated with compressing and
decompressing images using long pseudosequences, all pho-
tos 1n the canonical set may be required to act as I-frames
(frames which only require intra-coding) for the H.265
compressed output. This allows all images 1n the canonical
set to remain disjoint. Then, when a query image () finds 1ts
visually nearest neighbor N from within the canonical set, C,
the nearest neighbors N, will act as an I-frame and the query
image (Q will act as a P-frame. This establishes a one-to-
many correspondence between 1mages 1 the canonical set
and query images and prevents query images from becoming
dependent upon 1mages not in the canonical set.

In some embodiments, various compression techniques,
including but not limited to an H.2635 codec, may be usable
for performing 1mage compression, €.g., on a large set of
cloud-based 1mages. For example, different types of video
compression schemes (although results will vary based on
the individual parameters of those compression schemes)
may be utilized for compressing one or more 1images of a set
ol 1mages.

In some experiments involving aspects of the subject
matter described herein, a canonical set of approximately 13
million random 1mages of London, which were downloaded
from Flickr, 1s used. No particular size, data, or content
constrains were placed on the downloaded photos. Indeed,
noise in the dataset can exist through mislabeled or mis-
tagged photos. However, because the canonical set 1s gen-
erated using randomly sample 1mages of London, noise 1n
the dataset will not have a significant impact upon results.
The canonical set 1s preprocessed as described 1n Section
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3.2. A gaming PC was used to conduct all of the following
experiments, and all code (both KNN and compression) was
parallelized and multi-threaded 1n order to maximize com-
pression throughput.

In some embodiments, images returned by the KNN
operation may not be guaranteed to be the same size or
aspect ratio as the query image. Under these circumstances,
cach codec may resize and/or rescale the KNIN 1mages to
make them the same size as the query 1mage.

In some embodiments, the etliciency of KNN over large
canonical set can be observed. For example, 1n one experi-
ment, a k-nearest neighbor operation may be analyzed over
the binarized GIST descriptors of the canonical image set, C.
The goal of this experiment 1s to determine how large k must
be to allow the KNN operation to return a visually similar
image, maximizing the compression rate of a query 1mage.

In some embodiments, the number of retrieved nearest
neighbors, k, are varied in order to evaluate how the com-
pression results change and to determine how many nearest
neighbors must be returned before the most similar image in
the canonical set 1s found. For each trial, each query image
(7665 total) may be compressed with each of 1ts k-nearest
neighbors by using H.265 compression and then record the
total elapsed time as well as the peak signal-to-noise ratio
(PSNR) and the best compression rate for each photo. The
results are provided in Table 1. The results show that the
nearest neighbor generated by the KNN operation 1s typi-
cally the most visually similar image from the canonical set.
Seeking out additional neighbors above k=1 produces
diminishing returns, allowing for a small percentage of
additional compression at the expense of significantly higher
run-times. This experiment shows that small values of k are
suilicient when focusing upon compression speed and scal-
ability while maintaining high image quality.

TABLE 1

Comparing Different Values of k in KNN

k=1 k=4 k=9
Average PSNR 40.46 40.0 40.2
Average Bit Savings (% size reduction) 74% 76.0% 76.5%
Time per Image (seconds) 0.19 0.65 1.5

As 1ndicated 1n one experiment, performance compari-
sons can made between an exemplary technique 1n accor-
dance with some aspects of the present subject matter and
other state-oi-the-art techniques. To demonstrate the scal-
ability of the exemplary technique, query images may
include 76,526 images that are not a part of the canonical set.

Table 2 shows how the exemplary technique performs
with respect to the works of Shi et al. [16], Zou et al. [22],
and Yue et al. [21]. The timings presented in Table 2 are
end-to-end times starting with the query image submission,
the KNN operation, the compression, and the final 1image
recovery alfter decoding. Timings depicted for the exemplary
technique also include the decoding and PSNR measure-
ments; the competing techniques made no mention of
whether they measured PSNR as a part of their reported
timings. For each query image, the three nearest neighbors
are found in order to strike a balance between speed and
compression eiliciency. No code was made publicly avail-
able for the competing techniques so the run-times presented
in Table 2 are the same as those reported 1n their respective
publications.

In some embodiments, an exemplary technique using
aspects (e.g., compressing an 1mage using a reference image
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from a canonical 1mage set, where the reference 1mage 1s
identified using a KNN search and binarized global image
representations) of the present subject matter may scale to
operate upon tens thousands of query 1mages while achiev-
ing orders of magnitude more eflicient run-times and com-
petitive compression rates. Because the other techniques
[16, 21, 22] use all-pairs local feature matching in order to
establish relationships between the images, their run-times
would be significantly worse 1f they had been subject to
larger datasets—especially 1f the datasets were composed of
millions of 1images like ours.

TABLE 2

Comparison to State-of-the-art Techniques

TECHNIQUE  [16] [22] [21]
Canonical Set Size 13,000,000 7 150 1,491
Images Compressed 76,526 7 150 10
Average PSNR 40.4 39 385 21.32
Average Bit Savings 74% 96%  75% 81.5%
(% size reduction)
Time per Image (seconds) 0.17 256 8 >10

As indicated 1n various experiments, the act of mimimiz-
ing the canonical set may be highly dependent upon the
compression goals for the canonical set. For example, an
“1deal” canonical set may be composed of exactly the
number of 1mages needed to represent all possible input
photo appearances. In practice, this kind of canonical set 1s
impossible to construct. Instead, the canonical set should be
focused upon approximating the “ideal” canonical set as best
as possible. Hence, a third experiment aims to explore the
question “How small of a canonical set can be used 1n
practice?”.

In the third experiment, results presented 1mn Section 4.2
are compared to results obtained from two smaller canonical
sets (one of size 500,000, and another of size 3,000,000,
both of which consist of randomly chosen 1images of Lon-
don). The nearest neighbor for each query image 1s found
from the reduced canonical set and 1s used to carry out the
compression described m Section 3. Each canonical set 1s
evaluated by using tens of thousands of query images. As
depicted 1n Table 3, results suggest that the size of the
canonical set does not affect the compression results as much
as one would intuitively believe. For example, reducing the
canonical set a factor of 24 only reduced the compression
rate by 11 percent. However, the execution time for the
compressions dropped by 29.4% and the overall size of the
canonical set was approximately 24 times smaller. Hence,
systems which require faster compression timings or which
may constrain the size of the canonical set can still use
aspects of the present subject matter to great eflect.

As the canonical set shrinks, time per image decreases and
compression rate gracefully degrades. Note that the time per
image does not decrease linearly since the H.2635 operations
are the bottleneck; fortunately, this bottleneck can be elimi-
nated by employing commercially available H.265 compres-
sion hardware [9].

It should be noted that there 1s a theoretical limit to how
small the canonical set can become belore compression
decays to an unacceptable level for an exemplary technique
in accordance with some aspects of the present subject
matter. To reiterate, smaller canonical sets imply sparser
sampling of the domain of the representation, e.g. GIST
descriptor. Hays et al. [6] independently observed that KNN
over GIST descriptors degrades quickly as the number of
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samples decreases. It should be noted that, even under these
unexplored circumstances, compression will still degrade
gracefully and the image quality of the compressed image
would not be impaired.

TABLE 3

Comparing Different Canonical Set Sizes

Canonical Set Size 13,000,000 3,000,000 500,000
Average PSNR 40.4 40.3 40).2
Average Bit Savings 74% 69% 63%
(% size reduction)

Time per Image (seconds) 0.17 0.15 0.12

Various 1image compression techniques, which are capable
of reducing redundant image data in a cloud computing
and/or storage environment by leveraging previously
uploaded/existing photos, and other aspects associated with
image compression are disclosed herein. Unlike previous
techniques, which use exhaustive all-pairs local feature
matching 1 order to identily images with similar visual
qualities, one exemplary technique described herein may
represent 1mages as high-dimensional points by using bina-
rized GIST descriptors. These binarized GIST descriptors
lend themselves to an eflicient GPU-enabled k-nearest
neighbors implementation which can quickly 1dentify visu-
ally similar photos within a canonical set of millions of
images. For example, an exemplary technique 1n accordance
with some aspects of the present subject matter can provide
competitive compression rates and can i1dentily and remove
duplicate pixel information at significantly higher speeds
that enable online operation of an 1mage compression sys-
tem at cloud-scale.

Retference will now be made 1n detail to various embodi-
ments of the subject matter described herein, examples of
which are illustrated in the accompanying drawings. Wher-
ever possible, the same reference numbers will be used
throughout the drawings to refer to the same or like parts.

FIG. 1 1s a diagram 1llustrating a cloud computing envi-
ronment 100 (e.g., one or more computing platforms or
devices) for performing one or more aspects associated with
image compression according to an embodiment of the
subject matter described herein. Referring to FIG. 1, a cloud
computing environment 100 may represent a computing
platform or group of computing platforms, such as servers,
connected through a communication network such as the
Internet, an intranet, a local area network (LAN), and/or a
wide area network (WAN). In some embodiments, cloud
computing environment 100 may include one or more
computing platforms that use wvirtualization or related
resources, such as a virtual machine or virtual node. Cloud
computing environment 100 and/or entities therein may be
utilized to perform various tasks, functions, or services. In
some embodiments, cloud computing environment 100 may
include or act as a cloud storage environment. For example,
cloud computing environment 100 and/or entities therein
may be utilized for storing billions of 1mages and other
media for millions to billions of users across the world.

Cloud computing environment 100 may include node(s)
102 for performing one or more aspects associated with
cloud-based storage and/or other services. Node(s) 102 may
be any suitable entity or entities, such as a computing device,
a processor, a virtual machine, or multiple computing plat-
forms, for performing one more aspects associated with
image compression. For example, node(s) 102 may utilize
one or more 1mage compression techniques for compressing
an 1mage using a canonical 1mage set comprising images
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uploaded to or existing on a cloud computing environment
100. In some embodiments, components, modules, and/or
portions of node(s) 102 may be implemented or distributed
across multiple devices, virtual machines, or computing
platforms.

Node(s) 102 may include an 1image compression module
(ICM) 104 and an ICM storage 108. ICM 104 may be any
suitable entity or entities (e.g., soltware executing on a
processor, a field-programmable gateway array (FPGA), an
application-specific itegrated circuit (ASIC), or a combi-
nation of software, an ASIC, or an FPGA) for performing,
one or more aspects associated with 1mage compression.
Exemplary aspects associated with image compression per-
formable by ICM 104 may include receiving an image,
identifying one or more reference 1mages, and/or compress-
ing the received image using the one or more reference
1mages.

In some embodiments, node(s) 102 and/or ICM 104 may
include multiple processors, such as graphics processing
unit (CPUs). Fach processor may represent any suitable
entity (e.g., a physical processor, an ASIC, or an FPGA) for
performing one or more aspects associated with 1mage
compression. For example, ICM 104 or software therein
may be executable by one or more processor cores 108.

In some embodiments, ICM 104 may 1nclude functional-
ity for receiving or sending information from or to various
entities. For example, ICM 104 may include one or more
communications interfaces for receiving or sending 1mages
or other data from or to ICM storage 108, node(s) 102,
and/or other entities associated with cloud computing envi-
ronment 100.

In some embodiments, ICM 104 may provide a commu-
nications interface for communicating with user device 106.
User device 106 may be any entity (e.g., a computing
platform, a mobile phone, or a tablet computer) for com-
municating with ICM 104 and/or another entity in cloud
computing environment 100. For example, various user
interfaces (e.g., an application user interface (API) and a
graphical user interface (GUI)) may be provided for sending
or uploading an 1mage to a cloud storage service. Exemplary
user interfaces for communicating with ICM 104 or other
entities may support automation (e.g., via one or more
scripting languages), a representation state transfer (REST)
API, a command line, and/or a web based GUI.

In some embodiments, ICM 104 may 1nclude functional-
ity for identifying and/or configuring a canonical image set
(e.g., any group ol images usable as reference images for
image compression purposes). For example, ICM 104 may
randomly sample millions of images from one or more cloud
storage services and/or their users to use for a canonical
image set. In this example, ICM 104 may include a proces-
sor, an FPGA, or ASIC configured to generate or compute
one or more image representations (e.g., GIST descriptors or
global 1mage descriptors) associated with 1mages 1n the
canonical image set. Continuing with this example, ICM 104
may compress the image representations, €.g., using one or
more binarizing and/or hash operations.

In some embodiments, ICM 104 may be configured to
identily a canonical image set and/or generate related image
representations prior to receiving an image to be com-
pressed, e.g., during a setup or mitialization period of ICM
104. In some embodiments, ICM 104 may be configured to
identily a canonical image set and/or generate related image
representations on as-needed basis, e.g., utilizing parallel
processing and/or multiple nodes, processors, GPUs, or
other equipment). In some embodiments, after 1dentifying a
canonical 1mage set and/or generating related 1mage repre-
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sentations, ICM 104 may store the information in ICM
storage 108, e.g., for future use.

In some embodiments, ICM 104 may include functional-
ity for generating an 1mage representation for a received
image. For example, ICM 104 may include a processor, an
FPGA, or ASIC configured to generate an image represen-
tation associated with a received image. In this example,
ICM 104 may compress the image representation, €.g., using
the same binarizing and/or hash and/or compressing opera-
tions used for compressing image representations for a
canonical 1image set.

In some embodiments, ICM 104 may include functional-
ity for determining or 1dentifying one or more images from
a canonical image set that are visually similar to a received
image, e.g., from user device 106. For example, ICM 104
may be configured to perform a KNN search operation
and/or another operation for searching image representa-
tions associated with a canonical image set. In this example,
ICM 104 may 1dentily 1mages 1n the canonical image set that
are associated with image representations that are similar to
an 1mage representation associated with a received image. In
another example, ICM 104 may use metadata associated
with 1mages 1 a canonical image set and/or metadata
associated with a recetved image for i1dentifying visually
similar 1mages.

In some embodiments, ICM 104 may include functional-
ity for compressing a received image using one Oor more
compression techniques. Exemplary compression tech-
niques may include video compression codecs, such as an
H.265 codec or an MPEG-4 codec. In some embodiments,
ICM 104 may be configured to utilize one or more reference
images Irom a canonical image set for compressing a
received 1image. For example, ICM 104 may store recon-
struction information usable to reconstruct (e.g., recreate or
substantial recreate) a received 1image by using one or more
reference 1mages. In this example, istead of storing the
received 1mage in its original (e.g., uncompressed) form,
ICM 104 may store the reconstruction information and one
or more tags or pointers identifying the one or more refer-
ence 1mages, where such information may be substantially
smaller (e.g., in bit or byte size) than the original (e.g.,
uncompressed) received 1mage.

In some embodiments, ICM 104 may include functional-
ity for managing compressed 1images, a canonical 1mage set,
and/or related data. For example, ICM 104 may include a
management module for ensuring that 1f an 1image associated
with a canonical 1mage set 1s deleted (e.g., by a user), any
images previously compressed using the deleted image can
be recovered, reconstructed, and/or recompressed using dif-
ferent images from the canonical image set. In this example,
the management module may be configured to store or
maintain “deleted” 1mages for image reconstruction pur-
poses and/or for maintaining the canonical image set’s
validity or completeness. In another example, a management
module may be configured to, prior to deleting an 1mage
associated with a canonical 1mage set, reconstruct each
image that uses the image to be deleted for compression
purposes. In this example, ICM 104 and/or the management
module may recompress the reconstructed images using one
or more different images associated with the canonical
image set.

ICM storage 108 may be any suitable entity (e.g., random
access memory (RAM), physical disks, magnetic tape, or
flash memory) for storing images, 1mage representations,
metadata, and/or other information. Various entities, such as
node(s) 102, ICM 104, or other entities 1n cloud computing
environment 100, may access (e.g., read from and/or write
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to) ICM storage 108. In some embodiments, ICM storage
108 may be located at node(s) 102, another node, or dis-
tributed across multiple computing platforms or devices in
cloud computing environment 100. For example, ICM stor-
age 108 may represent a distributed database system capable 5
of storing 1images and/or other information across multiple
storage devices.

It will be appreciated that FIG. 1 i1s for illustrative
purposes and that various nodes, their locations, and/or their
functions may be changed, altered, added, or removed. For 10
example, ICM 104 and/or functionality therein may be
performed by user device 106. In another example, some
nodes and/or functions may be combined into a single entity
or some functionality (e.g., in ICM 104) may be separated
into separate nodes or modules. 15

FIG. 2 includes example 1mages associated with image
compression according to an embodiment of the subject
matter described herein. In FIG. 2, image groups A, B, and
C are depicted. Each image group includes a query image
(located on top) and a query image’s nearest neighbor 20
(located on bottom) returned from a canonical set of 1mages.

In 1mage group A, a query image may depict a subject
standing 1n front of Big Ben, a famous landmark 1n London,
England. Using a KNN algorithm leveraging a binarized
GIST descriptor, a nearest neighbor 1image for the query 25
image may be identified and may depict a diflerent subject
standing 1n front of Big Ben, albeit from a slightly different
angle and/or perspective. In 1mage group B, a query image
may depict a plaque commemorating the site of Upholders’
Hall. Using a KNN algorithm leveraging a binarized GIST 30
descriptor, a nearest neighbor image for the query image
may be 1dentified and may depict the plaque commemorat-
ing the site of Upholders” Hall with a slightly different angle
and/or perspective than the query image. In 1mage group C,

a query image may depict a subject and a niver as a 35
backdrop. Using a KNN algorithm leveraging a binarized
GIST descriptor, a nearest neighbor 1mage for the query
image may be i1dentified and may depict a similar backdrop
without a subject.

FIG. 3 1s a diagram illustrating a process 300 for per- 40
forming 1mage compression according to an embodiment of
the subject matter described herein. In some embodiments,
process 300, or portions thereof, may be performed by or at
node(s) 102, ICM 104, and/or another node or module. For
example, node(s) 102 and/or ICM 104 may include a server 45
or a virtual machine associated with cloud computing envi-
ronment 100. In another example, ICM 104 may include
functionality at user device 106, e.g., an FPGA or chip 1n a
smartphone.

Referring to process 300, 1n step 302 a canonical image 50
set may be 1dentified from a plurality of images uploaded to
or existing on a cloud computing environment 100 and/or a
storage environment. For example, one hundred million
images of various landmarks 1n Paris, France may be 1den-
tified for a canonical 1mage set. In this example, the one 55
hundred million 1mages may be of various sizes and reso-
lution and may be from millions of users of Flickr and/or
another cloud storage service.

In some embodiments, 1dentifying a canonical image set
may include randomly sampling images uploaded by or 60
belonging to the diflerent users.

In some embodiments, a canonical image set may include
images uploaded by or belonging to different users.

In some embodiments, a canonical 1image set may include
one or more compressed 1mages. 65
In step 304, an image representation may be computed for

cach 1mage in the canonical image set. For example, a GPU
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or group of GPUs associated with ICM 104 may generate
GIST descriptors using a GIST related algorithm for images
in a canonical 1image set.

In some embodiments, computing an 1image representa-
tion for each 1mage in the canonical image set may include
computing an 1mage representation for each image in the
canonical 1mage set prior to identifying the one or more
reference 1mages.

In some embodiments, an i1mage representation may
include attributes for color, texture, shape, motion, or loca-
tion associated with a depicted scene.

In some embodiments, an 1mage representation may
include a GIST descriptor represented as a binarized string.

In step 306, a first image may be received. For example,
user device 106 may send or upload an 1mage to node(s) 100.
In this example, node(s) 100 may send the 1image to ICM 104
for image compression and/or other processing.

In step 308, one or more reference images that are visually
similar to the first image may be identified using the image
representations for the canonical image set. For example,
ICM 104 may compare an image representation associated
with a received 1image with image representations associated
with a canonical image set. In this example, ICM 104 may
select one or more 1mages from the canonical 1image set that
has similar 1image representations as the 1mage representa-
tion associated with the received 1image.

In some embodiments, determining one or more reference
images may include computing a first 1mage representation
for a first image, compressing the first image representation
using a binarizing process, and performing, using the first
image representation, a KNN search over the image repre-
sentations for the canonical image set.

In step 310, the first image may be compressed using the
one or more reference 1images. For example, ICM 104 may
be configured to use a video compression technique, e.g.,
H.263, for storing information about a received image such
that the received 1image can be substantially recreated using,
the stored imnformation about the received image and one or
more reference 1mages. In this example, the stored informa-
tion about the received 1mage may be significantly smaller
in size compared to the original, uncompressed version of
the received 1mage.

In some embodiments, compressing an 1mage using one
or more reference 1images may include using a first reference
image to compress a {irst portion of the 1image and using a
second reference 1mage to compress a second portion of the
image. For example, a received image may include a person
in front of the Eiflel Tower. In this example, ICM 104 may
use a lirst reference 1mage to compress a portion of the
received 1mage containing the person or person’s face and
ICM 104 may use a second, different reference image to
compress the portion of the received 1mage containing the
Eiffel Tower and/or the rest of the scene.

In some embodiments, compressing an 1mage may
include compressing the 1image using a video compression
technique or algorithm, e.g., an H.262 codec, an H.263
codec, an H.264 codec, an H.265 codec, an MPEG-4 codec,
an MPEG-2 codec, a VP6 codec, a VP7 codec, a VP8 codec,
a VP9 codec, and/or another codec or technique.

It should be noted that node(s) 102, ICM 104, and/or
functionality described herein may constitute a special pur-
pose computing device (e.g., an image compression system).
Further, node(s) 102, ICM 104, and/or functionality
described herein can improve the technological field of
image compression by providing mechamisms for represent-
ing 1images as high-dimensional points using binarized GIST
descriptors and for quickly 1dentifying visually similar pho-
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tos within a canonical set of millions of 1images using the
binarized GIST descriptors. As such, various techniques
described herein can provide competitive compression rates
and can 1dentify and remove duplicate pixel information at
significantly higher speeds that enable online operation of an
image compression system at cloud-scale.

The disclosure of each of the following references 1s
incorporated herein by reference 1n its entirety.
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It will be understood that various details of the subject
matter described herein may be changed without departing
from the scope of the subject matter described herein.
Furthermore, the foregoing description 1s for the purpose of
illustration only, and not for the purpose of limitation, as the
subject matter described herein 1s defined by the claims as
set forth hereinatter.
What 1s claimed 1s:
1. A method for performing image compression, the
method comprising:
identifying a canonical image set from a plurality of
images uploaded to or existing on a cloud computing
environment and/or a storage environment;

computing an 1image representation for each image i the
canonical 1image set;

receiving a first image;

identifying, using the i1mage representations for the

canonical image set, one or more reference 1images that
are visually similar to the first image, wherein identi-
fying the one or more reference images includes:
computing a {irst 1image representation for the first
image, compressing the first image representation using
a binarizing process, and performing, using the first
image representation, a k-nearest neighbor(s) (KINN)
search over the image representations for the canonical
image set, wherein each of the image representations
includes a GIST descriptor represented as a binarized
string; and

compressing the first image using the one or more refer-

ence 1mages.

2. The method of claim 1 wherein the canonical 1mage set
includes 1images uploaded by or belonging to diflerent users.

3. The method of claim 2 wherein identifying the canoni-
cal image set includes randomly sampling images uploaded
by or belonging to the diflerent users.

4. The method of claim 1 wherein each of the image
representations includes attributes for color, texture, shape,
motion, or location associated with a depicted scene.

5. The method of claim 1 wherein the canonical image set
includes one or more compressed 1mages.

6. The method of claim 1 wherein computing the 1mage
representation for each image 1n the canonical image set
includes computing an 1mage representation for each 1image
in the canonical image set prior to i1dentifying the one or
more reference 1images.

7. The method of claim 1 wherein compressing the first
image includes compressing the first image using a video
compression algorithm.

8. The method of claim 1 wherein compressing the first
image includes compressing the first 1mage using a {first
reference 1mage to compress a first portion of the first image
and using a second reference image to compress a second
portion of the first image.

9. The method of claim 1 comprising growing the canoni-
cal image set by adding the first image 1f the compression
ratio of the first image 1s below a threshold.

10. A system for performing image compression, the
system comprising;:

a memory; and

an 1mage compression module (ICM) implemented using

a memory, the ICM configured to 1dentily a canonical
image set from a plurality of images uploaded to a
cloud computing environment and/or a storage envi-
ronment, to compute an 1mage representation for each
image in the canonical 1mage set, to receive a first
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image, to 1dentity, using the 1mage representations for
the canonical 1image set, one or more reference 1mages
that are visually similar to the first image, wherein
identifying the one or more reference 1mages includes:
computing a first image representation for the first
image, compressing the first image representation using
a binarizing process, and performing, using the first
image representation, a k-nearest neighbor(s) (KNN)
search over the image representations for the canonical
image set, wherein each of the 1mage representations
includes a GIST descriptor represented as a binarized
string, and to compress the first image using the one or
more reference 1images.
11. The system of claim 10 wherein the canonical 1image
set includes 1images uploaded by or belonging to different
users.
12. The system of claim 11 wherein the ICM 1s configured
to 1dentily the canonical image set by randomly sampling
images uploaded by or belonging to the different users.
13. The system of claim 10 wherein each of the image
representations 1ncludes attributes for color, texture, shape,
motion, or location associated with a depicted scene.
14. The system of claim 10 wherein the canonical 1image
set includes one or more compressed 1mages.
15. The system of claim 10 wherein the ICM 1s configured
to compute the 1mage representation for each image 1n the
canonical 1mage set prior to identifying the one or more
reference 1mages.
16. The system of claim 10 wherein the ICM 1s configured
to compress the first 1mage using a video compression
algorithm.
17. The system of claim 10 wherein the ICM 1s configured
to compress the first image using a {irst reference 1image to
compress a first portion of the first image and using a second
reference 1mage to compress a second portion of the first
image.
18. The system of claim 10 wherein the ICM 1s configured
to grow the canonical image set by adding the first image 11
the compression ratio of the first image 1s below a threshold.
19. A non-transitory computer readable medium having
stored thereon executable mstructions that when executed by
a processor of a computer control the computer to perform
steps comprising:
identifying a canonical image set from a plurality of
images uploaded to or existing on a cloud computing
environment and/or a storage environment;

computing an 1mage representation for each image 1n the
canonical 1image set;

recerving a first image;

identifying, using the 1mage representations for the

canonical 1mage set, one or more reference 1images that
are visually similar to the first image, wherein 1denti-
ftying the one or more reference images includes:
computing a {first 1image representation for the first
image, compressing the first image representation using
a binarizing process, and performing, using the first
image representation, a k-nearest neighbor(s) (KNN)
search over the 1mage representations for the canonical
image set, wherein each of the image representations
includes a GIST descriptor represented as a binarized
string; and

compressing the first image using the one or more refer-

ence 1mages.
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