US010216790B2

12 United States Patent 10y Patent No.: US 10,216,790 B2

Kailash et al. 45) Date of Patent: Feb. 26, 2019
(54) OPTIMIZED QUERY PROCESSING USING (56) References Cited
AGGREGATES WITH VARYING GRAIN
SIZES U.S. PATENT DOCUMENTS
(71) Applicants: Kailash Kailash, San Jose, CA (US):; 9,633,076 B1* 42017 Morton GOOF 17/30466
Sushil Pangeni, Kathmandu (NP); 2009/0182779 AL* 772009 Johnson —............ G06F71077/?909398§
Chakkaravarthy Periyasamy Balaiah, 2010/0275128 AL* 10/2010 Ward ...ocooovveveenn... G06Q 10/06
Bangalore (IN); Lakshmaiah Regoti, 715/744
Hyderabad (IN); Kumar Gaurav, 2011/0179066 Al* 7/2011 Cardno GOGF 17/30
Bangalore (IN) 707/769
2012/0124043 Al* 5/2012 Handy GO6F 17/30477
(72) Inventors: Kailash Kailash, San Jose, CA (US); 707/736
Sushil Pangeni, Kathmandu (NP); 2015/0370816 Al* 12/2015 Anand ... GOGF 17/30091
Chakkaravarthy Periyasamy Balaiah, 707/782
Bangalore (IN); Lakshmaiah Regoti, * cited by examiner
Hyderabad (IN); Kumar Gaurav,
Bangalore (IN) Primary Examiner — Ashish Thomas

Assistant Examiner — Jedidiah P Ferrer
73) Assi . Zscaler, Inc., San Jose, CA (US _
(73) Assignee: Zscaler, Inc., San Jose (US) (74) Attorney, Agent, or Firm — Clements Bernard

(*) Notice: Subject to any disclaimer, the term of this Walker PLLC; Lawrence A. Baratta, Jr.

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 1065 days. (57) ABSTRACT
A computer-implemented method and system for querying
(21) Appl. No.: 14/459,802 aggregates in a database include maintaining aggregates

based on a dimension in the database with at least two grain

(22) Filed: Aug. 14, 2014 s1Zes; receiving a query of the aggregates for a defined range

(65) Prior Publication Data of the dimension; finding a start and an end for a read
operation for a larger grain size of the at least two grain sizes
US 2016/0048558 Al Feb. 18, 2016 of the aggregates for the defined range; reading a first set

from the start to the end 1n the database of the larger grain

(51) Int. CL size of the at least two grain sizes of the aggregates; reading

GOOF 17/30 (2006.01) a second set comprising a smaller grain size of the at least
(52) US. CL two grain sizes of the aggregates based on the defined range

CPC G06F 17/30442 (201301) and the start and the end; and adjusting the ﬁrst Set Wlth the
(58) Field of Classification Search second set.

CPC e GO6F 17/30442

See application file for complete search history. 15 Claims, 6 Drawing Sheets

/32
(smar)

!

INPUT QUERY
TIME SPAN
ST: START TIME
ET: END TIME

61
FIND START AND END BOUNDARIES LARGER /
TIME SPAN AGGREGATE. LET THE BE ST, AND
ET., RESPECTIVELY

62
PROCESS AGGREGATE FROM ST, TOET,, /
LSING LARGER TIME SPAN AGGREGATE

PROCESS AGGREGATE APPLY EXCLUSION ON
FROM ST TO ST, USING AGGREGATE FROM 5T, TO
SMALLER TIME SPAN ST USING SMALLER TIME

AGGREGATE SPAN AGGREGATE

R

66

NO 'fEs

/' 67 /* 68
APPLY EXCLUSION ON PROCESS AGGREGATE
AGGREGATE FROM ET TO FROMET, TO ETUSING
ET, USING SMALLER TIME SMALLER TIME SPAN
SPAN AGGREGATE AGGREGATE

(STOP)

U.S. Patent Feb. 26, 2019 Sheet 1 of 6 US 10,216,790 B2

/10

192 14

FINE GRAIN COARSE GRAIN
AGGREGATE AGGREGATE

FIG. 1

/10
/14

S (COARSE GRAIN AGGREGATE)

/20

B (FINE A (DESIRED

GRAIN) RANGE)

FIG. 2

U.S. Patent Feb. 26, 2019 Sheet 2 of 6 US 10,216,790 B2

/30

40
ST: QUERY START TIME
ET: QUERY END TIME
- AGGREGATE Ay <- A,
— . 41

RECURSIVE

CALL GIVEN AGGREGATE USING THE EQUATIONS.

LET THEM BE ST, AND ET, RESPECTIVELY

PROCESS AGGREGATE FROM ST, TO ET, |
USING AGGREGATE A,
— 44

ST<-ST,, ET=ST
RECURSIVE CALL

NO o YES

00 56

53

NO

APPLY EXCLUSION ON
AGGREGATE FROM ST, TO
ST USING SMALLEST TIME
SPAN AGGREGATE A

PROCESS AGGREGATE

FROM ST TO ST, USING
SMALLEST TIME SPAN

AGGREGATE A,

47

APPLY EXCLUSION ON ~ PROCESS AGGREGATE

50

g AGGREGATE FROM ET TO
ngg;fgg;\fg ZIEJL ET, USING SMALLEST TIME
— _ ~ SPAN AGGREGATE A,

FIG. 3

FROM ET, TOET USING
SMALLEST TIME SPAN
AGGREGATE Ay

ST<-ET, ET<-ET,
RECURSIVE CALL

U.S. Patent Feb. 26, 2019 Sheet 3 of 6 US 10,216,790 B2

¢/#32

INFUT QUERY
TIME SPAN
ST: START TIME
ET: END TIME

60

61
FIND START AND END BOUNDARIES LARGER

TIME SPAN AGGREGATE. LET THE BE ST,, AND
ET,, RESPECTIVELY

62

PROCESS AGGREGATE FROM ST, TO ET,,
USING LARGER TIME SPAN AGGREGATE

_ 63
NO._. YES

04 65

PROCESS AGGREGATE APPLY EXCLUSION ON
FROM ST TO ST, USING AGGREGATE FROM ST, TO
SMALLER TIME SPAN ST USING SMALLER TIME

AGGREGATE SPAN AGGREGATE

66
NG

67 68

APPLY EXCLUSION ON
AGGREGATE FROM ET TO
ET, USING SMALLER TIME
SPAN AGGREGATE

FIG. 4

PROCESS AGGREGATE

FROM ET, TO ET USING
SMALLER TIME SPAN
AGGREGATE

U.S. Patent Feb. 26, 2019 Sheet 4 of 6 US 10,216,790 B2

/34

START

INPUT QUERY TIME SPAN
Treava, <- INTERVAL TIME PERIOD
ST: INTERVAL START TIME
ET: INTERVAL END TIME

70

71

ST <- QUERY START TIME
ET <- ST+ TrervaL

APPLY METHOD IN FIG. 3

MOVE TO NEXT INTERVAL
ST<-ET
ET<- ST+ Tiyrerva

74

ET>QUERY
END TIME

YES

STOP

FIG. 5

US 10,216,790 B2

Sheet 5 of 6

Feb. 26, 2019

U.S. Patent

A1VOIHODV
NIVHO ANId WO
SdNOH £ ddy

00-00-00
10¢ 944 p€

00:00:L0
P10C 9444 n€

41VOdHOV NIVHOD I54V00 NOH4 SAVA ¢ dv3d

(SAVA Z) NVdS JNIL AHINOD LNdN

ow\

J1IVOIHOOY
NIYHO ANI4 NOY
SHNOH £ Lovd1dns
N e
_ 00:00:00
— 710¢ 934 sl
00:00-40
¥10¢ 944 s}

U.S. Patent

Feb. 26, 2019

PROCESSOR
102

DATA STORE

108 |
~

Sheet 6 of 6

US 10,216,790 B2

DATASTORE IDATA STORE

108 108
lle NETWORK
INTERFACES | | INTERFACE
104 | 106
112
MEMORY 110 -
'OPERATING .
SYSTEM (0s) | | PROGRAM(S)
114 1o
e —

US 10,216,790 B2

1

OPTIMIZED QUERY PROCESSING USING
AGGREGATES WITH VARYING GRAIN

SIZES

FIELD OF THE DISCLOSURE

The present disclosure relates generally to computer sys-
tems and methods. More particularly, the present disclosure
relates to optimized query processing systems and methods
using aggregates with varying grain sizes for time series
data.

BACKGROUND OF THE DISCLOSURE

Aggregates are commonly used to speed up queries 1n
data warechousing. Whenever time 1s one of the attributes, 1t
1s common to maintain pre-computed aggregates on coarser
units of time like hours and days. Depending on the granu-
larity of time used in queries, either hourly or daily aggre-
gates may be used. However, there are cases where it may
not be obviously possible to use daily aggregates even
though the granularity of time referenced 1n the query 1s a
day. One example 1s when daily aggregates are computed
cach day on GMT boundary. If an mcoming query refer-
ences time 1n GMT and the granularity of time referenced 1n
query 1s not {iner than a day, 1t 1s straightforward to use daily
aggregates. However, if the incoming query references time
in a different time zone, even though the granularity of
incoming query 1s a day, 1t 1s not straightforward to use daily
aggregates and one may end up using hourly aggregates. A
similar problem results even 11 the time zone 1s GMT 1t the

user would want to consider the start of day as 09:00:00
hours rather than 00:00:00 hours.

BRIEF SUMMARY OF THE DISCLOSURE

In an exemplary embodiment, a computer-implemented
method for querying aggregates in a database includes
maintaining aggregates based on a dimension in the database
with at least two grain sizes; receiving a query of the
aggregates for a defined range of the dimension; finding a
start and an end for a read operation for a larger grain size
of the at least two grain sizes of the aggregates for the
defined range; reading a first set from the start to the end 1n
the database of the larger grain size of the at least two grain
s1izes ol the aggregates; reading a second set including a
smaller grain size of the at least two grain sizes of the
aggregates based on the defined range and the start and the
end; and adjusting the first set with the second set. The
computer-implemented method can further include main-
taining the aggregates based on the dimension including
time and with one of the at least two grain sizes including a
day based on GMT boundaries. The computer-implemented
method can further include performing the adjusting by
subtracting or adding a portion of the second set at either or
both ends of the dimension of the first set. The at least two
grain sizes can include a fine grain and a coarse grain; and
the computer-implemented method can further include pro-
cessing the coarse grain aggregates to form the first set; and
performing one or more of processing the fine grain aggre-
gates from the second set and excluding the fine grain
aggregates from the second set to perform the adjusting. The
computer-implemented method can further include receiv-
ing the query with the defined range and a time interval; and
processing the aggregates based on the time interval. The

10

15

20

25

30

35

40

45

50

55

60

65

2

computer-implemented method can further include performs-
ing the reading steps based on an exclusion threshold set to

minimize a number of reads.

In an exemplary embodiment, a system includes a net-
work interface, a data store including a database, and a
processor, each communicatively coupled therebetween;
and memory storing 1nstructions that, when executed, cause
the processor to: maintain aggregates based on a dimension
in the database with at least two grain sizes; receive a query
of the aggregates for a defined range of the dimension; find
a start and an end for a read operation for a larger grain size
of the at least two grain sizes of the aggregates for the
defined range; read a first set from the start to the end in the
database of the larger grain size of the at least two grain sizes
of the aggregates; read a second set including a smaller grain
s1ze of the at least two grain sizes of the aggregates based on
the defined range and the start and the end; and adjust the
first set with the second set. The memory storing instructions
that, when executed, can further cause the processor to:
maintain the aggregates based on the dimension including
time and with one of the at least two grain sizes including a
day based on GMT boundaries. The memory storing instruc-
tions that, when executed, can further cause the processor to:
perform the adjusting by subtracting or adding a portion of
the second set at either or both ends of the dimension of the
first set. The at least two grain sizes can include a fine grain
and a coarse grain, and wherein the memory storing instruc-
tions that, when executed, can further cause the processor to:
process the coarse grain aggregates to form the first set; and
perform one or more of processing the fine grain aggregates
from the second set and excluding the fine grain aggregates
from the second set to perform the adjusting. The memory
storing 1nstructions that, when executed, can further cause
the processor to: recerve the query with the defined range
and a time 1terval; and process the aggregates based on the
time interval. The memory storing instructions that, when
executed, can further cause the processor to: perform the
reading steps based on an exclusion threshold set to mini-
mize a number of reads.

In yet another exemplary embodiment, software stored 1n
a non-transitory computer readable medium and including
istructions executable by a processor, and 1n response to
such execution causes the processor to perform operations
including maintaining aggregates based on a dimension 1n
the database with at least two grain sizes; recerving a query
of the aggregates for a defined range of the dimension;
finding a start and an end for a read operation for a larger
grain size of the at least two grain sizes of the aggregates for
the defined range; reading a first set {from the start to the end
in the database of the larger grain size of the at least two
grain sizes of the aggregates; reading a second set including
a smaller grain size of the at least two grain sizes of the
aggregates based on the defined range and the start and the
end; and adjusting the first set with the second set.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated and described herein
with reference to the various drawings, in which like refer-
ence numbers are used to denote like system components/
method steps, as approprate, and in which:

FIG. 1 1s a logical diagram of a data system including fine
grain aggregates and coarse grain aggregates associated with
a query;

FIG. 2 1s another logical diagram of the data system
including fine grain aggregates and coarse grain aggregates
associated with a query;

US 10,216,790 B2

3

FIG. 3 1s a flowchart of an optimized query processing
method with an arbitrary number of grain sizes;

FIG. 4 1s a flowchart of an optimized query processing
method with an fine and coarse grain aggregates;

FIG. 5 1s a flowchart of an optimized query processing
method using the optimized query processing method of
FI1G. 3 for intervals;

FIG. 6 1s a block diagram of an example of the optimized
query processing method of FIG. 4; and

FIG. 7 1s a block diagram of a server which may be used

for a data system to perform the various optimized query
processing methods.

DETAILED DESCRIPTION OF TH.
DISCLOSURE

L1

In various exemplary embodiments, optimized query pro-
cessing systems and methods using aggregates with varying
grain sizes for time series data are described. The optimized
query processing systems and methods improve data pro-
cessing 1n large data systems. Specifically, the optimized
query processing systems and methods determine a most
optimal way of using all the aggregates for a given input
query which results 1n a sequential read operation for coarser
grain aggregates. Even 1 the aggregates are maintained
according to a chosen time zone, the optimized query
processing systems and methods enable processing queries
from different time zones. In the foregoing description,
examples deal with time as a dimension for illustration
purposes; those of ordinary skill 1n the art will recognize the
optimized query processing systems and methods can be
used on other dimensions as well.

Referring to FIGS. 1-2, in an exemplary embodiment,
logical diagrams illustrate a data system 10 including fine
grain aggregates 12 and coarse grain aggregates 14 associ-
ated with a query 20. The coarse grain aggregates 14 deal
with a larger dimension than the fine grain aggregate 12. For
example, with time as the dimension, the coarse grain
agoregates 14 can be in days and the fine grain aggregates
12 can be in hours. The dimension for the coarse grain
agoregates 14 1s greater than the dimension for the fine grain
aggregates 12. A specific coarse grain aggregate 14 1s
equivalent to a set number of fine grain aggregates 12.
Again, 1n the time dimension example, one coarse grain
aggregate 14 as a day 1s equivalent to 24 fine grain aggre-
gates 12 over the same day. Note, 1t 1s more eflicient to read
the one coarse grain aggregate 14 than the 24 fine grain
agoregates 12. Of course, other dimensions are contem-
plated for the aggregates 12, 14.

The optimized query processing systems and methods
include procedures to make use of the coarse grain aggre-
gates 14 as much as possible 1n combination with fine grain
aggregates 12 to answer such queries where otherwise only
the fine grain aggregates 12 would be used. In this manner,
the optimized query processing systems and methods seek to
mimmize read operations by maximizing use of the coarse
grain aggregates 14 as much as possible. Generally, the
query 20 1s split into three components, namely (1) portion
of the range that can be mapped directly into the coarse grain
aggregates 14 maintained by the data system 10, (2) portion
of the range that precedes (1), and (3) portion of the range
that succeeds (1).

Example (1)

Again, there are the two types of aggregates 12, 14, the
fine grain aggregate 12 can have a dimension and size of an

5

10

15

20

25

30

35

40

45

50

55

60

65

4

hour and the coarse grain aggregate 14 can have the dimen-
sion and size of a day. The mput query 20 request for this
example can be a time range from 1 Feb. 2014 07:00 to 3
Feb. 2014 07:00 and the aggregate function 1s SUMO.
Assume the coarse grain aggregate 14 for each day are
stored from 00:00 hours, and since the coarse grain aggre-

gate 14 (daily data) starts only from 00:00 hours, 1t 1s not
possible to use it directly. Here 1s a breakdown on how the

query 20 would be processed.

TABLE 1
Time Range Aggregate Used Operation
157 Feb 07:00 To 27¢ Feb 00:00 fine grain (hourly) Add 17 hours
274 Feb 00:00 To 3" Feb 00:00 coarse grain (daily) Add 1 day
(24 hours)
374 Feb 00:00 To 3" Feb 07:00 fine grain (hourly) Add 7 hours

The Table 1 shows how the mput time range 1s split.
Again, the goal 1s split the usage such that the coarse grain
agoregate 14 usage 1s the largest. Here, the data system 10
reads one day worth of data from coarse grain aggregate 14
as well as reading and adding 17 hours for the first split and
7 hours from the third split using the fine grain aggregates
12.

For further optimization, the data system 10 always wants
to read more of the coarse grain aggregate 14 even if the start
and the end range of the coarse grain aggregate 14 may be
outside the desired range. In FIG. 1, 1t 1s shown that the
coarse grain aggregate 14 start and end range 1s more than
the range of the data to be processed, but the data system 10
could still go ahead and read the coarse grain aggregate 14
and then exclude the undesired data range using the fine
grain aggregate 12.

In FIG. 2, let S be the set that represents a set of coarse
grain aggregates 14 and B be the set that represents one or
more fine grain aggregates 14. An aggregate function, F,,
can be calculated over set A,

FH(A):FH(S_B):FH(FH(S)? FH_I(B))

If there exist such function F,™ (inverse of F,) that the
above equation 1s true, then the data system 10 can use the

exclusion optimization for such a function. For example 1f
F =SUM(), then:

SUM(A) = SUM(S — A)
= SUM(SUM(S), MINUS(SUM(A)))

since 1nverse of SUM(x) = MINUS(SUM(x))

Functions such as MIN or MAX cannot use the exclusion
optimization. However, normal methods of combining the
aggregates (without exclusion) would still work fine for such
functions.
Example of Exclusion in Action

When using exclusion for aggregate functions like SUM,
the data system 10 needs to subtract the excluded data from
the result set. That 1s, the data system 10 uses the coarse
grain aggregate 14 to overlap and the fine grain aggregates
12 for exclusion. In the previous example (1), the data
system 10 only used additions. For the first range from 1%
February 07:00 to 27 February 00:00, the data system 10
added 17 hours of data. The usage of the coarse grain
aggregate 14 could further be improved by applying sub-
traction (exclusion) as shown in Table 2 below.

US 10,216,790 B2

TABLE 2
Time Range Aggregate Used Operation
157 Feb 00:00 To 3" Feb 00:00 coarse grain (daily) Add 3 days
(72 hours)
15" Feb 00:00 To 1°* Feb 07:00 fine grain (hourly) Subtract 7 hours
374 Feb 00:00 To 3" Feb 07:00 fine grain (hourly) Add 7 hours

By simply introducing the capability of subtraction, the

data system 10 has reduced the amount read from the fine 10

grain aggregates 12 to 14 hours instead of 24 hours. In most
cases, mtroducing subtraction results 1n reduced number of
read operation and increases the utilization of coarser grain
aggregates 14.
Using Caching to Improve Reads of Aggregate Data

Let’s extend the above examples by doing range queries
with intervals as 3 days and the query range as 9 days. The

data system 10 has 3 intervals to process. Query start time
1s 1 Feb. 2014 07:00 and end time 1s 9 Feb. 2014 07:00, and
operations by the data system 10 are shown 1n Table 3.

TABLE 3

Interval Time Range Aggregate Used

15 Feb 00:00 To 3" Feb
00:00
1% Feb 00:00 To 1 Feb
07:00
374 Feb 00:00 To 3" Feb
07:00
39 Feb 00:00 To 67 Feb
00:00
379 Feb 00:00 To 3" Feb
07:00

1% Feb 07:00 to
3¢ Feb 07:00

coarse grain (daily)
fine grain (hourly)
Fine grain (hourly)

374 Feb 07:00 to
6% Feb 07:00

coarse grain (daily)

fine grain (hourly)

15

Operation

6

Time 1s the most common dimension that can be divided
into range and 1s very popular 1 event logs and streaming
data. Again, 1in the examples and algorithms described
herein, time 1s used as the dimension since 1t 1s very easy to
visualize time ranges. Other dimensions are also contem-
plated.

The grain size of these aggregates could vary from small
variation on the value of the dimension to a large variation.
For example, time based aggregates could have the aggre-
gate grain siZze as hour, day or month. An mput query with
large time span operation can then be processed using
combination of these aggregates. For example if the solution
contains aggregates of hourly (fine grain) and daily (coarse
grain) time span, then an mput query of time span of two
days could be answered using combination of both the fine
and coarse grain aggregates as shown in examples above at
Table 1 and Table 2.

Figuring Out the Read Operation Range Boundaries for
Time Based Aggregates

By definition and implication of input query range, the

start and the end range values of the query cannot be

Add 3 days (72 hours)
Subtract 7 hours

Add 7 hours (this data is
reused 1n next interval)
Add 3 days (72 hours)

Subtract 7 hours. It’s the
same data added in the first

interval. Can utilize the
same for subtraction.

6" Feb 00:00 To 6” Feb Fine grain (hourly)

07:00
6 Feb 07:00 to 6 Feb 00:00 To 9” Feb coarse grain (daily)
9% Feb 07:00 00:00
6" Feb 00:00 To 6” Feb fine grain (hourly)
07:00

7 hours data i1s added
Add 3 days (72 hours)

Subtract 7 hours. It’s the
same data added in the

second interval. Can utilize
the same for subtraction.

9% Feb 00:00 To 97 Feb
07:00

Fine graimn (hourly)

In the Table 3, 1t 1s shown that data from 3rd February
00:00 to 3rd February 07:00 that was added in the first
interval (1st February 07:00 to 3rd February 07:00) can be
reused for subtraction in the second interval (3rd February
07:00 to 6th February 07:00). Enabling subtraction also
enables eflicient utilization of cache data and overall reduc-
tion of input/output required from storage layer of the data
system 10.

Optimized Query Processing Systems and Methods

Referring to FIGS. 3, 4, and 5, 1n an exemplary embodi-
ment, flowcharts 1llustrate optimized query processing meth-
ods 30, 32, 34. The optimized query processing systems and
methods handle large range queries on aggregates in the
most optimized way while maximizing the usage of coarse
grain aggregates when multiple aggregates each of different
grain size are present. The assumption that the optimized
query processing systems and methods include are: 1) Range
means a variation 1n upper and lower limit on a scale of a
particular dimension that represents a sequence or order; 2)
The 1nput query 1s associative operation on the aggregate
data; and 3) Coarser grain aggregates represent more con-
densed data then the finer grained aggregates and also
occupy smaller storage space.

Add 7 hours

45

50

55

60

65

changed. But data read range (used for read operation) can
be changed to get the optimal performance. So the challenge
1s, for a given query range finding the start and the end for
the read operation for all the available aggregates. The
following describes arriving at equations for finding out read
ranges for aggregates of varying granularity to satisly a
query. All units 1n the equation below are the same as the
unit of the finest grain size aggregate. The following termi-
nology 1s used:

Read start time
Read end time
Query start time
Interval end
Unaligned start

he start time for the read operation

he end time for the read operation

he start time of the query

he end time of the interval

Amount of time unaligned at the start with respect to
query start time

Amount of time unaligned at the end with respect to
query end time

Time period of the aggregate

o lor Nor or

Unaligned end

Aggregate grain size

(aggGrainSz)
Exclusion Threshold The maximum exclusion (in terms of time)
(exThres): allowed for adjustment

US 10,216,790 B2

7

The exThres 1s the property of the aggregate and the
granularity of the exclusion unit should be the granularity of
the next finer aggregate. For example, 1f the aggregate the
data system 10 1s applying has a time span of day and the
immediate finer time span for aggregate i1s hourly, then
exThres should be 1n terms of hours.

The following equations are used 1n the optimized query
processing method 30:

unaligned start = query start time % aggGrainSz
unaligned end = query end time % agg(GrainSz

read start time =

(query start time — unaligned start, unaligned start < exThres
< query start time — unaligned start + agg GrainSz,

unaligned start = exThres

read end time =

(query end time — unaligned end, unaligned end < aggGrainSz — exThres

< query end time — unaligned end + aggGrainSz,

unaligned end = aggGrainSz— exThres

Choosing the Value of Exclusion Threshold

The exclusion threshold (exThres) determines for what
amount of un-alignment in the query range, exclusion
should be preterred over normal inclusion (addition)
method. By default, for most of the cases the value should
be equal to half of the grain size of the aggregate. For
example an aggregate with grain size of a day, the exclusion
threshold should be half a day but the actual value depends
on the next immediate finer grained aggregate. For example,
in this case of the next immediate aggregates grain size was
hour then the value would be 12 hours or if the next
immediate grain size was minute then the value would be
720 minutes. Setting this value to zero would effectively turn
ofl this optimization. When applying aggregate functions
that cannot be evaluated with exclusion, this value should be
set to zero to disable exclusion.
Algorithm to Find Range Boundaries for all Time Based
Aggregates

FIG. 3 shows the flowchart for the optimized query
processing method 30. Note that the exThres 1s the property
of the aggregate and should be changed every time the
equation 1s applied on a new aggregate. The optimized query
processing method 30 includes the following:

1. Start with the coarsest aggregate remaining to be
processed. Let 1t be A_.

2. Evaluate the equation for aggregate Ax and find the
read operation time boundaries.

3. The difference between the read start time and query
start time needs to be processed using finer grained
aggregates. This difference could either be negative
(meaming exclusion/subtraction 1s needed) or positive
(meaning inclusion/addition 1s needed).

4. If there are more than two finer grained aggregates
unprocessed, repeat the algorithm recursively through
step 2, first for the head difference and then again for
the tail difference. For this invocation, substitute the
query start and end range with actual start and end time
of the range being processed. For example, during head
adjustment the start and the end time would correspond
only to the head portion and not the entire query range.

5. Process recursively until we reach the aggregate with
the finest grain size. The remaining unadjusted time
range 1s processed using this finest grain size aggregate.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The optimized query processing method 30 starts setting,
ST to query start time, ET to query end time, and aggregate
A _to A, (step 40). The optimized query processing method
30 finds the start and end boundaries for the given bound-
aries using the above equations; let them be ST, and ET
respectively (step 41). The optimized query processing
method 30 processes aggregates from ST, to ET , using
aggregate A, (step 42). The optimized query processing
method 30 checks 1 A, ,=A, (step 43). If not (step 43), the
optimized query processing method 30 sets the aggregate A 5
to aggregate A, , (step 44), and the optimized query pro-
cessing method 30 checks 11 ST 1s greater than ST , (step 45).
If ST 1s less than or equal to STA (step 45), the optimized
query processing method 30 sets STto ST , and ET to ST and
performs a recursive call (step 46). If ST 1s greater than ST
(step 45), the optimized query processing method 30 sets ST
to ST and ET to ST , and performs a recursive call (step 47).
Subsequent to the steps 46, 47, the optimized query pro-
cessing method 30 checks if ET 1s greater than ET , (step
48).

[T ET 1s less than or equal to ET , (step 48), the optimized
query processing method 30 sets ST to E'T and ET to ET
and performs a recursive call (step 49). If E'T 1s greater than
ET , (step 48), the optimized query processing method 30
sets ST to E'T , and ET to E'T and performs a recursive call
(step 50). After the recursive calls, the optimized query
processing method 30 returns to the step 41.

It ,+. .=, (step 43), the optimized query processing
method 30 checks if ST 1s greater than S, (step 51). ITf ST
1s less than or equal to S.., (step 52), the optimized query
processing method 30 processes aggregate from ST to S,
using smallest time span aggregate ., (step 52). I ST 1s
greater than S, (step 31), the optimized query processing
method 30 applies an exclusion on aggregate from ST , to ST
using smallest time span aggregate A, (step 53).

The optimized query processing method 30 checks 1if ET
1s greater than E, (step 54). It E'T 1s less than or equal to E -,
(step 54), the optimized query processing method 30 applies
an exclusion on aggregate from ET to ET , using smallest
time span aggregate A, (step 55). It ET 1s greater than E..,
(step 54), the optimized query processing method 30 pro-
cesses aggregate from ET , to E'T using smallest time span
aggregate A, (step 56).

FIG. 4 shows the optimized query processing method 32
when only two different grain sized aggregates are present—
one with coarse grain and other with fine grain size. The
optimized query processing method 32 receives an 1nput
query, time span, start time (ST), and end time (ET) (step
60). The optimized query processing method 32 finds start
and end boundaries larger than the time span aggregate—Ilet
them be ST, , and ET, , respectively (step 61). The opti-
mized query processmg method 32 processes aggregate
from ST, , to ET; , using larger time span aggregate (step
62).

The optimized query processing method 32 checks 1f ST
1s greater than ST , (step 63). It ST 1s less than or equal to
ST, (step 63), the optimized query processing method 32
processes aggregate from ST to ST , using smaller time span
aggregate (step 64). IT ST 15 greater than ST , (step 63), the
optimized query processing method 32 applies exclusion on
aggregate from ST , to ST using smaller time span aggregate
(step 63).

The optimized query processing method 32 checks 1if ET
1s greater than ET , (step 66). If ET 1s less than or equal to
ET , (step 66), the optimized query processing method 32
applies exclusion on aggregate from ET to ET, using

smaller time span aggregate (step 67). If T 1s greater than

US 10,216,790 B2

9

ET , (step 66), the optimized query processing method 32
processes aggregate from ET | to E'T using smaller time span

aggregate (step 68).

Processing Queries with Time Interval

So far, the description of herein has been around an entire
query range. The methods described herein can be used even
when the query range 1s broken down into intervals. The
same procedure 1s repeated for each imterval. The equations

above are applied to each interval to determine the break-up
of various types of aggregates to be used. The query start
time and the query end time 1n the interval now correspond
to 1nterval start time and interval end time respectively. The
interval start time of the very first interval 1s query start time.
The interval end time 1s equals to the interval start time plus
the interval period.

unaligned start = interval start time % aggGrainSz

unaligned end = interval end time % aggGraindz

read start time =

{
interval start time — unaligned start, unaligned start < exThres

$ interval start time — unaligned start + aggGrainSz,

unaligned start = ex7hres

(1nterval end time — unaligned end, unaligned end <

aggGrainSz— exThres

read end time=< _ ' _
interval end time — unaligned end + aggGrainSz,

unaligned end = aggGrainSz — exthres

Calculating Intervals

query start time, 1interval end time =0

interval start time =< , , ,
interval end time, 1nterval end time != 0

The interval end time at the beginning of the algorithm or
evaluation 1s set to 0. Else, 1t’s computed as below

interval end time =

(interval start time+ 1interval start time + interval period <

interval period, query end time

_ interval start time+ 1interval period =
query end time,

query end time

FIG. 5 shows the optimized query processing method 34
for applying the query processing method 30 for interval
based queries. The optimized query processing method 34
starts with an mput query time span, 1,x7zr54r set to the
interval time period, ST as the interval start time, and ET as
the interval end time (step 70). The optimized query pro-
cessing method 34 sets ST to query start time and ET to
ST+1 7 renpyr (step 71). The optimized query processing

method 34 then performs the optimized query processing
method 30 with ST and ST (step 72). Next, the optimized

query processing method 34 moves to the next interval with
ST setto ET and ET setto ST+T /720747 (step 73). Once all
intervals are covered (step 74), the optimized query pro-
cessing method 34 ends, otherwise, the optimized query

10

15

20

25

30

35

40

45

50

55

60

65

10

processing method 34 repeats the optimized query process-
ing method 30 for each interval.

Example Operation

Referring to FIG. 6, in an exemplary embodiment, a block
diagram 1illustrates an exemplary operation of the optimized
query processing method 32. Here, an mput query 1s for 2
days between 1 Feb. 2014 07:00:00 to 3 Feb. 2014 07:00:00.
The aggregates are stored as coarse grain aggregates on a
day basis according to GMT and fine grain aggregate are
stored by hour. In an optimized fashion, here 2 days are read
from the coarse grain aggregates—1irom 1 Feb. 2014 00:00:
00 to 3 Feb. 2014 00:00:00, and fine grain aggregates are
read by hour from 1 Feb. 2014 00:00:00 to 1 Feb. 2014
07:00:00 (which are subtracted from the 1°° day of coarse
grain aggregates) and by hour from 3 Feb. 2014 00:00:00 to
3 Feb. 2014 07:00:00 (which are added to the 2" day of
coarse grain aggregates). In this manner, coarse grain aggre-
gate reads are maximized while fine grain aggregate reads
are mimmized and only used to adjust the coarse grain
aggregates at the edges of the query.

Referring to FIG. 7, 1n an exemplary embodiment, a block
diagram 1llustrates a server 100 which may be used to realize
the optimized query processing methods 30, 32, 34. The
server 100 may be a digital computer that, in terms of
hardware architecture, generally includes a processor 102,
input/output (I/0) mterfaces 104, a network interface 106, a
data store 108, and memory 110. It should be appreciated by
those of ordinary skill in the art that FIG. 7 depicts the server
100 1n an oversimplified manner, and a practical embodi-
ment may include additional components and suitably con-
figured processing logic to support known or conventional
operating features that are not described 1n detail herein. The
components (102, 104, 106, 108, and 110) are communica-
tively coupled via a local interface 112. The local interface
112 may be, for example but not limited to, one or more
buses or other wired or wireless connections, as 1s known 1n
the art. The local interface 112 may have additional ele-
ments, which are omitted for simplicity, such as controllers,
buflers (caches), drivers, repeaters, and receivers, among
many others, to enable communications. Further, the local
interface 112 may 1include address, control, and/or data
connections to enable appropriate communications among
the aforementioned components.

The processor 102 1s a hardware device for executing
soltware mstructions. The processor 102 may be any custom
made or commercially available processor, a central pro-
cessing unit (CPU), an auxiliary processor among several
processors associated with the server 100, a semiconductor-
based microprocessor (in the form of a microchip or chip
set), or generally any device for executing software nstruc-
tions. When the server 100 1s 1n operation, the processor 102
1s configured to execute software stored within the memory
110, to communicate data to and from the memory 110, and
to generally control operations of the server 100 pursuant to
the software instructions. The I/O interfaces 104 may be
used to recerve user mput from and/or for providing system
output to one or more devices or components. User 1mput
may be provided via, for example, a keyboard, touch pad,
and/or a mouse. System output may be provided via a
display device and a printer (not shown). I/O 1nterfaces 104
may include, for example, a serial port, a parallel port, a

small computer system interface (SCSI), a serial ATA
(SATA), a fibre channel, Infiniband, 1SCSI, a PCI Express

US 10,216,790 B2

11

interface (PCI-x), an infrared (IR) interface, a radio ire-
quency (RF) interface, and/or a universal serial bus (USB)
interface.

The network interface 106 may be used to enable the
server 100 to communicate on a network, such as the
Internet, a wide area network (WAN), a local area network
(LAN), and the like, etc. The network interface 106 may
include, for example, an Ethernet card or adapter (e.g.,
10BaseT, Fast Ethernet, Gigabit Ethernet, 10GbE) or a
wireless local area network (WLAN) card or adapter (e.g.,
802.11a/b/g/n). The network interface 106 may include
address, control, and/or data connections to enable appro-
priate communications on the network. A data store 108 may
be used to store data. The data store 108 may include any of
volatile memory elements (e.g., random access memory
(RAM, such as DRAM, SRAM, SDRAM, and the like)),
nonvolatile memory elements (e.g., ROM, hard drive, tape,
CDROM, and the like), and combinations thereof. More-
over, the data store 108 may incorporate electronic, mag-
netic, optical, and/or other types of storage media. In one
example, the data store 108 may be located internal to the
server 100 such as, for example, an internal hard drive
connected to the local interface 112 in the server 100.
Additionally 1 another embodiment, the data store 108 may
be located external to the server 100 such as, for example,
an external hard drive connected to the I/O interfaces 104
(e.g., SCSI or USB connection). In a further embodiment,
the data store 108 may be connected to the server 100
through a network, such as, for example, a network attached
file server. The data store 108 can include a database with the
fine grain aggregates 12 and the coarse grain aggregates 14.

The memory 110 may include any of volatile memory
clements (e.g., random access memory (RAM, such as
DRAM, SRAM, SDRAM, etc.)), nonvolatile memory ele-
ments (e.g., ROM, hard drive, tape, CDROM, etc.), and
combinations thereof. Moreover, the memory 110 may
incorporate electronic, magnetic, optical, and/or other types
of storage media. Note that the memory 110 may have a
distributed architecture, where various components are situ-
ated remotely from one another, but can be accessed by the
processor 102. The software 1n memory 110 may include
one or more software programs, each of which includes an
ordered listing of executable instructions for implementing
logical functions. The software 1n the memory 110 includes
a suitable operating system (O/S) 114 and one or more
programs 116. The operating system 114 essentially controls
the execution of other computer programs, such as the one
or more programs 116, and provides scheduling, nput-
output control, file and data management, memory manage-
ment, and communication control and related services. The
one or more programs 116 may be configured to implement
the various processes, algorithms, methods, techniques, etc.
described herein.

It will be appreciated that some exemplary embodiments
described herein may include one or more generic or spe-
clalized processors (“one or more processors”) such as
microprocessors, digital signal processors, customized pro-
cessors, and field programmable gate arrays (FPGAs) and
unique stored program instructions (including both software
and firmware) that control the one or more processors to
implement, 1n conjunction with certain non-processor cir-
cuits, some, most, or all of the functions of the methods
and/or systems described herein. Alternatively, some or all
functions may be implemented by a state machine that has
no stored program instructions, or in one or more application
specific integrated circuits (ASICs), 1n which each function
or some combinations of certain of the functions are imple-

10

15

20

25

30

35

40

45

50

55

60

65

12

mented as custom logic. Of course, a combination of the
alforementioned approaches may be used. Moreover, some
exemplary embodiments may be implemented as a non-
transitory computer-readable storage medium having com-
puter readable code stored thereon for programming a
computer, server, appliance, device, etc. each of which may
include a processor to perform methods as described and
claimed herein. Examples of such computer-readable stor-
age mediums include, but are not limited to, a hard disk, an
optical storage device, a magnetic storage device, a ROM
(Read Only Memory), a PROM (Programmable Read Only
Memory), an EPROM (Frasable Programmable Read Only
Memory), an EEPROM (Flectrically Frasable Program-
mable Read Only Memory), Flash memory, and the like.
When stored in the non-transitory computer readable
medium, software can include 1nstructions executable by a
processor that, 1n response to such execution, cause a
processor or any other circuitry to perform a set of opera-
tions, steps, methods, processes, algorithms, etc.

Although the present disclosure has been illustrated and
described herein with reference to preferred embodiments
and specific examples thereot, it will be readily apparent to
those of ordinary skill 1n the art that other embodiments and
examples may perform similar functions and/or achieve like
results. All such equivalent embodiments and examples are
within the spirit and scope of the present disclosure, are
contemplated thereby, and are intended to be covered by the
following claims.

What 1s claimed 1s:
1. A computer-implemented method for querying aggre-
gates 1 a database, comprising:
maintaining aggregates based on a dimension in the
database with at least two grain sizes;
recerving a query of the aggregates for a defined range;
finding a start and an end for a read operation for a larger
grain size ol the at least two grain sizes of the aggre-
gates for the defined range, wherein the finding com-
prises
determining an unaligned start and an unaligned end by
dividing a query start and a query end of the defined
range by the larger grain size,
determining a read start as the query start minus the
unaligned start 1f the unaligned start 1s less than an
exclusion threshold and as the query start minus the
unaligned start plus the larger grain size 1f the
unaligned start 1s greater than or equal to the exclu-
sion threshold, wherein the exclusion threshold is set
to minimize a number of reads 1n the database, and
determining a read end as the query end minus the
unaligned end 1f the unaligned end is less than the
larger grain size minus the exclusion threshold and
as the query end minus the unaligned end plus the
larger grain size 1f the unaligned end 1s greater than
or equal to the larger grain size minus the exclusion
threshold:;
reading a first set from the read start to the read end 1n the
database of the larger grain size;
reading a second set comprising a smaller grain size of the
at least two grain sizes of the aggregates for a time
period based on a difference between the read start and
the query start and between the read end and the query
end, wherein a specific larger grain size 1s equivalent to
a set number of the smaller grain size such that each
comprises a same type of data at a different level of
granularity, and wherein the second set 1s read over a
different range than the first set;

US 10,216,790 B2

13

adjusting the first set with the second set by one or more
of:

subtracting a {irst portion of the second set at either or
both ends of the dimension of the first set where the
first portion of the second set overlaps the first set,
and

adding a second portion of the second set at either or
both ends of the dimension of the first set where the
second portion of the second set overlaps the first set;
and

providing a response to the query based on the adjusted
first set.

2. The computer-implemented method of claim 1, further

comprising;

maintaining the aggregates based on the dimension com-
prising time and with one of the at least two grain sizes
comprising a day based on GMT boundaries.

3. The computer-implemented method of claim 1,
wherein the at least two grain sizes comprise a fine grain and
a coarse grain; and the method further comprises:

processing the coarse grain aggregates to form the first
set; and

performing one or more of processing the fine grain
aggregates from the second set and excluding the fine
grain aggregates from the second set to perform the
adjusting.

4. The computer-implemented method of claim 1, further

comprising:

receiving the query with the defined range and a time
interval; and

processing the aggregates based on the time interval.

5. The computer-implemented method of claim 1,
wherein the exclusion threshold 1s set to half a value of the
larger grain size.

6. A system, comprising:

a network interface, a data store comprising a database,
and a processor, each communicatively coupled ther-
ebetween; and

memory storing instructions that, when executed, cause
the processor to:
maintain aggregates based on a dimension in the data-

base with at least two grain sizes;

receive a query of the aggregates for a defined range;

find a start and an end for a read operation for a larger
grain size of the at least two grain sizes of the
aggregates for the defined range, wherein the start
and the end are found through

a determination of an unaligned start and an
unaligned end by dividing a query start and a
query end of the defined range by the larger grain
S17€,

a determination of a read start as the query start
minus the unaligned start if the unaligned start 1s
less than an exclusion threshold and as the query
start minus the unaligned start plus the larger grain
size 1 the unaligned start 1s greater than or equal
to the exclusion threshold, wherein the exclusion

threshold 1s set to minimize a number of reads 1n
the database, and

a determination of a read end as the query end minus
the unaligned end 11 the unaligned end is less than
the larger grain size minus the exclusion threshold
and as the query end minus the unaligned end plus
the larger grain size 1f the unaligned end 1s greater
than or equal to the larger grain size minus the
exclusion threshold:

10

15

20

25

30

35

40

45

50

55

60

65

14

read a first set from the read start to the read end 1n the
database of the larger grain size;
read a second set comprising a smaller grain size of the
at least two grain sizes of the aggregates for a time
period based on a difference between the read start
and the query start and between the read end and the
query end, wherein a specific larger grain size 1s
equivalent to a set number of the smaller grain size
such that each comprises a same type of data at a
different level of granularity, and wherein the second
set 1s read over a diflerent range than the first set;
adjust the first set with the second set by one or more
of:
subtraction of a first portion of the second set at
either or both ends of the dimension of the first set
where the first portion of the second set overlaps
the first set,
addition of a second portion of the second set at
either or both ends of the dimension of the first set
where the second portion of the second set over-
laps the first set, and
provide a response to the query based on the adjusted
first set.

7. The system claim 6, wheremn the memory storing
instructions that, when executed, further cause the processor
to:

maintain the aggregates based on the dimension compris-

ing time and with one of the at least two grain sizes
comprising a day based on GMT boundaries.

8. The system claim 6, wherein the at least two grain sizes
comprise a fine grain and a coarse grain, and wherein the
memory storing instructions that, when executed, further
cause the processor to:

process the coarse grain aggregates to form the first set;

and

perform one or more of processing the {ine grain aggre-

gates from the second set and excluding the fine grain
aggregates from the second set to perform the adjust-
ng.

9. The system claim 6, wherein the memory storing
instructions that, when executed, further cause the processor
to:

receive the query with the defined range and a time

interval; and

process the aggregates based on the time 1nterval.

10. The system claim 6, wherein the exclusion threshold
1s set to hall a value of the larger grain size.

11. A non-transitory computer readable medium storing
soltware comprising instructions executable by a processor,
and 1n response to such execution causes the processor to
perform operations comprising:

maintaining aggregates based on a dimension in the

database with at least two grain sizes;

receiving a query of the aggregates for a defined range of

the dimension;

finding a start and an end for a read operation for a larger

grain size ol the at least two grain sizes of the aggre-

gates for the defined range, wherein the finding com-

Prises

determining an unaligned start and an unaligned end by
dividing a query start and a query end of the defined
range by the larger grain size,

determining a read start as the query start minus the
unaligned start 11 the unaligned start 1s less than an
exclusion threshold and as the query start minus the
unaligned start plus the larger grain size 1f the
unaligned start 1s greater than or equal to the exclu-

US 10,216,790 B2

15

sion threshold, wherein the exclusion threshold 1s set
to minimize a number of reads 1n the database, and
determining a read end as the query end minus the
unaligned end it the unaligned end 1s less than the
larger grain size minus the exclusion threshold and
as the query end minus the unaligned end plus the
larger grain size 1f the unaligned end 1s greater than
or equal to the larger grain size minus the exclusion
threshold;
reading a {irst set from the read start to the read end 1n the
database of the larger grain size;
reading a second set comprising a smaller grain size of the
at least two grain sizes of the aggregates for a time
period based on a difference between the read start and
the query start and between the read end and the query
end, wherein a specific larger grain size 1s equivalent to
a set number of the smaller grain size such that each

comprises a same type of data at a different level of

granularity, and wherein the second set 1s read over a
different range than the first set;
adjusting the first set with the second set by one or more
of:
subtracting a {irst portion of the second set at either or
both ends of the dimension of the first set where the
first portion of the second set overlaps the first set,
and
adding a second portion of the second set at either or
both ends of the dimension of the first set where the
second portion of the second set overlaps the first set;
and
providing a response to the query based on the adjusted
first set.

10

15

20

25

30

16

12. The non-transitory computer readable medium of
claim 11, wherein the 1nstructions executable by the proces-
sor, and 1n response to such execution further causes the
processor to perform operations comprising:

maintaining the aggregates based on the dimension com-
prising time and with one of the at least two grain sizes
comprising a day based on GMT boundaries.

13. The non-transitory computer readable medium of
claim 11, wherein the at least two grain sizes comprise a fine
grain and a coarse grain, and wherein the instructions
executable by the processor, and 1n response to such execu-
tion further causes the processor to perform operations
comprising;

processing the coarse grain aggregates to form the first

set; and

performing one or more ol processing the fine grain
aggregates from the second set and excluding the fine
grain aggregates from the second set to perform the
adjusting.

14. The non-transitory computer readable medium of
claim 11, wherein the 1nstructions executable by the proces-
sor, and 1n response to such execution further causes the
processor to perform operations comprising:

recerving the query with the defined range and a time
interval; and

processing the aggregates based on the time 1nterval.

15. The non-transitory computer readable medium of
claim 11, wherein the exclusion threshold 1s set to half a
value of the larger grain size.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

