US010216577B2

12 United States Patent (10) Patent No.: US 10,216,577 B2

Bestler et al. 45) Date of Patent: Feb. 26, 2019
(54) MULTICAST RAID: DISTRIBUTED PARITY (56) References Cited
PROTECTION |
U.S. PATENT DOCUMENTS
(71) Applicant: Nexenta Systems, Inc., Santa Clara, 7,904,782 B2* 3/2011 Huang HO3M 13/1191
CA (US) 714/752
7,930,611 B2* 4/2011 Huang HO3M 13/1191
(72) Inventors: Caitlin Bestler, Sunnyvale, CA (US); 002/0048784 A 1007 Mol 714/752
. : : 1 oulton
‘éﬁxgjnsc;er Alzman, Mountain View, 2002/0091897 Al 7/2002 Chiu
2005/0125562 Al 6/2005 Bhardwaj
2012/0084506 Al 4/2012 Colgrove
(73) Assignee: Nexenta Systems, Inc., Santa Clara, 2013/0041872 Al 2/2013 Aizman
C A (IJS) 2016/0057226 Al* 2/2016 Bestler GO6F 11/1076
709/217
(0) NOtice: SUbj@Ct‘ {0 dlly diSClaimer{ the ferm Ofthjs FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 203 days. WO 2014 116875 A2 7/2014

S -
(21) Appl. No.: 15/210,501 cited by examiner

Primary Examiner — Phung M Chung

(22) Filed: Jul. 14, 2016 (74) Attorney, Agent, or Firm — DLA Pier LLP (US)
(65) Prior Publication Data (57) _ _ éBSTRACT _ _
The present invention introduces a specific form of parity
US 2018/0018229 Al Jan. 18, 2018 protection chunk (PPC) that allows for distributed creation
of coordinated PPCs that can reliably provide protection
(51) Int. CL against the concurrent loss of two or more storage servers of
Gool’ 11/10 (2006.01) devices. Coordinated PPCs can protect against the concur-
Gool’ 3/06 (2006.01) rent loss of multiple lost chunks by ensuring that the PPCSs
(52) U.S. CL protecting any specific chunk have at most a single over-
CPC GO6F 11/1076 (2013.01); GO6F 3/064 lapping failure domain. This 1s done without requiring full

(2013.01); GO6F 3/067 (2013.01); GO6F centralized control over the assignment of protected chunks
3/0619 (2013.01) to specific PPCs. The PPCs are created as part of the put
(58) Field of Classification Search transaction for a chunk. The chunk 1tself 1s stored as a whole

CPC .. GOG6F 11/1092: GO6E 11/1076: GO6F 3/067: replica, and the PPCs provide panty protection for the

chunk.
GO6F 3/0619; GO6F 3/064
See application file for complete search history. 3 Claims, 20 Drawing Sheets
Storage devices
160a
storage system storage
100 server _fj‘{ 3
client 70a 1o0a
Storage devices
storage mﬁlsﬂb
server _f 3] ;
PN o 150b | 7 7T
client 70b Yo f—\(AR Storage devices
P client tewa ﬁ replicast storage | _ 160c
| access S Y — network ¢ server _Lj_[:j
- network ‘X) 130 .~ 140 150¢
{ ; E" o
ﬁ‘ ‘120 S g f Storage devices
j\\”‘/ \\)\ storage 160{5
server -
150d
Storage devices
160k
_ _ storage
client 70i

server m

150k

US 10,216,577 B2

Sheet 1 of 20

Feb. 26, 2019

U.S. Patent

A0S1

r 19AJDS
T
o3elo0ls
A09T

SQOIASD 28eJ01S

10 312

POST
JEVVET

a3elols

"eo ﬁ'

PO91

,.mx% N ,m\} -
SDIIAD a8elo o
2051 [N vl _ 0ET / . yJomiau Lw
_ m IEVSED , }JOMIDU Aema1e8 $S379P
509T 28eJ01S iseajdas | - v&
SODIADP 23eJ0]1S f\f%\ f g/ 1usl|d
- qost N
@IW 13AJDS
q09T o8elols
S9JIASp 28eJ0]S
2O/ JU3ald
eQqt 0L 1uU3j]
IETVED 00T

e091
SAOIASP 298eJ0]S

o3elols LUDISAS 28el0]S

T 34N

US 10,216,577 B2

Sheet 2 of 20

Feb. 26, 2019

U.S. Patent

[0ST
JOA19S 98rI0]S

10ST
JaAJ9S 98rI01S

YOST
JONJDS 23el0]S

80ST
JaAJI3S 28rI0]S

JOST
19A.19S 28rI0]S

- ov1l 0¢1
omm }JoMmlau Aemajes
JOAJDS 98rI01S 1sedijda.
| &
POST . 0cZ AUNyYyo 1Nd
JONIDS 28PrIO1S \\
} (\A{\m/.i\«v/[
06T
JOAJIOS 28PrJ0)S
001

qo0s1
1aAJ13S 28e10]s

LWS1sAS a88e101S

e01c

e0sT dnoJg Sunenossu ¢ 3dNDI4

12A19S 288I0]S

US 10,216,577 B2

Sheet 3 of 20

e0TE
dnoJ8 SnoAzapuoa.l

Feb. 26, 2019

U.S. Patent

[0St
JOAJDS 98el0]S

1061
JOAJDS 93e.10]S

UOST
JOAIDS 28eJl0]S

80ST
JOAJI9S 28rl0]s

JOST
19AJ9S 28e10]S

90SGT
J1OAIDS 98el0]s

POST
JOAJ3S 28rI0]S

2041
JOAIDS 98e10)8

qosT
JOAJDS 98rI0)S

EQST
JOAJIDS 93el0]s

{
ﬂ/

0] 4
dnoJd duljeljosau

)IOMIBU
1seoj|dal

0tl
Aemaled

o/

N AN

00T
WalsAs a8elols

¢ 3ANSOId

30ST

US 10,216,577 B2

19AJDS 28e10]S

i
(OTOP 8__%‘_7 . /\/r

0Zc uUnyo 1Nd
&
S 0)74) 1)
S 90ST &
N 19n9s a8esoys | (ATOP edljdal) V_Mwh,“mmm_“ Aemaes
g e0TE 0ZZ Junyd 1nd BE V\
&z dnoJs SNOAzapual \x
&N g\Yﬁ
=
g
S (eTot ed1jdaJ)
.D. unumn ..Dn_ OQH
= qost Oceatnt LWD]SAS 28e.0]s
19AJ19S 98kI0)S
¥ 34NODI

U.S. Patent

OLS
Aelly SALIQ

A

US 10,216,577 B2

Sheet 5 of 20

Feb. 26, 2019

¢ IALI(¢ SN T 9ALI(

00S
WI91SAS edljday

U.S. Patent

(LYY ¥OI1Yd) S 3¥NOI4

d -4 40}
S90UDI30Y

. ”_mwu__cm_zBv_c:cuvmucml_wu_wl_Eo,cmmucwl_wu,wm-v_umm.........:.:...
— unyy | $32U3.42J3Y JUNYD U] S30UDI3J3] PJEMIOS g
S~ peojied |

US 10,216,577 B2

-joeg
809 ~~<__ 109

V310 — ” TN
S S9JUID ' 3 A4NYD)
= 398 b peojed |
,M -yoeg ~ S - ERIETETR)
,w 909 €na g 1S8JIUeN
7 029
N dVv-ad40o}
~ =R ETETENT
e -joeg
= ¥09
W
e

SadUvlo}joy
V 15941UB A

gV :D 40}
SaJUvl0)IY
-joeg

209 109

V9 3d4NOI

U.S. Patent

US 10,216,577 B2

Sheet 7 of 20

Feb. 26, 2019

U.S. Patent

¢9

ke e — —_———

| __

| |

g NDdd | un |

pue v Wdd 'd Jo || n_>v_ 19 |
S2IUBIBJOY-YOrE ~ Jlied

g WDdd ‘9 :d4 10}
SBOUDIBOY-NIeg -

e
Ny,

~~~3unyd
peojAed ™~ ~f

V WDdd vV ‘3 40}
S2IUDIJRY-Mdeq

909

g WOdd ‘v aunyy
WDdd ‘4°v :Q 10} A
ERIEIETEND LT PEO|ABg

g INDdd ‘v
INDdd ‘9'V D 10}
L IEVETENEY el

J Junyo
peojAed | !

<09

S9ldUwvlojoy JUNUYD U] S90U0I0)04

: C
d431dD

RIIEVETEN
g4 WJdd

C

410D
Y RlIETETEN
g 1SaueA)

ERITEIETEN
VvV NJdd

3749
mmuzngm.wm
V 1S3jlUB

1Sa]IUBA] O] JUny) poilodojod WOl) STiUololady-)IoeY 4 —~ ~ -~ —

DIEMIOS ¢

v
to

49 3ANDOI



US 10,216,577 B2

Sheet 8 of 20

Feb. 26, 2019

U.S. Patent

g4 10]
SoloU0l9)IY

-oeg

— 4 AUnyo

RN peojAed

809 ~~._ L0OS

ll_ll
lll_.__
oy,

V .3 10} —— ........._............ -l
S9dUCID]IY AUNYO | “m

3
) peojied ERIEIEICN

e’

...V_nvmm o ~

305 g 1S9JIUeA
. 09
q°V :( 10} A1T
“— ajunyd
ERIEIETEN beolkey

-yoeg -

09

R IEJETEN
V 1S8jIUeA

a'v ) 10J
SalUdldldY
-joeg

209

-

J9 1ANDId



US 10,216,577 B2

Sheet 9 of 20

Feb. 26, 2019

U.S. Patent

eCL
JETVEL

28e101S

el
SETVET

28el0]s

(1) 1¢L
0/ IEYSEER
UNUd (1) 23e.101s
 — e 1074

00L

(1)

GOL
3unyo

OLL

lojeniui

L 34NOI4



US 10,216,577 B2

N

/N

OvNviAvIWIvIivivHVY :2dd

HvO)vdvidvdvov8vV -Jdd

¢08
junyd |
118
< Jdd
=
=
> 018
= Jdd
N
=
S
S
~ 108
yuny2

U.S. Patent

8 JUNOId



US 10,216,577 B2

€6
l9jsuel] SNOAZIpUdY

€€6
— HQWUUQ nd
|
-
-
-
3
= Z€6

sasuodsay 1nhd

N
o
—
|
S I€6 | 1sanbay 1nd
S
e

SEYSELS

J03e1U|
06 016

93eJ01S

U.S. Patent

6 34NdI4



US 10,216,577 B2

Sheet 12 of 20

Feb. 26, 2019

U.S. Patent

0]70])

0t01

0¢01

0101

(H'993‘a2'gV)4 :0dd

(H'943‘aD‘g‘v)b :2dd

HvO)vdv3avdvovdvV -Jdd

v AUnyo

0001

O1 ANDI



YAR) ZAX Sunyd m XopUu| 7

uolayoid Aued | NUNYD) pa1de10id

US 10,216,577 B2

Sheet 13 of 20

OTTT AX sunyy | “ Xapu] A

uoI110910.4d Allied | juny) pa10al0Ud

Feb. 26, 2019

X3pu| X

Nunyd pa312a10.d

00TT

U.S. Patent

OSTIT

Orvitl

Ottt

1T 34N9id



US 10,216,577 B2

}xa AUNYO
U0I122104d Allied
ML

—

g |

o T

.4

y—

2 m lajuap|

m\nu ONNH | JUgUueWlad v_r:EU
U01109)0.Jd Allded

&N

—

—

gl

b (s

=

P

e

OLcl *OPUl

NUNYD) pa12910.id

U.S. Patent

00¢T

¢1 NSO



OLEl
0SEl AUNYD
(ZvAvX) . 10} suidde|A] Xapulj
09€T JUny) paloal0id

US 10,216,577 B2

Jdd MoN

(z yuny))
0GET
yunyo

Sheet 15 of 20

Feb. 26, 2019

O€El
suidde|n

3dd 01 0ZET AlDdd

U.S. Patent

¢l [ANOI



US 10,216,577 B2

Sheet 16 of 20

Feb. 26, 2019

U.S. Patent

ke,

3 R

23 SJUSIUO0) HOX

% o

3 !

M Yisua uiewoq aiHI AYNYD
o Junyy | aunjied Alewlld P3109]0.4
L | YiduaT ulewog QIHD uny) |
m yunyod aJnjie4 Alewlid 3123)0.4
> SyUNY) Paalod Jo JaqunN

0EYT @l 3unyd uoiIN0Id Allied

re EELLFTLELErp wr re H [EEETTEEF EErLEn)

, — — 1SPT 0SPHT
i 413u37/uoRed0T T ai Jqunuyd yunyo uoildvloldd Allied
TSPT TEVT 0EPT -
0SPT Juny) uoidA0id Alled 10§ GIHD oL al al Junyd uoidal04d Allled
0EVT ’ Tevt YA'a)
dl juny) uoiaajolid Allled al juny) juny) pai1oalodd
OT¥1 -

1 34N9OId




US 10,216,577 B2

Sheet 17 of 20

Feb. 26, 2019

U.S. Patent

OPStT

dvdvIvivV

AvovavyV

0€ST

OvdvivQvIivdvyY

Ovid

4v{

dvV

0cSl1

0051

HvOvdvivdvIvavV

OLST
Jdd

H AUNYD

D AUNYD

4 AUNYd)

3 3Unyod

ad Aunyo

g AuUnyd

v AUnyo

ST 34NOId



[8514!
0SPT Juny) uoidLl04d Alled 40} QIHD

.

US 10,216,577 B2

Otvt

Ol

Levl
dl

Oevl

al Juny) uoi1na10.44d Allied

—
&
S e
-
L 20Ua.J8jay-joeg
w COIIETETEN R olfs
= S22UaJ3joYy-yoeg paljluaA N
PIOH 9Alle|NJads
&N
\m
—
o
-
o _
M yi8ua/uoiedon

1291

0Z9T 1517 S82UaJ3jaY Yoeg Joj AIHD

U.S. Patent

e L e et e Lt L e L L L Lot L Lt L Tt 2 p— P ) P ) Y P P [ P — —r

01Vl

Lcvl
al unyd

Ocrl
AUNyYD polialldd

P g e [ 2 ) P P ) P P

1291

al unyd

1191

dl Aunyd

1517 S92UJ3JaY-oeg

0C91

O191

S9JUJ949Y Yoeg

91 [ANOIS




US 10,216,577 B2

Sheet 19 of 20

Feb. 26, 2019

U.S. Patent

qOST ulewop aJnjie) uo Asuspuadag
DAISS9IXT YHM Junyd 1091044 Allied |

S80ST | £/8°0V908C.T |

°0GT

110 £09617SE6

dOST | 6T79°CLEV6ZTY |

qOST | Q&L 9eVvEB1dl
e0st | 10€768149L0VY

ulrewoq
o4njle diHD

losT
JOAIDS 23erI01S

I0G1
19AJ12S 28eJI0]S

YUoST
JOAJDS 28PrI01S

80ST
JOAIDS D8RJ0IS

JOG1T
JOAIDS 23erJ01S

2041
1OAIDS 23RI0IS

POST
19AJOS 28rI01S

091
19AJDS 28rI01S

qOst
JOAIDS 93RI0IS

EQST
JOAJDS 28eJI01S

=0 )W
dnoJug8 suije|jodsu

L1 3AdNDIS



US 10,216,577 B2

Sheet 20 of 20

Feb. 26, 2019

U.S. Patent

0081

losT

19AJBS 83eI0)S

€48°0VI08CLT

!

31072086V5%6

!
“ d

Lo
ge/l 9EVvVEB1HCO

10t7°6819L0VY

pausgisse
Ajlenualod
9¢ p|nod
Jey] suiewoq
2dnjleq4 € YHUM
Jdd uado

81 3ANOI4



US 10,216,577 B2

1

MULTICAST RAID: DISTRIBUTED PARITY
PROTECTION

TECHNICAL FIELD

The present invention relates generally to use of parity
protection to protect against loss of data stored 1n distributed
storage clusters, particularly those which rely upon multicast
negotiations to assign storage chunks to specific servers and
to find them later for retrieval.

BACKGROUND OF THE INVENTION

This application builds upon the inventions by Applicant

disclosed 1n the following patents and applications:
U.S. Pat. No. 9,344,287, which was filed on Dec. 3, 2013

and titled “SCALABLE TRANSPORT SYSTEM FOR
MULTICAST REPLICATION™; U.S. patent applica-
tion Ser. No. 14/095,839, which was filed on Dec. 3,
2013 and titled “SCALABLE TRANSPORT
METHOD FOR MULTICAST REPLICATION”; and
U.S. patent application Ser. No. 14/095,848, which was
filed on Dec. 3, 2013 and titled “SCALABLE TRANS-
PORT WITH CLIENT-CONSENSUS RENDEZ-
VOUS” (together, the “Replicast Applications™);

U.S. patent application Ser. No. 14/312,282, which was
filed on Jun. 23, 2014 and titled “KEY/VALUE STOR -
AGE DEVICE AND METHOD” (“*KVT Applica-
tion”); and

U.S. Utility patent application Ser. No. 15/137,920, which
was liled on Apr. 25, 2016 and titled “PARITY PRO-
TECTION FOR DATA CHUNKS IN AN OBIECT
STORAGE SYSTEM” (“Manifest Striping Applica-
tion”).

The Replicast Applications, KVT Application, and Mani-
fest Striping Application are each incorporated by
reference herein and referred to collectively as the
“Incorporated References.”

a. A Replicast Storage System

With reference now to existing relevant art developed by
Applicant, FIG. 1 depicts storage system 100 described in
the Incorporated References. Storage system 100 comprises
clients 110q, 1105, . . . 110; (where 1 1s any 1nteger value),
which access 1nitiator/application layer gateway 130 over
client access network 120. It will be understood by one of
ordinary skill in the art that there can be multiple gateways
and client access networks, and that gateway 130 and client
access network 120 are merely exemplary. Gateway 130 1n
turn accesses replicast network 140, which 1n turn accesses
storage servers 150a, 15056, 150c, 1504, . . . 150k (where k
1s any integer value). Each of the storage servers 150a, 1505,
150c, 1504, . . . 150% 1s coupled to a plurality of storage
devices 160a, 16050, . . . 1604, respectively.

In this patent application the terms “initiator”, “applica-
tion layer gateway”, or simply “gateway” refer to the same
type of devices and are used interchangeably.

FIG. 2 depicts a typical put transaction 1n storage system
100 to store chunk 220. As discussed 1n the Incorporated
References, groups of storage servers are maintained, which
are referred to as “negotiating groups.” Here, exemplary
negotiating group 210a 1s depicted, which comprises ten
storage servers, specifically, storage servers 150a-150j.
When a put command 1s recerved, gateway 130 assigns the
put transaction to a negotiating group. In this example, the
put chunk 220 transaction 1s assigned to negotiating group
210a. It will be understood by one of ordinary skill 1n the art
that there can be multiple negotiating groups on storage

10

15

20

25

30

35

40

45

50

55

60

65

2

system 100, and that negotiating group 210a 1s merely
exemplary, and that each negotiating group can consist of
any number of storage servers and that the use of ten storage
servers 1s merely exemplary.

Gateway 130 then engages 1n a protocol with each storage
server 1n negotiating group 210a to determine which three
storage servers should handle the put request. The three
storage servers that are selected are referred to as a “ren-
dezvous group.” As discussed in the Incorporated Refer-
ences, the rendezvous group comprises three storage servers
so that the data stored by each put transaction 1s replicated
and stored in three separate locations, where each instance
of data storage i1s referred to as a replica. Applicant has
concluded that three storage servers provide an optimal
degree of replication for this purpose, but any other number
ol servers could be used 1nstead.

In varying embodiments, the rendezvous group may be
addressed by diflerent methods. all of which achieve the
result of limiting the entities addressed to the subset of the
negotiating group identified as belonging to the rendezvous
group. These methods include:

Selecting a matching group from a pool of pre-configured
multicast groups each holding a different subset com-
bination of members from the negotiating group;

Using a protocol that allows each UDP message to be
addressed to an enumerated subset of the total group.
An example of such a protocol would be the BIER
protocol currently under development by the IETF; and

Using a custom control protocol which allows the sender
to explicitly specity the membership of a target multi-
cast group as being a specific subset of an existing
multicast group. Such a control protocol was proposed
in an Internet Drait submitted to the IETF titled *“Cre-
ation ol Transactional Multicast Groups” and dated
Mar. 23, 2015, a copy of which 1s being submitted with
this application and 1s incorporated herein by reference.

In FIG. 3, gateway 130 has selected storage servers 1500,
150e, and 150g as rendezvous group 310a to store chunk
220.

In FIG. 4, gateway 130 transmits the put command for

chunk 220 to rendezvous group 310q. This 1s a multicast
operation. In this example, three replicas of chunk 220 will
be stored (labeled as replicas 401a, 4015, and 401c¢).

b. Mechanisms to Recover Data when Disk Drives Fail

In a well-known aspect of the prior art, storage servers
such as storage servers 150a . . . 1504 often utilize physical
disk drives. However, disk drives are unreliable. They break.
The connections to them break. The servers that access them
break. For a storage cluster containing a significant number
of disk drives, drive failures are predictable routine events,
not exceptional errors. Having a single persistently stored
copy of some data does not mean that the data 1s saved
persistently. It 1s only safe until something loses or blocks
access to that replica.

There are several prior art strategies to ensure that data 1s
truly saved persistently. These include creating multiple
whole replicas of the data, RAID encoding, and Frasure
Coding. Each of these strategies increases the probability of
successiully retaining data higher compared to a system that
retains only a single replica or slice.

All of these data protection methods can be characterized
by the number of slices or chunks being protected (N) and
the number of additional slices or chunks that protect the
data (M). The total size written 1s N+M, and the data for any
N of the slices can be recovered. The different methods vary




US 10,216,577 B2

3

in how much overhead 1s required (the ratio of M to N) and
the complexity of creating and using the parity protection
data.

c. Replica System

An example of a prior art replica system 500 1s shown 1n
FIG. 5. Replica system 500 comprises drive array 510. In
this example, drive array 510 comprises three drives (Drive
1, Drive 2, and Drive 3). Each data block that 1s written as
part of a put command 1s stored once 1n each drive. Thus,
when block A, 1s stored, 1t 1s stored three times, once 1n each
drive. Creating three whole replicas 1s a 1:2 scheme. There
are three total chunks (1+2), any one of which can recover
the original (since each drive stored an exact copy of the
original).

d. Parity Protection Systems

Protecting data from the loss of storage devices without
tully replicating content has long been a feature of storage

systems. Techniques include RAID-5, RAID-6, software

RAID and Erasure Coding.

These techniques can be characterized as N:M schemes,
where N payload slices are protected by adding M parity
slices. Depending on the encoding algorithm used the N
payload chunks may be unaltered while the parity protection
1s encoded 1n M additional chunks, or the payload and parity
protection may be spread over all N+M chunks. An N:M
encoding allows recovery of the original data after the loss
of up to M slices.

The Manifest Striping Application details a method for
ciliciently and safely converting an object from whole
replica protection to parity protection. One of the motiva-
tions for delayed conversion was the assumption that writing
the payload chunks and parity protection sets at ingest would
consume more network bandwidth than simply multicasting
the payload alone.

As explained 1n the Manifest Striping Application, ingest-
ing new content with whole replica protection 1s desirable
because whole replicas provide the best latency on probable
retrievals and because only a single copy of the new content
had to be multicast to create enough copies to provide the
desired level of data protection (typically against the loss of
two drives or servers). It was only later after the probability
of read access to the content was low that 1t was worthwhile
to convert to a parity protection scheme.

The whole replica protection strategy 1s desirable when
the extra whole replicas will optimize likely retrieval of the
just put object version. It 1s of less value when the same
bandwidth can create a single replica and two parity pro-
tectors where the parity protectors can restore the protected
chunk. Depending on the precise parity protection scheme
the parity protectors may be parity slices protecting payload
slices, parity chunks protection payload chunks or for the
present invention a “parity protector” which contains both a
manifest of the protected chunks and the product payload.
The panty protection slices or chunks contain just the
product payload and are described elsewhere.

All of these schemes protect against the concurrent loss of
two servers or chunks the while using the same storage to
protect N payload chunks, greatly reducing the total storage
required.

Additional detail regarding the embodiments of the Mani-
test Striping Application 1s shown 1n FIGS. 6A, 6B, and 6C.

FIG. 6A depicts a replica technique for various chunks.
Manifest 610 (labeled as Manifest A) refers to payload
chunks 601, 603, and 605 (labeled Payload Chunks C, D,
and E), and manifest 620 (labeled as Manifest B) refers to
payload chunks 601, 603, and 607.

10

15

20

25

30

35

40

45

50

55

60

65

4

It 1s common for different manifests to refer to some of the
same payload chunks when the underlying objects are
related, as might be the case when they are portions of two
versions of the same file. In this particular example, perhaps
manifest 610 1s associated with a first draft of a word
processing document, and manifest 620 1s associated with a
second draft of the same word processing document, and
payload chunks 601 and 603 are the portions of the docu-
ment that have not changed from one version to the next.

In this example, manifest 610 has three replicas (repre-
sented by the two additional boxes underneath the box for
manifest 610). Payload chunks 601, 603 and 6035 also have
three replicas each (represented by the boxes underneath
cach payload chunk). The relationships between manifests
and referenced chunks are between the conceptual chunks,
not between the specific replicas. The second replica of
Manifest 610 has chunk references to payload chunks 601,
603 and 605. These same references are 1n the first and third
replica of Manifest 610. The chunk references specily the
chunk IDs of payload chunks 601, 603 and 6035. The
reference does not specily a specific replica or any specific
location.

There are back-reference lists associated with each of the
payload chunks. These back-references are to the manifest
chunk by 1ts chunk ID. They do not reference a specific
replica.

With reference to FIG. 6B, when it 1s desirable to switch
from a replica system to a parity system for this particular
data set (such as for the reasons described with respect to
FIG. 12, below), the effective replication count for manifests
are not altered. Theretfore, there will still be three replicas of
cach of the manifest chunks. There will also be whole replica
protection for the parity protection content mamifests. A
back-reference from each created parity protection chunk
references the chunk ID of the panty protection content
mamnifest. This prevents the parity protection chunk from
being expunged while it 1s referenced 1n a parity protection
content manifest.

With reference to FIG. 6C, when it 1s desirable to switch
from a parity system to a replica system for this particular
data set (such as for the reasons described with respect to
FIG. 12, below), the ellective replication count from the
manifest to the referenced payload chunks will be restored
to the number of whole replicas desired. This will cause the
storage servers to begin replicating the whole referenced
payload chunks until there are the desired number of whole
replicas. Concurrently, the parity protection content mani-
fest may be expunged after the parity protection chunks are
no longer required to protect the object version’s payload
from the designated number of target losses. Alternately, an
implementation may elect to retain the parity protection
even while carrying full replica protection 1f return to parity
protection 1s anticipated to occur relatively soon.

Protecting stored data with error correction codes or
parity of stored data has been well known art 1n the data
storage since belfore the 1990s. This has extended from
purely hardware solutions and to more sophisticated parity
algorithms.

U.S. Pat. No. 5,499,253 A “System and method for
calculating RAID 6 check codes” (Lary) discloses a method
for calculating multiple checksums from the same set of
protected data stripes. RAID-6 enables protection from the
loss of two drives, in contrast to RAID-5 which only
protected from the loss of a single drive.

Sun Microsystems’ RAID-Z, as disclosed 1n “RAID-7Z"" in
“Jefl Bonwick’s Blog” on Nov. 17, 2005, uses an encoding
equivalent to RAID-5 under software control where the data




US 10,216,577 B2

S

1s striped over drives that no longer have any mandated fixed
physical relationship to each other. RAID-Z was subse-

quently extended to RAID-Zn to provide for protection
against the loss of more than one drive concurrently.

U.S. Pat. No. 8,316,260, “Method and System for Multi-
Dimensional RAID” (Bonwick), describes a method for a
RAID controller to assign blocks to a data grid where
different rows and columns are used to i1dentily multiple
non-overlapping ‘parity groups’. The present invention uses
a different technique to assign non-overlapping parity pro-
tection groups. The present invention has different steps and
avoids centralizing assignment of blocks to parity groups or
Sets.

U.S. Patent Application No. 2004/0160975, “Multicast
communications protocols, systems and methods™ (Frank),
discloses an application of multicast updating of a RAID
stripe where multicast communications 1s used to allow the
delta to the parity stripe to be updated without requiring the
entire payload to be read. This relates to optimal updating of
a volatile RAID encoding where each write updates the
existing data.

Multicast communications are also used 1n various
schemes where RAID encoding 1s used to enable error
recovery at the recerving end for long haul video-on-demand
systems. RAID encoding 1s bandwidth ineflicient compared
to forward-error-correction (FEC) techniques. Use of RAID
algorithms 1s mostly described for older solutions where
there were concerns about the CPU requirements for FEC
error correction. Frasure coding and/or network coding are
now favored as solutions for reliable multicast delivery over
drop-prone networks where explicit per receiver acknowl-
edgement 1s undesirable or infeasible. RFC 3453 (*“The Use
of Forward Error Correction (FEC) 1n Reliable Multicast™),
dated December 2002, describes both simple FEC and
erasure coding as techniques to detect and correct transmis-
s1on errors for multicast transmission. These approaches are
not relevant to multicast delivery within a data center
network where transmission errors are exceedingly rare.

What the above-described systems lack 1s the ability to
perform a put operation on a new data chunk with parity
protection while using only the data bandwidth required for
a single multicast transmission of the new content. The
present mnvention seeks to retain the benefits of multicast
chunk distribution while efliciently creating parity protected
data. This would be useful, for example, when the system
knows that the data to be saved i1s likely to be “cold” from
the outset, as might be the case 11 the system 1s storing, as
might be the case for email saved in a SPAM folder, an
archive created by a backup utility, or a draft document.

SUMMARY OF THE INVENTION

The present invention introduces a specific form of a
parity protection conglomerate (PPC) which allows ifor
distributed creation of coordinated PPCs that can reliably
provide protection against the concurrent loss of two or
more failure domains containing storage servers of devices.
In the simplest well-known case, a PPC calculated from a set
of protected chunks can recover any single missing chunk.
This protects against the loss of a chunk replica with far less
storage required than would be required creating whole
replicas. The present invention allows for distributed cre-
ation ol multiple PPCs as a by-product of delivering the
protected chunks to multiple targets. Coordinated PPCs can
protect against the concurrent loss of multiple lost chunks by
ensuring that the PPCs protecting any specific chunk have at
most a single overlapping failure domain. This 1s done

10

15

20

25

30

35

40

45

50

55

60

65

6

without requiring full centralized control over the assign-
ment of protected chunks to specific PPCs. Further, a
method 1s disclosed for drive recovery from PPCs which 1s
an extension of the prior multicast get request under the
Replicast protocol as disclosed 1n the Incorporated Refer-
ences.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a storage system described in the Incor-
porated References.

FIG. 2 depicts a negotiating group comprising a plurality
ol storage servers.

FIG. 3 depicts a rendezvous group formed within the
negotiating group.

FIG. 4 depicts a put transaction of a chunk to the
rendezvous group.

FIG. 5§ depicts a prior art replica system.

FIGS. 6A, 6B, and 6C depict a replica system that
transitions to a parity system and back to a replica system,
as described 1n the Manifest Striping Application.

FIG. 7 depicts the creation of a whole replica and two
different PPCs from a multicast transmission of a chunk.

FIG. 8 depicts the reason why two PPCs, without further
restrictions, are insuflicient to guard against the loss of two
chunks.

FIG. 9 depicts an extension of the Replicast put transac-
tion that assigns non-contlicting PPCs over the course of the
transaction.

FIG. 10 depicts the application of RAID-Zn algorithms to
protecting against multiple concurrent chunk loss.

FIG. 11 depicts the challenge of updating multiple pro-
tected chunk index entries to refer to the new parity protec-
tion chunk covering the whole set.

FIG. 12 depicts the use of Parity Protection Chunk
Permanent IDs to avoid the need to update multiple pro-
tected chunk index entries when protecting a new chunk.

FIG. 13 depicts the application of a multicast chunk by a
storage server to create a new PPC based upon the current
PPC for the specified PPCID.

FIG. 14 1llustrates the application of Key Value Tuples to
encode the protected chunk index, parity protection chunk

permanent IDs and parity protection chunks.
FIG. 15 depicts a parallel reconstruction of a single lost

chunk.

FIG. 16 depicts the Key Value Tuples which track the
retention requirement for Parity Protection Chunks.

FIG. 17 depicts an example of a Parity Protection Chunk
that has excessive dependency on a single failure domain.

FIG. 18 depicts the Failure Domain Map for an Open PPC
as tracked by the storage server that hosts the PPC.

DEFINITIONS

Dependency Set: The set of Failure Domains within a
negotiating group that a PPC 1s dependent upon.

Eligibility Set: the set of failure domains which waill
produce no contlicts 11 a PPC 1s selected which already has
a member 1n this failure domain.

Eligibility Set Map: An enumeration of Eligibility Set
Maps for each failure domain in the negotiation group other
than the one the storage server generating the map belongs
to.

Failure Domain: an integer identifier associated with each
storage server. Storage servers with the same Failure
Domains are presumed to be at greater risk of concurrent




US 10,216,577 B2

7

tailure. The storage cluster seeks to avoid loss of data should
all storage servers in a single failure domain concurrently
become unavailable.

Failure Domain Map: A map maintained by a storage
target that tracks the assignment status for each failure
domain within a negotiation group for an Open Parity
Protection Chunk.

Manifest Chunk: An immutable chunk storing metadata
and references to other Mamifest Chunks or Payload Chunks.
Manifest Chunks are not eligible to be a protected chunk.

Open Panity Protection Conglomerate: A parity protection
chunk that 1s typically cached by the storage target that hosts
it which still has failure domains that are open to accepting
new protected chunks.

Parity Protection Conglomerate (PPC): A key-value tuple
stored by a storage server which 1s comprised of a manifest
portion enumerating the protected chunks and a payload
portion which 1s the result of applying the specified algo-
rithm (typically XOR) to the payload of all of the protected
chunks.

Parity Protection Conglomerate Identifier (PPCID): A
persistent local i1dentifier for the current Parity Protection
Chunk providing parity protection for an expanding set of
payload chunks. The identifier remains constant even when

a new Parity Protection Chunk i1s recalculated to include
cach additional protected chunk.

Parity Protection Chunk Manifest (PPCM): The method
of describing parity protection sets used in the Manifest
Striping technique that 1s oflered as a comparison to the
present 1mnvention. The present invention embeds a seli-
describing manifest inside of each Parity Protection Chunk
rather than relying on an external manifest.

Payload Chunk: An immutable chunk storing records or
bytes.

Protected Chunk: A payload chunk that can be recovered
using a Parity Protection Chunk (PPC) and the payload of
other chunks protected by the same parity protection chunk.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1l

The present invention discloses a system and method for
creating multiple Parity Protection Conglomerates (PPCs)
protecting payload chunks in a distributed storage cluster.
The PPCs are created without requiring any additional
network transmissions beyond those that would have created
an equivalent number of whole replicas using multicast
transmission.

Typically, the embodiments disclosed herein reduce the
storage required from three independent replicas to a single
replica and two PPCs which are combined to provide
protection for N protected chunks. The two PPCs are not
replicas of each other. To the contrary, they are required to
protect otherwise disjoint sets of payload chunks. If the
number of protected chunks assigned to each PPC 1s 5, the
storage efliciency 1s increased from 33% (1 byte of user
supplied data require 3 bytes of stored data) to 71% (5 bytes
of user supplied data require 7 bytes of stored data).

Both put and get transactions 1n these embodiments are
extensions ol the protocol disclosed in the Replicast Appli-
cation.

FIG. 7 depicts multicast parity-protected RAID system
700. System 700 comprises initiator 710 and storage servers
721, 722, and 723. In this example, imitiator 710 sends a put
command to store chunk 705 (also labeled chunk I). Storage

servers 721, 722, and 723 each receive the multicast trans-

10

15

20

25

30

35

40

45

50

55

60

65

8

mission of chunk 705, but 1in accordance with the present
invention, act upon 1t differently based upon their assigned
roles.

The designated primary storage server simply stores the
whole chunk, as previously disclosed in the Replicast Appli-
cation and the KVT Application. The preferred implemen-
tation extends the get and put transactions described 1n the
Replicast Application. The local encodings of retained data
and supporting indexing are extensions of the local encoding
disclosed 1n the KVT Application.

In this example, storage server 721 has been designated as
the primary storage server, and 1t stores chunk 705 in its
entirety.

In accordance with the present invention, data chunks
(such as chunk 705) are protected from loss using parity
protection conglomerates (PPC). Each PPC 1s managed by
the storage server that hosts 1it.

Each PPC comprises a manifest portion and a payload
portion. The mamiest portion enumerates the chunk identi-
fiers of a set of chunks that this PPC protects. The payload
contains the product of the payload of those same chunks.
This 1s typically an XOR product, but any Galois transform
can be used.

For example, the PPC manifest can enumerate the chunk
identifiers of the protected chunks A, B and C, and the
payload portion would hold A+B+C or A"B"C (where “+” or
“” indicates the communicative Galois transformation
selected).

Thereatter, a PPC may be used to recover any missing,
member of the protected set given the surviving members.

For example, the following recoveries can all be performed:

(A+B+C)+B+C—A

(A+B+C)+A+C—B

(A+B+C)+A+B—=C

Under the present invention a storage server 1s assigned to
provide specific protection for a given chunk 1n a PPC. The
storage server selects the PPC to add the newly protect
chunk to on its own subject to constraints which prevent
overlapping failure domains across PPCs protecting the
same chunk which that server will select itself. When the
new payload is received it 1s applied to the selected (poten-
tially already existing) PPC to produce a new PPC that has
added the new chunk to the list of protected chunks.

With reference again to FI1G. 7, storage servers 721, 722,
and 723 each receive chunk 705 (chunk I). Storage server
721 stores chunk 705 as received. Storage servers 722 and
723, which have been designated to provide parity protec-

tion, combine the existing data that they were protecting
prior to the put operation of chunk 705—i.e., PPC 731

(A+F) for storage server 722 and PPC 732 (B+G) for storage
server 723—with the new chunk I to form a new PPC—i.e.,
PPC 732 (A+F+I) for storage server 722 and PPC 734
(B+G+I) for storage server 723. Storage server 722 then
stores PPC 732 (A+F+I) and storage server 723 stores PPC
734 (B+G+1).

Under the protocol disclosed 1n the Replicast Application,
a gateway will multicast an “accept” message that schedules
the rendezvous transfer. The present mvention extends that
message to also assign a specific non-default role to each
storage servers not assigned to hold a whole replica. As waill
be explained, the storage servers assigned to provide parity
protection avoid undesirable overlapping membership in
their self-managed PPCs by basing the PPC membership on
the role assigned.

Creating multiple PPCs protects against the concurrent
loss of N storage servers. Most deployments will find 1t
advantageous to limit N to two, as that the marginal benefit




US 10,216,577 B2

9

ol protecting against concurrent loss of 3 or more storage
servers 1s minimal compared to the cost of doing so.

Protection Against Multiple Losses

FIG. 8 depicts chunk 801 (also labeled Chunk A) and
chunk 802 (also labeled Chunk H). Chunks 801 and 802
both are protected by PPC 810 and PPC 820. FIG. 8
illustrates why merely having two PPCs, with no restric-
tions, will not provide suilicient protection against the
concurrent loss of two storage servers. In the example
illustrated, the concurrent loss of the servers holding the
primary replicas for chunks 801 and 802 will leave PPCs
810 and 820 useless because of overlapping protection in the
PPCs as to chunks 801 and 802. All that can be recovered
from PPCs 810 and 820 in that scenario will be A+H.
Surviving chunks B, C, D, E, F and G can recover A+H from
A+B+C+D+E+F+G+H (PPC 810), and surviving chunks I,
J, K, L, M, N and O can recover A+H from A+H+I1+J+K+
L+M+N+O (PPC 820). However, with the primary replicas
for both A and H lost, the cluster no longer has suflicient
information to recover the original payload of either A or H.

However, even 11 we limit two PPCs to containing only a
single overlapping protected chunk, the cluster still will be
vulnerable to the concurrent loss of two failure domains. For
example, 1f one PPC protects [A, B, C, D, E] and another
PPC protects [A, F, G, H, I], and 1f E and F are 1n the same
tailure domain then, the loss of the storage server storing the
replica for A and the failure domain storing the replicas for
E and F would prevent recovery of A, E, and F.

The replicast protocol described in the Replicast Appli-
cation uses multicast messaging to allocate chunks to spe-
cific storage servers within a negotiating group, which limaits
the number of storage servers (and hence failure domains)
within the negotiating group to which the chunks will be
assigned. With a limited number of relevant failure domains
to which any given chunk can be assigned, excessive overlap
would be common unless the aflirmative steps are taken to
prevent excessive overlap.

FIG. 9 illustrates algorithm 900 to assign a newly pro-
tected chunk to a set of distributed PPCs such that the
collected set of PPCs have at most one protected chunk for
any failure domain. FIG. 9 depicts exemplary initiator 910
and exemplary storage servers 920 that form a negotiating
group.

The replicast put transaction, as disclosed in the Incor-
porated References, 1s extended as follows:

The put request message 1s extended to indicate when this

put may request PPC creation from one or more mem-

bers of the negotiating group. This request must also
include the maximum number of PPCs that will be
assigned to cover this chunk. (step 931).

Each storage server’s put response message will identify
an Eligibility Set Map. The map specifies an Eligibility
Set for each of the other failure domains 1n the nego-
tiating group. (step 932)

An Eligibility Set 1s the set of failure domains which
will produce no contlicts 1t a PPC 1s selected which
already has a member 1n this failure domain.

Each Eligibility Set nominated must identify the PPC
that the newly protected chunk would be merged
with. Fach eligibility set must have suflicient mem-
bers for the number of PPCs that the put request
indicated might be created. This may require i1den-
tifying a new PPC that as of yet protects no chunks.

A tentative reservation must be created for each iden-
tified PPC. Most reservations will be released when
the accept message 1s received or when the transac-
tion times out.

10

15

20

25

30

35

40

45

50

55

60

65

10

The mitiator selects the members of the rendezvous
group, and assigns specific roles uniquely to each
member of the rendezvous group. This mformation 1s
included 1n the extended multicast accept message. The
roles must be mutually exclusive. (step 933). The roles
may be:

Primary replica: this storage server is to store a whole
replica of the chunk.

Primary PPC: this storage server 1s to merge the
received chunk with the identified PPC (one of those
it proposed 1n 1ts put response message) to form a
new PPC with the same PPCID.

Other PPC: this storage server 1s to select an existing
PPC which currently only has members of the sup-
plied Eligibility set. If there are multiple storage
servers assigned to provide “other PPC” protection,
then the Eligibility Set for each must be a disjoint
subset of the Eligibility Set provided by the Primary

PPC provider.
This results in the creation of a single whole replica and
a plurality of PPCs which will have at most the current
chunk’s failure domain in their set of protected chunks. The
initiator 1s never required to make a selection of which
protected chunks will be protected 1n which PPC.
FIG. 17 illustrates an example of a PPC that 1s overly

dependent on a single failure domain. In this example, two
distinct chunks (with CHIDs 2B18BA36.73b and

B129A372 . .. 629) are referenced from the single failure
domain 15056. The loss of that single failure domain (1505)
will prevent the PPC from being used to reconstruct either
of the missing chunks. Thus, a rule 1s imposed 1n the
preferred embodiments that each PPC may protect at most
one chunk from each failure domain within the negotiating
group.

FIG. 18 1llustrates exemplary Failure Domain Map 1800
which would be used by storage servers to track each “open”
PPC to which they can assign a new protected chunk. The
state for each failure domain within the negotiating group
can be: 1t already 1s protecting a specific chunk (with 1ts
CHID), 1t was blocked from protecting this failure domain
by a prewous assignment, or it 1s open to protecting a chunk
that 1s assigned to this failure domain. Examples of each of
these states are shown m exemplary Failure Domain Map
1800.

Once the imitiator has selected the storage target to hold
the primary whole replica, the failure domain to hold the
primary parity protection chunk 1s left with the Eligibility
Set specified for the primary PPC (in that server’s Put
Response). This Eligibility Set 1s then divided over the
remaining parity providers. Each of the remaining parity
providers must select an Open PPC that has no entries in its
Failure Domain Map which are blocked or have an assigned
chunk for an ineligible failure domain. The protected chunk
must be entered as being assigned for 1ts failure domain, and
the failure domains that are not in the Eligibility Set that
were previously open must be marked as blocked.

RAID-Zn Option

As etther a supplement or an alternate to identifying
non-contlicting parity protection sets, parity generation
algorithms can be selected which provide for multiple
recovery from a single set of protected chunks. Examples of
such algorithms include RAID-Zn, as developed by Sun
Microsystems for the ZFS file system, and Frasure Coding
schemes using Reed-Solomon, Cauchy or other algorithms.
These algorithms allow multiple protection stripes to
recover from the loss of two or more storage devices.




US 10,216,577 B2

11

Multiple protection for a single set of protected chunks can
be used 1nstead of or 1n addition to the use of non-contlicting
Sets.

FIG. 10 illustrates exemplary multiple parity algorithm
1000, which provides for recovery from the loss of 2 or 3
chunks within a single set of protected chunks. The mitiator
directs different parity protection providing storage servers
to use the same set of protected chunks but to generate the
PPC using different algorithms. For example, using RAID-
/3 to protect against the loss of 3 storage servers would
require assigning the p, g and r algorithms to three diflerent
storage servers. The labels “p”, “q” and *“r” are used 1n the
open-source implementation of RAID-Zn. The “p” algo-
rithm 1s a simple XOR, while “q” and “r” are more complex
Galois transformations. Lary also cites the second parity
algorithm for RAID-6 as “(Q)”, as does the Linux kernel
documentation for its software RAID-6 algorithm (https://
www . kernel.org/pub/linux/kemel/people/hpa/raid6.pdi).
Here, chunk 1010 1s protected by one storage server as PPC
1020 using the p algornithm, by a second storage server as
PPC 1030 using the g algorithm, and by a third storage
server as PPC 1040 using the r algorithm.

An mitiator specifying the use of a specific set of pro-
tected chunks could also specity the use of any non-default
algorithm (more than simple XOR). The payload of each
new protected chunk would then be combined with the
existing PPC using the specified algorithm.

Parity Protection Chunk Permanent ID (PCCID)

FIG. 11 illustrates the 1ssue of indexing a PPC for multiple
protected chunks when the storage servers are using a

copy-on-write strategy.

In the example 1illustrated, scenario 1100, PPCID 1130
and PPCID 1140 already reference PPC 1010 protecting
chunks X and Y. When a new protected chunk Z 1s received,
a new PPC 1020 with payload for X+Y+Z7Z 1is created by
applying the selected algorithm to (X+Y) and Z. The chal-
lenge 1s to have the protected chunk indexes for protected
chunks X, Y and 7Z (1130, 1140 and 1150) all refer to PPC
1020. This must scale even 1f the number of already-
referenced chunks 1s considerably larger than 2.

FI1G. 12 1llustrates solution 1200 to the issue illustrated in
FIG. 11. Protected Chunk Index 1210 maps to PPCID 1220.
PPCID 1220 then maps to PPC 1230.

FIG. 13 illustrates how a storage server 1310 processes
receipt of a chunk 1350 (chunk 7), which 1s to be merged (as
part ol a put transaction) with an existing PPC 1340 (X+Y)
associated with a PPCID 1320 to PPC mapping 1330:

The new PPC 1360 1s written. It now has content for

(X+Y+7).

PPCID 1320 to PPC mapping 1330 1s updated to refer-
ence the chunk ID for new PPC 1360.

The protected chunk index mapping 1370 for the newly
protected chunk 1350 (7) 1s written to reference PPCID
1320. No change 1s required to the protected chunk
index entries for chunks X or Y as that they still
reference PPCID 1320.

Storage Server Local Encoding of PPCs

FIG. 14 1illustrates the local encoding on each storage
server providing parity protection storage using the multiple
Key-Value-Tuple (KVT) technique as previously disclosed
in the Incorporated References. The KV strategy imndexes
contiguous local storage by the concatenation of a type and
a cryptographic hash which yields a value that 1s erther a
short in-line record or a reference to the length and location

of local storage.
A protected chunk index KVT 1410 maps chunk 1D 1421

of protected chunk 1420 to PPCID 1430.

10

15

20

25

30

35

40

45

50

55

60

65

12

Another KVT index entry 1440 maps PPCID 1430 to the
chunk ID 1431 of PPC 1450. A KV'T for PPC 1450 maps
chunk ID 14351 to the location and length of PPC 1450 stored
persistently. The contents of PPC 1450 comprises two
portions: manifest portion 1460 and payload portion 1470.
Payload portion 1470 contains the product of the protected
chunks” payload (e.g., X+Y+7). Manifest portion 1460
COmprises:

PPCID (Parity Protection Conglomerate Permanent 1D)

1430. Readers validate that the correct PPC 1450 has
been found by comparing PPCID 1430 with the path
followed to reach the PPC.

An enumerator speciiying the parity algorithm used. XOR
1s the default algorithm.

The number of protected chunks. When the present inven-
tion 1s used with the Replicast protocol as described 1n
the Incorporate References, this 1s at most the number
of failure domains within a negotiating group (1.€., each
protected chunk 1 a PPC must be from a different
failure domain).

For each protected chunk:

The protected chunk ID (CHID).

The primary failure domain where the whole replica of
the chunk was last known to reside.

The original length of the chunk, which 1s needed when
a chunk’s length 1s less than the length of the
combined payload. The combined payload will have
the size of the largest protected chunk.

The payload portion 1470 contains the results of applying
the protection algorithm to all of the payload of all of the
protected chunks.

This encoding supports the different transactional require-
ments for PPCs:

The same PPC can be referenced for multiple protected

chunks.

A new PPC can be generated covering the prior set of
protected chunks and a new protected chunk. The
PPCID can be updated once to map all prior protected
chunks to the new PPC.

Either the manifest portion or the payload portion can be
retrieved, as specified 1n the request.

Note that there 1s no transaction that needs to retrieve the
payload of a PPC based upon the cryptographic hash of the
combined payload. An alternate encoding could optimize
this by using two different KV'T entries. The default imple-
mentation prefers to minimize the number of KVT index
entrics and take the extra step ol extracting either the
manifest portion or the payload portion from the payload.

Chunk Striping

When multicast deliveries can be addressed to larger
multicast groups, the initiators may assign each recipient to
store a specific payload and/or parity slice of the chunk. For
example, this enables creating erasure coding of a chunk
with the data placed in 10 data slices and 4 parity slices. A
single multicast transmission can result 1n 14 different slices
being created. Conventional unicasting of each of those 14
slices would consume 140% of the network bandwidth
required to multicast the full chunk.

The disadvantage of such a solution 1s that it requires the
multicast delivery to address a larger group. Supporting
larger groups requires either a very low latency method of
speciiying group membership or only supporting a subset of
possible combinations. Updating layer-2 forwarding tables
can easily be done as a low latency operation. However, the
method for doing so 1s specific to switch model. There are
no model-independent low latency protocols for updating
layer-2 multicast forwarding tables currently defined.




US 10,216,577 B2

13

Put Transaction Creating Target-Managed PPCs

The present invention 1s applicable to any distributed
storage system where a single payload chunk image 1s sent
to multiple storage targets, typically by multicasting, to
create whole replicas and/or protect the transmitted chunk 1n
PPCs. This section will describe a put transaction which
extends the Replicast put transaction as described in the
Incorporated References to add replicas or derivatives to
reach the goal of having a single whole replica and a
specified number of PPCs protecting the chunk.

In the Incorporated References, a Replicast put transac-
tion i1ncludes a “rendezvous transfer” where the initiator
multicasts a chunk to a “rendezvous group” that has been
selected and/or configured by earlier messaging. This
exchange includes an “accept message” which tells the
members of the negotiating group which of them are to
receive and store the multicast chunk.

The present invention extends that transaction by assign-
ing cach member listed in the accept message to a specific
role. Diflerent roles specily differing handling of the
received multicast chunk. The options for the assigned role
include the following:

Store a whole replica of the chunk. This 1s the default
behavior in the prior disclosures. Typically, at least one
target will be assigned this role.

Combine the data into a PPC as described previously in
this document.

The Put Transaction 1s extended to have the following

steps:

An Initiator transmits an extended Unnamed Put Request
via multicasting to a negotiating group. The extended
request specifies that this transaction may call upon
storage targets to merge the received chunk payload
into a PPC. With this option the request must specily
the maximum number of PPCs needed to protect this
chunk.

The members of the negotiating group, which as previ-
ously disclosed are a subset of the full storage cluster
which will typically only contain a small multiple of
the typical replication count, each receive the multicast
request and generate a Put Response message unicast
back to the Initiator which either indicates:
that the specified chunk 1s already stored on this storage

server, or already protected by a PPC on this storage

server, or

when this storage server could accept a multicast

transier of this chunk payload. There 1s always a bid

response. When a storage server does not want to

store a specific chunk 1t merely oflers an undesirable

bid (a bid that it knows will lose because 1ts proposed

time 1s too far 1 the future). The bid response will

include additional information to assist the Initiator

in target selection, which may include:

The remaining capacity for new persistent storage on
this storage server.

The failure domain that this storage server has been
assigned.

The Eligibility Map as previously described 1n this
document.

The mitiator then determines whether there are already
suflicient replicas or derivatives of the chunk stored to
provide the required class of storage, or if not, which
additional replicas or derivatives are required. If more
replicas are required, 1t applies a user-defined policy to
select the best set of storage server bids to select and the
roles to assign to each. This used-defined policy 1s
typically based on the earliest possible transter, but

10

15

20

25

30

35

40

45

50

55

60

65

14

may also factor load-balancing of total storage capac-

ity. This decision 1s encoded 1n a put accept message to

be transmitted to the negotiating group which specifies:

The set of storage targets which will receive the mul-
ticast data transier, and the multicast group on which
this transier will occur (the “Rendezvous Group™).

The assigned role of each selected storage target in
processing the received data (to store a replica or to
store a PPC).

At the specified time, the Imitiator transmits the chunk
payload 1n a series of unrelhiable datagrams to the
multicast address specified in the accept message (the
“Rendezvous Group™).

Each recipient validates the received chunk by calculating
the cryptographic hash of the received payload. If this
does not match the Chunk ID, the payload 1s discarded
and a negative Chunk Acknowledgement 1s sent to the
Initiator reporting a transmission error. This 1s
unchanged from the disclosure in the Incorporated
References.

Otherwise, the required local storage 1s created, before a
Chunk Acknowledgement 1s sent. Storing the contents
locally may 1mnvolve storing the whole replica, combin-
ing the recerved data with an existing PPC, or creating
a new parity protection permanent identifier referring to
a PPC covering only the recerved chunk.

If the Initiator does not recerve suflicient positive Chunk
Acknowledgements, 1t will either retry the transaction

or return an error to the application layer.

Put Transaction with RAID-ZN Option

When the RAID-ZN option 15 used to create PPCs, 1t 1s
necessary to create a set ol PPCs which protect the same set
of chunks but using different algorithms. This may be
accomplished by having the accept message assign the target
to be a PPC with a specific imitiator-chosen PPCID. Each
initiator would have a set of unfinished PPCs to which a new
chunk could be assigned. Once a PPC 1s “full,” the mitiator
no longer needs to track the PPCID membership itsellf.

When this option 1s used, the role assigned to a storage
target must specily:

The PPCID to identily the existing PPC and the replace-
ment PPC. The PPCID must be under the exclusive
control of the Initiator.

The algorithm to be used to merge the protected chunk
with the existing PPC. In the preferred implementation,

this would be the “p”, “q” or “r” algorithms docu-
mented for the RAID-Zn algorithm.

The manifest of the created PPC notes which algorithm
was used, therefore the procedures to recover a lost chunk
are the same no matter which method was used to create the
PPC.

Put Transaction with Frasure Coding Option

When using the erasure coding option, the role assigned
to a storage target must specily:

The erasure coding algorithm used (Reed-Solomon,

(Gauchy, etc.);

The erasure coding geometry used (number of data slices
and number of parity slices); and

Which slice of the chunk this storage target should store.

Get Transaction

The present mvention requires that a get request be
broadcast or multicast to a set of all storage targets which
may hold a whole replica of the desired chunk or a PPC
protecting 1t. In response to this message, each storage
server will respond indicating one of the following condi-
tions:

That 1t has a whole replica of the requested chunk.




US 10,216,577 B2

15

That 1t has a PPC covering the requested chunk.

That 1t has a specific erasure coding slide of the requested
chunk.

That 1t has none of the above.

As with the already disclosed specification of a get
transaction 1n the Incorporated References when a storage
server response oflers content, the response will also 1ndi-
cate when the server would be ready to transmit the
requested content (which could be the whole payload chunk
or the manifest portion of the PPC).

If the mitiator receives no responses oflering the whole
replica, or when the whole replica will not be available for
a considerable time, it will request delivery of the PPC
manifest. Once i1t has the PPC manifest 1t will mitiate a
rebuild using the PPC as described 1n the next section.

One exemplary implementation extends the Get Transac-
tion, as disclosed in the Replicast Application as follows:

The Get Response message 1s extended to allow a
response indicating that the storage server could deliver
the manifest portion of a PPC covering the requested
chunk.

The Get Accept message may select a storage server that
offered the manifest portion of a PPC. The resulting
rendezvous transter will deliver the manifest portion of
the PPC. It 1s advantageous for the storage server to
cache the payload of the PPC 1n anticipation of a
directed transfer.

The 1mitiator may direct a distributed rebuild wherein any
storage server may be directed to send the payload of
a chunk, or a PPC, to a target.

Any storage server may be instructed to accept an incom-
ing chunk sent from another storage server which 1t 1s to
combine, using a specified algorithm, to form a new chunk.
This chunk may be designated to be forwarded to another
target, or to be stored with the final cryptographic hash of the
formed chunk being reported to the rebwld initiator.

Recovering a Lost Payload Chunk

Recovering a payload chunk from a PPC 1s the same as
disclosed for recovering a payload chunk from a PPCM 1n
the Manifest Striping Application, with the exception that:

The protected set of chunks 1s taken from the manifest
portion of the PPC rather than one of those listed 1n a
PPCM.

The payload portion of the PPC is used rather than the
Parity Protection Chunk referenced from a PPCM.

FI1G. 15 depicts recovery algorithm 1500. In this example,
PPC 1510 protects chunks A, B, C, D, E, F, G, and H. In this
example, the replica for chunk C cannot be recovered, and
PPC 1510 therefore 1s to be used to recover chunk C. In first
stage 1520, pairs of surviving chunks are merged, except
that one surviving chunk 1s merged with PPC 1510. In this
example, this results in A+B, D+E, F+G, and A+B+C+D+
E+F+G (which results from merging H and PPC). In second
stage 1530, pairs of the results from first stage 1520 are
merged, resulting in A+B+D+E and A+B+C+D+E. In third
stage 1530, the results of second stage 1530 are merged,
resulting 1n C. Recovery algorithm 1500 in thus example
required eight total transfers over four time periods. Chunk
Rebuild considerations.

When a protected chunk 1s rebuilt 1t may be disadvanta-

geous to require 1t be rebuilt 1n the replacement failure
domain. Such a requirement would typically require that the
loss payload from a single server be rebuilt on a single
server. This would slow the speed of a rebuild.

10

15

20

25

30

35

40

45

50

55

60

65

16

Rebuilding a chunk 1n the “wrong” failure domain does
not impact the validity of the existing PPCs. The mathemati-
cal relationship between the protected chunks and the PPC

1s unchanged.

However, the probability of losing two chunks at the same
time may have been increased. The system should eventu-
ally create a new PPC that has a proper failure domain
distribution of protected chunks. Faster rebuild of the lost
chunks takes priority, however.

While restricting reconstruction to the orniginal failure
domain would unduly slow the process of rebuilding a lost
server, 1n many cases 1t will be possible to assign the new
reconstructed chunk to a failure domain which 1s not refer-
enced 1 any PPC.

In this case, the manifest portions of the PPCs merely
have to be updated to reference the new failure domain for
the recreated chunk.

When migrating or rebuilding a PPC 1tself 1t 1s highly
preferable to avoid replicating 1t to any failure domain
already referenced in its manifest. There are no changes
required to the manifest portion of the PPC because the
PPC’s manifest does not explicitly state what failure domain
it 1S 1n.

Removing Protected Chunks

Back references are used for PPCs as with any other
chunk.

FIG. 16 depicts the scheme for back references, as dis-
cussed 1n greater detail in the Incorporated References.

Back reference 1610 1s associated with a particular chunk

identified by chunk ID 1611. Back reference 1610 refers to
chunk ID 1621 for back references list 1620. Chunk ID 1621
identifies the location and length of local persistent storage
holding back references information, which mcludes specu-
lative holds, the number of verified back references and the
verified back references.

A PPC 1s retained by a storage server when a PPCID
contains a back-reference to that PPC.

PPCIDs are retained as long as they are referenced by
Parity Protection KVTs.

Parity Protection KVTs are retained when the whole
replica would have been retained. The storage server main-
tains the same back-reference KVT as maintained for the
whole replica.

This method of protection can prevent a chunk from being
expunged because 1t 1s referenced 1n a PPC. The following
optional procedure describes how to expunge a chunk that 1s
not referenced 1n a PPC. This procedure can be omitted it
merely retaining referenced chunks does not result 1n an
unacceptable amount of orphaned chunks.

To fully expunge a protected chunk:

Perform a special “put expunge™ transaction which seeks
to 1dentily a rendezvous group of storage servers hold-
ing PPCs covering a specific chunk.

Rendezvous groups are selected to include every storage
server with a PPC that protects the to-be-expunged
chunk. Depending on how rendezvous groups are
selected or formed this may require iterations each
targeting a subset of the relevant PPCs.

Each rendezvous transier sends the protected chunk to be
expunged to the selected group.

The recipients of the rendezvous transier will then remove
the protected chunk from the PPC as follows:

The designated operation 1s applied to create a new
PPC. With the default XOR algorithm this would
take A+B+C+X, remove X resulting in A+B+C.

The number of protected chunks 1s reduced by one.




US 10,216,577 B2

17

The reference to Chunk X 1s removed from the mani-
fest portion.

The resulting PPC 1s then put, and 1ts cryptographic
hash calculated.

The PPCID 1s updated to reference the new PPC.

The 1index entry for the protected chunk 1s removed.

The chunk put acknowledgement 1s sent acknowledg-
ing that the parity protection for the chunk has been
removed.

After a chunk 1s no longer referenced 1n any PPC, the
normal rules governing its retention, as described for back-
references 1n the Replicast Application, will apply.

In another embodiment, the system can still perform
parity protection well after the initial put transaction (as
opposed to concurrently). Changing the effective replication
count on a Version Manifest can still trigger conversion of
the referenced chunks. First, a background put will note that
the referenced chunk has N whole replicas rather than 1
whole replica and N-1 PPCs. Second, a rendezvous transier
will then create the PPCs and designate one of the whole
replicas to be retained. Third, the other whole replicas are
then eligible to be expunged.

Partial Updates

An 1mmplementation may optionally combine the tech-
nique described in [Frank, 2004] with the present invention
as follows:

Update the primary replica of the chunk by sending the

partial update to the primary replica. This must create
a new chunk which 1s stored on the same machine using,
a chunk reference which fixes the Indivisible Negoti-
ating Group.

After applying the update, the primary server responds
with the Chunk ID of the updated chunk, and the
product of the partial update and the original data.

This data 1s then multicast to rendezvous group so that
cach of the other servers can apply the product (new+
old) to their PPC. This new PPC is stored on the same
server, and the new PPCID 1s mapped to the new
CHID. The manifest portion of the new PPC 1s also
updated to refer to the new CHID of the protected
chunk.

Alternative Implementation without Multicasting

An alternative implementation can apply the same tech-
niques for self-managed PPCs without reliance on multicast
negotiations.

In a non-multicast implementation, the mnitiator first puts
the whole replica and then iteratively puts the protected
chunk for incorporation with a different PPC. In each step
the eligibility set 1s provided with the protected chunk
payload. The targeted server’s acknowledgement specifies
the eligibility set for the next PPC.

To support such an alternative implementation, the stor-
age server would accept a put request which requested
merging a supplied chunk into a PPC. This request would
specily the identity of the protected chunk, the payload of
the protected chunk, the failure domain where the whole
replica was stored and the eligibility set for the selection of
an existing PPC to be extended (as previously described).
The new PPC 1s created and indexed as previously
described. The acknowledgement must convey the set of
failure domains that must be removed from the eligibility set
for any next PPC to be created for the same protected chunk.

Such an implementation would need to remember which
target had been assigned the primary whole replica so that
get transactions would be directed there first. One method of
doing so would be to assign the primary replica in the

consistent hash algorithm as well as the full set of targets.

10

15

20

25

30

35

40

45

50

55

60

65

18

The “first” selection should be distributed by some mecha-
nism for all objects assigned to a specific partition or
replication group.

Contrasts with Manifest Striping

The present invention differs from a prior parity protec-

tion algorithm described 1n the Manifest Striping Applica-

tion n several critical aspects:

In the present invention, each PPC 1s self-describing. That
1s, a PPC includes 1ts own manifest describing the
chunks the payload was built from. In Manifest Strip-
ing, the Parity Protection Content Mamfest (PPCM) 1s
created by the initiator and stored parallel to a manifest.

Under Manifest Striping, the set of chunks that a PPC
Chunk may reference 1s constrained to a specific set of
manifests (frequently only a single mamifest). The
present invention forms parity protection conglomer-
ates referencing otherwise unrelated chunks.

The present invention works on chunks, without any
special consideration for the difference between mani-

fests versus payload chunks. Manifest Striping creates

Parity Protection Chunks created exclusively from pay-

load chunks referenced 1n an explicitly enumerated set
of manifests. The choice of which chunks to create

PPCs for 1s under the control of the mnitiators.

The present mnvention 1s intended to be applied at the time
when a put transaction first occurs for a chunk, while
Manifest Striping 1s optimized for deferred migration
from multiple replica protection to parity protection.

CONCLUSION

The present invention describes methods to assign pro-
tected chunks to parity protection conglomerates 1n a man-
ner that 1s compatible with multiple mitiators performing
concurrent updates. The methods described are all compat-
ible with putting chunks with parity protection on their
initial put using only the bandwidth required to transmit the
protected chunk once (such as by multicasting the chunk).

These methods still provide the same degree of protection
from the loss of storage servers or replicas, but with less
storage space required.

What 1s claimed 1s:

1. A method for a storage server to create a parity
protection conglomerate protecting a recerved chunk, com-
prising:

generating a mamfest within a parity protection conglom-

erate, wherein the manifest enumerates: a set of chunks
protected by the parity protection conglomerate,
including the received chunk; a previously-generated
unique chunk identifier for each chunk in the set of
chunks; and a failure domain where the primary whole
replica of that chunk should be stored, wherein a
selection of the parity protection conglomerate by the
storage server 1s constrained such that the created parity
protection conglomerate references only chunks con-
tamned 1n failure domains enumerated in an eligibility
set specified with a put message;

generating a payload portion of a parity protection con-

glomerate, wherein the payload portion comprises a
Galo1s transformation of a payload portion of each
chunk within the set of chunks, thereby protecting the
received chunk as a protected chunk;

updating a local index to map a parity protection con-

glomerate 1dentifier (PPCID) to the previously-gener-
ated unique chunk i1dentifier of the parity protection
conglomerate;



US 10,216,577 B2

19

generating a protection index entry to map a chunk
identifier of the received chunk to the PPCID; and

reducing an eligibility set associated with the PPCID to
exclude all failure domains that were not contained 1n
the eligibility set specified for the received chunk.

2. The method of claim 1, wherein the Galois transform

comprises an Exclusive-OR (XOR) operation.

3. The method of claim 1, further comprising;:

initializing, by the storage server, a new parity protection
conglomerate with a new PPCID 11 there are no existing
parity protection conglomerates that comply with the
cligibility set associated with the first chunk; and

generating an eligibility set for the new parity protection
conglomerate to include the same failure domains
specified 1n the eligibility set associated with the first
chunk without the failure domain containing the pro-

tected chunk.

10

15

20



	Front Page
	Drawings
	Specification
	Claims

