US010210032B2

12 United States Patent

(10) Patent No.: US 10,210,032 B2

Ramalingam 45) Date of Patent: Feb. 19, 2019

(54) PROCESSING COMMANDS VIA DEDICATED (38) Field of Classification Search
REGISTER PAIRS FOR EACH THREAD OF CPC GO6F 9/30101; GO6F 11/0736; GO6F
A PLURALITY OF THREADS 11/0757: GOGF 11/0772
USPC e, 714/10, 30, 31

(71) Applicant: {:iT(E[:JIé)C ORPORATION, Santa Clara, See application file for complete search history.

(72) Inventor: Anand S. Ramalingam, Beaverton, OR (56) References Cited

(US) U.S. PATENT DOCUMENTS
(73) Assignee: INTEL CORPORATION, Santa Clara, 8,350,450 B2* 1/2013 GOVE ooovoeeeroccroroe GOGE 9/52
CA (US) 712/220
2014/0189332 Al* 7/2014 Ben-Kiki GOG6F 9/30145
(*) Notice: Subject to any disclaimer, the term of this 712/244
patent 1s extended or adjusted under 35 . _
U.S.C. 154(b) by 139 days. cited by examiner
(21) Appl. No.: 15/475,017 Primary Examiner — Joseph R Kudirka
| (74) Attorney, Agent, or Firm — Konrad Raynes Davda &
(22) Filed: Mar. 30, 2017 Victor LLP; Rabindranath Dutta
(65) Prior Publication Data (57) ABSTRACT
US 2018/0285155 A1 Oct. 4, 2018 A hardware acceleration block is configured to process via
a dedicated pair of registers, a plurality of commands of each
(51) Int. Cl. of a plurality of threads received from a compute complex.
Gool 11/07 (2006.01) The hardware acceleration block receives successive coms-
Gool 9/30 (2018.01) mands that are separated by at least an amount of time, from
(52) U.S. CL a thread of the plurality of threads. The amount of time is
CPC ... GO6I' 11/0736 (2013.01); GO6F 9/30101 adequate to process a command from the thread.
(2013.01); GO6F 11/0757 (2013.01); GO6F
1170772 (2013.01) 25 Claims, 6 Drawing Sheets
100
Embedded System

(Embedded system in which a ?Iu*rality of threads share a single set of
hardware state indicator, completion register and submission register of a
hardwars acceleration block) 102

Hardware Acceleration Block
112 Clock
(Relatively slow)
114 116 118
Hardware State
Indicator
(Ml_lt§t be read betl;q[re
wrting cammanc 19 Completion Submission
submission register - -
by a thread or reading Register Register
response from
completion register by
a thread)
~ Shared by N threads —— 124
(processing time needed to maintain queue of threads
and additional reading of hardware state indicator)

22

Compute Complex 106

108
Clock
i

U.S. Patent

Feb. 19, 2019 Sheet 1 of 6

100

Embedded System

(Embedded system in which a plurality of threads share a single set of
hardware state indicator, completion register and submission register of a
hardware acceleration block) _— 102

114

Hardware State
Indicator
(Must be read before
writing command to

116

Completion

submission register
by a thread or reading
response from
completion register by
a thread)

Register

Shared by N threads — 124
(processing time needed to maintain queue of threads
and additional reading of hardware state indicator)

US 10,210,032 B2

Clock

118

Submission

Register

Thread #1

@
@
¢
Compute Complex 106

Clock '
(Relatively fast) 110

FIG. 1

120
122
)8

- 10

Thread #N

U.S. Patent Feb. 19, 2019 Sheet 2 of 6 US 10,210,032 B2

200

Enhanced Embedded System
(Enhanced embedded system in which each thread of a plurality of threads uses a different
set of completion register and submission register of a hardware acceleration block)

202

Enhanced Hardware Acceleration Block
(Hardware Acceleration Block)

2 2

-------------------------- First
228 E Register
Hardware State Completlon Submrssran : UsPeadlrb
Indrcater#l Regrster#l RBE’StB"#l | Thread
__________________________)
o ¢ ® /" 230
mmmmmmmmmmmmmmmmmmmmmmmmmm - Nth

234 I Register
Hardware State Cempletlerr Submrssren UsPeadlrb
Irrclrcator#N Regrster #N Regrster #N ; Threa d

U T S S S S S D S S it N S S S S N D S S S S N e S

Thread #1

Compute Complex 206

Clock
20

FIG. 2

U.S. Patent Feb. 19, 2019 Sheet 3 of 6

Thread — 302 s 300

operations

A thread sends a command to the submission
register of the register pair assigned to the

thread
(without any need to read the hardware state
indicator prior to sending the command).

310

The thread waits for at least the
predetermined duration of time needed to
process the command by the hardware
acceleration block.

314

The thread reads the response of the hardware
acceleration block from the completion register
of the register pair assigned to the thread
(without any need to read the hardware state
indicator prior to reading from the completion
register).

318

The thread sends the next command to the

submission register of the register pair assigned
to the thread.

FIG. 3

Enhanced — 3U6

hardware
acceleration

304 block

operations 312

Hardware acceleration

block sets the hardware
state indicator to
Hbusyll .

316

Hardware acceleration block

sets the hardware state
indicator to "not busy".

320

If for any reason the next
command is received from
the thread while the previous
command is being
processed, the hardware
acceleration block performs:
(1) In a first embodiment
generates a fault interrupt
(as the hardware state
indicator is busy): and

(2) In a second embodiment
adds an indication in the
response to the thread in the
completion register that a
timing violation occurred (as
the hardware state indicator
IS busy).

US 10,210,032 B2

U.S. Patent Feb. 19, 2019 Sheet 4 of 6 US 10,210,032 B2

4072

Configuring a hardware acceleration block to process via a

dedicated pair of registers, a plurality of commands of each of a
plurality of threads received from a compute complex.

404

Receiving, by the hardware acceleration block, successive
commands that are separated by at least a predetermined amount
of time, from a thread of the plurality of threads, wherein the
predetermined amount of time is adequate to process a command

from the thread.
One — 406 Another — 410
embodiment embodiment
408 412
~ Generating an interrupt Adding, by the hardware
indicating a fault, in response acceleration block, an indication
to a subsequent command indicating an occurrence of 2
from the thread being timing violation, in a response for
received at the hardware the thread , in response to a
acceleration block prior t0 subsequent command from the
completion of processing of a thread being received at the
previous command of the hardware acceleration block
thread. prior to completion of processing
of a previous command of the

thread.

FIG. 4

U.S. Patent Feb. 19, 2019 Sheet 5 of 6 US 10,210,032 B2

900

Solid State Drive (SSD)
506 [Physical Storage Device]

Enhanced
Hardware
Acceleration Block

Host

Compute Complex

FIG. 5

U.S. Patent Feb. 19, 2019 Sheet 6 of 6 US 10,210,032 B2

600

sysiem | |
(8.g., Computational device)

602

Cirouit
Processor(s)

Me
608 610

Program

0l4

016

* Input Device(s)

Display

(e.g., Keyboard,
Mouse, etc.)

Network
Interface 6

20
Enhanced embedded system

FIG. 6

-
S—

US 10,210,032 B2

1

PROCESSING COMMANDS VIA DEDICATED
REGISTER PAIRS FOR EACH THREAD OF
A PLURALITY OF THREADS

BACKGROUND

An embedded system may comprise a unit included
within a larger system, where the larger system may be a
computational system, a mechanical system, an electrical
system, etc. In many situations, the embedded system many
perform dedicated functions within the larger system. The
embedded system may be a part of a device and may be
dedicated to perform a specific task faster than other units of
the larger system.

Certain embedded systems may include a hardware accel-
eration block and one or more cores that interface with the
hardware acceleration block. The hardware acceleration
block may be designed to perform dedicated functions by
interfacing with the one or more cores. Many operations,
such as encryption, decryption, compression, decompres-
s10n, encoding, decoding, error correction, etc., may require
significant processor cycles or significant resources to com-
plete. Such operations may be offloaded to the hardware
acceleration block for execution.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates a block diagram that shows an embed-
ded system 1n which a plurality of threads share a single set
of registers comprised of a hardware state indicator, a
completion register and a submission register of a hardware
acceleration block, 1n accordance with certain embodiments;

FI1G. 2 illustrates a block diagram that shows an enhanced
embedded system in which each thread of a plurality of
threads use a diflerent set of registers comprised of a
completion register and a submission register of an
enhanced hardware acceleration block, 1n accordance with
certain embodiments;

FIG. 3 illustrates a flowchart that shows operations per-
formed by a thread and operations performed by the
enhanced hardware acceleration block of the enhanced
embedded system, in accordance with certain embodiments;

FI1G. 4 illustrates a tlowchart that that shows operations
performed 1n an enhanced hardware acceleration block of
the enhanced embedded system, 1n accordance with certain
embodiments;

FI1G. 5 illustrates a block diagram of a solid state drive that
includes the enhanced hardware acceleration block and a
compute complex, 1n accordance with certain embodiments;
and

FIG. 6 illustrates a block diagram of a system that
includes the enhanced embedded system, 1n accordance with
certain embodiments.

DETAILED DESCRIPTION

In the following description, reference 1s made to the
accompanying drawings which form a part hereof and which
illustrate several embodiments. It 1s understood that other
embodiments may be utilized and structural and operational
changes may be made.

Certain embodiments provide an embedded system in
which a hardware acceleration block provides a pair of
registers comprising a completion register and a submission
register for each thread of a plurality of threads that are sent

10

15

20

25

30

35

40

45

50

55

60

65

2

for execution by the hardware acceleration block. A com-
mand from a thread is placed in the submission register, and
the result of executing the command in the embedded
system 1s read from the completion register. The thread
sends successive commands that are separated by a prede-
termined amount of time, where the predetermined amount
of time 1s adequate to process a command in the hardware
acceleration block.

The hardware acceleration block may generate an inter-
rupt indicating a fault 1f a new command from a thread 1s
received prior to completion of a previous command of the
thread. In certain alternative embodiments, the hardware
acceleration block may indicate 1n a response to the thread
that a fault comprising a timing violation occurred because
a new command from a thread was received prior to comple-
tion of a previous command of the thread. As a result, 1n
comparison to mechanisms 1n which a single pair of regis-
ters comprising a completion register and a submission
register are provided for a plurality of threads, certain
embodiments reduce the processing overhead of managing
the plurality of threads. For example, in mechanisms in
which a pair of registers comprising a completion register
and a submission register are provided, the processing
overhead may comprise the processing time and resources
needed for thread synchronization of a plurality of threads to
access the pair of registers comprising the completion reg-
ister and the submission register that are shared by the
plurality of threads, and this processing overhead for thread
synchronization 1s eliminated by providing a completion
register and a submission register for each thread of a
plurality of threads. Certain embodiments also avoid the
time associated with determiming the state of the hardware
acceleration block prior to accessing the completion and
submission registers.

FIG. 1 1illustrates a block diagram that shows an embed-
ded system 100 in which a plurality of threads share a single
set of registers comprising a hardware state indicator, a
completion register and a submission register of a hardware
acceleration block, 1n accordance with certain embodiments.

The embedded system 100 1s comprised of a hardware
acceleration block 102 and a compute complex 104. The
hardware acceleration block 102 may be implemented via
circuitry including an application specific integrated circuit
(ASIC) that may be used to perform dedicated functions.
The compute complex 104 may be comprised of one or more
cores 106, 108 (e.g., processor cores) and may 1include
hardware, firmware, software or any combination thereof.
The clock 110 driving the compute complex 104 may be
relatively fast 1n comparison to the clock 112 drniving the
hardware acceleration block 102, and as a result reads and
writes with respect to the registers of the hardware accel-
eration block 102 may be relatively time consuming 1in
comparison to reads and writes performed from registers of
the compute complex 104.

The hardware acceleration block 102 1s comprised of a
hardware state indicator 114, a completion register 116, and
a submission register 118. The compute complex 104 gen-
erates a plurality of threads that are transmitted for execution
to the hardware acceleration block 102, where a thread may
comprise a sequence ol commands. In FIG. 1, N threads are
shown wvia reference numerals 120, 122. A thread of the
plurality of threads has to acquire a lock (the lock 1s
commonly referred to as MUTEX, which 1s an acronym for
mutual exclusion) to access the single pair of shared comple-
tion and submission registers 116, 118. Additionally, before
a thread writes a command to the submission register 118,
the thread must read the hardware state indicator 114 to

US 10,210,032 B2

3

determine whether the hardware acceleration block 102 1s
still busy processing a previous command from the same
thread or from a diflerent thread. Only 11 the hardware state
indicator 114 indicates that the hardware acceleration block
102 1s not busy can the thread write the command to the
submission register 118, or else the embedded system 100
may not operate properly.

After a command 1s written to the submission register 118,
the hardware acceleration block 102 processes the command
and writes the result in the completion register 116, for the
thread to read. Belore the thread reads the completion
register 116, the thread must read the hardware state indi-
cator 114 to determine whether the hardware acceleration
block 102 1s still busy processing a previous command from
the same thread or from a different thread. Only 1t the
hardware state indicator 114 indicates that the hardware
acceleration block 102 1s not busy can the thread read the
result from the completion register 116. Since the clock 112
of the hardware acceleration block 102 1s relatively slow, the
overhead of reading the hardware state register 114 prior to
accessing the completion register 116 and the submission
register 118 increases the time needed for a thread to
complete the operations of the thread, relative to the com-
pute complex 104.

Additionally, a single set of hardware state indicator 114,
completion register 116, and submission register 118 1is
shared by the N threads 120, 122 (as shown via reference
numeral 124). As a result, the management of the threads
that run concurrently may require preserving mutual exclu-
sion conditions and performing other checks, and additional
processing time 1s needed to perform such operations.

FI1G. 2 illustrates a block diagram that shows an enhanced
embedded system 200 1n which each thread of a plurality of
threads use a diflerent set of registers comprising a comple-
tion register and a submission register ol a hardware accel-
eration block, 1n accordance with certain embodiments.

The enhanced embedded system 200 1s comprised of an
enhanced hardware acceleration block 202 and a compute
complex 204. The enhanced hardware acceleration block
202 may be implemented via circuitry including an ASIC
that may be used to perform dedicated functions. The
compute complex 204 may be comprised of one or more
cores 206, 208 (e.g., processor cores) and may include
hardware, firmware, soitware or any combination thereof.
The clock 210 driving the compute complex 204 may be
relatively fast in comparison to the clock 212 driving the
enhanced hardware acceleration block 202 and as a result
reads and writes with respect to the registers of the enhanced
hardware acceleration block 202 may be relatively time
consuming in comparison to reads and writes performed
with respect to the registers of the compute complex 204. As
a result of the enhanced hardware acceleration block 202
being on a slower clock domain than the clock domain of the
compute complex 204, and also because reads and writes to
the registers of the enhanced hardware acceleration block
202 take several clock cycles of the compute complex 204,
in certain situations there may be as much as a 40 times
clock cycle penalty to read or write to the registers of the
enhanced hardware acceleration block 202. Hence each read
from a register of the enhanced hardware acceleration block
202 may result 1n considerable penalty for the compute
complex 204.

In FIG. 2, the compute complex 204 generates a plurality
of threads that are transmitted for execution to the enhanced
hardware acceleration block 202, where a thread may com-
prise a sequence of commands. In FIG. 2, N threads are
shown via reference numerals 220, 222.

10

15

20

25

30

35

40

45

50

55

60

65

4

In FIG. 2, for the processing of each thread, a pair of
registers are assigned. For example, for processing thread #1
220, a first register pairr 224 comprising a completion
register #1 226 and a submission register #1 228 1s assigned.
Similarly, for processing thread #N 222, an N” register pair
230 comprising a completion register #N 232 and a submis-
sion register #N 234 1s assigned.

The enhanced hardware acceleration block 202 also has
hardware state indicators associated with each register pair,
where the hardware state indicators are not accessed by the
threads 220, 222. For example, the hardware state indicator
#1 236 1s associated with the first register pair 224, and the
hardware state indicator #N 238 is associated with the N”
register pair 230.

Therefore, the enhanced hardware acceleration block 202
(also referred to as hardware acceleration block) has a
plurality of register pairs 224, 230 corresponding to a
plurality of threads 220, 222. As a result, unlike the embodi-
ments shown in FIG. 1, there 1s no need for additional
processing time to preserve mutual exclusion conditions and
perform other checks for the concurrently running threads
220, 222.

In FIG. 2, each thread writes a command to the submis-
s10n register corresponding to the thread and then writes the
next command only after the expiry of at least a predeter-
mined amount of time needed by the enhanced hardware
acceleration block 202 to complete the processing of the
command. The thread may read the result of the command,
where the result 1s placed in the completion register corre-
sponding to the thread by the enhanced hardware accelera-
tion block 202. The hardware state indicator associated with
the thread does not have to be checked by the thread because
a next command from the thread 1s sent only after the expiry
of at least a predetermined amount of time needed by the
hardware acceleration block 202 to complete the processing
of the previous command from the thread. In certain
embodiments 1n which the enhanced embedded system 200
1s implemented 1n an ASIC, the software that implements a
thread has information on the minimum wait time needed
before submission of a next command via the thread. Since
cach thread has a dedicated pair of submission and comple-
tion registers, the soltware may perform other computations
for at least the predetermined amount of time.

However, 1n case the hardware state indicator 1s busy
when the thread attempts to access the register pair corre-
sponding to the thread, then the hardware acceleration block
202 generates an interrupt to indicate a fault that indicates a
timing violation. Such a situation may occur, 1f the prede-
termined amount of time 1s not adequate for completing the
previous command prior to the arrival of the new command.
For example, the timing violation may occur because the
software implemented thread may have several different
paths or options on what operations to perform while the
enhanced hardware acceleration block 202 1s performing
operations. One or more of the paths may cause an underrun
(1.e., data 1s not generated within the predetermined amount
of time to complete the previous command prior to the
arrival of the new command). Usually, an infrequently
invoked path may have such problems and when uncovered
during validation or testing, such problems may be fixed.
Until such problems are fixed the timing violations may
continue to occur. In other embodiments, 1istead of gener-
ating an interrupt, the enhanced hardware acceleration block
202 may indicate 1n a response to the thread that a timing
violation occurred during processing.

Theretfore, 1n the enhanced hardware acceleration block
202, before an exemplary thread writes a command to the

US 10,210,032 B2

S

submission register corresponding to the thread or reads the
completion register corresponding to the thread, the thread
does not read the hardware state indicator to determine
whether the enhanced hardware acceleration block 202 1s
still busy processing a previous command. As a result, the
processing overhead of reading the hardware state indicator
1s eliminated in comparison to the embodiments shown 1n
FIG. 1.

Therefore, the enhanced hardware acceleration block 202
shown 1n FIG. 2 processes threads must faster in comparison
to the hardware acceleration block 102 shown in FIG. 1.

FIG. 3 illustrates a flowchart 300 that shows operations
performed by a thread and operations performed by the
enhanced hardware acceleration block 202 of the enhanced
embedded system 200, 1n accordance with certain embodi-
ments. The thread operations 302 are shown to the left of the
dashed line 304, and the enhanced hardware acceleration
block operations 306 are shown to the rnight of the dashed
line 304.

Control starts at block 308 in which a thread 220 sends a

command to the submission register 228 of the register pair
224 assigned to the thread 220. There 1s no need for the
thread 220 to read the hardware state indicator 236 prior to
sending the command to the submission register 228.

From block 308, control proceeds to block 310 1n which
the thread 220 waits for at least a predetermined duration of
time that 1s needed to process the command by the hardware
acceleration block 202. For example, 1mn certain embodi-
ments the predetermined duration of time may be set to be
“X” nanoseconds for the thread 220, and in such embodi-
ments successive commands of the thread 220 to the sub-
mission register 228 are sent separated by a time that 1s “X”
nanoseconds of more.

From block 308, control also proceeds to block 312 in
which the enhanced hardware acceleration block 202 sets
the hardware state indicator 236 to be “busy” because the
enhanced hardware acceleration block 202 1s processing the
command sent by the thread.

From block 310 control proceeds to block 314 1n which
the thread 220 reads the response of the enhanced hardware

acceleration block 202 from the completion register 226 of
the register pair 224 assigned to the thread 220. There 1s no
need to read the hardware state indicator 236, prior to
reading from the completion register 226 as the predeter-
mined duration of time needed to process the command has
clapsed prior to the performing of operations shown 1n block
314. It should be noted that each thread “owns™ (i.e. 1s
assigned) a pair of submission and completion registers. The
timing contract for each thread is such that even under a
worst case, the hardware acceleration block 202 1s able to
complete the requests made via commands from the thread.
For example, 1n certain embodiments the enhanced hard-
ware acceleration block 202 may take 1 microsecond to
process one request, and 1n a worst case scenario there may
be 3 such simultaneous requests (timings in the worst case
scenario are known a priori 1n an embedded system). Each
thread has a “timing contract” of 3 microseconds, 1.¢. the
thread will not read the completion register prior to an elapse
of 3 microseconds. As a result, the thread never has to check
whether the enhanced hardware acceleration block 202 1s
busy by checking the hardware state indicator. However, the
thread has to ensure 1s that 1t does not submit a second
command within the 3 microsecond contract window. As a
consequence of the sequential nature of control flow in a
thread, the thread ensures that 1t reads the completion

10

15

20

25

30

35

40

45

50

55

60

65

6

register no sooner than 3 microseconds and by design should
never submit a second command within the same time
window.

From block 314 control proceeds to block 316 1n which
the enhanced hardware acceleration block 202 sets the
hardware state indicator 236 to “not busy” because the
enhanced hardware acceleration block 202 1s no longer
processing the command sent by the thread.

From block 314 control also proceeds to block 318 1n
which the thread 220 sends the next command to the
submission register 228 of the register pair 224 assigned to
the thread 220.

If for any reason (e.g., the predetermined duration of time
needed to process the command was inadequate, 1.e., a
timing violation occurred) the next command 1s received
from the thread 220 while the previous command from the
thread 220 1s being processed, the enhanced hardware accel-
eration block 202 in one embodiment generates (at block
320) a fault interrupt (as the hardware state indicator 236 1s
indicated as “busy” while the previous command 1s being
processed), whereas 1n another embodiment the enhanced
hardware indicator block 202 adds (at block 320) an indi-
cation in the response made to the thread in the completion
register 226 that a timing violation occurred (as the hard-
ware state indicator 236 1s indicated as “busy” while the
previous command 1s being processed). The fault interrupt
may be generated 1n a real-time embedded system whereas
the 1ndication 1n the response 1n the completion register may
be added 1n an embedded system that does not operate in
real-time.

Therefore, FIG. 3 illustrates certain embodiments 1n
which the enhanced hardware acceleration block 202
(shown 1n FIG. 2) performs the processing of threads faster
in comparison to the processing of threads in the hardware
acceleration block 102 (shown in FIG. 1), by assigning
different register pairs (e.g., register pairs 224, 230) for each
thread, to eliminate the overhead of managing mutual exclu-
sion conditions, etc., and also by avoiding the overhead of
reading a hardware state indicator by a thread. Not only does
a thread send a next command after the elapse of a prede-
termined duration of time needed to process the previous
command, but also as an additional sateguard, the enhanced
hardware acceleration block 202 generates an interrupt
indicating a fault corresponding to a timing violation or
provides an 1ndication of a timing violation in a response to
the thread, 1n situations in which the predetermined duration
of time 1s not adequate. It should be noted that while the
operations shown 1n FIG. 4 have been described with respect
to thread #1 220, any of the other threads 1n the set of N
threads 220, 222 may perform equivalent operations.

FIG. 4 1llustrates a flowchart 400 that that shows opera-
tions performed in the enhanced hardware acceleration
block 202 of the enhanced embedded system 200, 1n accor-
dance with certain embodiments.

Control starts at block 402 1n which a hardware accelera-
tion block 202 1s configured to process via a dedicated pair
of registers (e.g., 224, 230), a plurality of commands of each
of a plurality of threads 220, 222 received from a compute
complex 204. The hardware acceleration block 202 recerves
(at block 404) successive commands that are separated by at
least a predetermined amount of time, from a thread (e.g.,
thread 220) of the plurality of threads 220, 222, where the
predetermined amount of time 1s adequate to process a
command from the thread (e.g., thread 220).

In one embodiment (shown via branch 406), the hardware
acceleration block 202 generates (at block 408) an interrupt
that indicates a fault, i response to a subsequent command

US 10,210,032 B2

7

from the thread 220 being received at the hardware accel-
eration block 202 prior to completion of processing of a
previous command of the thread 220.

In another embodiment (shown via branch 410) the hard-
ware acceleration block 202 adds (at block 412) an indica-
tion indicating a timing violation, mn a response for the
thread 220, in response to a subsequent command from the
thread 220 being received at the hardware acceleration block
202 prior to completion of processing of a previous com-
mand of the thread 220.

In certain embodiments, the dedicated pair of registers
comprise a submission register and a completion register. A
first command 1s received from the thread at the submission
register and a state indicator 1s set to indicate a busy state by
the hardware acceleration block 202. The first command 1s
processed and a response 1s indicated by the hardware
acceleration block 202 in the completion register for the
thread to read. In response to a reading of the completion
register, the state indicator 1s indicated to be 1 a not busy

state by the hardware acceleration block 202.

Therefore, FIG. 2-4 1illustrate certain embodiments 1n
which the plurality of threads 220 222 avoid reading the
hardware state indicators 236, 238, and the compute com-
plex 204 avoids operations to maintain any queues of the
plurality of threads 220 to access the hardware acceleration
block 202. A thread waits or performs other operations at
least for a predetermined amount of time between sending
successive commands to the hardware acceleration block
202, where the predetermined amount of time 1s adequate to
process a command. In should be noted that instead of
waiting during the predetermined amount of time, the thread
may interleave other useful processing that consumes at
least the predetermined amount of time. This provides
superior utilization for the compute complex 204 in the
enhanced embedded system 200.

FI1G. 5 illustrates a block diagram of a solid state drive 500
that includes the enhanced hardware acceleration block 202
(shown 1n FIG. 2) and a compute complex 502, 1n accor-
dance with certain embodiments.

The solid state drive 500 may include memory 504 that 1s
accessed by a host 506 that 1s coupled to the solid state drive
500. In certain embodiments, the enhanced hardware accel-
eration block 202 performs read, write, and error correction
operations, etc., on memory 504 of the solid state drive 500.

The host 506 may comprise any suitable computational
device including those presently known 1n the art, such as,
a personal computer, a workstation, a server, a mainframe,
a hand held computer, a palm top computer, a telephony
device, a network appliance, a blade computer, a processing
device, an automobile based computer system, etc.

In certain embodiments, the enhanced hardware accelera-
tion block 202 may be included 1n other devices, such as a
physical storage device that 1s a block addressable memory
device, such as those based on NAND or NOR technologies.
A physical storage device may also include future generation
nonvolatile devices, such as a three dimensional (3D) cross-
point memory device, or other byte and/or block addressable
write-in-place nonvolatile memory devices. In one embodi-
ment, the physical storage device may be or may include
memory devices that use chalcogenide glass, multi-thresh-
old level NAND flash memory, NOR flash memory, single
or multi-level phase change memory (PCM), a resistive
memory, nanowire memory, ferroelectric transistor random
access memory (FeTRAM), magnetoresistive random
access memory (MRAM) memory that imncorporates mem-
ristor technology, or spin transier torque (STT)-MRAM, a
spintronic magnetic junction memory based device, or a

10

15

20

25

30

35

40

45

50

55

60

65

8

combination of any of the above, or other memory. The
physical storage device may refer to the die itself and/or to
a packaged memory product. Certain embodiments may be
more suitable when an “operations/sec” performance metric
1s over a 100,000 range, and PCM based storage typically
fall 1n this range and so do many or all of the other next
generation memory described above. NAND based memory
may also fall in the same range, but 1n certain embodiments
may need at least 1 Terabytes of storage to have enough
parallelism to deliver performance that reaches over 100,000
operations/sec.

The described components and/or operations may be
implemented as a method, apparatus or computer program
product using standard programming and/or engineering
techniques to produce software, firmware, hardware, or any
combination thereof. The described operations may be
implemented as code maintained 1 a “computer readable
storage medium”™ for implementation in certain embodi-
ments or for solitware simulation of a memory chip for
design purposes, where a processor may read and execute
the code from the computer storage readable medium. The
computer readable storage medium includes at least one of
clectronic circuitry, storage materials, inorganic materials,
organic materials, biological materials, a casing, a housing,
a coating, and hardware. A computer readable storage
medium may comprise, but 1s not limited to, a magnetic
storage medium (e.g., hard drive drives, floppy disks, tape,
etc.), optical storage (CD-ROMs, DVDs, optical disks, etc.),
volatile and non-volatile memory devices (e.g., EEPROMs,
ROMs, PROMs, RAMs, DRAMSs, SRAMs, Flash Memory,
firmware, programmable logic, etc.), solid state devices
(SSD), etc. The code implementing the described operations
may further be implemented 1n hardware logic implemented
in a hardware device (e.g., an mtegrated circuit chip, pro-
grammable gate array (PGA), ASIC, etc.). Still further, the
code implementing the described operations may be 1mple-
mented 1 “transmission signals”, where transmission sig-
nals may propagate through space or through a transmission
media, such as an optical fiber, copper wire, etc. The
transmission signals in which the code or logic 1s encoded
may further comprise a wireless signal, satellite transmis-
sion, radio waves, infrared signals, Bluetooth, etc. The
program code embedded on a computer readable storage
medium may be transmitted as transmission signals from a
transmitting station or computer to a receiving station or
computer. A computer readable storage medium 1s not
comprised solely of transmission signals. Those skilled 1n
the art will recognize that many modifications may be made
to this configuration, and that the article of manufacture may
comprise suitable information bearing medium known 1n the
art.

Computer program code for carrying out operations for
aspects of the certain embodiments may be written 1n any
combination of one or more programming languages.
Blocks of flowcharts and/or block diagrams may be imple-
mented by computer program instructions.

FIG. 6 illustrates a block diagram of a system 600 that
may 1include a computational device that includes the
enhanced embedded system 200. For example, 1n certain
embodiments the system 600 may be a computer (e.g., a
laptop computer, a desktop computer, a tablet, a cell phone
or any other suitable computational device) that has a
storage or memory device in the computer. The system 600
may include a circuitry 602 that may 1n certain embodiments
include at least a processor 604. The system 600 may also
include a memory 606, and storage 608. The storage 608
may include a solid state drive, a disk drive, or other drives

US 10,210,032 B2

9

or devices including a non-volatile memory device (e.g.,
EEPROM, ROM, PROM, flash, firmware, programmable
logic, etc.). The storage 608 may also include a magnetic
disk drive, an optical disk drnive, a tape dnive, etc. The
storage 608 may comprise an internal storage device, an
attached storage device and/or a network accessible storage
device. The system 600 may include a program logic 610
including code 612 that may be loaded 1nto the memory 606
and executed by the processor 604 or circuitry 602. In
certain embodiments, the program logic 610 including code
612 may be stored in the storage 608. In certain other
embodiments, the program logic 610 may be implemented
in the circuitry 602. Therefore, while FIG. 6 shows the
program logic 610 separately from the other elements, the
program logic 610 may be implemented in the memory 606
and/or the circuitry 602. The system 600 may also include a
display 614 (e.g., an liquid crystal display (LCD), a light
emitting diode (LED) display, a cathode ray tube (CRT)
display, a touchscreen display, or any other suitable display).
The system 600 may also include one or more mput devices
616, such as, a keyboard, a mouse, a joystick, a trackpad, or
any other suitable mput devices. In certain embodiments, the
display 614 may be coupled to a memory or storage device
comprising the storage 608 and/or the memory 606; a
network interface 618 may be communicatively coupled to
the processor 604; and a battery 620 may be communica-
tively coupled to the processor 604. Other components or
devices beyond those shown 1n FIG. 6 may also be found 1n
the system 600.

Certain embodiments may be directed to a method for
deploying computing instruction by a person or automated
processing 1ntegrating computer-readable code mnto a com-
puting system, wherein the code 1 combination with the
computing system 1s enabled to perform the operations of

the described embodiments.

The terms “an embodiment”, “embodiment”, “embodi-
ments”, “the embodiment”, “the embodiments”, “one or
more embodiments”, ‘“some embodiments”, and ‘“one
embodiment” mean “one or more (but not all) embodi-
ments” unless expressly specified otherwise.

- 4 4

The terms ° mcludmg comprising”’, “having” and varia-
tions thereol mean 1ncluding but not limited to”, unless
expressly specified otherwise.

The enumerated listing of items does not imply that any
or all of the 1tems are mutually exclusive, unless expressly
specified otherwise.

The terms “a”, “an’ and “the” mean “one or more”, unless
expressly specified otherwise.

Devices that are in communication with each other need
not be 1n continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are 1n
communication with each other may commumnicate directly
or indirectly through one or more intermediaries.

A description of an embodiment with several components
in communication with each other does not imply that all
such components are required. On the contrary a variety of
optional components are described to 1llustrate the wide
variety ol possible embodiments.

Further, although process steps, method steps, algorithms
or the like may be described 1n a sequential order, such
processes, methods and algorithms may be configured to
work 1n alternate orders. In other words, any sequence or
order of steps that may be described does not necessarily
indicate a requirement that the steps be performed 1n that
order. The steps of processes described herein may be
performed 1n any order practical. Further, some steps may be
performed simultaneously.

10

15

20

25

30

35

40

45

50

55

60

65

10

When a single device or article 1s described herein, 1t will
be readily apparent that more than one device/article
(whether or not they cooperate) may be used 1n place of a
single device/article. Similarly, where more than one device
or article 1s described herein (whether or not they cooperate),
it will be readily apparent that a single device/article may be
used 1n place of the more than one device or article or a
different number of devices/articles may be used 1nstead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embod-
ied by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments need not include the device itsell.

At least certain operations that may have been 1illustrated
in the figures show certain events occurring 1n a certain
order. In alternative embodiments, certain operations may be
performed 1n a different order, modified or removed. More-
over, steps may be added to the above described logic and
still conform to the described embodiments. Further, opera-
tions described herein may occur sequentially or certain
operations may be processed 1n parallel. Yet further, opera-
tions may be performed by a single processing unit or by
distributed processing units.

The foregoing description of various embodiments has
been presented for the purposes of illustration and descrip-
tion. It 1s not mntended to be exhaustive or to be limited to the
precise forms disclosed. Many modifications and variations
are possible 1n light of the above teaching.

EXAMPLES

The following examples pertain to further embodiments.

Example 1 1s a method method for command processing,
in which a hardware acceleration block 1s configured to
process via a dedicated pair of registers, a plurality of
commands of each of a plurality of threads received from a
compute complex. The hardware acceleration block recerves
successive commands that are separated by at least an
amount of time, from a thread of the plurality of threads,
wherein the amount of time 1s adequate to process a com-
mand from the thread.

In example 2, the subject matter of example 1 may include
generating an interrupt indicating a fault, 1 response to a
subsequent command from the thread being received at the
hardware acceleration block prior to completion of process-
ing of a previous command of the thread.

In example 3, the subject matter of example 1 may include
determining that a subsequent command from the thread has
been received at the hardware acceleration block prior to
completion of processing of a previous command of the

thread. The hardware acceleration block adds an indication
indicating an occurrence of a timing violation, 1n a response
for the thread.

In example 4, the subject matter of example 1 may include
that the dedicated pair of registers comprise a submission
register and a completion register, wherein the successive
commands comprise a first command and a second com-
mand, and wherein the first command 1s received from the
thread at the submission register and a state indicator 1s set
to indicate a busy state. The first command 1s processed, and
a response 1s indicated 1n the completion register for the
thread to read. In response to a reading of the completion
register, the state indicator 1s set to indicate a not busy state.

In example 5, the subject matter of example 4 may include
that the plurality of threads avoid reading the state indicator.

US 10,210,032 B2

11

In example 6, the subject matter of example 4 may include
that the compute complex avoids operations to maintain any
queues of the plurality of threads to access the hardware
acceleration block.

In example 7, the subject matter of example 1 may include
that the thread waits or performs other operations at least for
the amount of time before sending the successive commands
to the hardware acceleration block.

In example 8, the subject matter of example 1 may include
that the hardware acceleration block and the compute com-
plex comprise an embedded system.

In example 9, the subject matter of example 1 may include
that the hardware acceleration block and the compute com-
plex comprise a solid state drive, wheremn the hardware
acceleration block performs read, write, and error correction
operations on non-volatile memory of the solid state drive.

Example 10 1s a system for command processing, wherein
the system comprises a a compute complex, and a hardware
acceleration block coupled to the compute complex, wherein
the system 1s operable to: configure the hardware accelera-
tion block to process via a dedicated pair of registers, a
plurality of commands of each of a plurality of threads
received from the compute complex; and receive, by the
hardware acceleration block, successive commands that are
separated by at least an amount of time, from a thread of the
plurality of threads, wherein the amount of time 1s adequate
to process a command from the thread.

In example 11, the subject matter of example 10 may
include generating by the hardware acceleration block, an
interrupt indicating a fault, in response to a subsequent
command from the thread being received at the hardware
acceleration block prior to completion of processing of a
previous command of the thread.

In example 12, the subject matter of example 10 may
include that the system 1s further operable to: determine that
a subsequent command from the thread has been received at
the hardware acceleration block prior to completion of
processing of a previous command of the thread; and, add,
by the hardware acceleration block, an indication indicating,
an occurrence of a timing violation, 1n a response for the
thread.

In example 13, the subject matter of example 10 may
include that the dedicated pair of registers comprise a
submission register and a completion register, wherein the
successive commands comprise a first command and a
second command, and wherein the system 1s further oper-
able to: receive, the first command from the thread at the
submission register and setting a state indicator to indicate
a busy state; process the first command; indicate a response
in the completion register for the thread to read; and in
response to a reading of the completion register, set the state
indicator to indicate a not busy state.

In example 14, the subject matter of example 10 may
include that the plurality of threads avoid reading the state
indicator.

In example 15, the subject matter of example 13 may
include that the compute complex avoids operations to
maintain any queues of the plurality of threads to access the
hardware acceleration block.

In example 16, the subject matter of example 10 may
include that the thread waits or performs other operations at
least for the amount of time before sending of the successive
commands to the hardware acceleration block.

In example 17, the subject matter of example 10 may
include that the hardware acceleration block and the com-
pute complex comprise an embedded system.

10

15

20

25

30

35

40

45

50

55

60

65

12

In example 18, the subject matter of example 10 may
include that the hardware acceleration block and the com-
pute complex comprise a solid state drive, wherein the
hardware acceleration block performs read, write, and error
correction operations on non-volatile memory of the solid
state drive.

In example 19, the subject matter of example 18 may
include that the non-volatile memory comprises at least one
of block addressable memory, byte addressable memory,
NAND based memory, NOR based memory, three dimen-
sional (3D) cross-point memory, write-in-place nonvolatile
memory, chalcogenide glass based memory, multi-threshold
level NAND flash memory, NOR flash memory, phase
change memory (PCM), resistive memory, nanowire
memory, ferroelectric transistor random access memory

(FeTRAM), magnetoresistive random access memory
(MRAM) memory, spin transfer torque (STT)-MRAM, and

spintronic magnetic junction memory.

Example 20 1s a hardware acceleration block for com-
mand processing, the hardware acceleration block compris-
ing: an application specific integrated circuit (ASIC); and a
dedicated pair of registers, wherein the hardware accelera-
tion block 1s operable to: process via the dedicated pair of
registers, a plurality of commands of each of a plurality of
threads recetved from a compute complex; and receive
successive commands that are separated by at least an
amount of time, from a thread of the plurality of threads,
wherein the amount of time 1s adequate to process a com-
mand from the thread.

In example 21, the subject matter of example 20 may
include that the hardware acceleration block i1s further
operable to generate an interrupt to indicate a fault, 1n
response to a subsequent command from the thread being
received at the hardware acceleration block prior to comple-
tion of processing of a previous command of the thread.

In example 22, the subject matter of example 20 may
include that the hardware acceleration block 1s further
operable to: determine that a subsequent command from the
thread has been received at the hardware acceleration block
prior to completion of processing of a previous command of
the thread; and add an 1indication indicating an occurrence of
a timing violation, 1n a response for the thread.

In example 23, the subject matter of example 20 may
include that the dedicated pair of registers comprise a
submission register and a completion register, wherein the
successive commands comprise a first command and a
second command, and wherein the hardware acceleration
block 1s turther operable to: receive, the first command from
the thread at the submission register and setting a state
indicator to indicate a busy state; process the first command;
indicate a response in the completion register for the thread
to read; and 1n response to a reading of the completion
register, set the state indicator to indicate a not busy state.

Example 24 1s a computational device for command
processing, the computational device comprising: a proces-
sor; a display communicatively coupled to the processor; a
network interface communicatively coupled to the proces-
sor; and an embedded system communicatively coupled to
the processor, the embedded system comprising: a compute
complex; and a hardware acceleration block coupled to the
compute complex, wherein the embedded system 1s operable
to: configure the hardware acceleration block to process via
a dedicated pair of registers, a plurality of commands of each
of a plurality of threads received from the compute complex;
and recerve, by the hardware acceleration block, successive
commands that are separated by at least an amount of time,

US 10,210,032 B2

13

from a thread of the plurality of threads, wherein the amount
of time 1s adequate to process a command from the thread.

In example 25, the subject matter of example 24 may
include that the embedded system 1s further operable to
generate, by the hardware acceleration block, an 1nterrupt to
indicate a fault, in response to a subsequent command from
the thread being received at the hardware acceleration block
prior to completion of processing of a previous command of
the thread.

Example 26 1s a system for command processing com-
prising means for configuring a hardware acceleration block
to process via a dedicated pair of registers, a plurality of
commands of each of a plurality of threads received from a
compute complex; and means for receiving, by the hardware
acceleration block, successive commands that are separated
by at least an amount of time, from a thread of the plurality
of threads, wherein the amount of time 1s adequate to
process a command from the thread.

All optional features of any of the systems and/or appa-
ratus and/or devices described above may also be 1mple-
mented with respect to the method or process described
above, and specifics 1n the examples may be used anywhere
in one or more embodiments. Additionally, all optional
teatures of the method or process described above may also
be 1mplemented with respect to any of the system and/or
apparatus and/or devices described above, and specifics 1n
the examples may be used anywhere 1n one or more embodi-
ments.

What 1s claimed 1s:

1. A method, comprising:

configuring a hardware acceleration block to process via

a dedicated pair of registers, a plurality of commands of
cach of a plurality of threads received from a compute
complex; and

receiving, by the hardware acceleration block, successive

commands that are separated by at least an amount of
time, from a thread of the plurality of threads, wherein
the amount of time 1s adequate to process a command
from the thread.

2. The method of claim 1, the method further comprising:

generating an interrupt indicating a fault, 1in response to a

subsequent command from the thread being received at
the hardware acceleration block prior to completion of
processing of a previous command of the thread.

3. The method of claim 1, the method further comprising;:

determining that a subsequent command from the thread

has been received at the hardware acceleration block
prior to completion of processing of a previous com-
mand of the thread; and

adding, by the hardware acceleration block, an indication

indicating an occurrence of a timing violation, 1 a
response for the thread.

4. The method of claim 1, wherein the dedicated pair of

registers comprise a submission register and a completion
register, wherein the successive commands comprise a first
command and a second command, and wherein the method
turther comprises:
receiving, the first command from the thread at the
submission register and setting a state indicator to
indicate a busy state;
processing the first command;
indicating a response 1n the completion register for the
thread to read; and
in response to a reading of the completion register, setting,
the state indicator to indicate a not busy state.
5. The method of claim 4, wherein the plurality of threads
avoid reading the state indicator.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The method of claim 4, wherein the compute complex
avoids operations to maintain any queues of the plurality of
threads to access the hardware acceleration block.

7. The method of claam 1, wherein the thread waits or
performs other operations at least for the amount of time
before sending the successive commands to the hardware
acceleration block.

8. The method of claim 1, wherein the hardware accel-
eration block and the compute complex comprise an embed-

ded system.
9. The method of claim 1, wherein the hardware accel-

eration block and the compute complex comprise a solid
state drive, and wherein the hardware acceleration block
performs read, write, and error correction operations on
non-volatile memory of the solid state drive.

10. A system, comprising:

a compute complex; and

a hardware acceleration block coupled to the compute

complex, wherein the system 1s operable to:

configure the hardware acceleration block to process
via a dedicated pair of registers, a plurality of com-
mands of each of a plurality of threads received from
the compute complex; and

receive, by the hardware acceleration block, successive
commands that are separated by at least an amount of
time, from a thread of the plurality of threads,
wherein the amount of time 1s adequate to process a
command from the thread.

11. The system of claim 10, wherein the system 1s further
operable to:

generate, by the hardware acceleration block, an interrupt

to indicate a fault, 1n response to a subsequent com-
mand from the thread being received at the hardware
acceleration block prior to completion of processing of
a previous command of the thread.

12. The system of claim 10, wherein the system 1s further
operable to:

determine that a subsequent command from the thread has

been received at the hardware acceleration block prior
to completion of processing of a previous command of
the thread; and

add, by the hardware acceleration block, an indication

indicating an occurrence of a timing violation, 1n a
response for the thread.

13. The system of claim 10, wherein the dedicated pair of
registers comprise a submission register and a completion
register, wherein the successive commands comprise a first
command and a second command, and wherein the system
1s further operable to:

receive, the first command from the thread at the submis-

sion register and setting a state indicator to indicate a
busy state;

process the first command;

indicate a response in the completion register for the

thread to read; and

in response to a reading of the completion register, set the

state indicator to indicate a not busy state.

14. The system of claim 13, wherein the plurality of
threads avoid reading the state indicator.

15. The system of claim 13, wherein the compute complex
avoids operations to maintain any queues of the plurality of
threads to access the hardware acceleration block.

16. The system of claim 10, wherein the thread waits or
performs other operations at least for the amount of time
betore sending of the successive commands to the hardware
acceleration block.

US 10,210,032 B2

15

17. The system of claim 10, wherein the hardware accel-
eration block and the compute complex comprise an embed-
ded system.

18. The system of claim 10, wherein the hardware accel-
eration block and the compute complex comprise a solid
state drive, and wherein the hardware acceleration block
performs read, write, and error correction operations on
non-volatile memory of the solid state drive.

19. The system of claim 18, wherein the non-volatile
memory comprises at least one of block addressable
memory, byte addressable memory, NAND based memory,
NOR based memory, three dimensional (3D) cross-point
memory, write-in-place nonvolatile memory, chalcogenide
glass based memory, multi-threshold level NAND flash

memory, NOR flash memory, phase change memory (PCM),
resistive memory, nanowire memory, ferroelectric transistor
random access memory (FeTRAM), magnetoresistive ran-
dom access memory (MRAM) memory, spin transier torque
(STT)-MRAM, and spintronic magnetic junction memory.
20. A hardware acceleration block, comprising:
an application specific integrated circuit (ASIC); and
a dedicated pair of registers, wherein the hardware accel-
eration block 1s operable to:
process via the dedicated pair of registers, a plurality of
commands of each of a plurality of threads received
from a compute complex; and
receive successive commands that are separated by at
least an amount of time, from a thread of the plurality
of threads, wherein the amount of time 1s adequate to
process a command from the thread.
21. The hardware acceleration block of claim 20, wherein
the hardware acceleration block 1s turther operable to:
generate an interrupt to indicate a fault, i response to a
subsequent command from the thread being received at
the hardware acceleration block prior to completion of
processing of a previous command of the thread.
22. The hardware acceleration block of claim 20, wherein
the hardware acceleration block 1s further operable to:
determine that a subsequent command from the thread has
been received at the hardware acceleration block prior
to completion of processing of a previous command of

the thread; and

10

15

20

25

30

35

40

16

add an indication indicating an occurrence of a timing

violation, in a response for the thread.

23. The hardware acceleration block of claim 20, wherein
the dedicated pair of registers comprise a submission reg-
ister and a completion register, wherein the successive
commands comprise a first command and a second com-
mand, and wherein the hardware acceleration block 1s fur-
ther operable to:

receive, the first command from the thread at the submuis-

sion register and setting a state indicator to indicate a

busy state;
process the first command;

indicate a response in the completion register for the
thread to read; and
in response to a reading of the completion register, set the
state indicator to indicate a not busy state.
24. A computational device, comprising:
a Processor;
a display communicatively coupled to the processor;
a network interface communicatively coupled to the pro-
cessor; and
an embedded system communicatively coupled to the
processor, the embedded system comprising:
a compute complex; and
a hardware acceleration block coupled to the compute
complex, wherein the embedded system 1s operable to:
configure the hardware acceleration block to process
via a dedicated pair of registers, a plurality of com-
mands of each of a plurality of threads received from
the compute complex; and
receive, by the hardware acceleration block, successive
commands that are separated by at least an amount of
time, from a thread of the plurality of threads,
wherein the amount of time 1s adequate to process a
command from the thread.
25. The computational device of claim 24, wherein the
embedded system 1s further operable to:
generate, by the hardware acceleration block, an interrupt
to indicate a fault, 1n response to a subsequent com-
mand from the thread being recerved at the hardware
acceleration block prior to completion of processing of
a previous command of the thread.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

