US010204236B1

a2 United States Patent 10) Patent No.: US 10,204,236 B1
Tang et al. 45) Date of Patent: Feb. 12, 2019

(54) SELF-CONSISTENT STRUCTURES FOR (56) References Cited
SECURE TRANSMISSION AND B
TEMPORARY STORAGE OF SENSITIVE U.S. PAIENT DOCUMENTS

DATA 2010/0191970 Al* 7/2010 Singer HO04L. 9/083
713/171

(71) Applicant: DRFIRST.COM, INC., Rockville, MD 2015/0006908 Al* 1/2015 Mori .ooeeveeeenennn, GO6F 17/30289
(US) 713/189

2015/0295907 Al* 10/2015 Abrahamson HO4L. 63/065

. o - . 713/150

(72) Inventors: leong Tang: Rockville, ND (US),, 2017/0286698 Al* 10/2017 Shetty GO6F 21/6218
James F. Chen, Naples, FL. (US); Chen 2018/0102902 ALl* 4/2018 Yangcco....... HO41. 9/3226

Qian, Vienna, VA (US) * cited by examiner

(73) Assignee: DrFirst.com, Inc., Rockville, MD (US) Primary Examiner — Kambiz Zand

Assistant Examiner — Arezoo Sherkat

(74) Attorney, Agent, or Firm — Brake Hughes
Bellermann LLP

*3) Notice: Subiect to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 15/992,736 (57) ABSTRACT
Implementations provide self-consistent, temporary, secure
(22) Filed: May 30, 2018 storage ol information. An exampI.e system 1ncludes fast,
short-term memory storing a plurality of key records and a
cache storing a plurality of data records. The key records and
(51) Int. CL gap y y
: data records are locatable using participant 1dentifiers. Each
GO6F 11/30 (2006.01) | gp p |
GO6F 12/14 (2006.01) key record includes a nonce and each data record includes an
GOGF 21/62 (2013 O:h) encrypted portion. The key records are deleted periodically.
GO6F 17/30 (2006‘O:L) The system also includes memory storing instructions that
GO6F 21/60 (2013'035 cause the system to receive query parameters that include
H04L 9/08 (200 6.0:h) first participant 1dentifiers and to obtain a first nonce. The

first nonce 1s associated with the first participant 1dentifiers

(52) US. Cl in the fast, short-term memory. The instructions also cause
CPC ... GO6F 21/6227 (2013.01); GO6F 17/30554 the system to obtain data records associated with the first

(2013.01); GOOF 21/602 (2013.01); GOOF participant identifiers in the cache, to build an encryption
21/6245 (2013.01); HO4L 9/0869 (2013.01); key using the nonce and the first participant 1dentifiers, and

GOGF 2212/45 (2013.01) to decrypt the encrypted portion of the obtained data records

(58) Field of Classification Search using the encryption key.
None
See application file for complete search history. 25 Claims, 7 Drawing Sheets

100
\\ CPU Apps I Input

12 176 Device(s)
Network Memgw — JE
1609 174 Socuro Display
Ancess API 178

175

Client 170
Enterprise System -
130 Madical
{EIZJ Records
138
Memary Network
124 Secure . 1 160b
Access AP Appl;gglnns
135
Firewall 105
Reporting |Memory 104
Senrver
110 i:;:; Storage Retrigval
. Engine Enaine
Engine 115 g
114 118
CPU
102
Cache Key . .
Storage Cache Configuration
122 124 126
e —
Data Source Data Source Data Source
Server Server . Server
180a 180b 180n

U.S. Patent Feb. 12, 2019 Sheet 1 of 7 US 10,204,236 B1

100
\ Input
Device(s)
179
Network '
1603
Secure
Access API
175
Enterprise System e————m—m———.
130 Medical
CPU ——
137 Records

138

Network

Secure Applications -ade
Access API PP

135 16

L
Reporting | Memory 104
: 110 ACCESS Retrieval
Engine Engine
114 116
CPU .
102
Cache Key ’_ i
Storage Configuration
Network 199 126

160C

Data Source
Server

Data Source Data Source
Server Server R
180a 180b

180n

US 10,204,236 B1

Sheet 2 of 7

Feb. 12, 2019

U.S. Patent

el ” el
abelo)g abe.ois

A8y syoen A8y syoen

cel
obelo]q

Aoy ayoe)

vec DIlooay Asy

I. /

ereq paydiious | opu-erowy | spr wedioeyg |/

4000 Ble
cC P o Ble(_ 012 J8]j0u0) Jsysn|)

ADE T ST a4
suibus] |eAsUIOY auibus] obeiols auibug

eleq
BAllIsueg |

LT Jenieg bunioday

&£ Ol

US 10,204,236 B1

ookele@n

Sheet 3 of 7

OJUl-BI9IN

OJUl-BI8IN

OjU|-BloIN

Feb. 12, 2019

olUl-EION Sioljuspj

Jjuedioned

0¢

U.S. Patent

US 10,204,236 B1

(0157
10419 ue

10 BlED PULS

Sheet 4 of 7

¥4
1sanbal

Feb. 12, 2019

SAI909N

U.S. Patent

(S)92.n0S BlE(]

Gov
Staliijuapl

edioiued ay; Buisn dnyjoo| Aem
-gU0 SB ayoed ul elep peaidAinus aloi1g

oov

A9y uondAious ay) buisn glep 1dAiougy

o3
B1BD 18WHIO)
pUB BAIB08Y

oSy
Blep [BUORIPPE 1eW IO} pUB SASLIOM

7
Aay uondAioua pling

177
slaiuspl wedliyed ayl Ag a|ge1eso|
J81s1Dad ayors Ul 9OUON 81018

1572
30UON Slelauany

0cy
siglowrlied Yim 1sanbai puas

0cy
slayiuap! Juedoiped szijewIoN

auBuUT $S800Y 8IN08g

qly
JBAJS Duluodal

0} (siaijliuept uedioned)
1sonbal puag

SOA

(J%%
ZuonewJoju] uedpired

WRNG

IdY SS920V 8IN08S

¥ Old

Gov
ndul ele(

a0

ﬁ-

US 10,204,236 B1

Sheet 5 of 7

Feb. 12, 2019

U.S. Patent

5G9
podal ay} 1BUIO-

0SS
Aay uondAsoua syl buisn spiooal eiep 1dAioa(

SOA

(379
i punoj plooal eleq

ove
Splo2al eep uieigqo o} (Aue jHsislsweled

Arenb pue staynuapl wediued asn

Gee
A9y uondAous ping

SOA

GCY
2 punoyl plooal Aoy

0¢s
01008

A9Y B aAdUI8) 0] siaynuapt Juednnled asn

Glg
sioiuapt wedioiued ayl azilBWION

aulbug s$900Y 2.n0ag

OUN

ON

09%
U0 0} Yodai apinoid

0es
00¥ $S920.Jd ajeijiui

pUB JOLO Ue uinjey

018
tontos Buipodas 0} (siaynuapl

wedied Buipnjpou)
sioleulelied Alanb pueg

Y 95900y alhovg

Gog

Hodaa Agjdsiq

G Ol

G0g
(sialoweled Atenb

puas) 1sanbal Main

Ui O 00S

US 10,204,236 B1

Sheet 6 of 7

Feb. 12, 2019

U.S. Patent

| Z<Hoda)a|qeMIIA>
e aGco
Joday yolo

_ e0E9

eGZ9
Hoday yola

Q1 JoAJag Ble(GG ABMILES) JBAIDS Ble(]

e ————————]

Jusu0n uodoy

L <Modayajqemain>

I 025 —»

:

T —

Smeanantsn st e A ——————————

|
|
|
|
|
|
18] <Hodays|gemaIn> "
|

asuodsseyM uodoy _

|

“

UINoday> .

€« G5]

1senbay poday “
.

,

<MUIrI0day > |

T e——

asuodsay juaied w

G09 ,

1sonbay Jusned _

11 aulbuz $5900Y 2Jnoag

T ———————

00

U.S. Patent Feb. 12, 2019 Sheet 7 of 7 US 10,204,236 B1

Read a Key record from the cache key —
__________________ stgrage
105

NO

Expired?
710

Yes

Delete key record
115

FIG. 7

Read a data record
805

Locate key record in the cache key
storage matching the key portion

810 Yes

Key
record found?
815

NO

Delete the data record
820

US 10,204,236 Bl

1

SELF-CONSISTENT STRUCTURES FOR
SECURE TRANSMISSION AND
TEMPORARY STORAGE OF SENSITIVE
DATA

TECHNICAL FIELD

The present teaching relates to methods, systems and
programming for the secure transmission and temporary
storage of data. Particularly, the present teaching 1s directed
to a flexible, self-consistent, data structure for securely and
temporarily storing sensitive data. The self-consistent data
supports faster retrieval and prevents hacking of the sensi-
tive data.

BACKGROUND

Many organizations, such as banks, healthcare entities,
universities, msurance companies, etc., deal with sensitive
data. Sensitive data 1s data that 1s subject to restrictions on
transportation, storage, and/or who has access to the data.
Sensitive data 1s often subject to regulations, such as health-
care data subject to HIPAA and other regulations in the
United States, financial data subject to FDIC and other
regulations, and personally identifying data subject privacy
regulations 1n the European Union. Not all sensitive data 1s
subject to government regulations, but the data holder may
desire to restrict the dissemination of the data.

In some cases, the sources of sensitive data may be
distributed, so that an authenticated user must access several
disparate systems to retrieve the data. As one non-limiting
example, a physician prescribing a certain medication, such
as, for example, a controlled substance under the local state
law, may be required to or may want to view the controlled
substance prescription history of the patient, but this infor-
mation may not be available at one source. Currently in the
United States, each state government operates its own state
specific Prescription Drug Monitoring Program (PDMP) to
track the dispensed prescription history of controlled sub-
stances. Fach state may also select different PDMP data
service provider to provide access to the state’s PDMP data.
To prevent controlled substance abuse, the physician may be
required to access the PDMP data of the local state and may
also want to access the PDMP data of the neighboring states,
cach state may require a separate authentication procedure
and potentially using entirely different data service providers
and different supporting systems.

However, access to the various PDMP data service pro-
viders 1s slow and cumbersome. Currently, the average
response time from a state PDMP data service provider 1s
between 6-15 seconds. Sometimes 1t can take more than 20
seconds to nearly 3 minutes if a patient has a long prescrip-
tion history of controlled substances. The long wait time and
the eflorts required to login to very single state’s PDMP
provider discourages practitioners irom complying with
regulations to access the various states” PDMP systems.
Moreover, 1n some cases, the sensitive nature of the data or
restrictions applicable to the data may result in prohibitions
on moditying the data, prohibitions on storing the data i1n a
non-temporary manner, and prohibitions on transmitting the
data 1n an unsecure mannet.

SUMMARY

Implementations provide flexible, fast, and secure tem-
porary storage and secure transmission of any data. Imple-
mentations 1mclude building an encryption key with infor-

10

15

20

25

30

35

40

45

50

55

60

65

2

mation that 1s used to locate the data as well as using a nonce
that 1s never transmitted. The nonce may be stored 1n fast,
short-term memory, such as a cache register. The nonce may
be located using (e.g., indexed by) participant identifiers in
the fast, short-term memory. Participant identifiers are any
data items used to make a particular request unique within
a particular timeirame. Participants can include a requesting
entity and a subject entity. The system uses the participant
identifiers to retrieve data from various data sources. The
data sources can be local to the system or may be remote but
accessible to the system over a network, e.g., the Internet or
another network. The data can be sensitive data, e.g., data
subject to regulations or restrictions on its transportation
and/or storage. The system may format the data received and
encrypt 1t with the encryption key. The system stores the
encrypted data 1n a temporary memory separate from the
memory storing the nonce. For example, the encrypted data
may be stored in a cache. The encrypted data and the nonce
are temporarily stored. In some implementations, the
encrypted data and the nonce are periodically cleared, so that
all records existing in the memory, e.g., cache and cache
register, are deleted. The period may be short, e.g., an hour,
four hours, etc. This period may be referred to as a refresh
rate. In some 1implementations, the encrypted data and the
nonce are stored for a pre-determined period of time. In
other words, the encrypted data and/or the nonce may be
associated with a time stamp used to determine an expiration
time. The pre-determined time period may be small, e.g., a
few minutes, a half hour, an hour, four hours, etc. When the
expiration time arrives, the system may delete the encrypted
data and/or the nonce. Accordingly, whether the data is
automatically cleared periodically or deleted after some
pre-determined time period, the storage of the encrypted
data 1s temporary.

Implementations provide several levels of security for
temporarily storing and transmitting sensitive data. For
example, the procedure for building the encryption key 1is
not known outside of the system, and can be configurable, so
even 11 the participant identifiers are intercepted or identified
by hackers, the hackers do not have the instructions for
building the encryption key from the participant 1dentifiers.
In some 1mplementations, the participant identifiers may be
hashed before being stored, adding an extra layer of security.
The encryption algorithm used for encryption/decryption
can also be configurable, e.g., so that requests for different
clients use diflerent algorithms, or data from different
sources are encrypted with different algorithms. In some
implementations, the procedure for building the encryption
key may be based on the encryption algorithm used. Thus,
the encrypted data stored in the cache may be encrypted
using different algorithms, which further increases data
security. Additionally, the nonce that 1s used 1n building of
the encryption key 1s never transmitted, so 1t cannot be
intercepted by bad actors, further increasing the security of
the encrypted data. Finally, the encrypted data 1s only
temporarily stored, e.g., expires and 1s deleted periodically
or after a predetermined time, essentially eliminating the
opportunity for a breach.

Implementations also reduce the latency for accessing the
data. For example, some implementations use a pre-fetch
process to reduce the query latency. Query latency is the
time between a user’s request to view the data and the
displaying of the requested data to the user. For example,
implementations may use an API that observes (with client
permission) data input by the client and, when the user has
provided values for all data 1tems 1ncluded 1n the participant
identifiers, the system may use the participant identifiers to

.

US 10,204,236 Bl

3

begin to make a query request to obtain data likely to be
requested by the client. This obtained data 1s encrypted and

temporarily stored, as disclosed herein, and can be recalled
quickly for presentation. For example, latency can be
reduced from minutes to seconds, depending on the type of
data source the data 1s requested from and the number of
different data sources that store relevant data.
Implementations address a need, arising from the opioid
overdose endemic, to create technical solutions to make
current PDMP systems fast, secure, and easy to use. As
discussed above, response times of several seconds results 1n
resistance to using existing tools. Using the technical solu-
tions described herein, such as, for example, the use of
encrypted caching, disclosed implementations eliminate the
need to log 1nto one or more PDMP systems and reduce the
average time to get the requested data 1n viewable form from
6-20 seconds per state PDMP to 5-10 milliseconds for all
requested state data. Thus, implementations provide results
significantly (orders of magnitude) faster than existing sys-
tems.

Moreover, implementations can pre-fetch (gather) all data
for a subject entity, which eliminates duplicated requests. A
duplicated request occurs when the requesting entity (e.g.,
the physician) has to request a second page of data from the
data source for the same subject entity. Duplicated requests
for a subject patient have been found to occur 5-135 times per
physician access 1n existing PDMP systems. Using disclosed
techniques, duplicated requests are directed to the encrypted
caching rather than PDMP systems directly, saving signifi-
cant bandwidth and further decreasing query latency. Fur-
thermore, implementations can pre-fetch data from several
sources concurrently, further decreasing query latency. For
example, implementations can fetch data from Maryland
and Ohio concurrently. Using existing systems, a physician
would need to access the data for Maryland and Ohio
serially.

Additionally, the technical solution as described below
satisfies data restrictions, such as prohibitions on modifying
the PDMP data, prohibitions on storing the data in a non-
temporary manner, and prohibitions on transmitting the data
in an unsecure manner. Using a self-consistent design, the
securely encrypted data can only be decrypted, and become
readable by an original requestor, 1.e., one who provides the
original request data elements, 1.e., the participant identifi-
ers. A self-consistent design describes a system where all
data elements of a request and the responsive data are
encapsulated, so that only the person who knows the original
request (the requesting entity) can access the data. In other
words, access to the data fetched for a request includes
knowledge of the request itself, making implementations
secure. Put another way, implementations apply the seli-
consistent principal where the query result (data fetched),
the encryption key, and the query request are consistent,
ensuring no modifications are made from the point of
encryption when the query results are obtained to the point
of decryption when the query result are rendered.

While the benefits above use PDMP systems as an
example, these benefits mnure to other fields of use. For
example, a police mvestigatory can benefit from disclosed
implementations because of the ability to pre-fetch data
about a criminal suspect from multiple data sources, the
pre-fetched data being securely, but temporarily stored.

BRIEF DESCRIPTION OF THE DRAWINGS

The methods, systems and/or programming described
herein are further described in terms of exemplary embodi-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ments. These exemplary embodiments are described in
detail with reference to the drawings. These embodiments

are non-limiting exemplary embodiments, in which like
reference numerals represent similar structures throughout
the several views of the drawings, and wherein:

FIG. 1 describes a high level depiction of a system
configuration, according to a disclosed embodiment;

FIG. 2 describes a high level depiction of an example
reporting server configured to obtain and temporarily store
distributed data according to a disclosed embodiment;

FIG. 3 shows an exemplary tree-based data structure used
to temporarily store encrypted data, according to a disclosed
embodiment;

FIG. 4 1llustrates a flowchart of an example process of
fetching distributed data and temporanly storing 1t 1 a
secure manner, according to a disclosed embodiment;

FIG. 5 1llustrates a flowchart of an example process for
retrieving temporarily stored secure data, according to a
disclosed embodiment;

FIG. 6 1llustrates a flowchart of an example process for
automatic retrieval of distributed data from an HTML portal,
according to a disclosed embodiment;

FIG. 7 illustrates a flow diagram of removing key records
from temporary storage, according to a disclosed embodi-
ment; and

FIG. 8 illustrates a flow diagram of removing data records
from temporary storage, according to a disclosed embodi-
ment.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth by way of examples in order to provide
a thorough understanding of the relevant teachings. How-
ever, 1t should be apparent to those skilled 1in the art that the
present teachings may be practiced without such details. In
other 1nstances, well known methods, procedures, systems,
components, and/or circuitry have been described at a rela-
tively high-level, without detail, 1n order to avoid unneces-
sarily obscuring aspects of the present teachings.

Example embodiments are described with regard to health
related entities as sources of health related data, however,
the embodiments are not limited to the healthcare industry
and the inventive concepts can be applied to any setting 1n
which fast access to distributed sensitive data 1s desired. For
example, the disclosed techniques may be used in financial
industries, educational institutions, criminal justice systems,
corporations, etc., that deal with sensitive or regulated
personal and/or financial information.

To solve the problems associated with timely reporting of
distributed sensitive data, such as the need to log into
multiple disparate portals, the latency in obtaining relevant
data from these disparate portals, and challenges relating to
secure transmission of data from the sensitive data sources,
implementations provide a system that may pre-fetch data
from one or more distributed sources, encrypt the pre-
tetched data with a self-consistent encryption key built using
parameters later used to request this data (1.e., participant
identifiers), combine it with keeping the encrypted data only
temporarily.

When the user makes an actual request for the data, the
system may re-build the encryption key from the query
parameters, fetch the encrypted data, decrypt the data with
the encryption key, format the data for presentation to the
requestor, and provide the result to the requestor. The
encryption key includes a nonce, e.g., a random data string
generated at the reporting server and never transmitted

US 10,204,236 Bl

S

outside the reporting server. In one implementation, the
nonce may include a time stamp, the time stamp may, for
example, be associated with the nonce creation time. In
some 1implementations the time stamp may be manipulated
(e.g., rotated, masked if used as part of the nonce. The
encryption key 1s generated using the nonce, combined with
participant 1dentifiers. The participant identifiers represent
one or more data fields used to uniquely 1dentify the request-
ing entity and a subject entity. In some implementations, the
requesting enftity and the subject entity are the same entity,
¢.g., 1I the requesting entity 1s seeking information about
himself or herself. In general, a requesting entity performs a
service on behalt of the subject entity. The query parameters
include the participant identifiers but may also include
additional parameters used to filter the prefetched data. In
some i1mplementations, the reporting server may not store
the encryption key itself; instead the reporting server build
the encryption key as needed, which increases the security
of the encrypted data stored temporarily at the reporting
server. In some 1mplementations, the reporting server may
store the nonce for a short period of time. The encryption
key may also never be transmitted outside of the reporting
server, which also contributes to the security of the
encrypted data, as there 1s less chance of the encryption key
being intercepted. Implementations may also use a tree data
structure to store the encrypted data, partitioning the data
into different nodes 1dentified by meta-information. Using
the meta-information as filters, the tree data structure makes
the assembly of a report scalable and customizable.

As shown 1n FIG. 1, a networked environment 100 may
include a number of computing devices that are in data
communication with each other through a network 160 or a
series of networks 160. The networks 160 may include the
Internet, a local area network (LAN), a wide area network
(WAN), a mobile network, an intranet, etc., or some com-
bination of these. For example, network 160a may be a
LLAN, a mobile network, an intranet, or the Internet, allow-
ing client 170 to communicate with enterprise system 130.
Network 1605 may be any combination of the Internet, a
WAN, a LAN, a mobile network, etc., allowing the enter-
prise system 130 and/or the client 170 to communicate with
reporting server 110. In some implementations, the network
1606 represents more than one network, e.g., the Internet
and a WAN or the Internet and a mobile network. Similarly,
network 160c, which allows the reporting server 110 to
access one or more data source servers 180, may be one of
or any combination of diflerent networks.

The computing devices 1n environment 100 may include
servers, such as enterprise system 130, reporting server 110,
and data source servers 180. The computing devices may
also include client devices, such as client 170, which provide
a user interface, for example via a browser or through a
mobile application, for a human user to access various
applications on available over a network 160, such as the
Internet or an intranet.

The enterprise system 130 may be a web-based enterprise
system for an organization, such as a financial organization,
an educational institution, or a healthcare organization, such
as, for example, a hospital, a clinic, or an electronic medical
records system (EMR) for a healthcare providers’ office. The
enterprise system 130 may require 1ts users (e.g. employees
or customers) to login with login credentials (typically a
username and a password or token) before accessing the
records and applications of the enterprise system 130. The
enterprise system 130 may include a computing device, such
as a computer, a server or a number of communicatively
connected distributed servers, a mainframe, etc., that has one

10

15

20

25

30

35

40

45

50

55

60

65

6

or more processors 132 (e.g., a processor formed in a
substrate) configured to execute instructions stored 1n
memory 134, such as main memory, RAM, or disk. The
instructions may be stored 1n modules or engines and may
provide functionality typical of an enterprise system, includ-
ing an EMR.

The enterprise system 130 may include one or more
applications 136 that provide access to data, such as medical
records 138. In some implementations, the enterprise system
130 may also include a secure access application program
interface (API) 135. API 135 includes code configured to
communicate with and access reporting server 110. The API
135 may include computer code that monitors data input by
the client 170 and, when suflicient participant i1dentifiers
have been populated, may 1nitiate a pre-fetch process using
the participant i1dentifiers, which greatly reduces query
latency time. Determining that suflicient participant identi-
fiers have been populated and 1nitiating the pre-fetch process
may be referred to as a data mput event. Participant iden-
tifiers include any data that make a request unique within a
predetermined time. For example, participant identifiers
may 1dentily a subject entity (e.g., a person, animal, or other
entity), such as, for example, a patient, pet, client, etc., for
whom 1nformation 1s sought from data source servers 180.
The participant 1dentifiers may also include data that identify
the requesting entity, such as, for example, the prescribing
physician. In some implementations, the participant identi-
fiers may also include a device identifier for the client 170.
The device identifier 1s considered an identifier of the
requesting entity. Thus, some participant identifiers may be
input by the requesting entity and some may be data
obtained about the requesting entity, e.g., requestor 1denti-
fication data obtained from authentication or login data, or
data obtained from the device or system that the requestor
was using. In some implementations, information about the
subject entity 1s optional. In other words, the requesting
entity may also be the subject enftity, so no additional
information 1s needed to 1dentify the subject entity.

The request may be an explicit request or an 1mplicit
request. In an example of an explicit request, the user of
client 170 may nput data used in the participant identifiers
and select a control that causes the API 135 to send a fetch
request to the reporting server. In an example of an implicit
request, the API 135 may automatically (e.g., without the
user selecting a control) send a fetch request after observing
suflicient data input, typically information to identity the
subject person about whom the request 1s directed. In
another example, the API 135 may relay a view report
request from the client 170/enterprise server 130 to the
reporting server 110.

In some implementations, the API 135 may only be
accessible 1f client 170 has completed successiul authenti-
cation with the enterprise system 130. In some implemen-
tations the client 170 1s a terminal within the enterprise
system 130. In some implementations, the client 170 may
have a copy of the API, e.g., secure access API 175. In such
implementations, the API 175 may communicate directly
with the reporting server 110, e.g., via network 1606. In
some 1mplementations, the enterprise system 130 and the
client 170 may be part of a client-server system, e.g., a
web-based healthcare system.

The client 170 may be a personal computing system, a
terminal, a laptop, a tablet, a wearable computing device
(e.g., a smart watch or smart glasses), or another mobile
device such as a smartphone, an 1Pad or an 1Pad mini. The
client 170 may include one or more processors 172 (e.g., a
processor formed 1n a substrate) configured to execute

US 10,204,236 Bl

7

instructions stored in memory 174, such as main memory,
RAM, flash, cache, or disk. The client 170 may also include
iput devices 179, such as a microphone, a keyboard (virtual
or physical), a touch screen, a mouse, a camera, a voice
recorder, etc. The client 170 also includes a display 178 or
other output device. The client may also include one or more
applications 176 that perform various functions, e.g., a
browser, a word processing program, a spreadsheet program,
an email client, a mobile application etc.

In some implementations, the client 170 may include a
secure access API 175, which performs functions similar to
those discussed above with regard to secure access API 135
and 1s configured to communicate directly with reporting
server 110. The client 170 may communicate with the
enterprise system 130 via a network 160a. In some 1mple-
mentations, the client 170 1s a terminal within a local
network for the enterprise system 130 and does not have
direct access to the Internet or other computing systems. In
other words, the client 170 may be behind a firewall 1nside
enterprise system 130 and enterprise system 130 may block
or enable communications of client 170 with other comput-
ing systems.

The environment 100 also includes a reporting server 110.
The reporting server 110 may include a computing device,
such as a computer, a server or a number of communica-
tively connected distributed servers, a mainframe, etc., that
has one or more processors 102 (e.g., a processor formed 1n
a substrate) configured to execute instructions stored in
memory 104, such as main memory, RAM, cache, cache
registers, disk, etc. The reporting server 110 may be con-
figured to handle high traflic, e.g., twenty to thirty thousand
requests an hour. Accordingly, the reporting server 110 may
include a number of different computing devices coordi-
nated by a cluster controller or similar configuration. The
reporting server 110 may be secured behind a firewall 105.
The firewall 105 may prevent unrecognized systems from
sending requests to the reporting server 110.

The reporting server 110 includes a secure access engine
114. The secure access engine 114 1s a module or program
that interacts with the requests from secure access API 135
and/or secure access API 175. In some implementations, the
secure access engine 114 may include one or more modules,
such as storage engine 115 and retrieval engine 116. The
storage engine 115 may be configured to use participant
identifiers to collect/prefetch, encrypt, and store data for
generating a data report in response to a subsequent report
request. The retrieval engine 116 may be configured to use
participant 1dentifiers to retrieve the data, decrypt the data,
use the data to generate the requested report and provide the
report to the requestor, e.g., the user of client 170. Imple-
mentations may include fewer or more modules than those
illustrated in FIG. 1.

A request from the API 135 or 175 includes participant
identifiers. The participant identifiers are one or more data
fields that represent a unique request. Some of the partici-
pant 1dentifiers are used by the reporting server 110, for
example, as query parameters, to request data from the data
source servers 180a-rz. Some of the participant identifiers
may not be needed to request data from the data source
servers, but are required by the reporting server 110, such as,
for example, fields 1dentitying the requestor person.

The secure access engine 114 uses some or all of the
participant identifiers to build an encryption key, as dis-
cussed 1n more detail below. The secure access engine 114
may also be communicatively connected to one or more data
source servers 180 via network 160c. For example, the
secure access engine 114 may be configured to request data

10

15

20

25

30

35

40

45

50

55

60

65

8

from data source server 180a, data source server 18054, and
data source server 180z (n being any positive integer). As
one example, data source server 180a may be a server for an
organization that collects and reports prescription drug
monitoring program (PDMP) data, such as a server operated
by APRISS, DR. FIRST, HID, CRISP, efc.

The secure access engine 114 may provide each data
source server 180 with parameters and receive a response
that includes data relevant to the parameters. For example,
the parameters may specily information identifying a patient
and the data source server 180a may provide, in return,
information about prescriptions filled for anyone matching
the parameters. One or more of the data source servers 180
may provide the response 1n an HTML format, or in other
words, 1n a web-page format intended for viewing by a user.
One or more of the data source servers 180 may provide the
response 1n a data transfer format, such as XML or NIEM
(UN defined format), etc. One or more of the data source
servers 180 may provide the response in a proprietary
format. In some implementations, the secure access engine
114 may normalize and format the data received before
encrypting it. For example, PDMP data received from neigh-
boring states may be normalized and formatted to conform
to the local state standard. The local may be the state from
which the requestor made the request. In another implemen-
tation, the local state may be the state where the subject
patient resides.

In some 1mplementations, the secure access engine 114
may encrypt the data as received. In some implementations,
some data types (e.g., a proprietary format) may be normal-
ized and formatted before encryption while others (e.g., an
XML file) may be encrypted as received. The secure access
engine 114 may be configured to request data from a
plurality of data source servers 180 concurrently. Thus, for
example, the secure access engine 114 can send a request to
data source server 180aq and 180x simultaneously.

The secure access engine 114 may also obtain data
responsive to one or more participant identifiers from local
data sources (not shown). For example, a local data source
may provide a lookup table that includes current public
profiles of physicians (e.g. requestor) licensed 1n a particular
state or states. A local data source may also provide a patient
(e.g., subject) lookup table that includes names of known
residents of a particular state or states. Thus, the secure
access engine 114 may be able to add additional information
to the data provided by one or more of the data source
servers 180. The secure access engine 114 encrypts the data
obtained in response to an API request, ¢.g., from API 135
or 175 using an encryption key built using participant
identifiers, 1.e., the parameters received from the API 135 or
175, and a nonce.

A nonce 1s data created and used for one specific instance.
In this case, the secure access engine 114 generates the
nonce for the participant identifiers, which represent a
particular request. A request relates to a particular subject
person/entity and a particular requestor, e.g., patient/physi-
cian, student/administrator, customer/teller, etc. The nonce
can include a time stamp, a random number, a string of
randomly generated characters, some combination of these,
or something similar. The secure access engine 114 com-
bines the nonce with participant i1dentifiers to bwld the
encryption key. The secure access engine 114 may not use all
participant 1dentifiers 1 building the encryption key.
Accordingly, a subset of the participant 1dentifiers may be
used 1n building the encryption key. Moreover, the partici-
pant identifiers used to build the encryption key and the
nonce can be concatenated in any order, can be interleaved,

US 10,204,236 Bl

9

or can be manipulated or transformed as part of building the
encryption key. For example, the participant identifiers may
include a date of birth, a patient’s name, a physician’s
national provider identifier (NPI) number, a Drug Enforce-
ment Administration (DEA) number, and/or a medical
license number for the physician from a particular state. In
one example, the secure access engine 114 may use the
nonce, patient’s name, date of birth, NPI number, DEA
number, and medical license number to build the encryption
key.

In some implementations, the method of building the
encryption key may be configurable. In other words, the
reporting server 110 may have a plurality of methods for
building an encryption key that are stored, for example in
configuration data store 126. The secure access engine 114
may select one of the methods based on a value of one or
more of the participant identifiers or some other metadata for
the request, such as an 1dentifier for the enterprise system
130. In some implementations, the encryption key may be
dependent on an encryption method used. Accordingly, the
secure access engine 114 1s configured to build multiple
encryption keys. The method used to build an encryption
key may indicate which participant 1dentifiers are used, in
what order the participant identifiers and nonce appear, how
they are combined, and whether any or all of the participant
identifiers are transformed in building the encryption key.
Transforming a participant identifier includes operations
such as performing an XOR operation on the data, shifting
all bits right or left a predetermined number of positions, etc.
The secure access engine 114 can use any method of
building the encryption key so long as the same method can
be i1dentified and used in response to a subsequent view
report request using the same participant identifiers and
metadata. In some implementations, the secure access
engine 114 may normalize one or more of the participant
identifiers prior to use in building the encryption key, e.g.,
converting an alpha-numeric birthdate to just numeric, for-
matting the birthdate into YYYMMDD format, removing,
spaces or special characters from names, etc. In some
implementations, the encryption key may be a 256-bit key.
The nonce may be of a size suflicient to fill out the
encryption key. For example, if the used to build the
encryption key use 200 bits, the nonce may be 56 bits. Of
course, longer or shorter encryption keys may be used to
meet system requirements.

The secure access engine 114 uses the encryption key to
encrypt the data obtained from remote sources, e.g., data
source servers 180 as well as any data obtained from local
sources. In some implementations, the encryption method
may be configurable. For example, the method used to
encrypt the data using the encryption key may be dependent
on one or more metadata received with the request, or a
source of the data. For example, a different enterprise system
130 may select different encryption methods. As another
example, the encryption method may be dependent on a
source of the data, e.g., data from diflerent sources having
different encryption methods. The source of the data may be
obtained from meta-information 1n the data record sent by
the data servers 180. Configuration data store 126 may store
and provide information used to select an encryption
method.

In some 1mplementations, the secure access engine 114
may combine all data received from a particular data source
server 180 1nto a single data structure and encrypt the data
structure using the encryption key. In some implementa-
tions, the secure access engine 114 may encrypt each record
received from a particular data source 180 individually. In

10

15

20

25

30

35

40

45

50

55

60

65

10

some 1mplementations, the secure access engine 114 may
encrypt data matching the participant identifiers obtained
from a local data source separately from data recerved from
remote data source servers 180. All encrypted data 1s locat-
able using the participant i1dentifiers and stored as a data
record 1n cache 124. In some implementations, the cache
124 may be memory on a configurable cache server. The
cache server may be configured to clear all data in the cache
124 periodically, the period being configurable. The period
may be referred to as a refresh rate. The data in the cache 124
thus expires periodically and its expiration time 1s dependent
on the refresh rate, such as, for example, cache data expiring
every four hours. In some implementations, the secure
access engine 114 may run a clean-up procedure that clears
records 1n the cache 124 that have expired, e.g., based on an
expiration time. The secure access engine 114 may normal-
1ze or otherwise format data received from one or more of
the data source servers 180 prior to encryption. In some
implementations, the secure access engine 114 may parse
and format all data retrieved into a standard format, or a
common format/data structure before encrypting.

In some 1implementations, the secure access engine 114
may organize the data into a tree structure and encrypt the
nodes 1n the tree. FI1G. 3 shows an exemplary tree-based data
structure used to temporarily store encrypted data, according
to a disclosed embodiment. As 1llustrated 1n FIG. 3, the root
node 305 includes the participant identifiers, or in other
words fields that uniquely 1dentify a particular request. The
participant 1dentifiers can thus include information that
identifies a subject person or entity for which information 1s
sought from the data sources as well as information that
identifies the requestor. The root node 305 is locatable using
the participant identifiers. The root node includes one to
many edges, or pointers, to other nodes 1n the tree. These
edges may be associated with labels that indicate the type of
information stored in the child node.

The leafl nodes 310, 315, and 320 1n the tree 300 include
the data retrieved from local and remote sources. The
shading of the leat nodes 1n FIG. 3 indicates a source of the
data. For example, nodes 310 may have been obtained from
data source server 180a, node 315 from data source server
1805, and node 320 from data source server 180x. For
example, data source server 180a may provide multiple data
records, each as an HIML page and the secure access engine
114 may encrypt each HTML page separately. In other
implementations, the secure access engine 114 may scrape
the data elements from the HITML pages, combine the data
into a common format, e.g., an XML file, and encrypt the
XML file. In this example the tree 300 would have only one
leal node 310. The meta-info of FIG. 3 may include a label
indicating what type of data 1s stored 1n the node. Thus, for
example, the meta-information may indicate the source of
the data. In some i1mplementations the meta-information
may be used to determine an encryption method.

Returning to FIG. 1, once the secure access engine 114
has encrypted the data, the secure access engine 114 stores
the encrypted data as data records 1n memory, for example,
in cache 124. Although labeled as cache memory, cache 124
may be any type of memory used to store data, e.g., n
databases. In some implementations, the cache 124 1is
memory 1n a configurable cache server, which may be
configured to clear all data from cache 124 on a periodic
basis.

The secure access engine 114 stores the information used
to build the encryption key as a key record 1n a separate
memory that 1s fast and short-term, for example cache key
storage 122. The cache key storage 122 may be any {fast,

US 10,204,236 Bl

11

short-term memory, such as a cache register, cache, main
memory, DRAM, flash, etc. In some implementations, the
cache key storage 122 may be part of a cache server that
clears the cache key storage 122 on a periodic basis, e.g.,
along with cache 124. In some implementations, the secure
access engine 114 may clear expired records from the cache
key storage 122. In such implementations, the key record
may be associated with an expiration time. The secure
access engine 114 stores the key records separately from the
data records to increase security. In a distributed environ-
ment, e.g., with a plurality of machines having cache and
cache registers, the key record for a particular request may
be stored on a different machine that the corresponding data
record for that request. Because both data records and the
key records are designed for temporary storage, and because
the data 1s encrypted and the encryption key 1s not stored, 1t
1s diflicult 11 not impossible for a bad actor to locate the key
record, determine how to build an encryption key using the
information in the key record, locate the separately stored
data record, and decrypt the data before the data 1s cleared.
Hashing the participant fields prior to storage in the cache
key storage 122 and the cache 124 further increases security.
Moreover, the cache 124 that the data record 1s stored 1n may
be on a different machine than the cache key storage 122
storing its corresponding key record, which further increases
security. The encryption method used may also be configu-
rable, so that not all records stored in the cache 124 are
encrypted using the same method, further increasing the
security of the encrypted data.

FIG. 2 describes a high level depiction of an example
reporting server 110 configured to obtain and temporarily
store distributed data, according to a disclosed embodiment.
In the example of FIG. 2, the secure access engine 114 stores
the data records and key records 1n a plurality of machines
220 controlled by a cluster controller 210. Each machine 220
may be a separate computing device or may be a logical
partition of a mainframe or server. Each machine 220 has a
local cache 124 and a local cache key storage 122. Although
the data records stored 1n the cache 124 and the key records
stored 1n the cache key storage 122 are temporary (i.e., have
an expiration), the reporting server 110 may handle a high
volume of requests, e.g., 1 excess of 25,000 requests per
hour. Distributing the cache 124 and cache key storage 122
across multiple machines enables the reporting server 110 to
handle the high volume. In some implementations, a key
record 1n the cache key storage 122 and its corresponding
data record 1n cache 124 may be stored on diflerent parti-
tions. Separating the key record and the data record in this
manner provides an extra layer of security but increases
latency.

FI1G. 2 also 1llustrates an example data record 224 and key
record 222. The key record 222 includes participant 1denti-
fiers, a nonce, and may include a time stamp, such as, for
example, an expiration time. In some implementations, the
time stamp may be a time associated with generation of the
nonce. The key record may expire at some pre-determined
time after 1t 1s created. In some 1mplementations, the key
records may expire at a pre-determined time 1n the future,
¢.g. a pre-determined time period added to the time stamp
generated with or for the nonce. In some 1implementations,
the nonce may be the time stamp, and the expiration time 1s
not expressly stored. As another example, the cache key
storage 122 may be cleared on a periodic basis, so the
expiration time 1s based on the refresh rate and not explicitly
stored. The key record 222 1s locatable using the participant
identifiers. In some implementations, the participant identi-
fiers 1n the key record 222 may be hashed. In other words,

10

15

20

25

30

35

40

45

50

55

60

65

12

the system may apply a hash to the participant identifiers and
store the hash with the nonce. This 1s a one-way lookup that
makes the key records even more secure.

The data record 224 includes the participant identifiers
and encrypted data and may also 1include meta-information.
In a self-consistent design, the participant identifiers are the
same participant 1dentifiers included in the key record 222.
The data record 224 1s locatable using the participant
identifiers. In some implementations, the participant identi-
fiers 1n the data record 224 are hashed. In some implemen-
tations, the hash used on the participant identifiers in the data
record 224 may be different from a hash used on the
participant identifiers in the key record 222. In such an
implementation, the values stored in the participant 1denti-
fiers field will not match, making the temporary storage of
the data record and the key record even more secure. The
encrypted data 1s the data retrieved from the data source
servers and/or a local data store and encrypted using the
encryption key built using one or more of the participant
identifiers and the nonce. The encrypted data 1s also referred
to as an encrypted portion of the data record. The meta-
information may describe the type of data stored in the
encrypted data portion of the data record 224. For example,
the meta-information may indicate the source of the data
record 224. For example, if the data 1s PDMP data, the
meta-information may indicate the associated state or the
particular system the encrypted data was obtained from, the
date on which or the date range 1n which the prescription
was filled. In general, the meta-information 1s any data that
can be used to partition the encrypted data. Put another way,
the meta-information represents filters that can be used to
obtain different encrypted records without having to decrypt
the data.

The environment 100 represents an example environment.
Although 1llustrated with specific components in FIG. 1, the
environment 100 may include additional components not
illustrated, or may not include all elements shown. In
addition, some components may be combined 1nto a single
component. For example, the functions of the reporting
server 110 may be included 1n the enterprise system 130. As
another example, one or more of the data source servers 180
may be combined with the reporting server 110 or the
enterprise system 130. Moreover, the reporting server 110
and the secure access engine 114 are understood to be
configured to comply with any applicable laws, regulations,
or other conditions relating to the data mput and the data
obtained from the data sources.

FIG. 4 1llustrates a flowchart of an example process 400
of fetching distributed data and temporarily storing it 1n a
secure manner, according to a disclosed embodiment. Pro-
cess 400 1s an example of a pre-fetch process, which
decreases query latency. Process 400 takes data provided by
a user, which includes a plurality of participant 1dentifiers
that uniquely 1dentily a subject entity, such as, for example,
a patient, to be searched, and participant identifiers that
umquely 1dentify the requestor. Process 400 then obtains
data records responsive to the subject enfity information,
builds an encryption key using the participant identifiers,
encrypts the obtained data records, and temporarily stores
the encrypted data and information used to build the encryp-
tion key. As not all participant identifiers need to be used to
build the encryption key, it 1s understood that building the
encryption key using the participant identifiers refers only to
those participant identifiers used to build the encryption key,
which may be a subset of the participant identifiers. The
benelit of a pre-fetch process is that a data retrieval process
that can take minutes to complete has already occurred prior

US 10,204,236 Bl

13

to the requestor asking for the data, greatly reducing query
latency. Process 400 may be expressly invoked as well.
Process 400 may be performed by a reporting server, such as
reporting server 110 of FIG. 1 and FIG. 2.

Process 400 may begin when the requestor 1s mputting
data into a form (405). As one example, the form may be an
clectronic prescription form. A secure access APl may be
incorporated into the form or otherwise have access to the
form and may observe the data mput (410). The secure
access API may be part of or included in the form receiving
the data mput. The form and the secure access APl may be
hosted on an enterprise system, €.g., an EMR system or other
similar system. Once the secure access API determines that
the data input provided by the requestor includes suilicient
key information (410, Yes), the secure access API may make
an automatic data prefetch request, sending the participant
identifiers to the secure access engine of a reporting server
(415). Step 410 1s optional, as 1n some implementations the
requestor may explicitly make a report request, providing,
the and selecting a control that invokes step 415 directly. The
participant identifiers are suilicient when the user has pro-
vided values for the participant identifiers that the API
requires, which does not already have a value {for.

The secure access engine receives the participant 1denti-
fiers and, optionally, may normalize the participant identi-
fiers (420). Normalizing the participant identifiers may
include converting an alphanumeric birthdate to just

L=

numeric values, formatting the birthdate into YYYMMDD
format, removing spaces or special characters from names,
etc. The secure access engine begins sending requests to one
or more data sources, e.g., data source servers 180 (420).
The method of making a request 1s dependent on the
interface used to communicate with the data source. In some
implementations, the request may be via an API that enables
the secure access engine to provide parameters taken from
one or more participant identifiers and receive one or more
records in return. In some 1implementations, the request may
be made via a user portal, where the secure access engine
simulates a user making an HTML request, as explained
below with regard to FIG. 6. Although FIG. 4 illustrates only
one request to one data source, step 420 includes sending
multiple different requests to different data sources. In some
implementations, these requests are performed concurrently.

The data source receives the request, processes it, and
sends data responsive to the request or provides an error
(430). The secure access engine receives the responsive data
and may optionally format the data received (455). For
example, the secure access engine may parse the responsive
data, extracting data fields and discarding other information,
such as formatting data. The formatting may include putting
the data fields into a common format, or in other words a
format used no matter what source the data 1s received from.
If an error 1s recerved, in some implementations no further
action 1s taken with regard to that data source. In some
implementations, the secure access engine may generate a
data record indicating that no data was found. This data
record may be locatable using the participant identifiers and
may or may not be encrypted. In some implementations,
where process 400 1s not a pre-fetch process, the secure
access engine may return an error message responsive to
determining no data source returned a record. Concurrently
with making the requests and awaiting a response, the secure
access engine may generate a nonce for the request (435).
The nonce can be any data specifically generated for the
request. The size of the nonce may be dependent on the
difference between the size of the encryption key and the
s1ze of the participant identifiers used to build the encryption

10

15

20

25

30

35

40

45

50

55

60

65

14

key. In some implementations, the nonce may include a time
stamp. The time stamp may go to hundredths or even
thousandths of a second. The time stamp may or may not
include a date. The nonce may also be randomly generated.
In some 1implementations, the random generation may use a
time stamp as a seed. The secure access engine may store the
nonce as a key record in fast, temporary memory, for
example a cache register. The nonce 1s locatable 1n the
memory using the participant identifiers. Thus a key record
may 1include the participant identifiers and the nonce. In
some 1mplementations, the key record also includes a time
stamp or an expiration time.

The secure access engine may also build an encryption
key using the participant identifiers and the nonce (445). In
some 1mplementations, not all participant i1dentifiers are
used to build the encryption key. In such an implementation,
the used to build the encryption key are referred to as
encryption participant identifiers. In some implementations,
one or more of the encryption participant identifiers may be
transiformed or altered before building the encryption key.
For example, the values may be shifted, altered using a
mask, mapped to different values, multiplied, etc. In some
implementations, the nonce and the encryption participant
identifiers (or the transformed encryption participant 1den-
tifiers) may be concatenated to build the encryption key. In
some 1mplementations, the nonce and the encryption par-
ticipant i1dentifiers may be imterleaved to build the encryp-
tion key. The method of building the encryption key can be
configurable, e.g., with different enterprise systems using
different methods.

In some 1mplementations, the secure access engine may
also obtain additional data that 1s responsive to the partici-
pant identifiers (450). The additional data may be local to the
secure access engine. In some 1mplementations, the addi-
tional data may be formatted, similar to the received data. In
some 1mplementations, the additional data may be added to
the received data (1.e., the data received at step 435). Step
450 1s optional.

The secure access engine uses the encryption key to
encrypt the data (460). The encrypted data 1s stored as a data
record 1n a memory, €.g., a cache (465). The memory may
be distinct from the memory storing the key record gener-
ated at step 440. The data record i1s locatable using the
participant identifiers. In some implementations, the partici-
pant 1dentifiers 1n the data record are hashed, making the
look up a one-way lookup. In other words, the system may
use a hash of the participant identifiers to locate the
encrypted data. In some implementations, the data record
may also include meta-information. The meta-information
may be data describing the type of data encrypted. For
example, the meta-information may describe a source of the
data. As another example, the meta-information may
describe an attribute of the data (e.g., a class or scheduling
of a controlled substance, or a state where the controlled
substance was filled where the data represent filled prescrip-
tions). In some 1implementations, the meta-information may
be dependent on a type or category of requestor, e.g., a
request from a physwlan may use different meta-information
than a request from an insurance company. Process 400 1s
then complete for the request. It 1s understood that a report-
ing server may perform process 400 concurrently for dif-
ferent requests and may process thousands of requests per
hour.

Process 400 results 1n a temporary pre-fetch of informa-
tion that fulfills a particular request. For example, process
400 may be used to pre-fetch all information related to
controlled substance prescriptions for a particular patient. In

US 10,204,236 Bl

15

contrast, conventional systems provide this data one page at
a time. Because implementations can collect any available
information concurrently, such implementations eliminate
the delay incurred 1n conventional systems for ‘next page’
requests. Such requests are referred to as “duplicate
requests’™ as they are from the same requesting entity for the
same subject entity. Duplicated requests for a subject entity
in PDMP systems have been found to occur 5-15 times per
physician access, at 6-20 seconds per access. Using the
result of process 400, request response time can drop to
milliseconds per requesting entity/subject entity.

FIG. 5 illustrates a flowchart of an example process 500
for retrieving temporarily stored securely encrypted data,
according to a disclosed embodiment. Process 500 1s 1niti-
ated by a report request (query) by a user/requestor. The
report request provides query parameters, which include
values for a plurality of participant identifiers and other
optional meta-information. The values of the participant
identifiers are used to locate data records and encryption key
records, build an encryption key, and decrypt the encrypted
portion of the located data records. The information from the
decrypted data records i1s human readable and may be
formatted and provided to the user/requestor. Process 500
may be invoked at the end of process 400 when process 400
1s not a pre-fetch process. Process 500 may also be mnvoked
by the user/requestor via a control. The control may also be
made available after process 400 concludes or after at least
one data record has been stored by process 400. Process 500
may be performed by a reporting server, such as reporting
server 110 of FIG. 1 and FIG. 2.

Process 500 1s mitiated by a view report request at the
client (505). The view report request may also be referred to
as a query. The view report request includes query param-
cters. The query parameters include participant 1dentifiers,
the same participant identifiers used in process 400. The
query parameters may also include meta-information. The
meta-information may be used to narrow the data records
returned 1n the report. For example, the report requestor may
request data retrieved from specific sources or that has
specific attributes. The report request may be made via the
secure access API, which sends the request and the query
parameters to the reporting server (510). The secure access
engine at the reporting server may normalize the participant
identifiers (515), as described above with regard to step 420
of FIG. 4. The secure access engine uses the participant
identifiers to locate a key record from the fast, short-term
memory (520). The secure access engine may determine
whether a key record 1s found (535). A key record may not
be located if the key record has expired. A key record may
also not be located 11 process 400 has not run for a corre-
sponding request (e.g., entity/requestor). If no key record 1s
located (525, No), an error may be returned (530). Alterna-
tively, or additionally, the secure access APl may initiate
process 400 using the participant 1identifiers. This would be
considered an express invocation of process 400 and not a
pre-fetch.

If a key record 1s found (535, Yes), the secure access
engine builds the encryption key using the nonce identified
in the key record (535). The encryption key 1s built in the
manner described above with regard to step 445 of FIG. 4.
The secure access engine also uses the participant identifiers
and, optionally additional query parameters, to locate data
records, e.g., from the cache (540). The meta-information in
the query parameters, i used, may be matched to the
meta-information stored in the data records to filter data
records located using the participant identifiers. In some
implementations, the secure access engine may also filter

10

15

20

25

30

35

40

45

50

55

60

65

16

data records to comply with conditions set by the data
source. For example, PDMP data from one state may have
a restriction that does not allow display of the data to
physicians practicing in other states. The secure access
engine may filter the data records to comply with such
restrictions. The secure access engine determines whether
data records are found (543). If no data records are found
(545, No), an error message 1s returned, as described above
(530). If data records are found (545, Yes), the secure access
engine uses the encryption key to decrypt the data record(s)
(550). The secure access engine may format the decrypted
data records for reporting, 1.e., so they are readable by a
human requestor (555). In some implementations, this step
1s optional as the data records are encrypted 1n a reporting
format, so no further formatting 1s needed. The report 1s
provided to the client (560) and the client displays the report
(565). Process 500 then ends.

FIG. 6 1illustrates a flowchart of an example process 600
for automatic retrieval of distributed data from an HTML
portal, according to a disclosed embodiment. Process 600
may be used where the secure access engine simulates a
human user interacting with a web-based portal for request-
ing 1nformation. The secure access engine may have a
contractual relationship with the web-based portal that
enables the secure access engine to simulate the human user.
Process 600 may be used where the data server lacks an
interface for back-end processes to access the data. Process
600 1s a non-limiting example of retrieving data from
distributed data sources as part of steps 420, 425, 430, and
455 of FIG. 4. In some implementations, the secure access
engine may establish an interactive session with the data
server and maintain the interactive session until the data
request 1s complete. To maintain the connection, the secure
access engine may identily a session identifier, status infor-
mation, and other similar information for the HTTPS
responses provided by the data server and/or its gateway.
The secure access engine may close the session once the data
request 1s complete. In some 1mplementations the secure
access engine may complete an authentication process on
behalf of the requestor as part of establishing the session.
The secure access engine may maintain an audit trail of the
session. Although process 600 1s described as a process for
obtaining PDMP data for a patient, implementations are not
limited to this scenario as process 600 can be adapted to
other types of data requests using similar techniques.

Process 600 begins by sending a subject patient request to
a gateway of the data server (603). The subject patient
request includes participant 1dentifiers that the data server
180 needs to complete a request. The subject patient request
1s formatted as an HTTP request recognizable by the data
server gateway 685. The secure access engine 114 receives
a response related to the subject patient (610). The response
may be an HTTP response. In some implementations, the
response may include one or more report links. In such
implementations, the secure access engine 114 may parse
the response for a report link. The secure access engine 114
may simulate selection of the report link, sending a report
request to the data server gateway (615). The secure access
engine 114 receives a report response that includes a list of
viewable reports. In some implementations, step 615 1s
optional and the response to the HT'TP request 1s the report
response that includes a list of viewable reports. In the
example of FIG. 6, the viewable reports include information
on 1ndividual filled prescriptions from a particular state. The
viewable report list may include a series of links, each link
showing one of the filled prescription events. The secure
access engine 114 may parse the viewable report list for the

US 10,204,236 Bl

17

links and send a fetch report request with one of the links
(625a). The fetch report request 1s an HTML request simu-
lating selection of the link. The data server provides the
report content mn an HTML response (630a). The secure
access engine 114 recerves the report content and may parse
the content, format it, and encrypt 1t as a data record. When
parsing and formatting, none of the PDMP data 1s modified;
rather HTML tags and formatting may be removed or
changed. The secure access engine 114 may also encrypt the
report content as recerved as a data record. The secure access
engine 114 may also combine the report content with report
content from other reports (e.g., 62556 and 6305H, etc.) and
encrypt the combined data. The secure access engine 114
may continue sending fetch report requests (e.g., 6255, etc.)
and receiving report content (6305, etc.) until all viewable
reports 1n the viewable report list are processed. Process 600
then ends.

FI1G. 7 1llustrates a flow diagram of removing key records
from temporary storage, according to a disclosed embodi-
ment. Process 700 may be used in an implementation where
the key records have an expiration field and are not cleared
periodically, e.g., every hour or every four hours, etc. While
process 700 1s described as deleting key records, implemen-
tations also include adaptations deleting data records that
have an associated expiration field. In some 1mplementa-
tions, process 700 1s performed continually at the reporting
server. In some implementations, process 700 1s performed
periodically, e.g., every minute, at the reporting server.
Process 700 begins by reading a key record from the fast,
short-term memory (705). The secure access engine deter-
mines whether the key record has expired based on the
expiration field (710). If the key record has expired (710,
Yes), 1t 1s deleted from the fast, short term memory (7135).
This means that the corresponding data records can no
longer be decrypted. In some implementations, the corre-
sponding data record 1s located and deleted from the cache
memory. After deleting the key record, or 1t the key record
has not expired (710, No), process 700 continues with the
next key record 1n the fast, short-term memory. Process 700
may end when all key records have been processed.

FIG. 8 illustrates a flow diagram of removing data records
from temporary storage, according to a disclosed embodi-
ment. Process 800 may be used in an implementation where
the key records have an expiration field and are not cleared
periodically, e.g., every hour or every four hours, etc. While
process 800 1s described as deleting data records without a
corresponding key record, implementations also include
adaptations deleting key records without a corresponding
data record. Process 800 1s performed 1n conjunction with
process 700. Process 800 begins by reading a data record
from the cache memory (805). The secure access engine
attempts to locate a corresponding key record using the
participant identifiers (810). If the key record 1s not found
(815, No), the data record 1s deleted from the memory (820).
After deleting the data record, or if the key record was
located (813, Yes), process 800 continues with the next data
record 1n the memory. Process 800 may end when all key
records have been processed.

A working example in the healthcare industry 1s now
described. This example 1s provided to aid in the under-
standing of this disclosure and implementations are not
limited to the specific scenario described, as the methods and
techniques can be adapted to other types of reporting envi-
ronments. Implementations thus include adaptations of the
underlying technology and techniques to other industries.

Healthcare data 1s one example of sensitive data that 1s
subject to regulations. For example, United States federal

10

15

20

25

30

35

40

45

50

55

60

65

18

law (Prescription Drug Monitoring Program or PDMP)
requires that each state track filled prescription information,
and each U.S. state has selected an entity (e.g., APRISS, DR.
FIRST, HID, CRISP, etc.) to track this data. These entities
may also be referred to as PDMP providing entities. Each
PDMP providing entity runs a portal for the physicians to
look up patient data, for example to be sure that the patient
for whom the physician 1s writing a prescription 1s not
obtaining the same medication from a different physician. If
a physician lives in a multi-state area, the physician must log
in to each neighboring state’s portal to obtain the informa-
tion for a patient. This 1s time consuming even for one state,
¢.g. each request taking 9 to 15 seconds per request (e.g., per
person/prescriber/state). Thus, reviewing the information for
one patient can take a minute or more. Doing this for
multiple states (e.g., requiring the doctor to log into several
different portals) 1s, 1n reality, unworkable, as physicians do
not have extra minutes to spend trying to access this infor-
mation.

There can also be regulations on the data, for example
prohibiting non-temporary storage and modifications to the
data and requiring secure transport of any data. In addition,
some states grant access to the PDMP data to physicians
practicing in other states (e.g., physicians who do not have
a medical license in the state) and some states do not.
Moreover, each PDMP providing entity can decide in what
format to share the data. Some PDMP providing entities also
provide an API for requests of data from backend systems.
A backend system 1s a computing device, such as reporting
server 110, that 1s configured to request data from other
computing devices without a human user directing each
operation. Some PDMP providing entities only provide the
physician portal. Therefore, there 1s not a common data
format and not always a designated way for a backend
system to request data. The regulations and the differing
state 1mplementations of the PDMP program make it a
technologically ditlicult problem to comply with regulations
and present a complete picture to any one physician.

Implementations may use an API integrated into an elec-
tronic prescription program. The electronic prescription pro-
gram may be operated by an EMR enterprise system and
used by physicians aiter two-factor authentication. Once the
physician has entered the patient’s name and date of birth,
the API may send that information, along with the physi-
cian’s National Provider Number (NPI), medical license
number, a token, and/or some other data element identifying
the physician as participant identifiers 1n a report request to
the reporting server. The information about the provider may
be known because the provider has authenticated to the
clectronic prescription program. The reporting server begins
obtaining PDMP data for the patient while the physician
continues to fill out the electronic prescription form. For
example, implementations may begin requesting the data
from one or more of the PDMP providing entities. In some
implementations, the system may request data from every
state simultaneously. In some 1mplementations, the system
may request data from states 1n the vicinity of the physician.
The vicinity may be measured by some pre-determined
distance 1n miles, or by states neighboring the state from
which the request 1s made. The system makes these requests
before the physician 1s fimshed with the prescription. In
other words, as the physician continues to provide medica-
tion and dosage information, as well as any instructions, the
system has already started pre-fetching the PDMP data for
the patient. The system receives the data records from the
various PDMP providing entities (the data sources) and
encrypts the data, as disclosed herein, using an encryption

US 10,204,236 Bl

19

key built using a nonce and the participant identifiers. A key
record 1s also generated, storing the nonce and the partici-
pant 1dentifiers.

When the physician 1s finished filling out the prescription,
the physician may select a ‘view PDMP report” control. In
some 1mplementations, this control may be hidden until at
least some of the data has been retrieved. In some 1mple-
mentations, the physician may be able to provide meta-
information for the report, e.g., specifying which states to
view, specilying a time frame, controlled substance cat-
egory, controlled substance scheduling, or any other meta-
information used to partition the encrypted data. The meta-
information are provided, e.g., via the API, to the reporting
server along with participant identifiers as query parameters.
The participant identifiers are used to locate a key record
storing the nonce used to build the encryption key for this
request. Once the key record 1s located, the encryption key
1s built and the reporting server locates data records match-
ing the participant identifiers. In some implementations, the
reporting server uses meta-information to filter data records,
¢.g., only retrieving data record having meta-information
that match the query parameter(s). The meta-information
can 1dentily data attributes or sources used to {filter infor-
mation returned for the report. For example, meta-informa-
tion in a PDMP system may include a class or scheduling of
a controlled substance, a state where the controlled sub-
stance was filled, a date or date range associated with the
dispensing of the controlled substance, etc. In addition, the
reporting server may automatically filter data records. For
example, i a physician practicing i Virginia requests
PDMP data for Virgimia, Maryland, West Virginia, and the
District of Columbia, but West Virginia does not allow 1ts
PDMP data to be shared with other states, the reporting
server may filter PDMP data records from West Virginia, so
that these data records are not provided 1n response to the
query. In this manner the reporting server 1s configured to
comply with any applicable rules, regulations, statutes, or
other conditions. The reporting server decrypts the
encrypted portions of the data records using the encryption
key and may provide the data records to a presentation layer,
which formats the data as a report for display to the
physician. In some implementations, the report may include
a control for requesting additional records. For example, 1n
some 1mplementations, the filled prescriptions may be pre-
sented one-at-a time by the presentation layer and the user
interface for viewing the report may include a “next” button.
Accordingly, the reporting server can begin providing data
for the report before all requests for data from the data
sources have been completed. If the physician has logged of,
timed out, or switched patients, the key record may not be
found and no report can be shown to the physician. Simi-
larly, if the physician waits too long to view the report, the
key record might have been cleared and will not be found.

Without the techniques disclosed herein, the physician
would need to finish filling out the electronic prescription
and then log into the first PDMP providing entity’s portal,
locate the patient’s data, and scroll through the filled pre-
scriptions. This can take 6-20 seconds for the request plus
login time, e.g., a minute or more. This process must be
repeated for each PDMP providing entity. The pre-fetch
techniques, which tie participant i1dentifiers to a particular
patient/physician request and build an encryption key unique
to the patient/physician request, reduces the query latency to
a few milliseconds, as prefetched data 1s obtained from
cache, and eliminates the burden of multiple logins to
different portals. All of these features improve a search
system.

10

15

20

25

30

35

40

45

50

55

60

65

20

In addition to the configurations described above, an
apparatus can include one or more apparatuses 1 computer
network communication with each other or other devices. In
addition, a computer processor can refer to one or more
computer processors in one or more apparatuses or any
combinations ol one or more computer processors and/or
apparatuses. An aspect ol an embodiment relates to causing
and/or configuring one or more apparatuses and/or computer
processors to execute the described operations. The results
produced can be output to an output device, for example,
displayed on the display. An apparatus or device refers to a
physical machine that performs operations, for example, a
computer (physical computing hardware or machinery) that
implement or execute instructions, for example, execute
instructions by way of software, which 1s code executed by
computing hardware including a programmable chip (chip-
set, computer processor, electronic component), and/or
implement instructions by way of computing hardware (e.g.,
in circuitry, electronic components in integrated circuits,
ctc.)—collectively referred to as hardware processor(s), to
achieve the functions or operations being described. The
functions of embodiments described can be implemented 1n
any type of apparatus that can execute instructions or code.

More particularly, programming or configuring or causing,
an apparatus or device, for example, a computer, to execute
the described functions of embodiments creates a new
machine where 1n case of a computer a general purpose
computer in effect becomes a special purpose computer once
it 1s programmed or configured or caused to perform par-
ticular functions of the embodiments pursuant to mnstructions
from program soltware. According to an aspect of an
embodiment, configuring an apparatus, device, computer
processor, refers to such apparatus, device or computer
processor programmed or controlled by software to execute
the described functions.

A program/software implementing the embodiments may
be recorded on a computer-readable media, e.g., a non-
transitory or persistent computer-readable medium.
Examples of the non-transitory computer-readable media
include a magnetic recording apparatus, an optical disk, a
magneto-optical disk, and/or volatile and/or non-volatile
semiconductor memory (for example, RAM, ROM, etc.).
Examples of the magnetic recording apparatus include a
hard disk device (HDD), a tlexible disk (FD), and a magnetic
tape (MT). Examples of the optical disk include a DVD
(Digital Versatile Disc), DVD-ROM, DVD-RAM (DVD-
Random Access Memory), BD (Blu-ray Disk), a CD-ROM
(Compact Disc-Read Only Memory), and a CD-R (Record-
able)/RW. The program/software implementing the embodi-
ments may be transmitted over a transmission communica-
tion path, e.g., a wire and/or a wireless network
implemented via hardware. An example of communication
media via which the program/software may be sent includes,
for example, a carrier-wave signal.

The many features and advantages of the embodiments
are apparent from the detailed specification and, thus, 1t 1s
intended by the appended claims to cover all such features
and advantages ol the embodiments that fall within the true
spirit and scope thereof. Further, since numerous modifica-
tions and changes will readily occur to those skilled 1n the
art, 1t 1s not desired to limit the inventive embodiments to the
exact construction and operation illustrated and described,
and accordingly all suitable modifications and equivalents
may be resorted to, falling within the scope thereof.

Those skilled 1n the art will recogmize that the present
teachings are amenable to a variety of modifications and/or
enhancements. For example, although the implementation of

US 10,204,236 Bl

21

various components described above may be embodied 1n a
hardware device, 1t can also be implemented as a software
only solution—e.g., an 1nstallation on an existing server. In
addition, the dynamic relation/event detector and its com-
ponents as disclosed herein can be implemented as a firm-
ware, firmware/software combination, firmware/hardware
combination, or a hardware/firmware/software combination.

While the foregoing has described what are considered to
be the best mode and/or other examples, it 1s understood that
vartous modifications may be made therein and that the
subject matter disclosed herein may be implemented 1in
various forms and examples, and that the teachings may be
applied 1n numerous applications, only some of which have
been described herein. It 1s intended by the following claims
to claim any and all applications, modifications and varia-
tions that fall within the true scope of the present teachings.

In one general aspect, a system 1includes at least one
processor, fast, short-term memory storing a plurality of key
records, a cache storing a plurality of data records, and
memory storing instructions that, when executed by the at
least one processor, cause the system to perform operations.
Each key record stored in the {fast, short-term memory
includes a nonce and 1s locatable using participant identifi-
ers. The key records are deleted after a preset time period.
Each data record stored in the cache includes an encrypted
portion and 1s locatable using the participant identifiers. The
operations include receiving a query that includes query
parameters, the query parameters including first participant
identifiers, and obtaining a first nonce, the first nonce being
associated with the first participant i1dentifiers in the fast,
short-term memory. The operations also include obtaining a
subset of data records from the plurality of data records 1n
the cache, the subset of data records being associated with
the first participant 1dentifiers 1n the cache and bulding an
encryption key using the nonce and the first participant
identifiers. The operations include decrypting the encrypted
portion of each data record in the subset of data records
using the encryption key to generate report data and pro-
viding the report data as a response to the query.

These and other aspects can include one or more of the
following features. For example, the nonce can include a
nonce string and a nonce time stamp. As another example,
the participant identifiers may identify at least a requesting
entity and a subject entity. As another example, building the
encryption key can include transforming the participant
identifiers. As another example, a method used to build the
encryption key may be dependent on at least one field of the
first participant identifiers or on a query parameter. As
another example, a method of encryption used for decrypt-
ing the encryption portion of the data record may be depen-
dent on a source of the data record, the source being
identified 1n meta-information for the data record. As
another example, a method of encryption used for decrypt-
ing the encrypted portion of the data record may be depen-
dent on a type of data encrypted by the encrypted portion of
a data record in the subset of data records. As another
example, the system may include a cluster of a plurality of
machines and the fast, short-term memory and the cache are
distributed among the plurality of machines. As another
example, the encryption key may be built from a time stamp,
the nonce, and one or more participant identifiers. As
another example, the expiration time may be based on a
periodic clearing of memory. As another example, the expi-
ration time 1s based on a time stamp associated with the
nonce. As another example, the data records may be stored
in a tree structure. In such implementations, each data record
includes a root node, the root node being locatable using the

10

15

20

25

30

35

40

45

50

55

60

65

22

participant identifiers and a plurality of leaf nodes, each leaf
node representing data received from a data source, a link
pointing to the leal node indicating the data source. A data
record 1s read by following links from the root node to the
plurality of leaf nodes.

In one general aspect, a method of pre-fetching report data
from a plurality of remote data sources includes receiving
participant 1dentifiers related to a data mput event, the
participant identifiers 1dentifying an entity and a requestor
for the data input event, generating a nonce and associating
the nonce with the participant 1dentifiers in a cache register,
the cache register having a refresh rate, and building an
encryption key using the nonce and the participant 1denti-
fiers. The method also includes requesting data from each of
at least two remote data sources, the data being responsive
to a query having at least one of the participant 1dentifiers
identifying the entity as a parameter, encrypting the data
using the encryption after receiving the data from the at least
two remote data sources, and storing the encrypted data as
a data record 1n a cache, the cache being distinct from the
cache register. The method also includes, responsive to the
storing, activating a control 1n a user interface that, when
selected, mnitiates a reporting method that includes building
an encryption key from the nonce and participant identifiers
provided as parameters, decrypting data records using the
encryption key, the data records being located using the
participant 1dentifiers, and providing the data records to the
requestor.

These and other aspects can include one or more of the
following features. For example, the method may also
include selecting an encryption method based on the data
source. As another example, building the encryption key can
include transforming the nonce and the participant identifi-
ers. As another example, building the encryption key may
include combiming a subset of the participant identifiers with
the nonce.

In one general aspect, a method includes receiving a
plurality of participant identifiers, obtaining data from a data
source using at least some participant identifiers of the
plurality of participant identifiers, generating a nonce, build-
ing an encryption key using the participant identifiers and
the nonce, and encrypting the obtained data using the
encryption key. The method also includes adding a key
record 1n fast, short-term memory, the key record including
the nonce and the plurality of participant identifiers, the key
record having an associated expiration time and being
locatable using the plurality of participant identifiers and
storing the encrypted data as a data record 1n a cache, the
data record being locatable using the plurality of participant
identifiers, the cache being a different location than the fast,
short-term memory. The method also includes, responsive to
a subsequent query having the plurality of participant 1den-
tifiers as parameters, the query being received prior to the
expiration time, locating the key record using the param-
cters, building the encryption key using the participant
identifiers and the nonce, decrypting the data record, and
providing the data as a response to the subsequent query.

These and other aspects may include one or more of the
following {features. For example, the fast, short-term
memory may be a cache register. As another example, the
fast, short-term memory in which the nonce 1s stored may be
on a different machine than the cache 1n which the encrypted
data 1s stored. As another example, encrypting the obtained
data can include determining an encryption algorithm based
on at least one participant identifier of the plurality of
participant identifiers or based on the data source and using
the encryption algorithm 1n the encrypting and the decrypt-

US 10,204,236 Bl

23

ing. As another example, the plurality of participant identi-
fiers may be received from an API incorporated 1nto a form,
the API sending the participant 1dentifiers prior to comple-
tion of the form. As another example, the expiration time
may be based on a refresh rate of a cache server. d

What 1s claimed 1s:

1. A system comprising;:

at least one processor;

short-term memory storing a plurality of key records,
cach key record including a nonce, the key record being
locatable using participant identifiers, the participant
identifiers including at least an identifier for a data
requestor and an i1dentifying data item for a subject s
entity associated with the data request, wherein the
identifying data item for the subject entity 1s entered via
a data entry user interface, wherein the key records
expire at an expiration time based on a periodic clear-
ing of the short-term memory and include a first key 20
record having first participant identifiers 1dentifying a
particular data requestor and an identifying data item
for a particular subject entity entered via the data entry
user interface;

a cache storing a plurality of data records, each data
record including an encrypted portion, the data record
being locatable using respective participant 1dentifiers,
wherein the encrypted portion of a data record includes
information previously fetched from a data source
using the identifying data item for the particular subject
entity; and

memory storing mstructions configured to be executed by
the at least one processor, to cause the system to
perform operations mcluding: 15
receiving a query that includes query parameters, the

query parameters including the first participant 1den-
tifiers,
obtaining a first nonce from the plurality of key records,
the first nonce being associated with the first partici- 40
pant identifiers 1n the first key record,
obtaining a subset of data records from the plurality of
data records 1n the cache, the subset of data records
being associated with the first participant identifiers
in the cache, 45
building an encryption key from the nonce and at least
the identifying data i1tem for the particular subject
entity and the identifier for the particular data
requestor from the first participant identifiers,
decrypting the encrypted portion of each data record 1n 50
the subset of data records using the encryption key to
generate report data, and
providing the report data as a response to the query.
2. The system of claim 1, wherein building the encryption
key includes transtorming the participant identifiers. 55

3. The system of claim 1, wherein a method used to build

the encryption key 1s dependent on a value of at least one

field of the first participant identifiers or on a query param-
eter.

4. The system of claim 1, wherein a method of encryption 60
used for decrypting the encrypted portion of the data record
1s dependent on a source of the data record, the source being
identified 1n meta-information for the data record.

5. The system of claim 1, wherein a method of encryption
used for decrypting the encrypted portion of the data record 65
1s dependent on a type of data encrypted by the encrypted
portion of a data record 1n the subset of data records.

10

25

30

24

6. The system of claim 1, wherein the system includes a
cluster of a plurality of machines and the short-term memory
and the cache are distributed among the plurality of
machines.

7. The system of claim 1, wherein the encryption key 1s
built from a time stamp, the nonce, the identifying data item
for the particular subject entity, and the identifier for the
particular data requestor.

8. The system of claim 1, wherein the data records are
stored 1n a tree structure, each data record including:

a root node, the root node being locatable using the

participant identifiers; and
a plurality of leaf nodes, each leal node representing data
received from a data source, wherein a link pointing to
the leal node includes an indication of the data source,

wherein a data record 1s read by following links from the
root node to the plurality of leat nodes.
9. The system of claim 1, wherein the nonce includes a
nonce string and a nonce time stamp.
10. The system of claim 1, wherein the identifying data
item for the particular subject entity includes at least two
data 1items that uniquely identify the particular subject entity
about which data 1s requested from the data sources.
11. A method of pre-fetching report data from a plurality
ol remote data sources comprising:
receiving participant i1dentifiers related to a data input
event occurring using a data entry user interface, the
participant 1dentifiers including at least a data item,
entered via the data entry user interface, identifying a
subject entity and an 1dentifier of a data requestor;
generating a nonce;
storing the nonce with the participant identifiers in a cache
register, the cache register having a refresh rate;

building an encryption key from the nonce and at least the
data 1tem i1dentifying the subject entity and the 1denti-
fier of the data requestor;

requesting data from each of at least two remote data

sources, the data being responsive to a query including,
the data 1tem 1dentitying the subject entity as a param-
cler,

alter receiving the data from the at least two remote data

sources, encrypting the data using the encryption key;
storing the encrypted data as a data record 1n cache, the
cache being distinct from the cache register; and
responsive to the storing, activating a control in the user
interface configured to 1nitiate a reporting method that
includes:
building an encryption key from the nonce and from
participant 1dentifiers provided as parameters 1n
response to selection of the control, the participant
identifiers including the data item identifying the
subject entity and the identifier of the data requestor,
decrypting data records using the encryption key, the
data records being located using the participant 1den-
tifiers provided as parameters, and
providing the data records to the data requestor,
wherein the encryption key 1s not stored and the method
reduces query latency.

12. The method of claim 11, further comprising:

selecting an encryption method based on the data source.

13. The method of claim 11, wherein building the encryp-
tion key includes transforming the nonce and the participant
identifiers.

14. The method of claim 11, wherein building the encryp-
tion key includes combining a subset of the participant
identifiers with the nonce.

US 10,204,236 Bl

25

15. A method comprising;:

receiving a plurality of participant 1identifiers, the partici-
pant 1dentifiers including at least an identifier for a data
requestor and a data 1tem identifying a subject entity
entered via a data entry user interface;

obtaining data associated with the subject entity from a
data source using the data 1tem 1dentifying the subject
entity;

generating a nonce;

building an encryption key from at least the identifier for
the data requestor and the data item identifying the
subject entity and the nonce;

encrypting the obtained data using the encryption key,

adding a key record in short-term memory, the key record

including the nonce and the plurality of participant

identifiers, the key record having an associated expi-

ration time based on a refresh rate of the short-term

memory and being locatable using the plurality of

participant 1dentifiers;

storing the encrypted data as a data record 1n a cache, the

data record being locatable using the plurality of par-

ticipant 1dentifiers, the cache being a different location

than the short-term memory; and

responsive to a subsequent query having the plurality of

participant identifiers as query parameters, the subse-

quent query being received prior to the expiration time:

locating the key record using the query parameters,

building a decryption key from at least the 1dentifier for
the data requestor and the data item 1dentifying the
subject entity from the query parameters and the
nonce from the located key record,

decrypting the data record using the decryption key,
and

providing the decrypted data as a response to the
subsequent query.

10

15

20

25

30

26

16. The method of claim 15, wherein the short-term
memory 1s a cache register.

17. The method of claam 15, wherein a machine that
includes the short-term memory storing the nonce differs
from a machine that includes the cache storing the encrypted
data.

18. The method of claim 15, wheremn encrypting the
obtained data includes:

determining an encryption algorithm based on at least one
participant 1dentifier of the plurality of participant
identifiers or based on the data source; and

using the encryption algorithm 1n the encrypting and the

decrypting.

19. The method of claim 15, wherein the data entry user
interface 1s a form and the plurality of participant identifiers
are received from an API incorporated into the form, the API
sending the participant identifiers prior to completion of the
form, wherein the form includes a data entry web form, part
of a web page, a mobile application user mnput interface, or
any other data entry user interface.

20. The method of claim 15, wherein the subject entity
includes a person, an animal or an object.

21. The system of claim 1, wherein the subject entity
includes a a person, an animal or an object.

22. The system of claim 1, wherein the data entry user
interface further includes a user interface operable to collect
voice data from a natural person.

23. The system of claim 1, wherein the identifier of the
data requestor 1s verified through an authentication process.

24. The method of claim 15, wherein the data entry user
interface includes a user interface operable to collect voice
data from a natural person.

25. The method of claim 15, wherein building the encryp-
tion key includes transforming the nonce and the participant
identifiers.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

APPLICATION NO. . 15/992736
DATED . February 12, 2019
INVENTOR(S) : Tang et al.

It is certified that error appears In the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 26, Claim 20, Line 21, delete “animal” and msert --animal --, therefor.

In Column 26, Claim 21, Line 23, delete “a a person, an animal” and msert --a person, an animal,--,
therefor.

Signed and Sealed this
Twenty-third Day of April, 2019

Andreil Iancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

