US010203912B2

a2 United States Patent (10) Patent No.: US 10,203,912 B2
Jun et al. 45) Date of Patent: Feb. 12, 2019

(54) STORAGE DEVICE FOR SUPPORTING (56) References Cited
VIRTUAL MACHINE, STORAGE SYSTEM

INCLUDING THE STORAGE DEVICE, AND U.S. PATENT DOCUMENTS

METHOD OF OPERATING THE SAME 7953773 B2 5/2011 Lindholm et al.
8,424,007 B1* 4/2013 Hernackt GO6F 9/485
(71) Applicant: SAMSUNG ELECTRONICS CO., 718/103
LTD., Suwon-si (KR) 8,707,300 B2 4/2014 Govindan et al.
8,799,554 Bl 8/2014 Vincent et al.
He
(72) Inventors: Byung-Hei Jun, Seoul (KR); 2011/0035753 Al 22011 Palezak GOOK ',1/}/3?}?(8)2
Dong-Kun Shin, Suwon-si (KR) 2011/0154318 A1 6/2011 Oshins et al.
2011/0225583 Al 0/2011 Suh et al.
(73) Assignee: SAMSUNG ELECTRONICS CO., 20}2/0167032 A 6/2012 Kumar et al.
LTD., Suwon-si (KR) 2013/0179881 Al 7/2013 Calder et al.

(Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS

JP 4982578 B2 7/2012
(21) Appl. No.: 15/217,270 (Continued)

(22) Filed: Jul. 22, 2016 OTHER PURI ICATIONS

(65) Prior Publication Data Byunghei Jun et al., “WACSE: Workload Aware Compensation
S 2017/0024132 A1l Jan. 26, 2017 based Scheduler for PCI Express SSD”, Mar. 12, 2015, Total 10
pages.
(30) Foreign Application Priority Data Primary Examiner — Hashem Farrokh
Jul. 22, 2015 (KR) 10-2015-0103853 (74) Attorney, Agent, or Firm — Sughrue Mion, PLLC
(37) ABSTRACT
(51) Int. CL L . . .
GO6F 3/06 (2006.01) A storage device includes a non-volatile memory including

(52) U.S. CL a plurality of blocks; and a storage controller connected to

CPC GOG6F 3/0688 (2013.01); GO6F 3/0604 the non-volatile memory and configured to schedule a
"""""" (2013.01); GO6 F 3 /56 31 (2013.01) requested task of one virtual machine of a plurality of virtual

52 Field of Classification S h machines based on a workload contribution of the one
(58) CIP?C 0 3(5}5(1)6(1?91/3253?1‘(20613 5000/4557: GOGF virtual machine, the workload contribution indicating a ratio
""""" 9/50%3- GO6F’2201 1215 GOGR ?’; 0631 between a workload generated by the one virtual machine

GO6F 3/0653: GO6F 3/0688: GOGF lelliu zlp;il;(?}?ige:f workloads generated by the plurality of
3/0604; GO6F 12/0238 '

See application file for complete search history. 17 Claims, 14 Drawing Sheets
2210
2211 1 2211 1 2211 2 2211 2 2211 n 2211 nt
Core 1 }<—> Cache 1 Core 2 }‘* Cache 2 ‘ o Coren %™ Cachen /2240
2231 ce32 1 2233 1 I 2234 l 2235 et
7 T i TV
VET A SO —e™1 VFTOMD | VFTOMD |, | CHI1,
VL0 50— Fetcher Parser 5
: | o232 D 22330 oMD DMA | CHe
' | il " Dispatcher Manager | —
VFnASQ— | VI CMD | [VEnCMD |, |
VFn I/0_SQ—™ Fetcher Parser |
B 5 HI,?Ift B — }7 | lew] Buffer |ep NVM
| I DU J 2 2236 Controller I/F
VFTA_CQ i+ | VF . :r < |
VF1 110 0Q =+— Responser omman | Write DMA o
- | S ——— 2236 1 |
: i : 0238 1 Rﬁﬁsnunse | - CHn
VFn A CQ-=— VFN anager | Read DMA i D
VEn 10 Ca+— | Responser [: 2036 2 |
o) y Y
; 223 2237 VF Manage Module ! \
e essemmmsommeeoes g """ Buffer 2214
Memory | ™\ o515

US 10,203,912 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2013/0305246 Al 11/2013 Goggin et al.
2013/0326109 A1 12/2013 Kivity
2014/0137104 Al1* 5/2014 Nelson GO6F 9/45558
718/1
2014/0282514 Al 9/2014 Carson et al.
2015/0052526 Al* 2/2015 Fupwaka GO6F 11/3433
718/1
2016/0147687 Al1* 5/2016 Check ... GO6F 1/24
710/117
2016/0179381 Al* 6/2016 Paesocee.. GOG6F 3/0604
711/103

FOREIGN PATENT DOCUMENTS

JP 5538310 B2 7/2014
JP 5563120 Bl 7/2014
JP 5601516 B2 10/2014
KR 101502225 Bl 3/2015

* cited by examiner

US 10,203,912 B2

Sheet 1 of 14

Feb. 12, 2019

U.S. Patent

UAIAN >
\ UHJ
Ugel
13]|0JU0N
21013 [0)[s
¢NAN >
\ ¢HO
cGolh
LAAN >
\ LHO
GGl \
0Ll
391A9(] 86®.I0]Q
00¢ 1
0001

)

U | | IPLE g OvLL ® OFLl
‘ f ﬂ (
\ \ \
/ / / /
ealy ealy Baly Baly
D 0/l D 0/l D 0/l DY
U4\ LAA id 1d
Alowaly 1SOH — T 0pL|
4/ !
a0r10]Q
- (1Y) xajdwon 100Y4 — T 08 LL
(IN) Aepawaju| uoljezifenyiA —T 0711
| U G || N || ad |
0CL| ULl SLLL LLL] B OLLI m
99IA3(] 1SOH ObHH
00LL
I "DIA

US 10,203,912 B2

Sheet 2 of 14

Feb. 12, 2019

U.S. Patent

UAAN [s
\ UH9 | - 4_
UZ22 m m
- anpop
- abeuefy
B
GINAN [4—> \
¢HI | 0Ed¢
\ 191CJU0Y)
CCle alel01g
LIANAN fa—
\ LHO
L EEG DF\N\M
821na(abeln1g
~
D0¢C
0004

q Uy12 qgrlz O lylg B OviZ
ﬁ / / /
J \ ,
)) /
ealy ealy ealy ea.y
D 0/l 0 0/ o 0/l DY
U4A ZAA LA 1d
Baly Baly Baly Baly
0V DY DV D Y
U4A ZAA LA 1d
y s e e e
36101 € Uple °ovic fowsapy 1so4 [[~ 0Fl¢
- (1Y) x3|dWon 1004 —~ 0017
(IA) AJeipawiaiu| uonezijenuip 7|7
A 24 A i
| S — e W
0512 up1z 2llz Lz EOoLle !
89IN8(] 1SCH Oble
0013

US 10,203,912 B2

Sheet 3 of 14

Feb. 12, 2019

U.S. Patent

eV22 [Tooman 0€27
A XA Jany — m .. B}
\ : > AINPON 3DBLE A 1622 178622
A N P — 4_ a _mfm:oammm 500 0/ U4A
_ | — — | —
- m - VINQ PE9g | jabeuepy [L UdA —00 ¥ U\
UHY T _ m » osuodsey | } BETT - _ .
19822~ _ oot < L
- - YINQ 3lM | J . _mmcmﬂmmm . —>00 0/ HA
m S —— ™00 V HA
1/ J3]j043uey m oczz S Y Lo v
NAN 1 Jalng ik 1 1S0H | | _
m wBsreg |, [@gol’d |, | <«—0S 0/ UJA
m AN9 WA QD UIA «+—DS Y U4\
- | Jabeuely Jaydyedsig — . . _ .
o | vWd QWD |uTgezz ¢ U 2eed m ”
m 135IE IEIEN <«—0S 0/ LA
J...Zu_o m . “ JIND LA - adIND A “ #Owlﬁ 1A
— Vi b I S — -
¢hece GE¢C bedc | €€2¢ | 2827 AN
Q_NNN\ _ USUIE) e UBIO] e ¢ UJED) |a—m{ ¢ BI0) | AUIET) la—m{ | 907
U 1122 U 122 g h1ed ¢ e b2 L 112
0Léc

US 10,203,912 B2

Sheet 4 of 14

Feb. 12, 2019

U.S. Patent

P, frHI v§/ \R\
b22e b)22 b62C
©INAN - 13INPayds A\§ <
022C 0) 2l 0622
, 2
2 AN 1 (2522 1622 | |l ‘
T ZHO & \\
2222 0A 2122 \\ o] 262z
R N gle=— NN
- 7 0522~ L
1333 a 1122 1622
0zez” 0122 0622
0172
0022

VIAN
blLz V827

S AN

o7 6822

¢ INIA

5117 2828

HIAA

117 18T

U.S. Patent Feb. 12,2019 Sheet 5 of 14 US 10,203,912 B2

VI 4 Uwi

VM, Cwe

U.S. Patent Feb. 12,2019 Sheet 6 of 14 US 10,203,912 B2

& Cw

VM 5 o

U.S. Patent

VM 1

VM,

Feb. 12, 2019

Sheet 7 of 14

FIG. 5C

US 10,203,912 B2

US 10,203,912 B2

Sheet 8 of 14

Feb. 12, 2019

U.S. Patent

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr

. 9l€Z Y0Ig BRI

%

N

rrrrrrr

rrrrrrrr
rrrrrrrrr
rrrrrrrr
rrrrrrrrr
rrrrrrrr
rrrrrrrrr
rrrrrrrr

H/

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

i

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr

rrr
rrr
rrr
rrr
rrr
rrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrr
rr

rrr
rr
rrr
rr
rrr

i /)
¢ |
5% oo woE I og3 | | TIee 083
abed pileA 00¢< L . <
m@.m& U__m>—.‘—7 7) “ o S
abed Adw3 | “ NN S INA HINA
0gze 1822

U.S. Patent

Feb. 12, 2019

EBG 1

////////

Sheet 9 of 14

FIG. 7

US 10,203,912 B2

228

VIVI1

2311

2322

77
N
I

2322

U.S. Patent Feb. 12,2019 Sheet 10 of 14 US 10,203,912 B2

FIG. 8

S800 — _— AssIgning Initial time budget to
each virtual machine

Y
5810 —_— Calculating time cost of tasks requested |

/ each virtual machine

qg8o0) | Reducing time buaget of each virtual machine based on
time cost of task whenever requested task Is performed
\J
g830 | Holding queue having no time budget until other queue
having time budget left finishes queued fasks
J

5840 —— Refilling time budge to all virtual machines \

U.S. Patent

Feb. 12, 2019 Sheet 11 of 14 US 10,203,912 B2

FIG. 9

S900 Assigning Initial time cost for task request by each virtual
machine

Y

ag10 | Calculating time cost for overhead caused by task requested
by each virtual machine

A J

5920 Calculating compensated time cost of task

A 4

Reducing time budget of each virtual machine based on

o930 — compensated time cost of task whenever requested task
IS performed

A J

s940 | Holding queue having no time budget until other queue

having time budget left finishes queued tasks

Y

9990 —— Refilling time budge to all virtual machines \

U.S. Patent Feb. 12, 2019 Sheet 12 of 14 US 10,203,912 B2

FIG. 10

31000 —— Calculating storage efficiency (WAF) in each block
assigned to virtual machine

Y

31010 —— Calculating storage efficiency (WAF) in each erase block
group assigned to virtual machine

Y
31090 —_— Calculating time cost of task requested by virtual machine
pased on storage etficiency (WAF)

Y

31030 | Reducing time budget or each virtual machine based on
time cost of task whenever requested task IS performed

U.S. Patent Feb. 12,2019 Sheet 13 of 14 US 10,203,912 B2

10000
13000 11200 1y00 11100
/ 16000 Ir ““““““ 2 X?
LU : Viemory Flash
STURAGE I/F == Controller Memory
14000
S
12500
RAM [—> !
Auxiliary
Power supply
15000 12000
7 7
User

Interface [+ [+ Powersupply

\/

US 10,203,912 B2

Sheet 14 of 14

Feb. 12, 2019

U.S. Patent

cJEHBU] 00Etc 002E¢
0009¢ esn |))
— o
1 13]]01U0N q - Ulee
oW _ _
“—* [10ss3901 _
Use AIOWBN oo d J.,.}, 001€7
w) W 10$$8901¢
goneanddy | o
001G¢ 000C7 0085¢ HEI[UaY j 4_
/ o w llllllllllllllllllllllllll S o
0002 [4 /
000.2 00€22 Qoozz ~ 00¢ee 00lee
Y sual
s 10$S303.4 J0SUAG
feidsig abeLl| abewy; [

0000¢

¢l O

00v LG m 00E ¢ 00¢1C Q0L

Q00LC

US 10,203,912 B2

1

STORAGE DEVICE FOR SUPPORTING
VIRTUAL MACHINE, STORAGE SYSTEM
INCLUDING THE STORAGE DEVICE, AND

METHOD OF OPERATING THE SAME

This application claims priority from Korean Patent

Application No. 10-2015-0103833, filed on Jul. 22, 2013, in
the Korean Intellectual Property Oflice, the disclosure of
which 1s incorporated herein in 1ts entirety by reference.

BACKGROUND

1. Field

Apparatuses and methods consistent with exemplary
embodiments relate to a storage device, and, more particu-
larly, to a storage device for supporting virtual functions, a
method of scheduling tasks of the storage device, and a
storage system.

2. Description of the Related Art

An example of a data storage device based on a non-
volatile memory device includes a solid state drive (SSD).
As an interface used for a data storage device such as the

SSD, serial advanced technology attachment (SATA),

peripheral component interconnect express (PCle), serial
attached small computer system interface (SAS), or the like
may be used. The performance of the SSD 1s gradually
improved, and thus the amount of data to be processed by the
SSD 1s 1increased. However, a conventional interface, such
as an SATA, has a basic limitation because the conventional
interface 1s not specialized 1n a data storage device such as
the SSD. Consequently, to provide a standardized interface
suitable for the SSD, a non-volatile memory express
(NVMe) has been introduced. The NVMe 1s a register-level
interface for commumnication between a data storage device,
such as the SSD, and a host software. The NVMe 1s based
on a conventional PCle bus, and 1s an interface optimized for
the SSD.

With the advance of a semiconductor manufacturing
technology, the operating speed of a host device, such as a
computer, a smart phone, or a smart pad, which communi-
cates with a storage device, has been improved. Further,
according to the improvement in the operation speed of a
host device, the virtualization of a host device for driving
various virtual functions has been introduced. However, the
conventional NVMe has a limitation in supporting the
virtual functions because the conventional NVMe cannot
suiliciently ensure the 1solation and fairness between virtual
machines 1n the virtualization.

SUMMARY

One or more exemplary embodiments provide a storage
device, a storage system including the storage device, and a
method of virtualizing the storage device, in which virtual
functions are supported while providing i1solation and fair-
ness between virtual machines 1n the virtualization.

According to an aspect of an exemplary embodiment,
provided 1s a storage device including: a non-volatile
memory including a plurality of blocks; and a storage
controller connected to the non-volatile memory and con-
figured to schedule a requested task of one virtual machine
of a plurality of virtual machines based on a workload
contribution of the one virtual machine, the workload con-
tribution indicating a ratio between a workload generated by
the one virtual machine and a plurality of workloads gen-
crated by the plurality of virtual machines.

10

15

20

25

30

35

40

45

50

55

60

65

2

The storage controller may independently assign erase
block groups to the non-volatile memory, the erase block
groups corresponding to the plurality of virtual machines,
and the workload contribution of the one virtual machine
may be determined based on a storage efliciency of storing
valid data 1n an erase block group corresponding to the one
virtual machine.

The storage efliciency of storing the valid data may be
determined based on a ratio between a number of used pages
and a number of pages 1n which the valid data are stored,
with respect to the erase block group corresponding to the
one virtual machine.

The storage controller may include: a plurality of request
queues respectively corresponding to the plurality of virtual
machines and configured to store requested tasks of the
plurality of virtual machines; a task scheduler configured to
schedule the requested tasks based on the workload contri-
bution of each of the plurality of virtual machines; an
address mapping manager configured to manage address
mapping of data stored in the non-volatile memory; and a
plurality of flash queues respectively connected to the non-
volatile memory through a plurality of channels.

The storage controller may independently assign erase
block groups to the non-volatile memory, the erase block
groups corresponding to the plurality of virtual machines,
and the workload contribution of the one virtual machine
may be determined based on a storage efliciency of storing

valid data 1n an erase block group corresponding to the one
virtual machine.

The storage efliciency of storing the valid data 1n the erase
block group may be determined based on a ratio between a
number of used pages and a number of pages 1n which the
valid data are stored, with respect to the erase block group.

According to an aspect ol another exemplary embodi-
ment, provided 1s a task scheduling method of a storage
device, the storage device including a storage controller and
a non-volatile memory connected to the storage controller,
the task scheduling method including: assigning a request
queue to one of a plurality of virtual machines; assigning a
time budget to the request queue; storing tasks, requested by
the one of the plurality of virtual machines, 1n the request
queue; executing a first task stored in the request queue;
reducing the time budget by a time cost of the executed first
task 1n response to execution of the first task being com-
pleted, the time cost being determined based on a workload
generated by the first task; and 1n response to the time budget
of the request queue being exhausted, delaying executing a
remaining task stored in the request queue until a second
time budget 1s reassigned to the request queue.

The assigning the time budget may include assigning the
same time budget to request queues respectively assigned to
the plurality of virtual machines.

The executing the first task stored in the request queue
may include fetching the stored first task from the request
queue.

The executing the first task stored in the request queue
may include receiving data associated with the stored first
task from a host device and transmitting the received data to
a flash queue included 1n the storage controller.

The transmitting may include transmitting the received
data to the flash queue through a plurality of channels
between the storage controller and the non-volatile memory.

The task scheduling method may further include deter-
mining the time cost of the executed first task based on a
time nterval from fetching the first task stored in the request
queue to completion of the first task.

US 10,203,912 B2

3

The task scheduling method may further mclude indepen-
dently assigning an erase block group including at least one
block included 1n the non-volatile memory, to each of the
plurality of virtual machines.

The time cost may be determined based on a storage s,
elliciency of storing data in the erase block group assigned
to a corresponding virtual machine.

The storage efliciency may be determined based on a ratio
between a number of used pages and a number of pages in
which the valid data are stored, with respect to the erase
block group.

The storage efliciency of the erase block group may be
stored 1n a meta block group included in the non-volatile
memory.

The storage efliciency of the erase block group may be
stored in the erase block group. 15
The task scheduling method may further include compen-

sating the time cost of the executed first task.

The compensating the time cost may include determining,

a time cost of an overhead; and compensating the time cost
of the executed first task based on the determined time cost 20
of the overhead.

The overhead may include an overhead caused by at least
one of garbage collection, read reclaim, and mapping table
upload.

According to an aspect of still another exemplary embodi- 25
ment, provided 1s a storage controller in a storage device, the
storage controller including: a virtual function manager,
implemented by at least one hardware processor, configured
to schedule requested tasks of a plurality of virtual machines
by predicting a workload generated by a respective 30
requested task; and a tlash queue configured to temporarily
store data, the data being mmput from or output to a non-
volatile memory included 1n the storage device based on the
scheduled requested tasks, wherein the workload 1s pre-
dicted based on a time taken to perform the respective 35
requested task and an overhead caused by the respective
requested task.

The storage controller may further include address map-
ping manager configured to manage address mapping of data
that are stored in the non-volatile memory, and the data 40
stored 1n the flash queue are input from or output to the
non-volatile memory further based on the address mapping.

The storage controller may further include a plurality of
request queues respectively corresponding to the plurality of
virtual machines and configured to store the requested tasks 45
of the plurality of virtual machines.

The virtual function manager may schedule the requested
tasks of the plurality of virtual machines such that a first
virtual machine having a relatively large predicted workload
exhausts a resource assigned to the first virtual machine 50
more quickly than a second virtual machine having a rela-
tively small predicted workload.

In response to the resource assigned to the first virtual
machine being exhausted, the virtual function manager may
delay executing a remaining task of the first virtual machine 55
until a new resource 1s reassigned to the first virtual
machine.

The new resource may be reassigned in response to at
least one of a resource assigned to the second virtual
machine being exhausted and the second virtual machine not 60
having a remaining task to be executed.

10

BRIEF DESCRIPTION OF THE DRAWINGS

The above and/or other aspects will be more apparent by 65
describing certain example embodiments with reference to
the accompanying drawings, in which:

4

FIG. 1 1s a block diagram showing a storage system
according to an exemplary embodiment;

FIG. 2 1s a block diagram showing a storage system
according to another exemplary embodiment;

FIG. 3 1s a block diagram showing configurations and
operations of a storage controller and a virtual function
manage module of FIG. 2 in more detail;

FIG. 4 1s a block diagram of a storage device according
to an exemplary embodiment;

FIGS. SA, 5B, and 35C are conceptual diagrams 1llustrat-
ing a method of compensating for a time cost generated from
virtual machines;

FIG. 6 1s a block diagram showing block groups (BGs)
independently assigned to a non-volatile memory of a stor-
age device according to an exemplary embodiment;

FIG. 7 1s a detailed block diagram of an erase block group
of FIG. 6;

FIG. 8 15 a flowchart 1llustrating a task scheduling method
based on a time budget (1B) according to an exemplary
embodiment;

FIG. 9 1s a flowchart illustrating a method of compensat-
ing for a time cost for a request task according to an
exemplary embodiment;

FIG. 10 1s a flowchart illustrating a task scheduling
method based storage efliciency according to an exemplary
embodiment;

FIG. 11 1s a block diagram of a storage system according
to an exemplary embodiment; and

FIG. 12 1s a block diagram of a computer system, to which
the storage device according to an exemplary embodiment 1s
applied.

DETAILED DESCRIPTION

Certain exemplary embodiments will be described 1n
detail with reference to the accompanying drawings. The
inventive concept may, however, be embodied 1n many
different forms and should not be construed as being limited
to the embodiments set forth herein. Rather, these embodi-
ments are provided so that this disclosure will be thorough
and complete and will fully convey the concept of the
inventive concept to those skilled 1n the art, and the inven-
tive concept will only be defined by the appended claims. In
the drawings, the thickness of layers and regions are exag-
gerated for clarity.

It will be understood that when an element or layer 1s
referred to as being “on” or “connected to” another element
or layer, 1t may be directly on or connected to the other
clement or layer or intervening elements or layers may be
present. In contrast, when an element 1s referred to as being,
“directly on” or “directly connected to” another element or
layer, there are no intervening elements or layers present.
Like numbers refer to like elements throughout. As used
herein, the term “and/or” includes any and all combinations
ol one or more of the associated listed items.

The use of the terms “a” and “an” and “the” and similar
referents 1n the context of describing the mventive concept
(especially 1n the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. The terms “comprising,” “having,” “including,” and
“containing’” are to be construed as open-ended terms (e.g.,
meaning “including, but not limited to,”) unless otherwise
noted.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements, these
clements should not be limited by these terms. These terms

US 10,203,912 B2

S

are only used to distinguish one element from another
clement. Thus, for example, a first element, a first compo-
nent or a first section discussed below could be termed a
second element, a second component or a second section
without departing from the teachings of the inventive con-
cept.

Unless defined otherwise, all technical and scientific
terms used herein have the same meaming as commonly
understood by one of ordinary skill in the art to which this
inventive concept belongs. It 1s noted that the use of any and
all examples, or exemplary terms provided herein 1is
intended merely to better 1lluminate the mventive concept
and 1s not a limitation on the scope of the imnventive concept
unless otherwise specified. Further, unless defined other-
wise, all terms defined i generally used dictionaries may
not be overly interpreted.

The storage system for supporting virtual functions and
the storage device for supporting virtual functions according,
to exemplary embodiments of the inventive concept may
provide a physical function (PF) for management and a
plurality of virtual functions (VFs) to a host. In this case, at
least one virtual function (VF) may be assigned to one
virtual machine (VM).

FIG. 1 1s a block diagram showing a storage system 1000
for supporting virtual functions according to an exemplary
embodiment. The storage system 1000 of FIG. 1 may
support a virtual function while supporting a queue-based
command interface mode. For example, the storage system
1000 of FIG. 1 may support a virtual function of a single-
root input/output (I/0) virtualization (SR-IOV) while sup-
porting an interface mode according to a non-volatile
memory express (NVMe) protocol. Referring to FIG. 1, the
storage system 1000 may include a host device 1100 and a
storage device 1200. The host device 1100 may include a
host core 1110, a virtualization itermediary (VI) 1120, a

root complex (RC) 1130, a host memory 1140, and a storage
interface 1150.

The host core 1110 may include a physical function (PF)
11107 a and a plurality of virtual functions (VF1 to VFn)
1111 to 111». Here, the physical function 1110_a may be a
core or processor implemented by a physical hardware. The
plurality of virtual functions 1111 to 1117 may respectively
be virtual cores or processors provided by virtualization
operation of the SR-IOV and each of the plurality of virtual
functions 1111 to 11172 may independently drive an operating
system and an application. The operating system driven by
one virtual function may be referred to as “Guest O/S”.

The virtualization intermediary 1120 1s connected to the
host core 1110 and the root complex 1130, and serves to
execute the virtual functions 1111 to 111z or manage the
virtual functions 1111 to 111%. For example, the virtualiza-
tion intermediary 1120 may execute functions of transmit-
ting and managing the information about the virtualization
operation of the SR-IOV.

The root complex 1130 expresses the root of hierarchy,
and 1s connected to the virtualization imntermediary 1120, the
host memory 1140, and the storage interface 1150. The root
complex 1130 may serve to connect the host core 1110 to the
host memory 1140 and connect the host core 1110 and the
host memory 1140 to the storage interface 1150.

The host memory 1140 may be connected to the virtual-
ization intermediary 1120, the host core 1110, and the
storage interface 1150 through the root complex 1130. For
example, the host memory 1140 may be used as a working
memory associated with the physical function 1110_a or
each of the virtual functions 1111 to 111#. In this case, the

10

15

20

25

30

35

40

45

50

55

60

65

6

host memory 1140 may be loaded with an application
program, a file system, a device driver, and the like.

For another example, the host memory 1140 may be used
as a bufler for transmitting data to the storage device 1200
or temporarily storing the data received from the storage
device 1200. For example, the host memory 1140 may be
implemented as a volatile memory such as a static random
access memory (SRAM) or a dynamic random access
memory (DRAM) or may be implemented as a non-volatile
memory such as a phase-change random access memory
(PRAM), a magnetic random access memory (MRAM), a
resistive random access memory (RRAM), or a ferroelectric
random access memory (FRAM), or a combination thereof.

The storage interface 150 1s connected to the root com-
plex 1130, and provides communication between the host
device 1100 and the storage device 1200. For example, the
storage interface 1150 may provide queue-based commands
and data to the storage device 1200 according to an NVMe
protocol, and may receive the mformation and data about
commands processed from the storage device 1200.

The storage device 1200 may store the data provided from
the host device 1100, or may provide the stored data to the

host device 1100. The storage device may include a storage
controller 1210 and a plurality of non-volatile memories
1221 to 122n.

The storage controller 1210 may communicate with the
host device 1100 through a queue-based interface mode. The
storage controller 1210 may control the storage device 1200
such that data 1s stored in at least one of the plurality of
non-volatile memories 1221 to 122raccording to the com-
mands receirved from the host device 1100. Further, the
storage controller 1210 may control the storage device 1200

such that data stored in at least one of the plurality of
non-volatile memories 1221 to 122z are transmitted to the
host device 1100.

The plurality of non-volatile memories 1221 to 1227 may
be connected to the storage controller 1210 through corre-
sponding channels CH1 to CHn.

The plurality of non-volatile memories 1221 to 122z may
respectively store data and/or may read the stored data
according to the control of the storage controller 1210.

Each of the plurality of non-volatile memories 1221 to
1227 may be implemented as a non-volatile memory such as
a tflash memory, a PRAM, an MRAM, or an FRAMA, or
may be implemented as a combination thereof.

In an exemplary embodiment, the host memory 1140 may
provide a queue command storage area for supporting
virtual functions while supporting a queue-based interface
mode. In other words, the host memory 1140 according to an
exemplary embodiment may additionally provide a queue
command storage area for supporting a queue-based com-
mand interface mode having virtual functions.

For example, as shown in FIG. 1, to support the virtual
functions of the SR-IOV 1n the NVMe protocol interface, the
host memory 1140 may provide a physical function admin-
1stration queue storage area (PF A_Q Area) 1140_a in which
the administration queue of the physical function 1110_a 1s
stored, a physical function mput/output queue storage area
(PF I/O_Q Area) 1140_b 1n which the mput/output queue of
the physical function 1110_a 1s stored, and a plurality of
virtual function nput/output queue storage areas (VF1
[/O_Q Area to VFn I/O_Q Area) 1141 to 114» in which the
input/output queues of the virtual functions are stored. In
this case, the queue commands may be stored in their
respective storage areas using a circular queue mode gen-
erally used 1n the NVMe protocol iterface mode.

US 10,203,912 B2

7

The guest O/S or virtualization intermediary 1120 of each
of the virtual functions 1111 to 111z of the storage system
1000 of FIG. 2 may access the administration queue of the
physical function 1110_a stored in the physical function
administration queue storage arca 1140_a every time the
input/output queues (or VF1 I/O_Queue to VEn I/O_Queue)
of the virtual functions 1111 to 1112 are processed.

FIG. 2 1s a block diagram showing a storage system 2000
for supporting virtual functions according to another exem-
plary embodiment. The configuration of the storage system
2000 of FIG. 2 1s partially similar to the configuration of the
storage system 1000 of FIG. 1. Therefore, the difference
between the storage system 2000 of FIG. 2 and the storage
system 1000 of FIG. 1 will be mainly described. Referring
to FIG. 2, the storage system 2000 may include a host device
2100 and a storage device 2200.

The host device 2100 may include a host core 2110, a
virtualization intermediary 2120, a root complex 2130, a
host memory 2140, and a storage interface 2150. Since the
configurations and operations of the host core 2110, the
virtualization intermediary 2120, the root complex 2130, the
host memory 2140, and the storage interface 2150 are
similar to those described with reference to FIG. 1, detailed
descriptions thereot will be omuitted.

In another exemplary embodiment, independent separate
administration queues may be respectively assigned to the
plurality of virtual functions (VF1 to VFn) 2111 to 211» of
FIG. 2. That 1s, independent virtual function administration
queues (or VF1 administration queue to VFn administration
queue) are respectively assigned to the plurality of virtual
functions 2111 to 211x. Therefore, each of the plurality of
virtual functions 2111 to 211z may independently perform
the operations of queue management and command and/or
data transaction using the corresponding virtual function
administration queue.

For example, a first virtual function admimstration queue
(or VF1 Administration queue) 1s assigned to the guest O/S
of the first virtual function 2111, and the first virtual function
2111 may independently perform the operations of queue
management and command and/or data transaction using the
first virtual function administration queue stored 1n the first
virtual function administration queue area 2141_a of the
host memory 2140 and the plurality of virtual function
iput/output queues stored 1n the first virtual function mput/
output queue area 2141_b of the host memory 2140.

In this case, the virtualization intermediary 2120 does not
need to intervene in the overall virtual operation. For
example, since the virtualization intermediary 2120 1is
involved only 1 the SR-IOV capability imtialization
through the physical function 2110_a, the performance of
the storage system may be improved.

To store the virtual function administration queues cor-
responding to the plurality virtual tunctions 2111 to 211,
the host memory 2140 may provide an area in which queue
pairs ol administration queues and mput/output queues are

stored. The host memory 2140 of FIG. 2 may additionally
provide a plurality of virtual function admimstration areas
(VF1 A_Q Areato VFn A_Q Area) 2141_a to 214»_a In this
case, the virtual function administration queues and the
virtual function mput/output queues may be respectively
stored in the host memory 2140 1n the form of a circular
queue.

Subsequently, referring to FIG. 2, the storage device 2200
may include a storage controller 2210 and a plurality of
non-volatile memories 2221 to 222n. Since the overall

5

10

15

20

25

30

35

40

45

50

55

60

65

8

configuration and operation of the storage device 2200 1is
similar to those 1n FIG. 1, detailed descriptions thereot will
be omitted.

In some exemplary embodiment, the storage controller
2210 includes a virtual function (VF) manage module 2230.
The virtual function manage module 2230 serves to store
and process the virtual function administration queues and
virtual function mmput/output queues corresponding to the
plurality of virtual functions 2111 to 211n. The wvirtual
function manage module 2230 may further include a task
scheduler and an address mapping manager. The configu-
ration and operation of the storage controller 2210 will be
described later 1n more detail with reference to FIG. 4.

Each of the storage systems 1000 and 2000 of FIGS. 1 and
2 may be mmplemented as a server, a super computer, a
personal computer, a laptop computer, a mobile phone, a
smart phone, a tablet person computer (tablet PC), or a
wearable computer.

As described above, the storage system 2000 according to
another exemplary embodiment may support virtual func-
tions while supporting a queue-based command interface
mode.

FIG. 3 1s a block diagram showing the configurations and
operations of the storage controller 2210 and the virtual
function manage module 2230 of FIG. 2 in more detail.
Referring to FIG. 3, the storage controller 2210 may include
the virtual function manage module 2230, a plurality of
cores 2211_1 to 2211_n, a plurality of caches 2211_1' to
2211 _n ', and a non-volatile memory interface 2214.

In some exemplary embodiment, the virtual function
manage module 2230 may be implemented to execute the
operations of storing and processing the virtual functions
received from the host device 2100 of FIG. 2 or storing and
processing the plurality of administration queues and the
plurality of mnput/output queues corresponding to the virtual
machines. The virtual function manage module 2230 may
include a host mterface 2231, a plurality of virtual function
command fetchers 2232 1 to 2232 _n, a plurality of virtual
function command parsers 2233_1 to 2233_n, a command
dispatcher 2234, a direct memory access (DMA) manager
2235, a DMA unit 2236, a common response manager 2237,
and a plurality of virtual function responsers 2238 1 to
2238 n.

The host interface 2231 supports the interfacing operation
between the host device 2100 (refer to FIG. 2) and the
storage device 2200. For example, as shown mn FIG. 3,
information about n, virtual function administration sub-
mission queue (VEn A_SQ) and n,, virtual function mput/
output submission queue (VFEFn I/O_SQ) corresponding to
the n,, virtual function (VFn) may be transmitted from the
host device 2100 to the storage device 2200 through the host
interface 2231. In this case, management information cor-
responding to the n,, virtual function may be included 1n the
n, virtual function administration submission queue (VEn
A_SQ), and information about read and write operations
corresponding to the n, virtual function may be included 1n
the n, virtual function mnput/output submission queue (VEn
I/0_SQ).

Further, for example, information about n,, virtual func-
tion administration completion queue (VEFn A_CQ) and n,,
virtual function mput/output completion queue (VFEn
I/O_CQ) corresponding to the n,, virtual function (VFn)
may be transmitted from the storage device 2200 to the host
device 2100 through the host iterface 2231. In this case,
response 1nformation corresponding to the processing
results of the n,, virtual function administration submission
queue (VFn A_SQ) may be included in the n, virtual

US 10,203,912 B2

9

function administration completion queue (VFn A_CQ), and
response 1nformation corresponding to the processing
results of the n,, virtual function 1nput/output submission
queue (VEFn I/O_S(Q) may be included in the n,, virtual
function input/output completion queue (VEn I/O_CQ).
The first to n,, virtual function command fetchers 2232_1
to 2232_n respectively correspond to information about the
first to n,, virtual function submission queues, and support
the operation of fetching the commands stored 1n the cor-

responding submission queues. For example, the first virtual
function command fetcher (VF1 CMD Fetcher) 2232_1

corresponds to information about the first virtual function
administration submission queue (VF1 A_SQ) and the first
virtual function put/output submission queue (VF1
I/0_SQ), and executes the operation of fetching the infor-
mation about the first virtual function administration sub-
mission queue (VF1 A_SQ) and the first virtual function
input/output submission queue (VEF1 I/O_SQ) 1n response to
a ring doorbell signal.

For example, the first virtual function or the first virtual
machine may transmit a write or read task queue from/to the
host device 1100 or 2100 to/from the storage device 1200 or
2200, and the corresponding task may be stored 1n the first
virtual function command fetcher 2232 1. In this case, the
first virtual function command parser 2233 _1 may interpret
the command (that 1s, requested task) stored in the first
virtual function command parser 2233 1 to determine
whether the command 1s a read or write task. If the command
1s a write task, the storage controller 2210 may transmit the
data of the host device 2100 to bufler memory 2213 through
a write DMA 2236 1 with reference to address information
transmitted together with the command. Further, if the

command 1s a read task, the storage controller 2210 may
transmit data from the non-volatile memories 2221 to 222
to the host device 2100 through a read DMA 2236_2 with
reference to address information transmitted together with
the command. The first to n,, virtual function command
fetchers 2232_1 to 2232 _n may respectively correspond to
a request queue 2290 to be described later with reference to
FIG. 4 and subsequent drawings. The method of scheduling
a task using the request queue 2290 will be described later
in detail with reference to FIG. 4 and subsequent drawings.

The fetching operation according to an exemplary
embodiment 1s explained 1n more detail. For example, when
information about the submission queue 1s mput to the first
virtual function administration queue area (VF1 A_Q Area)
2141_a of the host memory 2140 (refer to FIG. 2), the host
device 2100 transmits the ring doorbell signal to the storage
controller 2210. In this case, the first virtual function com-
mand fetcher 2232 1 accesses the first virtual function
administration queue areca 2141_a 1n response to the ring
doorbell signal, and temporarily stores the command 1nfor-
mation of the first virtual function administration submis-
sion queue (VEF1 A_SQ) in the memory 1n the first virtual
function command fetcher 2232 1.

Similarly, when information about the submission queue
1s mput to the first virtual function mput/output queue area
(VF1 I/O_Q Area) 2141_b of the host memory 2140, the
host device 2100 transmits the ring doorbell signal to the
storage controller 2210. Thereafter, the first virtual function
command fetcher 2232 1 accesses the first virtual function
input/output queue area 2141_b in response to the ring
doorbell signal, and temporarily stores the command 1nfor-
mation of the first virtual function mmput/output submission
queue (VF1 I/O_SQ) in the memory in the first virtual
function command fetcher 2232 1.

10

15

20

25

30

35

40

45

50

55

60

65

10

The virtual function command fetchers 2232 1to 2232 n
may be implemented as a plurality of registers or a volatile
memory, such as an SRAM or a DRAM, and may be
implemented as a non-volatile memory, such as a PRAM, an
MRAM, an RRAM, or an FRAM, or a combination thereof.

The first to n,, virtual function command parsers 2233_1
to 2233_n are respectively connected to the first to n_, virtual
function command fetchers 2232 1 to 2232 n. The first to
n, virtual function command parsers 2233_1 to 2233_n
respectively receive the commands for administration sub-
mission queues or mput/output submission queues from the
first to n,, virtual function command {fetchers 2232 1 to
2232 n, and execute the operation of parsing the character-
1stics of each of the commands. For example, the first virtual
function command parser 2233_1 receives a command from
the first virtual function command fetcher 2232 1, and
executes the operation of analyzing the characteristics of the
received command, the content corresponding to the com-
mand, or the like.

The command dispatcher 2234 1s commonly connected to
the first to n, virtual function command parsers 2233_1 to
2233 _n. The command dispatcher 2234 receives the plural-
ity of commands parsed from the first to n,, virtual function
command parsers 2233_1 to 2233_n, and executes the
operation of appropriately distributing the commands to the
plurality of cores 2211_1 to 2211_n 1n accordance with the
characteristics thereof. For example, the command dis-
patcher 2234 may distribute the commands such that the
plurality of cores 2211_1 to 2211_n are operated 1n parallel
to each other.

The plurality of cores 2211_1 to 2211_n are respectively
connected to the command dispatcher 2234 through the bus
2240, and receive commands from the command dispatcher
2234. Further, the plurality of the cores 2211_1 to 2211_n
are respectively connected to a plurality of cache memories
2211_1' to 2211_n', and execute the operation of adjusting
the commands with reference to the instructions stored in the
respective corresponding caches memories. For example,
when the receive command and the data corresponding to
this command exceed the data capacity that may be pro-
cessed by the DMA umit 2236 at one time, the corresponding
core executes the operation of appropriately adjusting the
command with reference to the instruction stored in the
corresponding cache memory such that this command may
be processed in the DMA unit 2236. For example, the data
capacity that may be processed by the DMA unit 2236 may
be the page unit ({or example, 4 Kbytes) of the non-volatile
memories 2221 to 222x. If the data corresponding to the
receive command exceeds the data capacity, the data may be
divided to have an appropnate size (for example, 4 KB), and
then the divided data are transmitted.

The DMA manager 2235 receives commands (for
example, adjusted commands) from the cores 2211_1 to
2211_n, and controls the DMA unit 2236 according to the
received commands.

The DMA unit 2236 may include the write DMA 2236_1
and the read DMA 2236_2, and may control a data write
operation and a data read operation according to the control
of the DMA manager 2235. For example, when a write
operation 1s executed according to the control of the DMA
manager 2235, the write DMA 2236_1 receives data through
the host interface 2231, and may control the storage device
2200 such that the recerved data is stored 1n any one of the
plurality of non-volatile memories 2221 to 222n. For
another example, when a read operation 1s executed accord-
ing to the control of the DMA manager 22335, the read DMA

2236_2 executes the read operation on any one the plurality

US 10,203,912 B2

11

ol non-volatile memories 2221 to 222», and provides the
read data to the host device 2100 through the host interface
2231.

The common response manager 2237 1s connected to the
DMA umt 2236, and receives response information about
cach command. For example, when the first to n,, virtual
function 1nput/output submission queues (VF1 1/O_S-
Q~VFEn IO SQ) are respectively write commands for first to
n, data, the common response manager 2237 receives
information about results of a write operation of the first to
n,, data (for example, information about write fail, and the
like) from the DMA unit 2236.

In this case, response information about the processing
result of the first virtual function administration submission
queue (VF1 A_SQ) may correspond to the first virtual
function administration completion queue (VF1 A_CQ), and
response information about the processing result of the first
virtual function put/output submission queue (VF1
I/0_SQ) may correspond to the first virtual function mput/
output completion queue (VF1 I/O_CQ). Sitmilarly, response
information about the processing result of the n, wvirtual
function administration submission queue (VEFn A_SQ) may
correspond to the n, virtual function administration comple-
tion queue (VEn A_CQ), and response information about the
processing result of the n, virtual function mput/output
submission queue (VFEFn I/O_SQ) may correspond to the n,
virtual function input/output completion queue (VFEn
[/0_CQ).

Further, the common response manager 2237 executes the
operation of distributing the collected information to the first
to n, virtual function reponsers 2238 _1 to 2238 n. For
example, the common response manager 2237 contributes
the miformation about the first virtual function administra-
tion completion queue (VF1 A_CQ) and the first virtual
function mmput/output completion queue (VF1 I/O_CQ) to
the first virtual function responser 2238_1, and contributes
the information about the n,, virtual function administration
completion queue (VFn A_CQ) and the n,, virtual function
input/output completion queuve (VFn I'O_CQ) to the n,
virtual function responser 2238 n.

The first to n, wvirtual function reponsers 2238 1 to
2238 _n are commonly connected to the common response
manager 2237, and receives information about the corre-
sponding virtual function administration completion queue
(VF A_CQ) and wvirtual function imput/output completion
queue (VF I/O_CQ). The first to n,, virtual function repon-
sers 2238 1 to 2238 n record the information about the
received completion queues 1n the host memory 2140.

For example, the first virtual function responser 2238_1
may record the mformation about the first virtual function
administration completion queue (VF1 A_CQ) and the infor-
mation about the first virtual function input/output comple-
tion queue (VF1 I/O_CQ) 1n the first virtual function admin-
istration queue area 2141_a and the first virtual function
input/output queue area 2141_b of the host memory 2140,
respectively. For another example, the n,, virtual function
responser 2238 n may record the information about the n,,
virtual function administration completion queue (VFn
A_CQ) and the mformation about the n,, virtual function
input/output completion queue (VFn I'O_CQ) 1n the n,
virtual function administration queue area 214n_a and the
n,, virtual function input/output queue area 214n_b of the
host memory 2140, respectively.

Further, each of the first to n,, virtual function reponsers
2238 1 to 2238_n finishes the operation of recording the
completion queue to generate an interrupt signal, and noti-
fies the interrupt signal to the host device 2100. In this case,

10

15

20

25

30

35

40

45

50

55

60

65

12

the host device 2100 checks the information about the
processing result in the host memory 2140 in response to the
interrupt signal, and processes the information.
Subsequently, referring to FIG. 3, the builer controller
2212 1s connected to the virtual function manage module

2230 and the bufler memory 2231. The bufler controller

2212 executes the operation of controlling the buller
memory 2213 to perform a read operation or a write opera-
tion 1n response to the control of the DMA unit 2236.

In the read operation or write operation, the buller
memory 2213 serves as a bufler in which read data or write
data are temporarily stored. For example, the buller memory
2213 may be implemented as a plurality of registers or a
volatile memory, such as an SRAM or a DRAM, and may be
implemented as a non-volatile memory, such as a PRAM, an
MRAM, an RRAM, or an FRAM, or a combination thereof.

The non-volatile memory interface (NVM I/F) 2214 1s

connected to the non-volatile memories 2221 to 222
through a plurality of channels CHI1 to CHn, and provides
interfacing between the storage controller 2210 and the
non-volatile memories 2221 to 222n.

As described above, the storage controller 2210 according
to an exemplary embodiment may include a plurality of
request queues (the plurality of virtual function command
tetchers 2232_1 to 2232 _n) supporting the function of
storing and processing the admimstration queue and nput/
output queue corresponding to each virtual function such
that the plurality of virtual functions 2111 to 2117z and the
plurality of virtual machines of the host device 2100 are
independently driven. Moreover, the virtual function man-
age module 2230 according to an exemplary embodiment
may be configured to independently execute a fetching
operation, a parsing operation, and a responding operation
with respect to each virtual function such that operations
corresponding to respective virtual functions are processed
in parallel to each other in the storage device 2200. In
addition, the storage device 2200 according to an exemplary
embodiment may include the plurality of cores 2211_1 to
2211 _n to efectively support the parallel processing of the
operation required for each virtual function.

Consequently, the storage device 2200 according to an
exemplary embodiment may support virtual functions while
supporting a queue-based command interface mode, and
may process the requests of a host more rapidly. Further, the
storage controller 2210 may separate the performance of
cach virtual function or virtual machine through a task
scheduler in the storage controller 2210, and may control the
fair usage of resources 1n the storage device 2200.

The foregoing description will be understood to be 1llus-
trative, and exemplary embodiments are not limited thereto.
For example, the storage systems 1000 and 2000 shown 1n
FIGS. 1 to 3 have been described to support SR-IOV type
virtual functions or virtual machines. However, these are
illustrative, and the storage system 200 of exemplary
embodiments may be applied to MR-IOV type virtual tunc-
tions or virtual machines. Further, the storage system 200
shown 1n FIGS. 1 to 3 has been described to support an
interface mode according to an NVMe protocol. However,
this 1s 1illustrative, and the storage system ol exemplary
embodiments may be applied to a mode based on a periph-
eral component interconnect express (PCle) interface, for
example, a PCle architecture queueing interface (PQI) mode
or a PQI/NVMe mode. Moreover, 1n FIGS. 1 to 3, 1t has been
described that independent virtual function administration
queues are assigned to all of the plurality of virtual func-

US 10,203,912 B2

13

tions. However, this 1s 1illustrative, and virtual function
administration queues may be assigned to at least one of the
plurality of virtual functions.

FIG. 4 1s a block diagram of a storage device supporting,
virtual functions.

Referring to FIGS. 1 to 4, the storage device 2200 may
include a storage controller 2210 including at least one
request queue, a virtual function manage module (or virtual
function manager) 2250, and at least one flash queue; and a
non-volatile memory 2220.

The virtual function manage module 2250 may include a
task scheduler 2251 and an address mapping manager (F'TL)
2252. The task scheduler 2251 1s connected to the request
queue 2290, and schedules the stored request task according
to a scheduling algorithm. The address mapping manager
(FTL) 2252 manages address mapping information about the
data stored in the non-volatile memory 2220 1n relation to
the request task processed according to the result of the
scheduling. A flash queue 2270 1s connected to the non-
volatile memory 2220 through a plurality of channels CH1
to CHn, and temporarily stores the data input to or output
from the specified non-volatile memory 2220 based on the
scheduling algorithm and the address mapping information.
The flash queue 2270 may include a plurality of queues 2271
to 2274 respectively corresponding to the plurality of chan-
nels CH1 to CHn.

The storage device 2200 supporting virtual functions
according to exemplary embodiments may provide a physi-
cal function (PF) for management and a plurality of virtual
tunctions (VFs) to the host device 1100 of FIG. 1 or 2100 of
FIG. 2. In this case, at least one virtual function may be
assigned to one virtual machine (VM). For example, the first
virtual function 2111 may be assigned to the first virtual
machine 2281, and the second virtual function 2112 and the
third virtual function 2113 may be assigned to the second
virtual machine 2282. The third virtual function 2114 may
be assigned to the third virtual machine 2284.

The virtual functions 2111 to 2114 may have their own
interrupt and memory areas in the host device 1100 or 2100,
and the virtual machines 2281 to 2284 may directly com-
municate with the wvirtual functions 2111 to 2114. The
storage device 2200 may assign independent request queues
2291 to 2294 to each of the virtual functions 2111 to 2114
or each of the virtual machines 2281 to 2284. The request
queues 2291 to 2294 of FIG. 4 may correspond to one of the
first to n,, virtual function command fetchers 2232 _1 to
2232 n shown i FIG. 3. The operation of the wirtual
machines 2281 to 2284 may be managed by the host device
1100 or 2100. The virtual machines 2281 to 2284 may
transmit task requests to the storage device 2200 through the
virtual functions 2111 to 2114 assigned thereto. The trans-
mitted task requests are stored 1n the corresponding request
queues 2291 to 2294.

In the embodiment of FIG. 4, the virtual function manage
module 2250 may correspond to the virtual function manage
module 2230 of FIG. 3. In FIG. 4, 1t 1s shown that the request
queue 2290 and the tlash queue 2270 are separated from the
virtual function manage module 2250. However, exemplary
embodiments are not limited thereto, and the virtual function
manage module 2250 may include at least one of the request
queue 2290 and the flash queue 2270. Further, the request
queue 2290 may be implemented as a separate memory
outside the storage controller 2210.

The request queue 2290 may be connected between the
host device 1100 or 2100 and the task scheduler 2251. The
request queue 2290 may store at least one request task
received from the host device 1100 or 2100. For example,

10

15

20

25

30

35

40

45

50

55

60

65

14

the request task may be a write or read task of each of the
virtual machines 2281 to 2284, the write or read task being
received from the host device 2100 or 2100. The request
queue 2290 may be a volatile memory or a non-volatile
memory. The volatile memory may be one of an SRAM, a
DRAM, a latch, and a register. The non-volatile memory
may be one of a PRAM, an RRMA, an MRAM, and an
FRAM. In this case, the storage device 2200 may include a
register to manage a read pointer, a write pointer, and/or a
base address with respect to each of the request queues 2291
to 2294,

The request queue 2290 receives a command (that 1s,
request task) from the host device 2100. For example, as
described with reference to FIGS. 1 to 3, when information
about submission queues 1s 1nput to the first virtual function
input/output queue area (VF1 I/O_Q Area) 2141_b of the
host memory 1140 or 2140, the host device 2100 transmits
the ring doorbell signal to the virtual function manage
module 2250. Thereafter, the first virtual function command
fetcher 2232 1 accesses the first virtual function put/
output queue arca 2141_b 1n response to the ring doorbell
signal, and temporarily stores the command of the first
virtual function mput/output submission queue (VF1
[/O_SQ) 1n the first request queue 2291_1. Similarly, the
request tasks (or commands) respectively corresponding to
the virtual machines 2281 to 2284 or the virtual functions
2111 to 2114 may be respectively stored in the plurality of
request queues 2291 to 2294,

In the above exemplary embodiments, it has been
described that each of the virtual machines 2281 to 2284 has
one of the virtual functions 2111 to 2114. However, exem-
plary embodiments are not limited thereto, and one virtual
machine may have a plurality of virtual functions. The
stored request tasks may be mterpreted by the virtual func-
tion command parsers 2233 _1 to 2233_n, and the interpreted
request tasks may be scheduled by the task scheduler 2251
to assure the independent performance of each of the virtual
machines 2281 to 2284 and to fairly distribute the resources
of the storage device 2200. In this case, 1n the storage device
2200, the stored request tasks may be scheduled according
to the workload contribution thereof. The workload contri-
bution will be described 1n detail with reference to FIG. 6
and subsequent drawings.

The task scheduler 2251 according to exemplary embodi-
ments may fairly schedule the request tasks stored 1n the task
queues using a workload aware budget compensation (WA -
BC) manner. According to the WA-BC manner, each of the
virtual machines 2281 to 2284 may schedule the request
tasks by determining a time budget and a time cost of the
virtual machines 2281 to 2284 according to the workload
contribution thereof in the storage device 2200. Here, the
workload means the amount of task to be processed by a
computer system. In a multi-core system, the workload
means the amount of task to be processed by a core. The
workload contribution according to an exemplary embodi-
ment may mean a relative generation rate of a workload
when a plurality of virtual machines generates a plurality of
workloads (e.g., a generation rate of a workload with respect
to a plurality of workloads generated by the plurality of
virtual machines). The workload may include the read or
write operation by the request task of the virtual machine
and additional operations (for example, overhead such as
garbage collection or read reclaim). The scheduling method
using the WA-BC manner will be described in detail with
reference to FIGS. 6 to 10.

The virtual function manage module 2250 may be con-
nected between the request queue 2290 and the flash queue

US 10,203,912 B2

15

2270. The wvirtual function manage module 2250 may
include the task scheduler 2251. In this case, the task
scheduler 2251 may correspond to the command dispatcher
2234 of FIG. 3 and/or one of the cores 2211 1 to 2211 n of
FIG. 3. The task scheduler 2251 executes the scheduling
such that the request queue 2290 efliciently communicates
with the tlash queue 2270. For example, the task scheduler
2251 fetches the first request task (RQ) waiting 1n the
request queue 2290, and transmits the fetched first request
task (RQ) to at least one of the cores 2211_1 to 2211_n. The
cores 2211_1 to 2211_n that receive the first request task
(RQ) transmit data from the host device 2100 to the flash
queue 2270 through the DMA unit (for example, DMA unit
2236 of FIG. 3) according to the recerved first request task
(RQ).

Referring to FIG. 4 again, the virtual function manage
module 2250 may include an address mapping manager, that
1s, a flash translation layer (FTL) 2252. The task scheduler
2251 checks the kind of the request tasks stored in the
request queue 2290, and transmits a target address to the
address mapping manager 2252. For example, when the
request task stored in the first request queue 2291 1s a write
command, a write target address transmitted together with
the write command 1s transmitted to the address mapping
manager 2252. In this case, the write target address may be
a logical address.

The address mapping manager 2252 may convert the
received logical address into a physical address using a
mapping table based on an address converting algorithm.
The physical address may be transmitted to the flash queue
2270. In this case, the flash queue 2270 may store the data
rece1ved from the host device 1100 or 2100 based on the task
command checked by the task scheduler 2251 and the
physical address received from the address mapping man-
ager 2252. The mapping table may be managed by one of the
cores 2211 1 to 2211 n.

The flash queue 2270 may be provided corresponding to
a plurality of flash channels CH1 to CH4. The plurality of
flash queues 2271 to 2274 may be connected to the plurality
of non-volatile memories 2221 to 2224 through the plurality
of flash channels CH1 to CH4. When the data transmitted
from the host device 1100 or 2100 are stored 1n the plurality
of flash queues 2271 to 2274, the data may be stored 1n the
non-volatile memories 2221 to 2224 through one of tlash
channels (e.g., any one of CH1 to CH4) or the plurality of
flash channels CH1 to CH4. For example, the data associ-
ated with the first virtual machine 2281 and the second
virtual machine 2282 may be respectively assigned to the
first flash channel CH1 and the second flash channel CH2.
In another exemplary embodiment, all of the first data
associated with the first virtual machine 2281 and the second
data associated with the second virtual machine 2282 may
be assigned to the first flash channel CHI. In still another
exemplary embodiment, the first data associated with the
first virtual machine 2281 may be distributed and assigned
to the first flash channel CH1 and the second flash channel
CH2. In this case, the data assigned to the flash channels
different from each other may be simultaneously processed
(e.g., written or read). That 1s, the virtual machine (VM) and
the flash queue 2270 may be mapped with each other at a
ratio of 1:1, 1:n, or n:1.

When the task scheduler 2252 executes the scheduling of
the request tasks (RQ) of the virtual machines 2281 to 2284,
the address mapping manager 2252 may assign an indepen-
dent block group to each of the non-volatile memories 2221
to 2224 with respect to each of the virtual machines 2281 to
2284. For example, the independent block group may be an

5

10

15

20

25

30

35

40

45

50

55

60

65

16

erase block group (EBG). The method of assigning the erase
block group (EBG) will be described in detail with reference
to FIG. 6.

The basic unit of write and read in the non-volatile
memories 2221 to 2224 may be a page unit of a non-volatile
memory. For example, the page unit may be a page unit of
a NAND flash memory, and the page unit thereof may be 4
KB. Therefore, when the task scheduler 2251 executes the
scheduling of the request task (RQ) stored i1n the request
queue 2290, the unit of the scheduling may be the page unait.
That 1s, when the request task of the host device 2210 1s
write data of 8 KB, the controller may execute the sched-
uling to perform page transmitting tasks two times at a unit
of 4 KB. The unit of the scheduling may be changed
depending on the page unit of the non-volatile memories
2221 to 2224.

In some exemplary embodiments, the task scheduler 2251
and/or the address mapping manager 2252 may be 1mple-
mented as hardware or software. For example, the task
scheduler 2251 may be configured as a hardware block
associated with the command dispatcher 2234 of FIG. 3, and
the address mapping manager 2252 may be configured as a
hardware block associated with the bufler controller 2212 of
FI1G. 3. Further, the task scheduler 2251 and/or the address
mapping manager 2252 may be implemented as software
executed by one of the cores 2211_1 to 2211_n. This
soltware 1s stored 1n the non-volatile memory 2220, and may
be loaded 1n at least one of the cache memories 2211 1'to
2211_n' through the bus of FIG. 3 when power 1s applied to
the storage device 2200.

The task scheduler 2251 may include the request queue
2290, the virtual function command parsers 2233_1 to
2233 _n, the plurality of cores 2211_1 to 2211_n, and the
flash queue 2270. For example, to schedule the first request
task (RQ) stored in the request queue 2290, the request tasks
stored 1n the plurality of request queues 2291 to 2294 are
analyzed by the virtual function command parsers 2233_1 to
2233 n, and the analyzed commands are distributed to at
least one of the cores 2211_1 to 2211_n by the command
dispatcher 2234. Among the plurality of cores 2211_1 to
2211_n, the core that processes the parsed command 1is
configured such that the second request task (FQ) for
controlling the non-volatile memory 2220 according to the
characteristics of the received command or the operation
corresponding to the command 1s stored 1n the flash queue
22770. Some of the plurality of cores 2211_1 to 2211 _n or the
bufler controller 2212 may control the write, read and erase
operations of the non-volatile memory 2220 based on the
stored second request task (FQ).

When the first request task (RQ) i1s a read or write
command, the storage controller 2210 may generate the
second request task (FQ) and the second address with
reference to the first address included in the first request
task. In this case, the second request task (FQ) may be a
read, write and/or erase command. In this case, the first
address may be a logical address, and the second address
may be a physical address.

The second request task (FQ) may include overhead-
associated operations for managing the non-volatile memory
2220 1n addition to the task requested by the first request task
(RQ). The overhead may include the read, write and/or erase
operations of additional data executed in the non-volatile
memory 2220 1n relation to garbage collection, read reclaim,
wear leveling, data reliability, and mapping table manage-
ment.

The task scheduler 2251 stores the second request task
(FQ) 1n the flash queue 2270 by scheduling the first request

US 10,203,912 B2

17

task (RQ). The task scheduler 2251 and/or the address
mapping manager 2252 converts the first address into the
second address based on scheduling algorithm and address
mapping algorithm.

If the first request task (RQ) 1s a write command, the write
date stored 1n the host memory 2140 may be transmitted to
the buller memory 2213 in the storage controller 2210.
Conversely, 11 the first request task (RQ) 1s a read command,
the read data read in the non-volatile memory 2220 may be
stored 1n the buller memory 2213 in the storage controller
2210, and then transmitted to the host memory 2140. Here,
the host memory 2140 may be an external memory (for
example, a DRAM) connected to the host device 1100 or
2100.

The processing time of the storage device 2200 may be an
interval from a time when the first request task (RQ) 1s
tetched from the request queue 2290 to a time when the
second request task (FQ) associated with the first request
task (RQ) 1s stored in the tlash queue 2270. The processing
time may be used as the time cost for scheduling. The time
cost may be determined according to the request task from
the virtual machine, and may be compensated according to
workload contribution.

FIGS. 5A, 5B, and 5C are conceptual diagrams 1llustrat-
ing a method of compensating for the time cost generated
from virtual machines. FIG. 6 1s a block diagram showing
block groups (BGs) independently assigned in the non-
volatile memory 2220 of the storage device 2200.

Referring to FIGS. 3 to 6, the task scheduler 2251 may
schedule the data transmission between the host device 1100
or 2100 and the flash queue 2270 based on the first request
task (RQ) selected from the request queue 2290. The task
scheduler 2251 may assign a predetermined time budget
(TB) to each of the request queues 2291 to 2294 belore the
scheduling of the first request task (RQ). In this case, the
time budgets (TBs) assigned to all of the request queues
2291 to 2294 may have the same value.

When the first request task (RQ) 1s executed by the
scheduling, the time budget (IB) may be reduced. The
amount ol the reduced time budget (TB) may be changed
depending on the time cost (TC) of the request tasks (RQ)
requested by the virtual machines 2281 to 2284. The method
of managing the time budget (1B) and the time cost (TC)
will be described in detail with reference to FIGS. 5A to 10.
The execution of the first request task (R(Q)) may correspond
to an 1nterval from a time of fetching of the first request task
(RQ) from the request queue 2290 to a time of storing of the
second request task (RQ) corresponding to the first request
task (RQ) 1n the flash queue 2270 or an interval from a time
of fetching the first request task (RQ)) from the request queue
2290 to a time of fetching the second request task (RQ) from
the tlash queue 2270. That 1s, the time cost (TC) of the
request tasks requested by the virtual machines may be
determined based on the time taken to execute the request
tasks. For example, 11 the execution time of the request tasks
1s 10 ms, the time cost corresponding to this execution time
may be 10.

When the first request task (RQ) stored in the request
queue 2290 1s scheduled, the processing unit thereof may be
the page unit of the non-volatile memory. That 1s, when the
task of the page umt of the non-volatile memory 1s pro-
cessed, the time budget (TB) of the corresponding request
queues 2291 to 2294 may be reduced by the time cost (1TC)
ol the executed request task. In this case, the time cost (1TC)
may correspond to the time cost (TC) of the divided request
task.

10

15

20

25

30

35

40

45

50

55

60

65

18

Among the request queues 2291 to 2294, the request
queue having completely exhausted the time budget (TB)
may be excluded from the scheduling until the time budget
(IB) 1s reassigned to the corresponding request queue.
When all of the request queues 2291 to 2294 have com-
pletely exhausted the time budgets (TBs), all of the request
queues 2291 to 2294 may be reassigned with time budgets
(TBs). In this case, the time budgets (TBs) reassigned all of
the request queues 2291 to 2294 may have the same value.

The scheduler 2251 according to some exemplary
embodiments may have a work conserving scheduling
policy to increase the utilization of the storage device 2200.
That 1s, when at least one request queue having a waiting
request task exists among the request queues 2291 to 2294,
the task scheduler 22351 continues the scheduling. However,
when at least one request queue having no waiting request
task exists among the request queues 2291 to 2294, the task
scheduler 2251 skips scheduling of the request queue having
no waiting request task even 11 time budget (TB) remains in
the corresponding request queue and execute the request
tasks of other request queues. To manage the remaining time
budget (TB), the task scheduler determines the time cost
(TC) consumed 1n each of the request queues 2291 to 2294,

The time cost (TC) may be determined based on work-
loads generated from the virtual machines 2281 to 2284 1n
the storage device 2200. For example, the time cost (TC)
may be determined by reflecting the workload caused by the
request task (for example, write operation or read operation)
requested by the virtual machines 2281 to 2284 and the
workload caused by the overhead for a flash management
operation such as garbage collection, wear leveling, or
mapping table management. The rate of workloads between
the virtual machines may be determined based on the
workload caused by the request task of the virtual machine
and the workload caused by the overhead associated with the
request task. In this case, the rate of workloads between the
virtual machines may be defined by workload contribution.
That 1s, the rate of workloads between the virtual machines
may be defined by the workload contribution of the storage
device 2200. Consequently, the task scheduler 2251 may
schedule the request tasks of the virtual machines depending,
on the workload contribution of the request task of each of
the virtual machines.

The workload contribution according to an exemplary
embodiment means the relative generation rate of workloads
when a plurality of virtual machines generates a plurality of
workloads. The workload may include a read or write
operation caused by the request task of the virtual machine
and additional operations (for example, overhead, such as
garbage collection, read reclaim, and the like). The WA-BC
type scheduling method will be described in detail with
reference to FIGS. 6 to 10.

To determine the time cost (1C), a regression based cost
modeling method may be used. In this case, the time cost
(TC) may be determined based on the kind of the request
tasks, the number of times of the request tasks, and the time
cost caused by the request tasks. Equation (1) represents the
time cost (1C,) of virtual machine measured during the
profiling interval. Here, the profiling means a procedure of
extracting the information about the estimated target
depending on known characteristics and variables.

TC,=C xxNg(i)+Cypx Ny (i) (1)

In Equation (1), C, and C,, represent time cost for a read
request and time cost for a write request, respectively. N, (1)
and N (1) represent the number of read requests and the
number of write requests during the 1, profiling interval,

US 10,203,912 B2

19

respectively. Here, the unit of a read request or a write
request may be the page unit of the non-volatile memory.

The time cost (Cy) for a read request and the time cost
(C;) Tor a write request may be values determined depend-
ing on the execution time for a read request and execution
cost for a write request measured by profiling. That 1s, the 1,
time cost (TC,) may be the sum of the product of the number
of read requests executed during the 1, profiling interval and
the time cost (C,) for a read request and the product of the
number of write requests executed during the 1, profiling
interval and the time cost (C;,) for a write request.

The task scheduler 2251 may determine the time cost of
the virtual machines 2281 to 2284 by accumulating K time
costs (TC,) during K profiling intervals. For example, the
task scheduler 2251 executes linear regression analysis
based on K regression equations of each of the time cost
(C,) for read request and the time cost (C) for a write
request during K profiling intervals, and predicts the time
cost (Cj) for a read request and the time cost (Cy;,) for a write
request. When the number of read requests and the number
of write requests are measured based on the predicted time
cost (C,) for a read request and the predicted time cost (Cy;)
for a write request, the time cost (1C) caused by the
corresponding virtual machine (VM) may be predicted. In
exemplary embodiments, the time taken to execute regres-
sion analysis may be very short (e.g., several unit seconds).

The time cost (C,) for a read request and the time cost
(C,,) for a write request may be periodically measured. For
example, the time cost (C) for a read request and the time
cost (C,;) for a write request may be updated by periodically
measuring the time costs with respect to each K, profiling
interval.

The measurement cycle of each of the time cost (C) for
a read request and the time cost (Cy;,) for a write request may
be determined based on the errors of regression analysis
results and the sensitivity to the change of workload. For
example, when the size of error of the predicted value and
the measured value of the regression analysis result 1s larger,
the measurement cycle may be longer. Further, when the
change of workload frequently occurs for a short period of
time, the measurement cycle may be shorter.

The time cost (Cj) for a read request and the time cost
(C;) Tor a write request may be changed depending on the
read and write characteristics of storage media of the storage
device 2200, and may be different from each other. That 1s,
in the case of non-volatile memory, the time cost (C) for a
read request and the time cost (C,;) for a write request may
be determined depending on the characteristics of memory
cell (e.g., reading speed, writing speed, whether erasing 1s
performed before writing, and the like). In the case of the
NAND flash memory, the time cost (C;,) for a write request
may be larger than the time cost (Cj) for a read request
because the write latency of memory cell 1s larger than the
read latency thereof.

Referring to FIGS. SA to 5C again, each of the virtual
machines 2281 to 2284 may have its own time cost (TC).
The storage device 2200 according to an exemplary embodi-
ment may fairly execute performance isolation or resource
distribution based on the time cost (TC) required for each of
the virtual machines 2281 to 2284.

When the storage controller 2210 executes the request
task of one of the virtual machines 2281 to 2284, a time cost
may be generated due to the execution of a write request task
and a read request task. The virtual machines 2281 to 2284
may generate an mternal overhead in addition to the execu-
tion of the read or a write request task. Here, the internal
overhead may be an overhead executed to manage the inside

5

10

15

20

25

30

35

40

45

50

55

60

65

20

of the storage device 2200, such as garbage collection,
address mapping table management, read claim, or wear
leveling. For example, 1n the case of the when the storage
device 2200 1s a solid state driver (SSD) which 1s a storage
device using the non-volatile memory, when one of the
virtual machines 2281 to 2284 frequently generates a small
random write request in the non-volatile memory 2220,
garbage collection may be frequently generated.

The garbage collection may be generated when the num-
ber of usable flash blocks in the storage device 2200 1s small
(for example, when storage efhiciency, which 1s based on a
ratio of the number of used pages to the number of valid
pages, 15 lowered). At the time of executing the garbage
collection, the storage device 2200 assigns one flash block
to a free block pool 2315, and copies only the valid page of
an old tlash block having many invalid pages to the assigned
flash block through merge operation. Then, the old flash
block may be converted mnto a free block by erasing.
Consequently, at the time of performing the garbage collec-
tion, since the storage device 2200 stops the request tasks
requested by the virtual machines 2281 to 2284 and executes
the above-mentioned page data copy and block erasing
tasks, the execution time of the request task causing over-
head may increase. To separate the request task causing the
overhead from other request tasks, the storage device 2200
may assign an independent block group with respect to each
of the wvirtual machines 2281 to 2284, and execute the
corresponding request task 1n the assigned block group.

The overhead internally generated by one virtual machine
(VM) may influence the execution of tasks of other virtual
machines (VMs). That 1s, the execution of tasks of other
virtual machines (VMs) may be delayed due to the overhead
generated at the execution of task of one virtual machine
(VM). Therefore, to fairly execute the tasks of the virtual
machines (VMs), 1solation and resource distribution may be
performed by predicting a workload that may be generated
by one of the virtual machines 2281 to 2284, and the
workload may be represented as a time cost (1C). The time
cost (TC) may include a time cost to process the write and
read request tasks of each virtual machine (VM) and a time
cost of the overhead caused by the request tasks.

For convenience of explanation, a case in which the
overhead of the storage device 2200 1s caused by garbage
collection will be described as an example. Referring to FIG.
5A, the time cost for a write request of the first virtual
machine (VM,) may be represented by first time cost (C,;,),
and the time cost for a write request of the second virtual
machine (VM,) may be represented by second time cost
(Cu).

FIG. 5A shows the first time cost (Cy;,) for a write request
of the first virtual machine (VM,) and the second time cost
(C,~) for a write request of the second virtual machine
(VM,), when overhead 1s not generated. For example, the
first time cost (C,;,,) may be a time cost for a random write,
and the second time cost (C,,) may be a time cost for a
sequential write.

FIG. 5B shows the times costs (TCs) of the first virtual
machine (VM,) and the second virtual machine (VM,),
when taking into account the time cost (C~) caused by the
overhead (for example, garbage collection) generated at the
time of executing the request tasks of the first virtual
machine (VM,) and the second virtual machine (VM,). As
shown 1n FI1G. 5B, 11 the entire overhead 1s uniformly shared
by all of the virtual machines (VMs), it may be dithicult to
ensure the performance isolation of each virtual machine

(VM).

US 10,203,912 B2

21

FIG. 5C shows the compensated time cost (TC) of each
virtual machine (VM), when the time cost (TC) of each of
the virtual machines (VM, and VM,) 1s compensated based
on degree of the contribution of the corresponding virtual
machine to the workload caused by overhead. For example,
when the degree of the contribution of the first virtual
machine (VM,) to the workload 1s larger than the degree of
the contribution of the second virtual machine (VM,) to the
workload 1n terms of overhead, a greater amount of the time
cost (TC) caused by overhead may be assigned to the first
virtual machine (VM,).

Here, by using the time cost (TC) that 1s determined with
respect to each of the virtual machines 2281 to 2283, the task
scheduler 2251 may fairly schedule the request task of each
of the virtual machines 2281 to 2284 based on the deter-
mined time cost (TC) of each of the virtual machines 2281
to 2284. For example, whenever the request task of the
corresponding virtual machine (VM) 1s executed based on
the above determined time cost (1TC), the time budget (TB)
of each of the virtual machines 2281 to 2284 may be reduced
by the above determined time cost (TC). In an exemplary
embodiment, whenever data transmission 1s executed by a
page umt (for example, 4 KB) from the request queue 2231
to the tlash queue 2213, the task scheduler 2251 may reduce
the above time budget (1B) by the above time cost (TC).

In some exemplary embodiments, the task scheduler 2251
may reduce the time budget (TB) by the time cost (TC) by
using an address mapping unit. Here, the address mapping
unit refers to a unit configured to manage recorded data in
a mapping table. For example, when the address mapping
manager 2252 of a page mapping type 1s used, the address
mapping unit may be a page unit, and when the address
mapping manager 2252 of a page mapping type 1s used, the
address mapping unmit may be a block unit. The address
mapping unit 1s not limited to a page or block unit. For
example, the address mapping unit may be a plurality of
page group umits.

In some exemplary embodiments, if one virtual machine
(VM) causes a less overhead, more time budget (TB) may be
assigned to each of the virtual machines 2281 to 2284. That
1s, the task scheduler 2251 may adjust the time budget (TB)
of the wvirtual machines (VMs) based on the workload
contribution of the storage device 2200.

If time budget (TB) does not remain 1n one of the request
queues 2291 to 2294, the task scheduler 2251 waits until all
of the time budgets (TBs) of other request queues 2290 are
exhausted, or waits until the waiting tasks of other request
queues 2290 do not exist. IT all of the time budgets (TBs) of
other request queues 2290 are exhausted or the waiting tasks
ol other request queues 2290, excluding the time budget-
exhausted request queues, do not exist, the task scheduler
2251 may reassign time budgets to the time budget-ex-
hausted request queues. In this case, the task scheduler 2251
may also reassign time budgets to the time budget-remaining,
other request queues.

Consequently, in the task scheduler 2251 according to
exemplary embodiments, since the virtual machine having a
relatively large time cost (TC) or the virtual machine having
a relatively small time budget (TB) may exhaust the time
budget (TB) assigned thereto during the execution of request
task, the waiting time may increase until the corresponding,
virtual machine 1s reassigned with time budget (TB), and
thus there 1s an eflect of delaying the execution of a request
task. In contrast, since the virtual machine having a rela-
tively small time cost (1TC) or the virtual machine having a
relatively large time budget (ITB) has a relatively large
amount of the time budget (1B) assigned thereto during the

5

10

15

20

25

30

35

40

45

50

55

60

65

22

execution of request task, the corresponding virtual machine
may not need to wait for the corresponding virtual machine
to be reassigned with time budget (1B), and thus there 1s an
ellect of rapidly executing a request task. Consequently, 1n
the task scheduling method according to exemplary embodi-
ments, performance 1solation may be ensured by reducing
performance interference through fair resource distribution
between the virtual machines 2281 to 224 based on the time
budget (TB) and time cost (TC) of the virtual machines 2281
to 2284.

Referring to FIG. SA to FIG. 6 again, for eflicient per-
formance 1isolation and {fair resource distribution, as
described above, the compensated time cost (TC) may be
determined based on determiningthe time cost (1TC) caused
by the overhead of the storage device 2200 and generated by
cach of the virtual machines 2281 to 2283. In the task
scheduling method according to exemplary embodiments,
the compensated time cost (1C) of each of the wvirtual
machines 2281 to 2283 may be determined based on the
structural characteristics of the storage device 2200.

Referring to FIG. 6, the storage device 2200 may be an
SSD device including a non-volatile memory. The storage
device 2200 may include a block group (BG) assigned to
cach of the virtual machines 2281 to 2283. For example, the
block groups (BGs) may be erase block groups (EBGs) 2311
to 2313. The storage device 2200 may further include the
free block pool 2315 for garbage collection. The blocks 1n
the erase block group (EBG) assigned to virtual machines
(VMs) may include valid pages for storing valid page data
and 1nvalid pages for storing invalid previous page data.
Here, the task scheduler 2251 may determine the storage
elliciency of each of the erase block groups 2311 to 2313
based on the ratio of the number of used pages to the number
of valid pages in each of the erase block groups 2311 to
2313. The storage efliciency may correspond to a write
amplification factor (WAF).

The storage device 2200 may include the first erase block
group 2311 including four blocks assigned to the first virtual
machine 2281, may include the second erase block group
2312 including six blocks assigned to the second virtual
machine 2282, and may include the third erase block group
2313 including four blocks assigned to the third virtual
machine 2283. The storage device 2200 may further include
the free block pool 2315 including four erase blocks. The
free blocks included in the free block pool 2315 may be
erased blocks. For the convenience, 1t 1s shown 1n FIG. 6 that
cach block has six pages, but exemplary embodiments are
not limited thereto.

In some exemplary embodiments, each of the erase block
group 2311 to 2313 may be independently assigned to only

one application or only one of the virtual machines 2281,
2282, and 2284, and may be used. That 1s, the blocks 1n one

of the erase block groups 2311, 2312, and 2313 may not be
shared with other virtual machines 2281 to 2284. In this
case, a target address may be managed such that data of one
of the wvirtual machines 2281, 2282, and 2283 are not
distributed and stored 1n the erase block groups 2311, 2312,
and 2313 assigned to other virtual machines. The manage-
ment of the target address may be executed by the task
scheduler 2251 and the address mapping manager 2252.
In some exemplary embodiments, when the storage space
of one of the virtual machines 2281, 2282, and 2283 in the
storage device 2200 1s msuflicient, the virtual function
manage module 2250 assigns, as new blocks, the free blocks
in the free block pool 23135 to the erase block groups 2311,
2312, and 2313 of the corresponding virtual machines 2281,
2282, and 2283, and copies valid page data to the newly

US 10,203,912 B2

23

assigned blocks through a merge operation. In this case, the
corresponding pages storing the previous valid page data 1s
converted into invalid pages. The blocks having a small
number of valid pages may be converted into the free blocks
of the free block pool 2315 through a garbage collection
operation. Consequently, the independent block group
assigned to one virtual machine (VM) may variably control
the number of the blocks included therein. For example, a
variable dedicated erase block group may be assigned to
cach of the virtual machines.

In some exemplary embodiments, when the storage space
of one of the virtual machines 2281, 2282, and 2283 in the
storage device 2200 1s insuflicient, the wvirtual function
manage module 2250 may assign, as an additional erase
block group, the plurality of free blocks 1n the free block
pool 2315 to the corresponding virtual machines 2281, 2282,
and 2283. Therelfore, one or more independent erase block
groups may be assigned to one of the virtual machines 2281,
2282, and 2284.

The task scheduler 2251 may measure the time cost (TC)
of the erase block groups 2311 to 2313 to measure the time
cost (TC) of the wvirtual machines 2281 to 2283. For
example, the time cost (TC) of the erase block groups 2311
to 2313 may be measured based on the above-mentioned
storage etliciency of each of the erase block groups 2311,
2312, and 2313. For example, the storage efliciency may
correspond to a write amplification factor (WAF). In this
case, the storage efliciency and the write amplification factor
(WAF) may be 1n inverse proportion to each other. The write
amplification factor (WAF) may refer to the ratio of the total
used space 1n the erase block group (EBG) to the valid
data-stored space. For example, when the number of the
total used pages in the first erase block group 2311 of FIG.
6 1s 22 and the number of valid pages 1s 13, the write
amplification factor (WAF) 1s 1.69 (22/13). Similarly, the
write amplification factor (WAF) 1n the second erase block
group 2312 1s 1.73 (26/15), and the wrnte amplification
factor (WAF) 1n the third erase block group 2313 i1s 1.1
(22/20). Generally, as the write amplification factor (WAF)
increases, a portion of an invalid space increases, and thus
the possibility of generating garbage collection increases.
Also, as the storage efliciency of each of the erase blocks
2311, 2312, and 2313 decreases, the portion of the invalid
space creases, and thus the possibility of generating gar-
bage collection increases.

Generally, when the write amplification factor (WAF) 1s
measured while assuming that garbage collection has a
greatest influence on the overhead of the storage device, the
time cost (1C) generated by the corresponding virtual
machine (VM) may be eflectively predicted, and the task
scheduler 2251 may schedule the request task 1n the request
queue 2290 based on the predicted time cost (TC). This task
scheduling method 1s eflective 1n reducing the interference
between the virtual machines 2281 to 2283, ensuring inde-
pendent performance and efliciently distributing resource in
the storage device 2200.

Equation (2) 1s an equation for determining the write
amplification factor (WAF) o, of the 1, virtual machine
(VM,). The write amplification factor (WAF) o, 1s a value
obtained by dividing the number u, of used pages in the
erase block group (EBG,) by the number v, of valid pages.
The write amplification factor (WAF) a of the storage device
may be represented by Equation (3). That 1s, the write
amplification factor (WAF) o 1s a value obtained by dividing
the number (Z u,) of the total used pages 1n all of the erase
block groups (EBGs) of the storage device by the number (2
v.) of total valid pages.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

o= ULV

(2)

oC=211. 2V, (3)

To predict the workload contribution of each virtual
machine, a normalized write request time cost C';, may be
defined while assuming that overhead does not exist. That is,
when 1t 1s assumed that the write request time cost C;;- and
the write amplification factor (WAF) o of the storage device
2200 are 1n proportion to each other, the normalized write
request time cost C',;, may be represented by Equation (4).

Here, each virtual machine (VM) uses an independent
erase block group (EBG). Therefore, when the write request
time cost C;;. and the write amplification factor (WAF) o, of
the 1, virtual machine (VM,) are in proportion to each other,
the normalized write request time cost C';;, may be repre-
sented by Equation (5). Therefore, the write request time
cost C;, of the 1, virtual machine (VM,) may be represented
by Equation (6) using Equation (4) and Equation (5).

Cly = Cu | o (4)
Cw = Cw, [o; (3)
wa — Cw/% (6)

For example, when two virtual machines (VM, and VM.,)
2281 and 2282 request for write operation, the total write
request time cost (C ;) of the storage device 2200, the total
write amplification factor (o) of the storage device 2200, the
write amplification factor () of the first virtual machine
(VM,), and the write amplification factor (a,,) of the second
virtual machine (VM,) are 16, 1.6,3.2, and 1.2, respectively.
That 1s, 1t may be predicted that the write request time cost
(C,-) of the first virtual machine (VM,) and the write
request time cost (C,) of the first virtual machine (VM,)
are 32 and 12, respectively.

As described above, the task scheduler 2251 may sched-
ule the request task based on the predicted time cost (TC) for
the task requested by each of the virtual machines 2281 to
2283. For example, the task scheduler 2251 may reduce the
time budget (TB) assigned to the corresponding virtual
machine by the predicted write request time cost (C,;;)
whenever the write request task of each of the wvirtual
machines 2281, 2282, and 2283 15 executed. For example,
when the imitial time budget of the request queue 2290 1s
100, and the write request time cost (C;;,) of the first virtual
machine (VM,) and the write request time cost (C,,,) of the
second virtual machine (VM,) are 32 and 12, respectively,
the time budget of the first request queue 2291 may be 68
when the write request task of the first virtual machine
(VM) 1s executed, and the time budget of the second
request queue 2292 may be 88 when the write request task
of the second virtual machine (VM,) 1s executed.

Therefore, the task of the virtual machine that generates
a low time cost (TC) may be assigned with a resource during
a relatively long time compared to the task of the virtual
machine that generates a high time cost (TC). Consequently,
the task scheduling according to an exemplary embodiment
may reduce the interference between virtual machines
(VM) and provide performance 1solation and fair resource
distribution of each virtual machine (VM).

In some exemplary embodiments, the method of measur-
ing the time cost (1C) of the virtual machine (VM) based on
the storage efliciency referred to as the write amplification
factor (WAF) has been described, but exemplary embodi-

US 10,203,912 B2

25

ments are not limited thereto. For example, the time cost
(TC) of the virtual machine (VM) may also be measured
based on read disturbance generated 1n word lines due to
frequent read operations or based on the number of times of
block erase operations or based on overhead caused by a
replacement operation of blocks for reliability of the storage
device 2200.

Referring to FIG. 6, the storage device 2200 may further
include a meta block group 2316. The metal block group
2316 may store a write amplification factor (WAF). The
meta block group 2316 may store a mapping table. In
another exemplary embodiment, the write amplification
tactor (WAF) may be stored in one block of each of the erase
block groups 2311 to 2313. In still another exemplary
embodiment, the write amplification factor (WAF) may be
stored 1n the meta block included 1n each of the erase block
groups 2311 to 2313. The write amplification factor (WAF)
., 1n the erase block group (EBG) may be determined based
on the write amplification factor (WAF) a stored 1n each
block.

In some exemplary embodiments, the time cost (TC) of
the storage device 2200 may be determined depending on
the time cost (TC) of workload generated from each of the
virtual machines 2281 to 2284 supported by the storage
device 2200. Each of the virtual machines 2281 to 2284 may
have the same 1mitial time cost (TC). In another exemplary
embodiment, the 1nitial time cost (T'C) of each of the virtual
machines 2281 to 2284 may be recerved from the host
device 1100 or 2100. Further, the time cost (TC) of each of
the virtual machines 2281 to 2284, determined 1n the storage
device 2200, may be transmitted to the host device 1100 or
2100, and then stored 1n the host device 1100 or 2100. The
time cost (TC) stored in the host device 1100 or 2100 may
be transmitted to the storage device 2200 later again. For
example, when one virtual machine 1s ended and then a new
virtual machine that 1s the same as the previous virtual
machine 1s generated, the time cost (1C) of the correspond-
ing virtual machine, stored in the host device 1100 or 2100,
may be transmitted from the host device 1100 or 2100 to the
storage device 2200 again. The transmitted time cost (TC)
may be used as the mnitial time cost (TC).

For example, since the storage elliciency or write ampli-
fication factor (WAF) described with reference to FIG. 6
may correspond to the time cost (TC) of the corresponding
virtual machine, all of the erase block groups 2311 to 2313
assigned to the virtual machines 2281 to 2284 may have the
same 1nitial write amplification factor (WAF). When the
erase block groups 2311 to 2313 are assigned to the virtual
machines 2281 to 2284, the storage device 2200 receives the
initial write amplification factor (WAF) from the host device
1100 or 2100, and stores the received 1nitial write amplifi-
cation factor (WAF) 1n the assigned erase block groups 2311
to 2313 or the meta block group 23135.

The storage device 2200 may determine the 1mitial size
(that 1s, the number of blocks) of the erase block group
(EBG) assigned to each of the virtual machines 2281 to 2284
based on the received mmtial write amplification factor
(WAF). The storage device 2200 may execute the requested
task, and may re-adjust the size of the erase block group
(EBG) based on updated write amplification factor (WAF).
For example, when the value of the wnte amplification
factor (WAF) exceeds a first limit value, the storage device
220 may increase the size of the erase block group (EBG) by
the number of new blocks.

The write amplification factor (WAF) stored 1n the storage
device 2200 may be updated whenever the ratio between the
number (u,) of used pages and the number (v,) of valid pages

5

10

15

20

25

30

35

40

45

50

55

60

65

26

1s changed. For example, the write amplification factor
(WAF) stored 1n the storage device 2200 may be updated
when the write task 1n the erase block group, requested by
cach of the virtual machines 2281 to 2284, 1s completed or
when the garbage collection 1n the erase block group 1s

completed.

When each of the virtual machines 1s ended and the erase
block group (EBG) assigned to the virtual machine (VM) 1s
released, the storage device 2200 according to exemplary
embodiments may delete the write amplification factor
(WFA) of the erase block group (EBG), or may transmit the
final write amplification factor (WFA) of the corresponding
virtual machine (VM) to the host device 1100 or 2100. The
final write amplification factor (WFA) may have a minimum
value and/or a maximum value.

The minimum value and/or the maximum value mean the
minimum value and/or maximum value recorded by the
write amplification factor in the corresponding erase block
group (EBG). The host device 1100 or 2100 may store the
received write amplification factor as a write amplification
factor (WAF) for the request task of the corresponding
virtual machine (VM). The write amplification factor (WAF)
stored 1n the host device 1100 or 2100 may be transmuitted to
the storage device 2200 before a new virtual machine (VM)
executing the same task as the previous request task 1is
assigned with a new erase block group (EBG).

The write amplification factor (WFA) received from the
host device 1100 or 2100 may have a minimum value and a
maximum value. The storage device 2200 may determine
the size of the erase block group (EBG) assigned to the
virtual machine (VM) based on the minimum value and/or
maximum value of the received write amplification factor
(WEFA).

The storage device 2200 according to exemplary embodi-
ments may recover the finally-updated storage efliciency
(for example, write amplification factor (WAF)) when power
1s supplied again after a sudden power shutdown. For
example, the storage device 2200 may recover the finally-
stored erase block group (EBG) and recover the updated
write amplification factor before the power shutdown based
on the ratio between the number (u,) of used pages and the
number (v,) of valid pages 1n the recovered erase block
group (EBG). Further, the storage device 2200 may recover
the write amplification factor (WAF) stored in the dummy
area or status block in the recovered meta block group or
erase block group (EBG) after power 1s supplied again.

Referring to FIGS. 4 to 6, the storage device according to
exemplary embodiments may include a non-volatile
memory 2220 including a plurality of blocks and a storage
controller 2210 connected to the non-volatile memory 2220
to respectively assign independent erase block groups 2311
to 2313 to a plurality of virtual machines in the non-volatile
memory 2220 and to schedule the request tasks of the
plurality of virtual machines 2281 to 2284 based on work-
load contribution of the plurality of virtual machines 2281 to
2284. The workload contribution, as described above, may
be determined based on the storage efliciency of valid data
in the erase block groups 2311 to 2313. The storage efli-
ciency of valid data may be determined by the ratio between
the number of used pages and the number of valid data in the
erase block groups 2311 to 2313.

The storage controller 2210 of the storage device 2200
according to exemplary embodiments may be implemented
in a system-on-chip. The storage controller 2210 may
include a task scheduler 2251 that schedules the request
tasks (R(Js) of a plurality of virtual machines 2281 to 2284
based on workload contribution of the plurality of virtual

US 10,203,912 B2

27

machines 2281 to 2284, tlash queues 2271 to 2274 con-
nected to the external non-volatile memory 2220 through a
plurality of channels, and an address mapping manager 2252
that manages the address mapping of data stored in the
external non-volatile memory 2220. The task scheduler
2251 may assign time budgets to request queues 2291 to
2294 to schedule the request tasks (RQs) of the plurality of
virtual machines 2281 to 2284.

FI1G. 7 1s a detailed block diagram of the erase block group
of FIG. 6 according to an exemplary embodiment. The
structure of the erase block group will be described with
respect to the first virtual machine 2281 as an example.

Referring to FIG. 7, the erase block group 2311 include at
least one block 2321 or 2331 having a dummy area 2322 or
2332. The erase block group 2311 may be assigned to the
first virtual machine 2281. In an exemplary embodiment, the
above-mentioned write amplification factor (WAF) of FIG.
6 may be stored 1n one dummy area 2322 or 2332 of the
blocks 2321 and 2331.

The erase block group 2311 may include a data block
2321 for storing transmitted data, and a status block 2331 for
managing the task of the erase block group 2311 and the
virtual machine 2281. In another exemplary embodiment,
the storage efliciency (for example, write amplification
tactor (WAF)) of the erase block group 2311 or the write
amplification factor (WAF) of the data block 2321 may be
stored 1n the status block 2331.

FIG. 8 1s a flowchart illustrating a task scheduling method
based on time budget according to an exemplary embodi-
ment. Referring to FIGS. 3 to 8, the task scheduler 2251 may
assign an initial time budget (1B) to each of the wvirtual
machines 2281 to 2284 (S800). The storage device 2200
may determine a time cost (TC) for the corresponding
virtual machine or the corresponding task while executing,
the task (RQ) requested by each of the virtual machines 2281
to 2284 (S810). In an exemplary embodiment, to determine
the time cost (TC), the task scheduler 2251 may use a
regression based cost modeling technique. In another exem-
plary embodiment, the write amplification factor (WAF) that
1s determined based on the result of page write executed 1n
the corresponding erase block group (EBG) by the write
request task of each of the virtual machines 2281 to 2284
may correspond to the time cost (TC) of the write request
task.

The task scheduler 2251 of the storage device 2200 may
reduce the time cost (1TC) associated with the task executed
in the time budget (TB) assigned to the corresponding
virtual machine whenever the task requested by each of the
virtual machines 2281 to 2284 1s executed (S820). In an
exemplary embodiment, the task scheduler 2251 may reduce
the time cost (TC) from the time budget (TB) whenever data
are transmitted from the request queue 2290 to the flash
queue 2270 1n a page unit ({for example, 4 KB). In another
exemplary embodiment, the task scheduler 2251 may reduce
the time cost (TC) from the time budget (TB) in an address
mapping unit. Here, the address mapping unit 1s a unit for
managing recorded data 1in a mapping table. For example,
when the address mapping manager 2252 uses a page
mapping type address mapping, the address mapping unit
may be a page unit. However, this address mapping unit 1s
not limited to the page unit, and may be a plurality of page
groups or a block unat.

If there 1s no remaining time budget (TB) of the request
queue 2290, the task scheduler 2251 waits until all of the
time budgets (1Bs) of other request queues are exhausted, or
waits until the waiting tasks of other request queues 2290 do

not exist (S830). If all of the time budgets (TBs) of other

5

10

15

20

25

30

35

40

45

50

55

60

65

28

request queues are exhausted or the waiting tasks of other
request queues 2290 excluding the time budget-exhausted
request queues do not exist, the task scheduler 2251 may
refill the time budget-exhausted request queue (for example,
request queue 2291) with time budget. In this case, the task
scheduler 2251 may also refill the time budget-remaining
other request queues (for example, request queues 2292 to
2294) with time budgets (S840).

Consequently, 1n the method of compensating for the time
cost (TC) for request task according to exemplary embodi-
ments, since the virtual machine having a relatively large
time cost (TC) or the virtual machine having a relatively
small time budget (TB) may exhaust the time budget (TB)
assigned thereto more quickly by executing the request task,
the waiting time may increase until the corresponding virtual
machine 1s refilled with time budget (1B), and thus there 1s
an ellect of delaying the execution of a request task in the
corresponding virtual machine. In contrast, since the virtual
machine having a relatively small time cost (TC) or the
virtual machine having a relatively large time budget (TB)
may exhaust the time budget (IB) assigned thereto more
slowly by executing the request task, waiting time for
refilling the corresponding virtual machine with time budget
(TB) may not be needed, and thus there 1s an eflect of rapidly
executing a request task 1n the corresponding virtual
machine. Therefore, in the method of compensating for the
time cost (TC) for request task according to exemplary
embodiments, 1t 1s possible to ensure fair resource distribu-
tion between virtual machines (VMs) and performance
1solation based on the time budget (TB) and time cost (1TC)
of the virtual machines (VMs).

FIG. 9 1s a flowchart illustrating a method of compensat-
ing for the time cost for task request according to an
exemplary embodiment.

Referring to FIGS. 1 to 9, the task scheduler 2251 may
assign the 1mitial time cost for the task requested by each
virtual machine (VM) (58900). For example, the task sched-
uler 2251 may assign the initial time cost for the request task
of the corresponding virtual machine (VM) based on the
time cost (1TC) that corresponds to a case where the overhead
for the request task 1s not generated. Further, the task
scheduler 2251 may assign the same time costs to all of the
virtual machines (VMs).

The storage device 2200 may determine the time cost
(TC) for the overhead of the corresponding task while
executing the task requested by each of the virtual machines
2281 to 2284 (5910). In an exemplary embodiment, to
determine the time cost (1C) for the overhead, the task
scheduler 2251 may use the regression base cost modeling
technique described with reference to FIGS. 5A to 3C.

The task scheduler 2251 of the storage device 2200 may
determine the compensated time cost (TC) for the task
requested by the virtual machine (VM) (5§920). In an exem-
plary embodiment, the task scheduler 2251 may assign the
sum of the mitial time cost (TC) for the request task of the
virtual machine and the time cost (TC) for the overhead
caused by the corresponding request task as the time cost
(TC) for the request task. In another exemplary embodiment,
as shown 1n FIG. 6, the task scheduler 2251 may determine
the write amplification factor (WAF) corresponding to the
time cost (TC) caused by the write request task of each of the
virtual machines 2281 to 2284.

The task scheduler 2251 of the storage device 2200 may
reduce the time cost (TC) associated with the task executed
in the time budget (1B) assigned to each of the virtual
machines 2281 to 2284 whenever the task requested by each
virtual machine (VM) 1s executed (8930). In an exemplary

US 10,203,912 B2

29

embodiment, the task scheduler 2251 may reduce the time
cost (TC) from the time budget (1TB) whenever data are
transmitted from the request queue 2290 to the flash queue
2270 1n a page unit (for example, 4 KB). In another
exemplary embodiment, the task scheduler 2251 may reduce
the time cost (TC) from the time budget (1B) 1n an address
mapping unit. Here, the address mapping unit 1s a unit that
manages recorded data i a mapping table. For example,
when the address mapping manager (FTL) 2252 uses a page
mapping type address mapping, the address mapping unit
may be a page unit. However, this address mapping unit 1s
not limited to the page unit, and may be a plurality of page
groups or a block unit.

If there 1s no remaining time budget (1B) of the request
queue 2290, the task scheduler 2251 waits until all of the
time budgets (TBs) of other request queues are exhausted, or
waits until the waiting tasks of other request queues 2290 do
not exist (8940). It all of the time budgets (TBs) of other
request queues are exhausted or the waiting tasks of other
request queues 2290 excluding the time budget-exhausted
request queues do not exist, the task scheduler 2251 may
refill the time budget-exhausted request queues with time
budgets. In this case, the task scheduler 2251 may also refill
the time budget-remaining other request queues with time
budgets (5950).

Consequently, 1n the method of compensating for the time
cost (TC) for request task according to exemplary embodi-
ments, since the virtual machine (VM) having a relatively
large time cost (TC) or the virtual machine (VM) having a
relatively small time budget (TB) may exhaust the time
budget (TB) assigned thereto more quickly by executing the
request task, the waiting time may increase until the corre-
sponding virtual machine 1s refilled with time budget (TB),
and thus there 1s an eflect of delaying the execution of a
request task 1n the corresponding virtual machine. In con-
trast, since the virtual machine (VM) having a relatively
small time cost (1TC) or the virtual machine (VM) having a
relatively large time budget (TB) may exhaust the time
budget (TB) assigned thereto more slowly by executing the
request task, waiting time for refilling the corresponding
virtual machine with time budget (TB) may not be needed,
and thus there 1s an effect of rapidly executing a request task
in the corresponding virtual machine. Therefore, 1n the
method of compensating for the time cost (TC) for request
task according to exemplary embodiments, it 1s possible to
ensure fair resource distribution between virtual machines
(VMs) and performance 1solation based on the time budget
(TB) and time cost (TC) of the virtual machines (VMs).

FIG. 10 1s a flowchart illustrating a task scheduling
method based the storage efliciency (for example, write
amplification factor (WAF)) described with reference to
FIG. 6. Referring to FIGS. 2 to 10, the task scheduler 2251
of the storage device 2200 may determine the write ampli-
fication factor (WAF) of each block included in each of the
erase block groups 2311 to 2313 assigned to each of the
virtual machines 2281 to 2284 (S1000). In this case, the
write amplification factor (WAF), as described 1n detail with
reference to FIG. 5, may be determined based on the ratio
between the number (u,) of used pages and the number (v,)of
valid pages 1n each block included in each of the erase block
groups 2311 to 2313.

The write amplification factor (WAF) of each of the erase
block groups 2311 to 2313 may be an average value of write
amplification factors (WAFs) of blocks 1n the erase block
groups 2311 to 2313 (51010). If the task scheduler 2251
determines the ratio between the number (u,) of used pages
and the number (v,) of valid pages with respect to the total

10

15

20

25

30

35

40

45

50

55

60

65

30

pages included 1n the erase block groups 2311 to 2313 to
determine the write amplification factor (WAF) of each of
the erase block groups 2311 to 2313, mnstead of determiming
the write amplification factor (WAF) of each block included
in each of the erase block groups 2311 to 2313, step 1000
(51000) may be omatted.

The task scheduler 2251 of the storage device 2200 may
determine the time cost (TC) of the task requested by the
virtual machine (VM) based on the above determined write
amplification factor (WAF) (51020). In this case, the above
determined write amplification factor (WAF) and the above
time cost (TC) may be 1n proportion to each other. For
example, when the storage device 2200 1s a solid state driver
(SSD), which 1s a storage device using a non-volatile
memory, and the write operation of a page unit, caused by
the write request of each of the virtual machines 2281 to
2284, increases, the probability of an overhead such as
garbage collection being generated 1n the erase block group
(EBG) assigned to the virtual machine associated with the
write request may increase in proportion to the increase in
the write operation.

The task scheduler 2251 of the storage device 2200 may
reduce the time cost (TC) associated with the task executed
in the time budget (1B) assigned to each of the virtual
machines 2281 to 2284 whenever the task requested by each
virtual machine (VM) 1s executed (S1030). In an exemplary
embodiment, the task scheduler 2251 may reduce the time
cost (TC) from the time budget (TB) whenever data are
transmitted from the request queue 2290 to the tlash queue
2270 mm a page unit (for example, 4 KB). In another
exemplary embodiment, the task scheduler 2251 may reduce
the time cost (TC) from the time budget (TB) 1n an address
mapping unit whenever data are transmitted from the request
queue 2290 to the flash queue 2270 in an address mapping
unmit. Here, the address mapping unit 1s a unit managing
recorded data 1in a mapping table. For example, when the
address mapping manager (FTL) 2252 uses a page mapping
type address mapping, the address mapping unit may be a
page unit. However, this address mapping unit 1s not limited
to the page unit, and may be a plurality of page group units.

FIG. 11 1s a block diagram of a storage system according,
to an exemplary embodiment. Referring to FIG. 11, a storage
system 10000 may include a storage device 11000, a power
supply 12000, a central processing umit (CPU) 13000,
memory 14000, a user interface 15000, and a storage
interface 16000. Here, the storage device 11000 includes a
non-volatile memory 11100 and a memory controller 11200.
The storage system 10000 may further include an auxiliary
power supply 12500. The auxiliary power supply 12500 may
be a battery or an uninterruptible power supply (UPS). The
storage system 10000 may correspond to the storage system
1000 or 2000 of FIG. 1 or 2. The storage device 11000 may
correspond to the storage device 1200 or 2200 described
with reference to FIGS. 1 to 10. The storage interface 16000
may correspond to the storage interface 1150 or 1250 of
FIG. 1 or 2. The non-volatile memory 11100 may correspond
to the non-volatile memory 1220 or 2220 as shown 1n FIGS.
1 to 4. The memory controller 11200 may correspond to the
controller 2250 of FIG. 4. The memory 14000 may corre-
spond to the host memory 1140 or 2140 of FIG. 1 or 2. The
central processing unit (CPU) 13000 may correspond to the
host core 1110 or 2110 of FIG. 1 or 2.

The storage system 10000 according to exemplary
embodiments, as described above, may include the non-
volatile memory 11100 including an independent erase block
group corresponding to each of a plurality of wvirtual
machines and the memory controller 11200 that schedules

US 10,203,912 B2

31

the request tasks of the plurality of virtual machines based
on workload contribution of the plurality of wvirtual
machines. The storage system 10000 may include the
memory controller 11200 that controls the non-volatile
memory 11100 and the storage interface that interfaces with
the memory controller 11200. The storage system 10000
may further include the memory 14000 that stores the
command and data transmitted to the storage device 11000.
The central processing unit (CPU) 13000 and the storage
interface 16000 in the storage system 10000 may be imple-
mented 1 one application processor. The application pro-
cessor may be implemented 1n a system-on-chip.

The storage system 10000 according to exemplary
embodiments, as described above, allows the storage device
11000 to support virtual functions, to more eflectively
provide performance 1solation between virtual machines and
the fair distribution of resources.

The storage system 10000 may be implemented as a
server, a personal computer, a laptop computer, a mobile
phone, a smart phone, a tablet person computer (tablet PC),
or a wearable computer. The storage system 10000 may be
implemented in a system-on-chip. In this case, the non-
volatile memory 11000 may be implemented as a separate
chip, and the separate non-volatile memory 11000 may be
assembled by one package in the system-on-chip.

It 1s shown in FIG. 11 that the storage device 11000 1s
provided with one non-volatile memory 11100, but exem-
plary embodiments are not limited thereto. For example, the
storage device 11000 of FIG. 11 may include a plurality of
flash memories, non-volatile memories different from the
flash memories, and any combinations thereof. In the storage
device 11000, the memory controller 11200 and the non-
volatile memory 11100 may be implemented 1n the form of
one package. The storage device 11000 as shown 1n FIG. 11,
as described above, may support virtual functions.

FIG. 12 1s a block diagram showing a computer system,
to which a storage device according to an exemplary
embodiment 1s applied.

Referring to FIG. 12, a computer system 20000 may
include an 1mage processing unit (or 1mage processor)
21000, a wireless transceiving unit (or wireless transceiver)
22000, an audio processing unit (or audio processor) 23000,
a memory 24000, a storage device 25000, a user interface
26000, and an application processor 27000.

The 1mage processing unit 21000 may include a lens
21100, an 1image sensor 21200, an 1image processor 213000,
and a display unit (or display) 21400. The wireless trans-
ceiving unit 22000 may include an antenna 22100, a trans-
ceiver (RF) 22200, and a modem 22300. The audio process-
ing unit 23000 may include an audio processor 23100, a
microphone 23200, and a speaker 23300. The memory
24000 may temporarily store the data processed in the
computer system 20000. Further, the memory 24000 may
correspond to the memory of FIG. 11. The storage device
25000 may be provided as a storage module (for example,
an NVMe, an embedded multimedia card (eMMC), or the
like). The storage device 25000 may correspond to the
storage device 11000 of FIG. 11.

The application processor 27000 may be provided as a
system-on-chip (SoC) that drives an application program
and an operating system. The kernel of the operating system
driven in the system-on-chip (SoC) may include a device
driver that controls an input/output scheduler (I/0 scheduler)
and the storage device 25000. The device driver may control
the access performance of the storage device 25000 or may
control a CPU mode or a dynamic voltage and frequency

5

10

15

20

25

30

35

40

45

50

55

60

65

32

scaling (DVES) level m the SoC with reference to the
number of synchronous queues managed 1n the input/output
scheduler.

The application processor 27000, as shown in FIG. 11,
may include a storage interface to support queue based
interface mode and virtual functions.

The non-volatile memory 25100 and the memory con-

troller 25200 may be mounted using various types of pack-
ages. For example, the non-volatile memory 25100 and the
memory controller 25200 may be mounted using packages,
such as PoP (Package on Package), Ball grid arrays (BGAs),
Chip scale packages (CSPs), Plastic Leaded Chip Carrier
(PLCC), Plastic Dual In-Line Package (PDIP), Die 1n Watlle
Pack, Die 1n Watler Form, Chip On Board (COB), Ceramic
Dual In-Line Package (CERDIP), Plastic Metric Quad Flat
Pack (MQFP), Thin Quad Flatpack (TQFP), Small Outline
(SOIC), Shrink Small Outline Package (SSOP), Thin Small
Outline (TSOP), System In Package (SIP), Multi Chip
Package (MCP), Waler-level Fabricated Package (WEFP),
and Watler-Level Processed Stack Package (WSP).
The computer system 20000 according to exemplary
embodiments, as described above, allows the storage device
25000 to support virtual functions, to more eflectively
provide performance 1solation between virtual machines and
the fair distribution of resources.

The computer system 20000 may be implemented as a
server, a personal computer, a laptop computer, a mobile
phone, a smart phone, a tablet person computer (tablet PC),
or a wearable computer. The application processor 27000
may be implemented 1n a system-on-chip. In this case, each
of the memory controller 25200 and the non-volatile
memory 25100 may be implemented as a separate chip, and
the application processor 2700 and the storage device 25000
may be assembled by one package.

The computer system 20000 according to exemplary
embodiments, as described above, may include the non-
volatile memory 25100 including an independent erase
block group corresponding to each of a plurality of virtual
machines and the memory controller 25200 scheduling the
request tasks of the plurality of virtual machines based on
workload contribution of the plurality of virtual machines.
The computer system 20000 may include the application
processor 27000. The application processor 27000, as shown
in FIG. 11, may include the storage interface 16000 that
interfaces with the memory controller 25200 controlling the
non-volatile memory 25100. Further, the computer system
20000 may further include the memory 24000 that stores the
command and/or data transmitted to the storage device
25000.

As described above, according to the storage device and
the method of operating the storage device of exemplary
embodiments, a queue-based interface mode and virtual
functions may be ethiciently supported, the performance
1solation between virtual machines may be improved, opera-
tion speed may be increased, and the processability of
resource usage may be improved.

At least one of the components, elements, modules or
units represented by a block as illustrated in the drawings
may be embodied as various numbers of hardware, software
and/or firmware structures that execute respective functions
described above, according to an exemplary embodiment.
For example, at least one of these components, elements or
units may use a direct circuit structure, such as a memory, a
processor, a logic circuit, a look-up table, etc. that may
execute the respective functions through controls of one or
more microprocessors or other control apparatuses. Also, at
least one of these components, elements or units may be

US 10,203,912 B2

33

specifically embodied by a module, a program, or a part of
code, which contains one or more executable instructions for
performing specified logic functions, and executed by one or
more microprocessors or other control apparatuses. Also, at
least one of these components, elements or units may further
include or implemented by a processor such as a central
processing unit (CPU) that performs the respective func-
tions, a microprocessor, or the like. Two or more of these
components, elements or units may be combined into one
single component, element or unit which performs all opera-
tions or functions of the combined two or more components,
clements of units. Also, at least part of functions of at least
one of these components, elements or units may be per-
formed by another of these components, element or units.
Further, although a bus 1s not illustrated 1n the above block
diagrams, communication between the components, ele-
ments or units may be performed through the bus. Func-
tional aspects of the above exemplary embodiments may be
implemented in algorithms that execute on one or more
processors. Furthermore, the components, elements or units
represented by a block or processing steps may employ any
number of related art techniques for electronics configura-
tion, signal processing and/or control, data processing and
the like.

Although a few embodiments have been shown and
described, 1t would be appreciated by those skilled 1n the art
that changes may be made 1 exemplary embodiments
without departing from the principles and spirit of the
disclosure, the scope of which 1s defined in the claims and
their equivalents.

What 1s claimed 1s:

1. A storage device comprising:

a non-volatile memory comprising a plurality of blocks;
and

a storage controller connected to the non-volatile memory
and configured to schedule requested tasks of a plural-
ity of virtual machines based on a workload contribu-
tion of each virtual machine,

wherein the storage controller 1s further configured to
independently assign erase block groups to the non-
volatile memory, and the workload contribution of each
virtual machine 1s determined based on a storage efli-
ciency of storing valid data 1n an erase block group
corresponding to each virtual machine.

2. The storage device of claim 1,

wherein the storage efliciency of storing the valid data 1s
determined based on a ratio between a number of used
pages and a number of pages in which the valid data are
stored, with respect to the erase block group corre-
sponding to each virtual machine.

3. The storage device of claim 1,

wherein the storage controller comprises:

a plurality of request queues respectively correspond-
ing to the plurality of virtual machines and config-
ured to store the requested tasks of the plurality of
virtual machines;

a task scheduler configured to schedule the requested
tasks based on the workload contribution of each
virtual machine;

an address mapping manager configured to manage
address mapping of data stored in the non-volatile
memory; and

a plurality of flash queues respectively connected to the
non-volatile memory through a plurality of channels.

4. A task scheduling method of a storage device, the
storage device comprising a storage controller and a non-

10

15

20

25

30

35

40

45

50

55

60

65

34

volatile memory connected to the storage controller, the task

scheduling method comprising:

assigning a request queue to one of a plurality of virtual
machines;

assigning a time budget to the request queue;

storing tasks, requested by the one of the plurality of
virtual machines, 1n the request queue;

executing a first task stored in the request queue;

reducing the time budget by a time cost of the executed
first task 1n response to execution of the first task being
completed, the time cost being determined based on a
workload generated by the first task; and

in response to the time budget of the request queue being,
exhausted, delaying executing a remaining task stored
in the request queue until a second time budget 1s

reassigned to the request queue.
5. The task scheduling method of claim 4,
wherein the assigning the time budget comprises assign-
ing the same time budget to request queues respectively
assigned to the plurality of virtual machines.
6. The task scheduling method of claim 4,
wherein the executing the first task stored in the request
queue comprises fetching the first task from the request
queue.
7. The task scheduling method of claim 6,
wherein the executing the first task stored in the request
queue comprises receiving data associated with the first
task from a host device and transmitting the received
data to a flash queue included 1n the storage controller.
8. The task scheduling method of claim 7,
wherein the transmitting comprises transmitting the
received data to the flash queue through a plurality of
channels between the storage controller and the non-
volatile memory.
9. The task scheduling method of claim 4, further com-
prising:
determining the time cost of the executed first task based
on a time interval from fetching the first task stored 1n
the request queue to completion of the first task.
10. The task scheduling method of claam 4, further
comprising:
independently assigning an erase block group comprising,
at least one block included in the non-volatile memory,
to each of the plurality of virtual machines.
11. The task scheduling method of claim 10,
wherein the time cost 1s determined based on a storage
ciliciency of storing data in the erase block group
assigned to a corresponding virtual machine.
12. The task scheduling method of claim 11,
wherein the storage efliciency 1s determined based on a
ratio between a number of used pages and a number of
pages 1 which valid data are stored, with respect to the
erase block group.
13. The task scheduling method of claim 12,
wherein the storage efliciency of the erase block group 1s
stored 1n a meta block group included in the non-
volatile memory.
14. The task scheduling method of claim 12,
wherein the storage efliciency of the erase block group 1s
stored 1n the erase block group.
15. The task scheduling method of claim 4, further
comprising;
compensating the time cost of the executed first task.
16. The task scheduling method of claim 15,
wherein the compensating the time cost comprises:
determining a time cost of an overhead; and

US 10,203,912 B2
35

compensating the time cost of the executed first task
based on the determined time cost of the overhead.
17. The task scheduling method of claim 16,
wherein the overhead comprises an overhead caused by at
least one of garbage collection, read reclaim, and 5
mapping table upload.

G x e Gx o

36

	Front Page
	Drawings
	Specification
	Claims

