12 United States Patent

Rasmussen et al.

US010198784B2

US 10,198,784 B2
Feb. 5, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

CAPTURING COMMANDS IN A
MULTI-ENGINE GRAPHICS PROCESSING
UNIT

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Brian Bo Rasmussen, Sammamish,
WA (US); Cole Brooking, Woodinville,

WA (US); Ivan Nevraev, Redmond,

WA (US)

Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 111 days.

Appl. No.: 15/224,152

Filed: Jul. 29, 2016

Prior Publication Data

US 2018/0033115 Al Feb. 1, 2018

Int. CIL.

GO6T 1720 (2006.01)

GO6T 1/60 (2006.01)

GO6F 11/36 (2006.01)

GO6F 9/52 (2006.01)

U.S. CL

CPC . GO06T 1720 (2013.01); GO6F 9/52

(2013.01); GoO6rF 11/3632 (2013.01); GO6F
11/3636 (2013.01); GO6T 1/60 (2013.01);
GO6T 2200/28 (2013.01)

Field of Classification Search
None
See application file for complete search history.

‘ PROGRAM(S) 210 I

300 ~

DRIVER(S) 212

COMMAND GENERATICN CAPTURE MODULE
MODULE 216 218

(56) References Cited

U.S. PATENT DOCUMENTS

6,208,361 Bl 3/2001 Gossett
7421,694 B2 9/2008 Gosalia et al.
7,755,632 B2 7/2010 Brothers et al.

(Continued)

OTHER PUBLICATTONS

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2017/041807”, dated Oct. 11, 2017, 17
Pages.

(Continued)

Primary Examiner — Ryan McCulley

(74) Attorney, Agent, or Firm — Newport 1P, LLC; Jacob
P. Rohwer

(57) ABSTRACT

The techniques and systems described herein are directed to
capturing commands 1n a multi-engine graphics processing
unmit (GPU). Captured commands can be played back by a
developer to optimize software, hardware, and drivers. To
accurately capture commands and memory associated with
the commands during execution, dependencies between
command builer segments associated with the various GPU

engines may be determined and used to divide a command
bufler segment mto atomic elements (which may also be
referred to as seglets). Command buller segments are ana-
lyzed to identily synchromization commands, which may
represent a point 1n a command bufler segment that relies on
an operation to be completed in another command butler
segment. The command buller segment can be recursively
divided into seglets based on the synchronization com-
mands. The resulting seglets represent command segments
that, upon execution, operate without synchronization inter-
ference from other command bufler segments.

19 Claims, 7 Drawing Sheets

SEGLET #1 330

GRAPHICS PROCESSING UNIT (GPU) 206
SEGLEE #4 332

204 \l CMD CMD
308 310 312 314 316

SIGNAL CMD SYNC CMD

SIGNAL (GRAPHICS ENGINE(S)
220 208

¢ 326 ¥

352

334 -“ SYNC
324

CMD ‘ CMD ‘ CMD
338 340 342

SIGNAL‘ SYNC ‘ CMD COMPUTE ENGINE(S)
328 344 346 236

SEGLET #3 348

354 | CwmD CMD CMD Cuo |

SEGLET #5 350

298 260 202 364 |

SEGLET #2 3606

MEMORY ACCESS ENGINE(S)
220

‘ WORKING MEMORY MODULE 214 H DISPLAY 302 \

US 10,198,784 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,950,003 B1* 5/2011 Ducacovvveninnnn, GO6F 8/20
717/124
7,958,497 B1* 6/2011 Lindo GOOF 11/3636
714/799
9,064,437 B2 6/2015 Nallun et al.
2007/0070669 Al 3/2007 'Tsern
2007/0250820 Al* 10/2007 Edwards GOO6F 11/3636
717/131
2010/0211933 Al* 8/2010 Kielcooovnen, GOO6F 11/3636
717/125
2013/0162658 Al 6/2013 Truong
2013/0162661 Al 6/2013 Bolz et al.
2014/0095759 Al* 4/2014 Garlick GOo6F 9/3877
710/308
2014/0184624 Al* 7/2014 ROy .voovvvvivviivnnnnnn, GO6T 15/005
345/522
2014/0372990 Al 12/2014 Strauss
2015/0070369 Al 3/2015 Frascati et al.
2016/0179714 Al* 6/2016 Acharya GO6F 12/023
711/158
2017/0039124 Al* 2/2017 Kiel ..o, GOO6F 11/362

OTHER PUBLICATIONS

Pena, et al., “VOCL-FT: Introducing Techniques for Efficient Soft

Error Coprocessor Recovery”, In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, Nov. 15, 2015, 12 Pages.

Kim, et al., “A Distributed OpenCL Framework Using Redundant
Computation and Data Replication”, In Proceedings of the 37th
ACM Association for Computing Machinery’s Special Interest
Group Conference on Programming Language Design and Imple-
mentation, Jun. 2, 2016, pp. 553-569.

Grasso, et al., “A Uniform Approach for Programming Distributed

Heterogeneous Computing Systems”, In Journal of Parallel and
Distributed Computing Archive, vol. 74, Issue 12, Aug. 26, 2014,

pp. 3228-3239.

Lee, et al., “An OpenCL Framework for Heterogeneous Multicores
with Local Memory”, In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques
(PACT), Sep. 11, 2010, pp. 193-204.

Hower, et al., “Two Hardware-Based Approaches for Deterministic
Multiprocessor Replay”, In Communications of the ACM, vol. 52,
Issue 6, Jun. 1, 2009, pp. 93-100.

Kim, et al., “SnuCL : An OpenCL Framework for Heterogeneous
CPU/GPU Clusters”, In Proceedings of the 26th ACM International
Conference on Supercomputing, Jun. 25, 2012, pp. 341-351.
“What Mantle does”, Published on: Nov. 29, 2013 Available at:
http://techreport.com/review/25683/delving-deeper-into-amd-mantle-
apl/2.

“Synchronization and Multi-Engine”, Retrieved on: May 23, 2016
Available at: https://msdn.microsoft.com/en-us/library/windows/
desktop/dn899217(v=vs.85).aspx.

“A trip through the Graphics Pipeline 2011, part 2”, Published on:
Jul. 2, 2011 Available at: https://fgiesen.wordpress.com/2011/07/02/

a-trip-through-the-graphics-pipeline-2011-part-2/.

* cited by examiner

US 10,198,784 B2

Sheet 1 of 7

Feb. 5, 2019

U.S. Patent

oo

K3

cel

- pel

3

er
) 4

9cl

0cl (NdD)
LIN ONISSI00N
SOIHAYHE)

901 NOILYOION]
 FHNLdYD

S AIND

L L INJADH

[T LNIAD3

S Ao

~

val

9FlL

8Cl

059"

144’

vil

140)"

¢G 1L NOLLNOIAXY 1371938 HLIM G LVID0SSY
AHOWHIA O3ONVHD 0O AHOWSA MIN ZdNLdv)

L NOINOIXH 130 IWNI] V LY
1=104S V HOA SINAWHHINDAY AHOWHIAL ANIINM= LA

O¢ | d314S8ILVS N3FE SYH

GONVIIINOD) ONAS V 4l 131938 HOVY HOd “wzuﬁmm.rmmu

QL ANVINWNOC D) ONAS FHL ONIANTON]

13193G ANODIG IHL 131938 ANODIS VY ANY
1F193Q 1S4 V OLNI INFWOIS ¥F44Ng AN FHL
INTINDIS ‘ANVIWNOD ONAS THL NO 1H¥V4 NI a3svg

el
ANYIWWOD (ONAS) NOILYZINOHHONAS 3INQ L8vaT)
1V AZIINIA] OL INFWDFS H344NE ONYIWINOD) 388V

Z1 1 INTND3IS

M344Ng (AW} ANVININOD) 3NQ LSVIT 1V JHNLdVD

J

201 NOILYHAdO (NdD)) LINA ONISSIDON

SOIHAVYHE) HN1dV]) OL NOILVOION] dAIHO=Y

)

Ol

- 001

U.S. Patent Feb. 5, 2019

SERVICE PROVIDER(S) \

222 \

NETWORK(S)
220

USER(S)
239 COMPUTING DEVICE(S) 202

Sheet 2 of 7

PROCESSOR(S) 224

MEMORY Z

26
CAPTURE MODULE 228
PLAYBACK MODULE 230

PROCESSOR(S) (E.G., CPU) 204

[1 | GRAPHICS PROCESSING UNIT (GPU)
206

MEMORY 208

PROGRAM(S) 210

DRIVER(S) 212

COMMAND (GENERATION
MODULE 216

CAPTURE MODULE 218 !
= y
WORKING MEMORY
\ MODULE 214

FIG. 2

US 10,198,784 B2

¢ Ol

)

aa
4
o0

=,
% 08 AV IdSI(L& FTNTOWNW AGOINGIN DONIXIOAA
vt
0-., J/ v
v
o 9,

- 90€ TH# 131935

_ oG¢ 79E 2% 09¢ 8GC
(S)3aNIDNT] SSTDOY AHOWIN) D ano Ano ann |% p6e
omm G# Pm..@mm QPC CH .rm.ﬁwmm

I~

> gcc o e 82¢ Ve 023 8ce vee

e (S)INIONT ILNDINOD ano ONAS ézo_m ano ano ano ONAS |[™ pee

E _

7 zGe " zz¢

| o0¢ 0cg gL¢ oL¢ 253 cLe ol¢ 80¢
(8)3ANIONT SOIHJYHD) WNDIS ano ONAS AN TVNDIQ ann ano .ﬂi 401

01,, N 1| - J
~ Cee P# 1371938 0ce L# 1371938

Pel O90¢ (NdD)) LINN ONISSTID0HH SOIHAVYHE))
o

=P

s

S1Z IINAo
NOILYHANIS) ANVAINO D

Zle (8)danikg

glLe

4 TNJOW ddNldv))

012 (s)nvenodd % 00¢

U.S. Patent

US 10,198,784 B2

Sheet 4 of 7

Feb. 5, 2019

U.S. Patent

7 Ol

d1VLS AAOWZA | N# L3103

ALV.LIS AGOWZN | S# L3938

41VIS AJOWNEN | L# L3948

A
SOF 3114 MOVEAYIH

ove
ano
8l¢
a9

%3
ONAS
oLE
ONAS

0ce
TYNDIS

8C¢ e ove 8¢¢ vZe
WwNDIg | and Ao an9 ONAS

OF LSIT ONION34

viv |

o0¥

J

FTINAON AHONWI N DONIMHOM

06 G#
131938

Cee v
137938

BV CH#
131938

L AND ano ano ann
4% zie | orc | @8oc
andy | vnoiIs | and ano

20F LS NOLLNO3IXT

990¢ C#
131938

POC L#
131938

% 00p

U.S. Patent Feb. 5, 2019 Sheet 5 of 7 US 10,198,784 B2

500
T\

DETERMINE THAT SEGLET WAIT REQUIREMENT HAS BEEN
SATISFIED
502

DETERMINE, AT EXECUTION TiME, MEMORY REQUIREMENTS
OF SEGLET (E.G., MEMORY ACCESSED BY ANY COMMANDS
ASSOCIATED WITH SEGLET)

204

DETERMINE IF MEMORY HAS BEEN PREVIOUSLY CAPTURED
06

DETERMINE IF PREVIOUSLY CAPTURED MEMORY HAS BEEN
CHANGED
508

CAPTURE NEW OR CHANGED MEMORY ASSOCIATED WITH
SEGLET
510

p _— — . —

PROCESS COMMANDS ASSOCIATED WITH SEGLET
512

CAPTURE MEMORY UPDATED BY SEGLET
514

eyl rrrrrpipininisisininiay

STORE CAPTURED SEGLET AND CAPTURED MEMORY
516

FIG. 5

U.S. Patent Feb. 5, 2019 Sheet 6 of 7 US 10,198,784 B2

600
I

(GENERATE PLAYBACK FILE INCLUDING MEMORY
STATES ASSOCIATED WITH SEGLET(S)
602

604

DETERMINE OCCUPANCY OF ENGINES OF GRAPHICS
PROCESSING UNIT
606

P M

PRESENT OCCUPANCY IN INTERFACE
603

FIG. 6

U.S. Patent Feb. 5, 2019 Sheet 7 of 7 US 10,198,784 B2

700 N
PR . .
RECEIVING AN INDICATION TO CAPTURE COMMANDS TO BE EXECUTED ON A GRAPHICS
PROCESSING UNIT (GPU), THE GPU COMPRISING A GRAPHICS ENGINE, A MEMORY ACCESS

ENGINE, AND A COMPUTE ENGINE 702

CAPTURING A FIRST COMMAND BUFFER SEGMENT ASSOCIATED WATH A FIRST COMMAND
BUFFER ASSOCIATED WITH THE GRAPHICS ENGINE 704

, _ _ _
CAPTURING A SECOND COMMAND BUFFER SEGMENT ASSOCIATED WITH A SECOND COMMAND
BUFFER ASSOCIATED WITH THE MEMORY ACCESS ENGINE /06

7

CAPTURING A THIRD COMMAND BUFFER SEGMENT ASSOCIATED WITH A THIRD COMMAND
BUFFER ASSOCIATED WITH THE COMPUTE ENGINE 708

IDENTIFYING A SYNCHRONIZATION COMMAND IN THE FIRST COMMAND BUFFER SEGMENT 71

IDENTIFYING A SIGNAL COMMAND IN THE SECOND COMMAND BUFFER SEGMENT OR IN THE
THIRD COMMAND BUFFER SEGMENT, THE SIGNAL COMMAND SATISFYING A PRECONDITION
ASSOCIATED WITH THE SYNCHRONIZATION COMMAND AT A TIME IN WHICH THE SIGNAL
COMMAND IS EXECUTED BY THE MEMORY ACCESS ENGINE OR THE COMPUTE ENGINE 712

- — :
DIVIDING THE FIRST COMMAND BUFFER SEGMENT INTO A FIRST SEGLET AND A SECOND
SEGLET BASED AT LEAST IN PART ON THE SYNCHRONIZATION COMMAND, WHEREIN THE FIRST
SEGLET 15 A FIRST ATOMIC SEGLET AND THE SECOND SEGLET IS5 A SECOND ATOMIC SEGLET,

THE SECOND SEGLET INCLUDING THE SYNCHRONIZATION COMMAND /14

f"""" ™ T T . TS . S T—— e PP PP PPyl YIS FYPIFPSPPPY - —
CAPTURING A FIRST STATE OF MEMORY ASSOCIATED WITH THE FIRST SEGLET AT A FIRST

TIME OF EXECUTING THE FIRST SEGLET 716

—
CAPTURING A SECOND STATE OF MEMORY ASSOCIATED WITH THE SECOND SEGLET AT A

SECOND TIME OF EXECUTING THE SECOND SEGLET 718

(GENERATING A PLAYBACK FILE INCLUDING AT LEAST THE FIRST SEGLET, THE FIRST STATE OF
MEMORY AT THE FIRST TIME, THE SECOND SEGLET, AND THE SECOND STATE OF MEMORY AT
THE SECOND TIME 720

CAUSING THE PLAYBACK FILE TO BE TRANSMITTED TO A SERVICE PROVIDER 722

FIG. 7

US 10,198,784 B2

1

CAPTURING COMMANDS IN A
MULTI-ENGINE GRAPHICS PROCESSING
UNIT

BACKGROUND

Traditional graphics processing umts (GPUs) execute
commands to render graphics for computing devices, such
as a gaming console. Commands can be placed mnto a
command bufler and can be executed by the GPU to periorm
various tasks, such as presenting data for display. In order to
monitor the performance of a GPU, commands for the GPU
can be captured and analyzed, along with a state of memory
associated with the commands. Traditionally, commands
associated with a single-engine GPU have been captured and
analyzed 1n a linear sequence corresponding to the insertion
of the commands into the command bufler. However, com-
mands for a multi-engine GPU may include dependencies
between command buflers, potentially leading to invalid
results when capturing and analyzing commands.

SUMMARY

The techniques and systems described herein enable the
capture of commands 1n a multi-engine graphics processing
unit (GPU). In some instances, the capturing of commands
may allow a video game developer to play back the opera-
tions of the GPU to analyze and optimize the operations of
the GPU to improve performance of a video game ftitle. To
accurately capture commands and a state of memory asso-
ciated with the commands during execution, dependencies
between command buller segments associated with the
vartous GPU engines may be determined to recursively
divide a command bufler segment into atomic elements
(which may also be referred to as seglets).

For example, during capture, command bufler segments
are analyzed to identify at least one synchronization com-
mand (e.g., a synchronization indication), which may rep-
resent a point 1n a command bufler segment that relies on an
operation to be completed 1n another command buller seg-
ment. The command builer segment 1including the synchro-
nization command can be divided into a first part and a
second part, the first part spanning (e.g., including) the start
of the command bufler segment until the point just before
the synchronization command, and the second part including
(e.g., spanning) the synchronization command until the end
of the command bufler segment (or until a next synchroni-
zation command). Thus, the dividing operation can be
performed recursively to generate seglets until reaching an
end of the command bufler segment. The resulting seglets
represent command segments that, upon execution, operate
without synchronization (or other interference) from other
command bufler segments. That 1s, each seglet can be
atomically executed after an i1nmitial wait requirement 1s
satisfied (corresponding to a synchronization command),
memory requirements of each seglet can be determined, and
memory associated with each seglet can be captured before,
during, and/or after seglet execution, without the risk of
other engines of the multi-engine GPU modifying the
memory and 1mvalidating the analysis. Thus, for each of the
resulting seglets, the required memory 1s captured, estab-
lishing the proper memory state for the playback of the
seglets.

The capture of commands 1n a multi-engine GPU allows
designers to optimize the performance of a software title
operating on a hardware platiorm, thereby improving a
functioning of a computing device. For example, capturing

10

15

20

25

30

35

40

45

50

55

60

65

2

commands allows designers to understand the relationship
between commands 1n the multi-engine GPU, and to deter-
mine when command bufler segments are waiting for opera-
tions of other command bufler segments to be completed.
Such waiting may represent unused capacity of the GPU,
and determining an unused capacity of one or more engines
in the GPU allows designers to revise operations to use a
more complete capacity of hardware. Further, decomposing
command bufler segments i1nto atomic seglets allows an
accurate state of memory to be determined. Improving GPU
performance can improve a visual aspect of software, such
as a video game title operating on a gaming console.

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentity key or essential features of the claimed
subject matter, nor 1s 1t mtended to be used as an aid 1n
determining the scope of the claimed subject matter. Fur-
thermore, the claimed subject matter 1s not limited to 1mple-
mentations that solve any or all disadvantages noted in any
part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description 1s described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number 1dentifies the figure 1n which the refer-
ence number first appears. The use of the same reference
number 1n different figures indicates similar or identical
items.

FIG. 1 illustrates a pictorial flow diagram of an example
process for capturing commands 1n a multi-engine graphics
processing unit (GPU).

FIG. 2 illustrates an example environment for capturing
commands 1 a computing device including a multi-engine
GPU.

FIG. 3 illustrates an example environment for capturing
and segmenting commands 1n a multi-engine GPU.

FIG. 4 1llustrates an example environment for generating
a playback file for captured GPU commands.

FIG. 5 1s an example process for determining memory
requirements for a seglet and capturing memory associated
with the seglet.

FIG. 6 1s an example process for determining occupancy
of one or more engines 1n a multi-engine GPU.

FIG. 7 1s an example process for capturing commands 1n
a multi-engine GPU.

DETAILED DESCRIPTION

The techmiques and systems described herein enable the
capture and playback of commands 1n a multi-engine graph-
ics processing unit (GPU). In some instances, the capture
and playback of commands can be used to analyze the
performance of a software fitle, such as a video game,
operating on a computing device, such as a video game
console.

During development and troubleshooting of a software
title, software developers often seek to optimize the perfor-
mance of the software title. In the context of video game
development, video game performance 1s often character-
ized by a number of frames per second (FPS), which 1is
inversely proportional to an amount of time for processing
a frame for display. For example, a soitware title displaying
80 frames per second typically displays a frame every 12.5
millisecond (ms).

US 10,198,784 B2

3

Modern GPUs use multiple engines, often in parallel, to
increase an amount of GPU processing to provide a high
frame rate for software titles. For example, a multi-engine
GPU may include one or more graphics engines, one or
more compute engines, and one or more mMemory access
engines, which process commands to render graphics on a
display. Application program interface (API) calls from a
software ftitle can be recetved by a driver and can be
interpreted by the driver to generate command bufler seg-
ments to be executed by the various engines of the multi-
engine GPU. In some instances, the engines of the multi-
engine GPU work together to render frames for display. That
1s, 1n some 1nstances, dependencies exist between command
builer segments 1n the GPU engines, such that work must be
completed 1n one engine before a command bufler segment
in another engine can be executed. For example, synchro-
nization commands within a command bufler segment may
indicate that the command bufler segment 1s not to begin
execution until work 1s performed by another engine of the
GPU and a signal 1s provided satistying the synchronization
command.

Command bufler segments can include zero, one, or more
synchronization commands to control execution of work,
one or more commands to perform work, and/or zero, one or
more signals to indicate when work 1s complete. As men-
tioned above, 1n some 1nstances, commands 1n a command
bufler segment may not be executed until a signal that
satisfies a synchronization command 1s received. In some
instances, a command bufler segment may refer to all
commands associated with rendering a single frame and
associated with a single engine in the multi-engine GPU. In
one non-limiting example, in a GPU comprising a graphics
engine, a compute engine, and a memory access engine,
cach engine can execute a command bufler segment to
collectively render a frame on a display.

In order to play back the operation of the GPU ifor
subsequent analysis, the commands of the GPU can be
captured, along with a state of the memory associated with
cach command bufler segment. In order to accurately cap-
ture the state of the memory in this multi-engine GPU, the
command bufler segments can be decomposed 1nto atomic
clements that disentangle the dependencies (e.g., the syn-
chronization command or execution preconditions) between
the various command builer segments associated with dii-
terent GPU engines.

Upon receiving a command or an mdication to initiate a
capture of commands in the multi-engine GPU, a capture
module 1n a driver of a computing device can capture the
command bufler segment(s) associated with a particular
GPU engine. The capture module can parse the command
bufler segment(s) to identily a synchronization command,
and can recursively split the command bufler segment(s)
into seglets, each seglet comprising at most a single syn-
chronization command. In some instance, seglets that do not
include a synchronization command can be associated with
an execution list to be executed at an appropriate time by an
intended GPU engine. In some 1nstances, seglets including
an unsatisiied synchronization command can be associated
with a pending list, and when a signal 1s received satisiying
the synchronization command, the seglet can be moved to
the execution list to be executed by an mtended GPU engine.

Memory associated with a seglet can be captured for
subsequent playback, in accordance with embodiments of
the disclosure. Prior to executing a seglet, the capture
module can determine locations 1n a working memory that
are accessed (e.g., written to, read from, or otherwise
accessed or referred to) by the seglet. A state of the memory

10

15

20

25

30

35

40

45

50

55

60

65

4

associated with the seglet can be stored prior to executing
the seglet and can be updated with changes after executing
the seglet. In some instances, a state of memory associated
with a seglet 1s determined at a time of execution of the
seglet (e.g., when any synchronization command 1s satisfied)
to ensure a valid state of the memory 1s captured (e.g.,
without post-capture memory changes made by other com-
mands). In order to minimize an amount of memory to be
captured, the capture module can determine if the memory
associated with the seglet has been previously captured,
and/or can determine a subset of memory that has been
changed, for example, to capture a change 1n the state of the
memory.

In some 1nstances, the driver, the capture module, and the
GPU are included 1n a computing device, such as a video
game console. In some instances, a capture indication 1s
received from a service provider instructing the video game
console to capture commands associated with presenting one
or more frames of a video game ftitle. After determining
seglets from the command bufler segments and memory
associated with each seglet, the seglets and the associated
memory 1s captured and can be stored in a playback file and
transmitted to the service provider for analysis. The play-
back file can be used to play back each seglet associated with
the GPU, and/or can be analyzed to determine an occupancy
(e.g., utilization) of each engine 1n the multi-engine GPU. In
some 1nstances, an occupancy of 50% may indicate that an
engine 1s executing commands half of the time and 1s not
executing commands the other half of the time. In some
instances, the occupancy of the engine can be due to
excessive waiting (e.g., because a seglet 1s waiting for a
signal to satisty a synchronization command), which may
signal to a designer that some aspect of the commands can
be optimized to improve the performance of the GPU
associated with the video game console.

Thus, the techniques and systems described herein can
improve a functioning of a computing device by capturing
commands 1n a multi-engine GPU for analysis and playback.
In some instances, identifying memory requirements of a
seglet may reduce an amount of memory to be captured and
transmitted to another device for subsequent playback and
analysis. In some instances, an occupancy of an engine of
the GPU can be 1dentified to optimize an amount of work
performed by a GPU engine, ultimately resulting in an
increase 1n frames per second presented by the GPU.

Although aspects of this disclosure may be discussed 1n
context ol a video game console, a video game title, and/or
a GPU, the disclosure 1s not limited to these implementa-
tions, and may be applied to any computing device and/or
any parallel processing of commands. Various examples for
implementing the capturing of commands 1n a multi-engine
GPU are described herein with reference to FIGS. 1-7.

FIG. 1 illustrates a pictorial flow diagram of an example
process 100 for capturing commands in a multi-engine
graphics processing unit (GPU). FIG. 1 1illustrates a high-
level pictonial flow diagram, and additional details of the
implementation are given throughout this disclosure.

At 102, the operation can include recerving an indication
to capture an operation of a graphics processing unit (GPU),
such as a multi-engine GPU (sometimes referred to as a
GPU). As illustrated 1n example 104, a capture indication
106 may be recerved at a gaming console 108 from one or
more service providers 110. In some 1nstances, the service
provider 110 may represent a software developer or pro-
grammer tasked with debugging a software title (such as a
video game) running on the gaming console 108. The
capture 1ndication 106 can be generated at any time during

US 10,198,784 B2

S

operation of the software ftitle (e.g., at a time 1 which
graphics are rendered on a display associated with the
gaming console 108). In some instances, the capture indi-
cation 106 can be generated 1n response to an error 1n a
software title, and in some 1nstances, the capture indication
can be generated at the gaming console 108.

At 112, the operation can include capturing at least one
command bufler segment. As illustrated in example 114,
command (cmd) buller segments 116 and 118 may be 1nput
to a graphics processing umt 120 for execution. In some
instances, the command bufler segment 116 may represent a
plurality of individual commands 1n a buller associated with
an 1mndividual engine 1n the GPU for rendering a frame of a
soltware title on a display of a gaming device. That 1s, the
command buffer segments 116 and 118 can include any
number of commands, synchromization commands, and/or
signals for executing commands within the multi-engine
GPU 120. The operation 112 can include capturing one or
more command bufler segments 116 and 118 associated with
rendering one or more frames by the GPU 120.

At 122, the operation can include parsing the command
bufler segment to 1dentify at least one synchromization
(sync) indication or command. As illustrated, example 124
shows a captured command bufler segment (e.g., corre-
sponding to the command bufler segment 116) that includes
a synchronization command 126. In some instances, the
commands that follow the synchromization command 126
may not execute until the synchronization command 126 has
been satisfled. In some instances, the command bufler
segment 116 can include a plurality of synchronization
commands.

At 128, the operation can include segmenting the com-
mand bufler segment mto a first seglet and a second seglet,
wherein the second seglet includes the synchromization
command. In some 1nstances, the operation 128 can be based
on the synchronization command identified 1n the operation
122. As illustrated, example 130 shows a first seglet 132
including commands and a second seglet 134 including a
synchronization command and two additional commands. In
some 1nstances, the operation 128 can include segmenting
the command builer segment 1into any number of seglets,
based at least in part on the number of synchronization
commands 1dentified 1n the operation 122. That 1s, 1n some
instances, the operation 128 1s repeated (e.g., operates
recursively) until each seglet includes at most one synchro-
nization command. In any event, each seglet can be consid-
ered to be an atomic segment such that operations from other
command builer segments do not modily the memory asso-
ciated with the seglet after the seglet has begun execution.
In some instances, if N number of synchronization com-
mands are 1dentified in the operation 122, the operation 128
can segment the command bufler segment into N+1 number
of segments. In some 1nstances, any number of seglets can
be determined.

At 136, the operation can include determining, for each
seglet, 11 a synchronization command has been satisfied. As
illustrated, example 138 shows the second seglet 134 includ-
ing a synchronization command being signaled by a seglet
140 including a signal 142. The seglet 140 can represent
another seglet associated with a separate command bufler
segment that 1s operating on another engine of the multi-
engine GPU 120. By way of example, the seglet 140 can
include memory access commands to move memory nto a
register, while the seglet 134 can perform one or more
drawing operations based upon that data. Thus, the seglet
134 waits until the engine associated with the seglet 140
executes the commands associated with the seglet 140 and

10

15

20

25

30

35

40

45

50

55

60

65

6

signals the signal 142, which 1s provided to satisty the
synchronization command of the seglet 134. In some
instances, and as explained herein, seglets with unsatisfied
synchronization commands can be associated with a pending
list, and 1n some 1nstances, seglets with a satisfied synchro-
nization command (or seglets without a synchromization
command, such as the first seglet 132) can be associated
with an execution list and executed 1n a sequence ol com-
mands by an engine of the GPU 120. In some instances, the
seglet 140 can correspond to a seglet segmented from the
command bufler segment 118.

At 144, the operation can include determining memory
requirements for a seglet at a time of execution for the seglet.
Example 146 illustrates the seglet 134 associated with a
portion 148 of memory 150. For example, the memory
portion 148 can correspond to memory that 1s utilized by the
seglet 134 during execution of the seglet 134. In some
instances, the memory portion 148 can include memory that
1s read by one or more commands of the seglet 134, and 1n
some 1nstances, the memory portion 148 can include
memory that 1s allocated to one or more commands of the
seglet 134 to be written by the seglet 134. In some 1nstances,
the memory portion 148 can be a subset of the memory 150,
such that determining the memory requirements reduces an
amount ol memory that has to be captured 1n subsequent
operations.

At 152, the operation can include capturing new memory
or changed memory associated with the seglet execution. In
some 1nstances, memory associated with the memory por-
tion 148 may have already been captured 1n another captur-
ing operation, in which case, the operation 152 can be
avolded 1 order to minimize duplication of captured
memory. In some instances, the operation 152 can determine
that memory associated with the seglet 134 1s either new
memory that has not been captured, or the memory has
changed since the last time the memory was captured. In this
instances, the operation can include capturing (e.g., copying)
those portions of memory prior to the execution of the seglet
134 and/or after the execution of the seglet 134. As 1llus-
trated, example 154 shows the seglet 134 and the memory
portion 148 captured and transmitted from the gaming
console 108 to the service provider 110 1n response to the
capture indication 106, for example.

FIG. 2 illustrates an example environment 200 for cap-
turing commands 1n a computing device mcluding a multi-
engine graphics processing unit (GPU). The environment
200 includes computing device(s) 202 having processor(s)
204 (e.g., a central processing unit (CPU)), a multi-engine
graphics processing unit (GPU) 206, and a memory 208
including one or more program(s) 210, driver(s) 212, and a
working memory module 214. In various instances, the
driver(s) 212 can include a command generation module 216
and a capture module 218. The environment 200 also
includes a network 220 to facilitate communications
between the computing device 202 and service provider(s)
222. In some 1nstances, the service provider(s) 222 provide
one or more services to the computing device 202, such as
initiation of the capturing operation and subsequent play-
back of the captured commands. To that end, the service
provider 222 can include processor(s) 224 and a memory
226 including a capture module 228 and a playback module
230.

The computing device 202 can include, but 1s not limited
to, any one of a variety of computing devices, such as a
smart phone, a mobile phone, a personal digital assistant
(PDA), an electronic book device, a laptop computer, a
desktop computer, a tablet computer, a portable computer, a

US 10,198,784 B2

7

gaming device, a game console, a personal media player
device, a server computer, a wearable device, or any other
clectronic device.

As 1ntroduced above, the computing device 202 can
include one or more processor(s) 204, one or more multi-
engine GPUs 206, and memory 208. The processor(s) 204
can be a single processing unit or a number of units, each of
which could include multiple different processing units. The
processor(s) 204 can include one or more miCroprocessors,
microcomputers, microcontrollers, digital signal processors,
central processing umts (CPUs), security processors (e.g.,
secure cryptoprocessors), and/or other processors. Alterna-
tively, or 1n addition, some or all of the techniques described
herein can be performed, at least in part, by one or more
hardware logic components. For example, and without limi-
tation, 1llustrative types of hardware logic components that
can be used include Field-Programmable Gate Arrays (FP-
GAs), Application-Specific Integrated Circuits (ASICs),
Application-Specific Standard Products (ASSPs), state
machines, Complex Programmable Logic Devices (CPLDs),
other logic circuitry, systems on chips (SoCs), and/or any
other devices that perform operations based on soltware
and/or hardware coded instructions. Among other capabili-
ties, the processor(s) 204 can be configured to fetch and/or
execute computer-readable instructions stored 1n the
memory 208. In some instances, the processor(s) 204 can
operate 1n conjunction with the GPU 206 to render frames
for a display associated with the computing device 202.

The GPU 206 can include any number and any type of
engines, such as graphics engines, compute engines,
memory access engines, etc. In some instances, there may be
multiple istances of the various engines to further facilitate
parallel processing. In some instances, and as described
herein, each engine can be associated with a buller or queue
where commands generated by the command generation
module 216 can be stored until execution by a respective
engine ol the GPU 206.

The memory 208 can include one or a combination of
computer-readable media. As used herein, “computer-read-
able media” includes computer storage media and commu-
nication media.

Computer storage media includes volatile and non-vola-
tile, removable and non-removable media implemented in
any method or technology for storage of information, such
as computer-readable nstructions, data structures, program
modules, or other data. Computer storage media includes,
but 1s not limited to, Phase Change Memory (PCM), Static
Random-Access Memory (SRAM), Dynamic Random-Ac-
cess Memory (DRAM), other types of Random-Access
Memory (RAM), Read-Only Memory (ROM), Electrically
Erasable Programmable ROM (EEPROM), flash memory or
other memory technology, Compact Disc ROM (CD-ROM),
Digital Versatile Discs (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium that
can be used to store information for access by a computing
device.

In contrast, communication media includes computer-
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave.
As defined herein, computer storage media does not include
communication media.

In various embodiments, the computing device 202 can
communicate with the service provider 222 via one or more
wired or wireless networks 220, such as the Internet, Eth-
ernet, a Mobile Telephone Network (MTN), or other various
communication technologies. In some instances, the net-

10

15

20

25

30

35

40

45

50

55

60

65

8

work 220 can include any WAN or LAN communicating via
one or more wireless protocols including but not limited to
RFID, near-field commumnications, optical (IR) communica-
tion, Bluetooth, Bluetooth low energy, ZigBee, Z-Wave,
Thread, LTE, LTE-Advanced, WiF1, WiFi-Direct, LoRa,
Homeplug, MoCA, Ethernet, efc.

In various embodiments, the memory 208 can include an
operating system configured to manage hardware and ser-
vices within and coupled to the computing device 202 for the
benellt of other components and other devices.

The various components of the environment 200 can

include hardware and/or software components. For example,
the program(s) 210, the driver(s) 212, the working memory
module 214, the capture module 228, and the playback
module 230 can be implemented by one or more modules
stored 1n the memory 208 or 226, respectively, and/or by one
or more components of the processor(s) 204 or 224, or the
GPU 206, respectively. As used herein, the term “module”
1s intended to represent example divisions of software and/or
firmware for purposes of discussion, and 1s not itended to
represent any type ol requirement or required method,
manner or organization. Accordingly, while various “mod-
ules” are discussed, their functionality and/or similar func-
tionality could be arranged differently (e.g., combined into
a fewer number of modules, broken into a larger number of
modules, etc.). Further, while certain functions are described
herein as being implemented as software modules config-
ured for execution by a processor, in other embodiments,
any or all of the functions can be implemented (e.g.,
performed) in whole or 1n part by hardware logic compo-
nents, such as FPGAs, ASICs, ASSPs, state machines,
CPLDs, other logic circuitry, SoCs, and so on.
The program(s) 210 can include any software title oper-
ating on the computing device 202 that utilizes the GPU 206
of the computing device 202. In some instances, the program
210 can be a computationally and/or graphically intensive
program, such as a video game. In some instances, the
programs 210 provide API calls to the driver 212 to render
content of a display of the computing device 202.

The driver(s) 212 can include the command generation
module 216 and the capture module 218. In general, the
driver(s) 212 can perform operations to convert API calls to
from the programs 210 into commands that can be under-
stood and/or executed by the GPU 206. In particular, the
conversion of API calls to command bufler segments can be
performed by the command generation module 216. The
command generation module 216 can generate any number
of command bufler segments for a particular engine of the
GPU 206 for rendering one or more particular frames for
display. In one implementation, the command generation
module 216 can generate a single command buller segment
for each engine of the GPU 206 to render a single frame of
content for display. In some 1nstances, the command gen-
eration module 216 can generate one or more synchroniza-
tion commands, and one or more signals, to introduce
dependencies between the various command buller seg-
ments associated with various engines of the GPU 206.

The capture module 218 can perform operations to cap-
ture one or more command builer segments generated by the
driver 212. In some 1nstances, the capture module 218 can
perform operations 1n response to recerving a capture indi-
cation from the service provider 222, for example. In some
instances, the capture module 218 can perform operations to
identily synchromization commands, segment command
bufler segments into seglets, and to determine memory
requirements at a time of execution of the various seglets. In
some 1nstances, the capture module 218 can capture a state

US 10,198,784 B2

9

of memory associated with each seglet, which may include
determining 11 memory has previously been captured and/or
determining 11 previously captured memory has been modi-
fied since the memory was captured. In some instances, the
capture module 218 can generate a playback file including
seglets and associated memory to be transmitted to the
service provider 222, for example.

The working memory module 214 can correspond to a
portion of the memory 208 allocated to the command bufler
segments associated with execution of the program 210
and/or the driver 212. For example, the working memory
module 214 can include memory read by or written to the
command bufler segments to render content on a display of
the computing device 202.

The capture module 228 can perform operations to initiate
a capture operation on the computing device 202. For
example, the capture module 228 can receive an indication
from a developer or programmer and can provide a capture
indication to the computing device 202. In some 1nstances,
the capture module 228 can provide the functionality of the
capture module 218 to the computing device 202 (while
operating remotely on the service provider 222).

The playback module 230 can perform operations to
execute commands and to load memory states associated
with a playback file generated by the computing device 202
and provided to the service provider 222. In some 1nstances,
the playback module 230 can provide an interface (e.g., a
display) associated with the service provider 222 to 1llustrate
an occupancy of each engine of the GPU 206 as captured by
the capture module 218. To that end, the playback module
230 can perform operations to determine an occupancy of
cach engine of the GPU for rendering a particular frame
associated with a software ftitle or video game. In some
instances, the playback module 230 allows a developer to
step through an execution of each individual seglet. In some
instances, the captured commands can be played back seri-
ally by 1nserting additional synchronization commands
between the seglets on each engine of the GPU, and 1n some
instances, the playback module 230 can execute the seglets
with the original synchronization commands as provided by
the driver 212 to {facilitate analysis of the multi-engine
operation of the GPU 206.

The service provider 222 can include one or more com-
puting devices, such as one or more desktop computers,
laptop computers, servers, and the like. The one or more
computing devices can be configured in a cluster, data
center, cloud computing environment, or a combination
thereol. In one example, the one or more computing devices
provide cloud computing resources, including computa-
tional resources, storage resources, and the like, that operate
remotely from the computing device 202.

The environment 200 also includes the one or more users
232 to employ the computing device 202. The one or more
users 232 can interact with the computing device 202 to
perform a variety of operations.

The operations of these components are explained above
in connection with FIG. 1 and further explained 1n connec-
tion with FIGS. 3-7 of this disclosure.

FIG. 3 illustrates an example environment 300 for cap-
turing and segmenting commands 1n a multi-engine GPU.
As 1llustrated, the environment 300 includes the program(s)
210, the drniver(s) 212, the command generation module 216,
the capture module 218, the graphics processing unit 206,
and the working memory module 214 of FIG. 2. Further
details are provided 1n connection with capturing the com-
mands for playback, as described herein.

10

15

20

25

30

35

40

45

50

55

60

65

10

As discussed above, the program(s) 210 can generate and
provide one or more API calls (or other instruction or
commands) to the driver(s) 212 to render content on a
display 302 of a computing device (e.g., the computing
device 202). Based at least 1n part on the API calls received
from the program(s) 210, the command generation module
216 can generate one or more command butler segments for
the GPU 206.

For example, the command generation module 216 can
generate a command bufler segment 304 for graphics
engine(s) 306. In some 1nstances, there may be a plurality of
graphics engine(s) 306, 1n which case, a command buller
segment can be provided to each individual graphics engine
as needed.

The command bufler segment 304 can be executed by the
graphics engine 306, with individual commands 308 and
310 executed serially 1n the order the commands are placed
into a command bufler. That 1s, the graphics engine 306 can
execute the command 308 followed by the command 310,
followed by a signal commands 312 and a command 314. In
this example, the commands 308, 310, 312, and 314 do not
depend on a synchronization command, so the commands
can be serially executed by the graphics engine 306. Based
at least 1n part on executing the signal command 312, the
graphics engine 306 can provide a signal indication 322 to
a corresponding synchronization command 324. Further, at
a time 1n which a synchronization command 316 1s input to
the graphics engine 306 for execution, 1f the synchronization
command 316 remains unsatisfied (e.g., the synchronization
command 316 has not received a signal indication 326 from
a corresponding signal command 328), the graphics engine
306 can wait and may not execute a command 318 and a
signal command 320 until the synchronization command
316 1s satisfied.

Upon receiving a capture indication, the capture module
218 can capture the command bufler segment 304, 1dentily
any synchronization command(s) i the command buller
segment 304, and segment the command builer segment 304
into a seglet 330 and a seglet 332 based in part on the
identified synchronization command.

The command generation module 216 can further gener-
ate a command bufler segment 334 to be executed by
compute engine(s) 336. In one particular example, the
command buller segment 334 can include (in order of
execution), the synchronization command 324, commands
338, 340, and 342, followed by the signal command 328, and
turther followed by a synchronization command 344 and a
command 346. Thus, based on the synchronization com-
mands 324 and 344, the command bufler segment 334 can
be decomposed into a seglet 348 and a seglet 350. As
illustrated, the synchronization command 344 depends on a
signal indication 352 corresponding to the signal command
320 associated with the seglet 332. Thus, the seglet 350 may
not begin execution until the synchronization command 344
1s satisfied by the signal indication 3352 (regardless of
whether the seglet 332 1s ready to be executed by the
graphics engine 306 before the seglet 350 1s ready to be
executed by the compute engine 336).

The command generation module 216 can further gener-
ate a command bufler segment 354 to be executed by the
memory access engine(s) 356. In one particular example, the
command bufler segment 354 includes commands 358, 360,
362, and 364. As the command bufler segment 354 does not
include any synchronization commands 1n this example, the
command buller segment 354 can be executed 1n serial by
the memory access engine 356 without any dependencies on
other command bufler segments. Accordingly, the command

US 10,198,784 B2

11

bufler segment 354 can correspond to a seglet 366 deter-
mined by the capture module 218.

In some instances, the capture module 218 can determine
a temporal execution of the seglets 330, 332, 348, 350, and
366 as they relate to one another. That 1s, the location of the
commands 1 FIG. 3 can correspond to a time 1n which the
commands are mserted ito a bufler associated with a
respective engine of the GPU. Thus, when determining a
playback order of the various seglets, the capture module
218 can determine an order of the seglets to be executed.
Thus, the seglet 330 can be referred to as seglet #1, the seglet
366 can be referred to as seglet #2, the seglet 348 can be
referred to as seglet #3, the seglet 332 can be referred to as
seglet #4, and the seglet 350 can be referred to as seglet #5.
Further details of the capture of the seglets 330, 332, 348,
350, and 366 are described 1in connection with FIG. 4.

FIG. 4 1llustrates an example environment 400 for gen-
crating a playback file for captured GPU commands. As

illustrated, the captured GPU commands correspond to the
seglets 304, 366, 348, 332, and 350 captured and segmented

in connection with FIG. 3. The environment 400 includes an
execution list 402, a pending list 404, a working memory
module 406, and a playback file 408.

In some 1nstances, the execution list 402 includes seglet
#1 304 and seglet #2 366, as the two seglets 304 and 366 do
not include unsatisfied synchronization commands. Thus,
the seglets 304 and 366 can be executed by the respective
engines of the GPU, for example. At the time of execution,
capturing the seglet #1 304 can include determiming a
portion of memory 410 associated with the execution of the
seglet #1 304. For example, determining the portion of
memory 410 can include parsing the seglet #1 304 to
determine any memory addresses read from or written to by
the seglet #1 304 during the execution of the seglet #1 304.
In some 1nstances, the state of the portion of the memory 410
(e.g., all the data associated with the portion of the memory
410) can be determined and stored in the playback file with
the seglet commands. For example, a memory state 412
corresponding to the portion of the memory 410 can be
stored 1n the playback file 408.

Similarly, a portion of the memory 414 may be deter-
mined to correspond to the execution of the seglet #2 366,
and a state of the memory 416 corresponding to the portion
of the memory 414 can be stored 1n the playback file 408.

The working memory module 406 can include data relat-
ing to any number of seglets, which may or may not
correspond to the seglets included 1n the execution list 402.
For example, the working memory module 406 can include
a portion of the memory 418.

As FIG. 4 represents one snapshot of time, it can be
understood 1n the context of the disclosure that the compo-
sition of the execution list 402 and the pending list 404 may
be updated as various seglets are executed and as various
synchronization commands are satisfied. For example, as the
seglet #1 304 1s executed, the signal command 312 may
provide a signal indication to the corresponding synchroni-
zation command 324 in the seglet #3 348, at which time, the
seglet #3 348 can be moved from the pending list 404 to the
execution list 402 and a memory requirements and a state of
memory can be determined for the seglet #3 348. Accord-
ingly, the playback file 408 can be generated as various
seglets are executed to include a state of the memory 420
corresponding to any number of seglets. In some 1nstances,
the playback file 408 can be generated for one or more
seglets associated with displaying a particular frame for
display. In some instances, the playback file 408 can be

10

15

20

25

30

35

40

45

50

55

60

65

12

transmitted from the computing device 202 to the service
provider 222, for example, for subsequent playback and
analysis.

The example processes (e.g., m FIGS. 1 and 5-7) are
illustrated as logical flow graphs, each operation of which
represents a sequence of operations that can be implemented
in hardware, software, or a combination thereof. In the
context of software, the operations represent computer-
executable instructions stored on one or more computer-
readable storage media that, when executed by one or more
processors, configure a device to perform the recited opera-
tions. Generally, computer-executable instructions include
routines, programs, objects, components, data structures,
and the like that perform particular functions. The order 1n
which the operations are described 1s not intended to be
construed as a limitation, and any number of the described
operations can be combined 1n any order and/or 1n parallel
to implement the process. Further, any of the individual
operations can be omaitted.

FIG. § 1s an example process 500 for determining memory
requirements for a seglet and capturing memory associated
with the seglet. In one implementation, the example process
500 can be performed by the computing device 202 and/or
by the service provider 222 of FIG. 2. Exemplary imple-
mentations of FIG. 5 are provided in connection with FIGS.
1, 3, and 4, for example. However, processes can be per-
formed 1n other environments and by other devices as well.

At 502, the operation can include determining that a seglet
wait requirement has been satisfied. In some instances, this
operation may include receiving a signal indication at a first
engine of the GPU where a command bufler segment 1s
waiting for execution. In some 1nstances, the signal indica-
tion can be generated by a second engine of the GPU
executing a signal command. In some instances, the wait
requirement can correspond to a binary indication (e.g.,
execute or do not execute), or can correspond to a register
value bemng over a threshold wvalue (e.g., execute if
value>threshold). In some instances, if the wait requirement
has not been satisfied, a seglet can be associated with a
pending list, as described herein. In some instances, when
the wait requirement (e.g., the synchronization command)
has been satisfied, the seglet can be associated with an
execution list instead of the pending list, as described herein.

At 504, the operation can include determining, at an
execution time, memory requirements for the seglet. For
example, memory requirements for the seglet may include
memory accessed by any commands associated with the
seglet. In some instances, the memory requirements may
include addresses or a range ol addresses of memory or
registers.

At 506, the operation can include determining if the
memory corresponding to the memory requirements deter-
mined 1n the operation 504 has been previously captured.
For example, in some 1nstances, the memory can be captured
in connection with a separate seglet, or captured 1n connec-
tion with some other operation.

At 508, the operation can include determining whether
previously captured memory has been changed. In some
instances, this operation can include comparing a state of
previously captured memory with a current state of the
memory to determine 1f there 1s a difference. In some
instances, the memory can include indications of when the
memory was last updated. In such a case, this operation 508
can include comparing a marker or flag of the captured
memory with the memory corresponding to the memory
requirements to determine 1f the memory has been changed.

US 10,198,784 B2

13

At 510, the operation can include capturing new memory
or changed memory associated with the execution of the
particular seglet. In some instances, by capturing new
memory or changes 1n memory, this operation 510 can avoid
duplicating memory capture operations, which may reduce
an amount of memory required for the capture operation.

At 512, the operation can include processing the com-
mands associated with the seglet. In some instances, this
operation 312 can include executing the seglet by a particu-
lar engine of the GPU. In some instances, the operation can
include reading or writing values from or to memory. In
some 1nstances, processing commands associated with the
seglet can include providing a signal indication to another
synchronization command associated with another seglet
operating 1n connection with another engine of the GPU.

At 514, the operation can 1nclude capturing any memory
updated by the seglet, based at least 1n part on the processing
operations performed the operation 512. For example, 11 the
operation 512 stored values as a result of some processing or
work associated with the commands, the operation 514 can
capture the updated values or data.

At 516, the operation can include storing the captured
seglet and the captured memory. In some 1nstances, the
captured seglet and the captured memory are stored 1n a
playback file to be transmitted to a service provider by the
computing device processing the seglet commands.

FIG. 6 1s an example process 600 for determinming occu-
pancy of engines in a GPU. In one implementation, the
example process 600 can be performed by the computing
device 202 and/or by the service provider 222 of FIG. 2.
However, processes can be performed 1n other environments
and by other devices as well.

At 602, the operation can 1nclude generating a playback
file including memory states associated with one or more
seglets. For example, the playback file can include a plu-
rality of seglets and associated memory states for some or all
engines of a multi-engine GPU. In some 1nstances, the
playback file can include an 1nitial memory state and
changes of the memory states over time based on the
execution of the various seglets. In some instances, the
playback file can include the associated API calls generate
by a program that was converted into the command bufler
segments, such that the seglets can be associated with the
corresponding original API call. In some instances, the
playback file can include seglets associated with one or more
frames to be displayed on a computing device.

At 604, the operation can include transmitting the play-
back file to a service provider, such as the service provider
222 of FIG. 2. In some instances, the playback file can be
transmitted as seglets associated with one single frame 1s
captured, while 1n some embodiments, the playback file can
be transmitted when a number of seglets or a number of
frames reaches a threshold value.

At 606, the operation can include determining an occu-
pancy of one or more engines of the multi-engine GPU. In
some 1nstances, the occupancy of an engine can correspond
to a comparison of an amount of time an engine 1s executing,
commands compared to a total amount of time available for
executing commands. Thus, 1n some 1nstances, a higher
occupancy corresponds to less unused time by an engine of
the GPU.

At 608, the operation can include presenting the occu-
pancy 1n an interface, such as a display of the service
provider or a computing device. In some instances, the
occupancy can be displayed as a graph over time, with the
occupancy of an engine varying as commands are executed
to render one or more frames for display.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 7 1s an example process 700 for capturing commands
in a multi-engine GPU. In one implementation, the example
process 700 can be performed by the computing device 202
and/or by the service provider 222 of FIG. 2. However,
processes can be performed i1n other environments and by
other devices as well.

At 702, the operation can include receiving an indication
to capture commands to be executed on a graphics process-
ing unit (GPU), the GPU comprising a graphics engine, a
memory access engine, and a compute engine. In some
instances, the indication can be received at a computing
device, such as a gaming console, from a service provider.
In some 1nstances, the indication can be generated based at
least 1n part on an error or an expected error 1n a software
title, such as a video game, operating on the computing
device. In some 1nstances, the computing device can gen-
erate and recerve the indication to capture commands.

At 704, the operation can include capturing a first com-
mand bufller segment associated with a first command bufler
associated with the graphics engine. In some 1nstances, the
GPU can imnclude any number of engines, with each engine
associated with a command bufler. Command builer seg-
ments can be stored in the command bufler to be executed
by the engine in the order that the commands were 1nput to
the command bufler (e.g., using a first-in first-out (FIFO)
structure). Similarly, at 706, the operation can include cap-
turing a second command bufler segment associated with a
second command buller associated with the memory access
engine. And at 708, the operation can include capturing a
third command bufler segment associated with a third com-
mand bufler associated with the compute engine. In some
instances, the first command bufler segment, the second
command bufler segment, and the third command bufler
segment are associated with commands that are directed to
rendering a same frame for display by the computing device.

At 710, the operation can include 1dentifying a synchro-
nization command 1n the first command bufler segment. In
some 1nstances, the synchronization command can include a
precondition that must be satisfied before subsequent com-
mands 1n the first command bufler segment are executed by
the respective engine. In some instances, the precondition
associated with the synchronization command can be satis-
fied by receiving a signal or an indication from a signal
command associated with another command builer segment
when the signal command 1s executed by a respective engine
of the GPU. In some instances, command bufler segments
can 1include a plurality of synchronization commands,
whereby various synchronization commands are associated
with signal commands from other various command bufler
segments. In some instances, a synchronization command
can be satisfied by a condition or event outside of the GPU,
such as by a command from a driver, a CPU, etc.

At 712, the operation can include i1dentifying a signal
command 1n the second command builer segment or in the
third command bufler segment, the signal command satis-
ftying a precondition associated with the synchronization
command at a time 1n which the signal command 1s executed
by the memory access engine or the compute engine. In
some 1nstances, the synchronization command may cause a
respective engine (€.g., the graphics engine) to wait until the
signal condition 1s executed by a respective engine (e.g., the
memory access engine or the compute engine).

At 714, the operation can include dividing the first com-
mand bufler segment 1nto a first seglet and a second seglet
based at least in part on the synchronization command,
wherein the first seglet 1s a first atomic seglet and the second
seglet 1s a second atomic seglet, the second seglet including

US 10,198,784 B2

15

the synchronization command. In some instances, a com-
mand bufler segment can be divided into any number of

seglets. In some instances, a number of seglets may depend
on a number of synchronization commands 1ncluded 1n the
command bufler segment. In some instances, an atomic
seglet refers to commands that, when executed by a respec-
tive engine of the GPU, are associated with memory that
may not be altered by other command bufler segments or
seglets while the atomic seglet 1s executing.

At 716, the operation can include capturing a first state of
memory associated with the first seglet at a first time of
executing the first seglet. In some instances, a state of
memory can include all data associated with memory
addresses accessed by the seglet during execution. In some
instances, the state of memory may include only updated
memory values when referring to an earlier state of memory.

At 718, the operation can include capturing a second state
of memory associated with the second seglet at a second
time of executing the second seglet.

At 720, the operation can 1nclude generating a playback
file including at least the first seglet, the first state of memory
at the first time, the second seglet, and the second state of
memory at the second time. In some 1nstances, the playback
file can i1nclude all commands and memory states needed to
recreate an optimal execution of command on the GPU.

At 722, the operation can include causing the playback
file to be transmitted to a service provider. In some 1nstances,
at the service provider, the playback file can be used to
simulate or recreate the operation of the GPU executing the
commands associated with the playback file. Thus, having
captured commands and memory states 1n a playback file
and transmitted the playback file to the service provider,
programmers or developers can use the playback file to
optimize an operation of a software title, hardware, drivers,
etc., thereby improving a functioning of a computing device.

Example Clauses

Example A, a system comprising: one or more processors;
and memory storing 1nstructions that, when executed by the
one or more processors, cause the system to perform opera-
tions comprising: receiving an indication to capture com-
mands to be executed on a graphics processing unit (GPU),
the GPU comprising a graphics engine, a memory access
engine, and a compute engine; capturing a first command
bufler segment associated with a first command bufler
associated with the graphics engine; capturing a second
command bufler segment associated with a second com-
mand bufler associated with the memory access engine;
capturing a third command bufler segment associated with a
third command bufler associated with the compute engine;
identifying a synchronization command in the first com-
mand bufler segment; identifying a signal command 1n the
second command bufler segment or in the third command
bufler segment, the signal command satisfying a precondi-
tion associated with the synchronization command at a time
in which the signal command 1s executed by the memory
access engine or the compute engine; dividing the first
command bufler segment mto a first seglet and a second
seglet based at least 1n part on the synchronization com-
mand, wherein the first seglet 1s a first atomic sequence of
commands and the second seglet 1s a second atomic
sequence of commands, the second seglet including the
synchronization command; capturing a first state of memory
associated with the first seglet at a first time of executing the
first seglet; capturing a second state of memory associated
with the second seglet at a second time of executing the

5

10

15

20

25

30

35

40

45

50

55

60

65

16

second seglet; generating a playback file mncluding at least
the first seglet, the first state of memory at the first time, the
second seglet, and the second state of memory at the second
time; and causing the playback file to be transmitted to a
service provider.

Example B, the system of Example A, wherein the first
command bufller segment, the second command bufler seg-
ment, and the third command bufler segment are associated
with rendering a same frame for display.

Example C, the system of Example A or Example B, the
operations further comprising recerving the first command
bufler segment, the second command bufller segment, and
the third command bufler segment from a driver associated
with a game console comprising the GPU.

Example D, the system of any one of Example A through
Example C, wherein capturing the first state of memory
comprises determining addresses associated with at least a
portion of memory accessed by the first seglet during
execution of the first seglet.

Example E, the system of any one of Example A through
Example D, wherein the operations further comprise: deter-
mining a third seglet including at least the signal command;
and executing the third seglet prior to executing the second
seglet such that the signal command satisfies the precondi-
tion associated with the synchronization command at the
time of executing the signal command.

While Example A through Example E are described above
with respect to a system, 1t 1s understood 1n the context of
this document that the content of Example A through
Example E may also be implemented via a device, computer
storage media, and/or a method.

Example F, a computer-implemented method comprising:
receiving, at a computing device, an indication to capture an
operation associated with a graphics processing unit (GPU);
capturing at least one command buller segment to be
executed by the GPU; identifying at least one synchroniza-
tion command in the at least one command bufler segment;
based at least 1n part on the at least one synchromization
command, segmenting the at least one command buller
segment 1nto a first seglet and a second seglet; determining,
at least one memory requirement for the first seglet or the
second seglet at a time of executing the first seglet or the
second seglet; and capturing at least a portion of memory
associated with the at least one memory requirement at the
time of executing the first seglet or the second seglet.

Example G, the computer-implemented method of
Example F, wherein the second seglet includes the at least
one synchronization command, the computer-implemented
method further comprising: receiving a signal indicating an
execution of a signal command associated with the at least
one synchronization command; determining that the at least
one synchronization command 1s satisfied; and executing, by
the GPU, the second seglet based at least in part on the at
least one synchronization command being satisfied.

Example H, the computer-implemented method of
Example F or Example G, further comprising: generating a
playback file including at least the first seglet and the at least
the portion of memory associated with the at least one
memory requirement; and transmitting, by the computing
device, the playback file to a service provider.

Example I, the computer-implemented method of any one
of Example F through Example H, wherein the time of
executing the first seglet or the second seglet 1s a first time
of executing the first seglet, wherein the at least one memory
requirement 1s a first memory requirement associated with
the first seglet, and wherein the at least the portion of
memory 1s a first portion of memory associated with the first

US 10,198,784 B2

17

seglet, the computer-implemented method further compris-
ing: determining a second memory requirement for the
second seglet at a second time of executing the second
seglet; determining that at least a subset of memory asso-
ciated with the first memory requirement corresponds to the
second memory requirement; and capturing at least a second
portion of memory at the time ol executing the second
seglet, the at least the second portion of memory not
including the at least the subset of memory associated with
the first memory requirement.

Example I, the computer-implemented method of any one
of Example F through Example I, wherein the GPU com-
prises at least two engines, the computer-implemented
method further comprising: capturing a first command bufler
segment associated with a first engine of the GPU; and
capturing a second command buller segment associated with
a second engine ol the GPU; wherein the first command
bufler segment and the second command bufler segment are
associated with a same frame to be displayed.

Example K, the computer-implemented method of any
one ol Example F through Example J, further comprising:
receiving an application program interface (API) call from a
program to render content on a display; and based at least in
part on the API call, generating the at least one command
bufler segment to render the content on the display.

Example L, the computer-implemented method of any
one of Example F through Example K, further comprising:
determining that the first seglet 1s to be executed at a first
time; associating the first seglet with an execution list;
determining, based at least in part on the at least one
synchronization command, that the second seglet 1s not to be
executed at the first time; associating the second seglet with
a pending list; and executing one or more commands asso-
ciated with the first seglet at the first time.

Example M, the computer-implemented method of any
one of Example F through Example L, wherein the first
seglet includes a first set of commands spanning from a start
of the at least one command bufler segment to a command
or signal command immediately before the at least one
synchronization command, and wherein the second seglet
includes a second set of commands spanning from the at
least one synchronization command to an end of the at least
one command bufler segment or another synchronization
command.

Example N, the computer-implemented method of any
one of Example F through Example M, further comprising
delaying an execution of the second seglet until a time 1n

which a precondition associated with the at least one syn-
chronization command 1s satisfied.

While Example F through Example N are described above
with respect to a method, 1t 1s understood 1n the context of
this document that the content of Example F through
Example N may also be implemented via a device, system,
and/or computer storage media.

Example O, a system comprising: one or more processors;
and memory storing 1nstructions that, when executed by the
one or more processors, cause the system to perform opera-
tions comprising: receiving an indication to capture an
operation associated with a graphics processing unit (GPU);
capturing at least one command buller segment to be
executed by the GPU; identilying at least one command 1n
the at least one command builer segment associated with an
execution precondition; based at least in part on the at least
one command, segmenting the at least one command bufler
segment 1nto a first seglet and a second seglet; determining
at least one memory requirement for the first seglet or the
second seglet at a time of executing the first seglet or the

10

15

20

25

30

35

40

45

50

55

60

65

18

second seglet; and capturing at least a portion of memory
associated with the at least one memory requirement at the
time of executing the first seglet or the second seglet.

Example P, the system of Example O, the operations
further comprising: generating a playback file including at
least the first seglet and the at least the portion of memory
associated with the at least one memory requirement; and
transmitting, by the computing device, the playback file to a
service provider.

Example Q, the system of Example O or Example P,
wherein the time of executing the first seglet or the second
seglet 1s a first time of executing the first seglet wherein the
at least one memory requirement 1s a first memory require-
ment associated with the first seglet, and wherein the at least
the portion of memory 1s a first portion of memory associ-
ated with the first seglet, the operations further comprising:
determining a second memory requirement for the second
seglet at a time of executing the second seglet; determining
that at least a subset of memory associated with the first
memory requirement corresponds to the second memory
requirement; and capturing at least a second portion of
memory at the time of executing the second seglet, the at
least the second portion of memory not including the at least
the subset of memory associated with the first memory
requirement.

Example R, the system of any one of Example O through
Example Q, wherein the GPU comprises at least two
engines, the operations further comprising: capturing a first
command bufler segment associated with a first engine of
the GPU; and capturing a second command bufler segment
associated with a second engine of the GPU; wherein the
first command bufler segment and the second command
bufler segment are associated with a same frame to be
displayed.

Example S, the system of any one of Example O through
Example R, wherein the first seglet includes a first set of
commands spanning from a start of the at least one com-
mand bufler segment to a command or signal command
immediately before the at least command associated with the
execution precondition, and wherein the second seglet
includes a second set of commands spanning from the at
least one command associated with the execution precondi-
tion to an end of the at least one command bufler segment
or another command associated with another execution
precondition.

Example T, the system of any one of Example O through
Example S, the operations further comprising delaying an
execution of the second seglet until a time 1 which a
precondition associated with the at least one command 1s
satisfied.

While Example O through Example T are described above
with respect to a system, 1t 1s understood 1n the context of
this document that the content of Example O through
Example T may also be implemented via a device, computer
storage media, and/or a method.

CONCLUSION

Although the present disclosure can use language that 1s
specific to structural features and/or methodological opera-
tions, the disclosure 1s not limited to the specific features or
operations described herein. Rather, the specific features and
operations are disclosed as illustrative forms of implement-
ing the disclosure.

US 10,198,784 B2

19

What 1s claimed 1s:

1. A system comprising;:

one or more processors; and

memory storing instructions that, when executed by the

one or more processors, cause the system to perform

operations comprising:

receiving an indication to capture commands to be
executed on a graphics processing unit (GPU), the
GPU comprising a graphics engine, a memory access
engine, and a compute engine;

capturing a first command bufler segment associated
with a first command bufler associated with the
graphics engine;

capturing a second command buller segment associated
with a second command bufler associated with the
memory access engine;

capturing a third command bufler segment associated
with a third command builer associated with the
compute engine;

identifying a synchronization command in the {first
command bufler segment;

identifying a signal command 1n the second command
bufler segment or in the third command bufler seg-
ment, the signal command satistying a precondition
associated with the synchronization command at a
time 1n which the signal command 1s executed by the
memory access engine or the compute engine;

dividing the first command bufler segment into a first
seglet and a second seglet based at least 1n part on the
synchronization command, wherein the first seglet 1s
a first atomic sequence of commands and the second
seglet 1s a second atomic sequence of commands, the
second seglet including the synchronization com-
mand;

capturing a first state of memory associated with the
first seglet at a first time of executing the first seglet;

capturing a second state of memory associated with the
second seglet at a second time of executing the
second seglet;

generating a playback file including at least the first
seglet, the first state of memory at the first time, the
second seglet, and the second state of memory at the
second time; and

causing the playback file to be transmitted to a service
provider.

2. The system of claim 1, wherein the first command
bufler segment refers to all graphic engine commands for
rendering a frame for display, the second command bufler
segment refers to all memory access engine commands for
rendering the frame for display, and the third command
bufler segment refers to all compute engine commands for
rendering the frame for display.

3. The system of claim 1, the operations further compris-
ing receiving the first command butler segment, the second
command bufler segment, and the third command builer
segment from a driver associated with a game console
comprising the GPU.

4. The system of claim 1, wherein capturing the first state
of memory comprises determining addresses associated with
at least a portion of memory accessed by the first seglet
during execution of the first seglet.

5. The system of claim 1, wherein the operations further
comprise:

determining a third seglet including at least the signal

command; and

executing the third seglet prior to executing the second

seglet such that the signal command satisfies the pre-

10

15

20

25

30

35

40

45

50

55

60

65

20

condition associated with the synchronmization com-
mand at the time of executing the signal command.
6. A computer-implemented method comprising:
receiving, at a computing device, an indication to capture
an operation associated with a graphics processing unit
(GPU), the GPU comprising a graphics engine, a
memory access engine, and a compute engine;

capturing a first command builer segment to be executed
by the graphics engine;

capturing a second command buller segment to be

executed by the memory access engine;

capturing a third command bufler segment to be executed

by the compute engine;

identifying a synchronization command 1n the first com-

mand bufler segment;

identifying a signal command 1n the second command

bufler segment or 1n the third command bufler segment,
the signal command satisfying a precondition associ-
ated with the synchronization command at a time 1n
which the signal command 1s executed by the memory
access engine or the compute engine;

based at least 1n part on the synchronization command and

the signal command, segmenting the first command
bufler segment 1nto a first seglet and a second seglet,
wherein the first seglet 1s a first atomic sequence of
commands and the second seglet 1s a second atomic
sequence of commands;

determiming at least one memory requirement for the first

seglet or the second seglet at a time of executing the
first seglet or the second seglet;
capturing at least a portion of memory associated with the
at least one memory requirement at the time of execut-
ing the first seglet or the second seglet; and

generating a playback file including at least the first
seglet, the at least the portion of memory associated
with the at least one memory requirement, and the
second seglet.

7. The computer-implemented method of claim 6, further
comprising;

transmitting, by the computing device and over a network,

the playback file to a service provider.
8. The computer-implemented method of claim 6,
wherein the time of executing the first seglet or the second
seglet 1s a first time of executing the first seglet, wherein the
at least one memory requirement 1s a first memory require-
ment associated with the first seglet, and wherein the at least
the portion of memory 1s a first portion of memory associ-
ated with the first seglet, the computer-implemented method
turther comprising;:
determining a second memory requirement for the second
seglet at a second time of executing the second seglet;

determining that at least a subset of memory associated
with the first memory requirement corresponds to the
second memory requirement; and

capturing at least a second portion of memory at the time

of executing the second seglet, the at least the second
portion of memory not including the at least the subset
of memory associated with the first memory require-
ment.

9. The computer-implemented method of claim 6,

wherein the first command bulfer segment and the second

command bufler segment are associated with a same
frame to be displayed.

10. The computer-implemented method of claim 6, fur-
ther comprising:

recerving an application program interface (API) call

from a program to render content on a display; and

US 10,198,784 B2

21

based at least in part on the API call, generating at least
the first command bufler segment to render the content
on the display.

11. The computer-implemented method of claim 6, further

comprising:

determining that the first seglet 1s to be executed at a first
time;

associating the first seglet with an execution list;

determining, based at least in part on the synchromization
command, that the second seglet 1s not to be executed
at the first time;

associating the second seglet with a pending list; and

executing one or more commands associated with the first
seglet at the first time.

12. The computer-implemented method of claim 6,
wherein the first seglet includes a first set of commands
spanmng irom a start of the first command builer segment to
a command 1mmediately before the synchronization com-
mand, and wherein the second seglet includes a second set
of commands spanming from the synchronization command
to an end of the first command bufller segment or another
synchronization command.

13. The computer-implemented method of claim 6, fur-
ther comprising delaying an execution of the second seglet
until a time 1n which the precondition associated with the
synchronization command 1s satisfied.

14. A system comprising:

one or more processors; and

memory storing instructions that, when executed by the

one or more processors, cause the system to perform

operations comprising:

receiving an indication to capture an operation associ-
ated with a graphics processing unit (GPU), the GPU
comprising a graphics engine, a memory access
engine, and a compute engine;

capturing a {first command bufller segment to be
executed by the graphics engine;

capturing a second command bufler segment to be
executed by the memory access engine;

capturing a third command bufler segment to be
executed by the compute engine;

identifying at least one command 1n the first command
bufler segment associated with an execution precon-
dition;

identifying a signal command 1n the second command
bufler segment or in the third command buller seg-
ment, the signal command indicating that the execu-
tion precondition 1s satisiied;

based at least 1n part on the at least one command and
the signal command, segmenting the first command
bufler segment 1nto a first seglet and a second seglet,

10

15

20

25

30

35

40

45

50

22

wherein the first seglet 1s a first atomic sequence of
commands and the second seglet 1s a second atomic
sequence of commands;

determining at least one memory requirement for the
first seglet or the second seglet at a time of executing,
the first seglet or the second seglet;

capturing at least a portion of memory associated with
the at least one memory requirement at the time of
executing the first seglet or the second seglet; and

generating a playback file including at least the first
seglet, the at least the portion of memory associated
with the at least one memory requirement, and the
second seglet.

15. The system as recited in claim 14, the operations
further comprising:

transmitting, over a network, the playback file to a service

provider.
16. The system as recited in claim 14, wherein the time of
executing the first seglet or the second seglet 1s a first time
of executing the first seglet wherein the at least one memory
requirement 1s a first memory requirement associated with
the first seglet, and wherein the at least the portion of
memory 1s a first portion of memory associated with the first
seglet, the operations further comprising:
determining a second memory requirement for the second
seglet at a time of executing the second seglet;

determining that at least a subset of memory associated
with the first memory requirement corresponds to the
second memory requirement; and

capturing at least a second portion of memory at the time

of executing the second seglet, the at least the second
portion of memory not including the at least the subset
of memory associated with the first memory require-
ment.

17. The system as recited in claim 14,

wherein the first command bulfer segment and the second

command bufller segment are associated with a same
frame to be displayed.

18. The system as recited in claim 14, wherein the first
seglet includes a first set of commands spanning from a start
of the first command bufler segment to a command 1mme-
diately before the at least one command associated with the
execution precondition, and wherein the second seglet
includes a second set of commands spanning from the first
command associated with the execution precondition to an
end of the first command bufller segment or another com-
mand associated with another execution precondition.

19. The system as recited in claim 14, the operations
further comprising delaying an execution of the second
seglet until a time 1 which the execution precondition
associated with the at least one command 1s satisfied.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

