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IDENTIFICATION OF MISLABELED
SAMPLES VIA PHANTOM NODES IN LABEL
PROPAGATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Application claims priority to U.S. Provisional Pat-

ent Application Ser. No. 62/265,891, filed on Dec. 10, 2015,
to Martin Vejmelka, entitled “Identification of Mislabeled
Samples Via Phantom Nodes in Label Propagation,”, the
entire disclosure of which 1s incorporated herein by refer-
ence.

FIELD

The disclosure relates generally to labeling malware files,
and more particularly, to identifying malware files that have
been mislabeled using phantom nodes 1n label propagation.

BACKGROUND OF THE INVENTION

Malware, short for “malicious software,” 1s software that
can be used to disrupt computer operations, damage data,
gather sensitive information, or gain access to private coms-
puter systems without the user’s knowledge or consent.
Examples of such malware include software viruses, trojan
horses, rootkits, ransomware etc. A common mechanism
used by malware developers 1s to embed the malware 1nto a
f1le that 1s made to appear desirable to user, or 1s downloaded
and executed when the user visits a web site. For example,
malware may be embedded 1nto a software application that
appears legitimate and useful. The user downloads the file,
and when the file 1s opened, the malware within the file 1s
executed.

In the face of the growing threat of malware, many
anti-malware software packages were developed to detect
malware 1n a user’s files. Upon detection, the anti-malware
soltware may notily the user of the presence of the malware,
and may automatically remove or quarantine the malware. In
order to detect malware, anti-malware software vendors
identify malware 1n files using signatures or behavior of the
files. The signatures can be provided to client software that
detects malware on end-user machines. In some cases how-
ever, files may be mislabeled. For example, a file may be
labeled as malware when 1n fact 1t does not contain malware
(1.e. a false positive). Alternatively, a file may be labeled as
clean when 1n fact it contains malware (1.e. a false negative).
Further, the file may be labeled as having a first type of
malware when 1n fact it has a second type of malware.

The mislabeling of files can have serious consequences.
For example, a file that 1s mislabeled as malware can cause
a user to remove an otherwise usetul application and 1inter-
tere with a user’s work flow. A file that 1s mislabeled as clean
can cause a user’s computer to become infected by the
malware. In either case, the mislabeling can have a serious
impact on the reputation of the anti-malware solftware pro-
vider.

SUMMARY OF THE INVENTION

Systems and methods enable (1) creating a graph from a
plurality of sample files, the graph including sample file
nodes associated with the sample files and behavior nodes
associated with behavior signatures, wherein edges in the
graph connect a behavior node with a set of one or more
sample file nodes, wherein the one or more files associated
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with the one or more sample file nodes exhibit the behavior
signature associated with the behavior node, (i1) receiving
data indicating a label distribution of a neighbor node of a
sample file node 1n the graph, (111) 1n response to determining,
that a current label for the sample file node 1s unknown,
setting the current label distribution for the sample file node
to a consensus of label distributions of neighboring nodes;
and (1v) 1n response to determining that the current label for
the sample file node 1s known, performing operations
including: creating a phantom node associated with the
sample file node, determiming a neighborhood opinion for
the phantom node, based at least in part on the label
distribution of the neighboring nodes, determining a difler-
ence between the neighborhood opinion and the current
label for the sample file node, and determining whether the

current label 1s incorrect based, at least in part, on the
difference.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the inventive subject matter,
reference may be made to the accompanying drawings in
which:

FIG. 1 1s a block diagram of illustrating components of an
operating environment of a system for identifying misla-
beled samples using phantom nodes in label propagation.

FIG. 2 1s a flow chart 1llustrating operations of a method
for identiiying mislabeled samples using phantom nodes 1n
label propagation.

FIG. 3 1s an example graph used to illustrate identification
of mislabeled samples.

FIG. 4 1s an example graph providing an example of a
phantom node for the example graph illustrated 1in FIG. 3.

FIG. 5 1s a block diagram of an example embodiment of
a computer system upon which embodiments of the inven-
tive subject matter can execute.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

In the following detailed description of example embodi-
ments of the mvention, reference 1s made to the accompa-
nying drawings that form a part hereof, and 1n which 1s
shown by way of illustration specific example embodiments
in which the mvention may be practiced. These embodi-
ments are described in suflicient detail to enable those
skilled 1n the art to practice the imnventive subject matter, and
it 1s to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the scope of the
inventive subject matter.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic repre-
sentations ol operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most eflectively convey the substance of their work to
others skilled 1n the art. An algorithm 1s here, and generally,
conceilved to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
mampulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like. It should be
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borne 1n mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the
following discussions, terms such as “processing”’ or “com-
puting” or “calculating” or “determiming” or “displaying™ or
the like, refer to the action and processes of a computer
system, or similar computing device, that manipulates and
transforms data represented as physical (e.g., electronic)
quantities within the computer system’s registers and memo-
ries nto other data similarly represented as physical quan-
tities within the computer system memories or registers or
other such information storage, transmission or display
devices.

In the Figures, the same reference number 1s used
throughout to refer to an 1dentical component that appears in
multiple Figures. Signals and connections may be referred to
by the same reference number or label, and the actual
meaning will be clear from 1ts use 1n the context of the
description. In general, the first digit(s) of the reference
number for a given item or part of the mvention should
correspond to the Figure number 1n which the item or part
1s first 1dentified.

The description of the various embodiments 1s to be
construed as examples only and does not describe every
possible mstance of the inventive subject matter. Numerous
alternatives could be implemented, using combinations of
current or future technologies, which would still fall within
the scope of the claims. The following detailed description
1s, therefore, not to be taken 1n a limiting sense, and the
scope of the iventive subject matter 1s defined only by the
appended claims.

FIG. 1 1s a block diagram of illustrating components of a
system 100 for identifying mislabeled samples using phan-
tom nodes in label propagation. In some embodiments,
system 100 includes a classifier 120 that analyzes input files
and produces a graph 122 that has labeled nodes describing
the mput files. In some embodiments, the mput files can be
labeled as malware, clean or unknown. Input files 102 can
comprise files that have been determined to include malware
of various types. Each file in the set of input files 102 1s
known to contain some type of malware. In some aspects,
the malware in put files 102 may have been identified
using machine learning techniques or manual techniques. It
should be noted that the determination of malware may be
erroneous. That 1s, some of the files in mput files 102 may
be indicated to contain malware, but in fact do not contain
malware.

Clean 1put files 104 have been determined to be free of
malware. Again, the determination may be erroneous. That
1s, the file may be indicated to be clean, but 1n fact may
contain unidentified malware.

In addition, classifier may receive a set of input files 106
where 1t 1s unknown whether or not the files contain mal-
ware.

Classifier 120 receives some or all of the input files 102,
104 and 106, and executes each of the input files 1n sandbox
110. Sandbox 110 1s an execution environment that 1solates
the running code 1n an nput file from the operating system,
network devices, and storage devices of the classifier system
120 so that the malware does not aflect (1.¢., infect) classifier
system 120. For example, sandbox 110 may be a virtual
machine that provides a virtual operating system, virtual
storage, and virtual network devices for access by the
executable code 1n the input file.

In some aspects, sandbox 110 produces a log 112 when an
executable file 1s executed within sandbox 110. The log 112
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may include data indicating the operating system calls and
call parameters mnvoked by the executable file when running
in sandbox 110. The log 112 i1s saved and can be used by
classifier 120 to analyze the behavior of the executable input
file. For example, classifier 120 can analyze the logs pro-
duced by executing the mput files to determine 1f the
executable has a behavior that 1s similar to malware. For
example, a particular type of malware may exhibit a par-
ticular pattern of system calls and/or system call parameters.
Executable files that produce a sandbox log 112 that have
similar behavior (e.g., a similar pattern of system calls and
system call parameters) may be 1dentified as containing the
same type ol malware.

In some embodiments, the analysis of the logs 112 pro-
duced by running the executable nput files in sandbox 110
can be used to produce a graph 122. In some aspects, the
graph has two types of nodes (also referred to as vertices).
A first type of node represents an input file. A second type
of node represents a shared behavioral signature as deter-
mined by classifier 120 from logs 112. The first type of node
may include data that is a label for the node. The label may
indicate that the file associated with the node contains a type
of malware, that the file 1s clean (i.e., free of malware), or
that 1t unknown whether or not the file associated with the
node contains malware. Edges in the graph connect file
nodes to behavior nodes. The file nodes connected to a
particular behavior node share the behavior indicated by the
behavior node.

Further details on the operation of classifier 120 will now
be provided with reference to FIGS. 2, 3 and 4.

FIG. 2 1s a flow chart illustrating operations 200 of a
method for 1dentifying mislabeled samples using phantom
nodes 1 label propagation. At block 202, an algorithm
creates a graph from sample mput files that have been
classified. As noted above, a first type of node 1n the graph
can be associated with one of the input files and a second
type of node 1n the graph can be associated with a particular
behavior discovered by classifier 120. Various mechanisms
may be used to determine behaviors exhibited by sample
files. In some embodiments, the behaviors of the input
sample files and sample files exhibiting the same or similar
behavior can be determined as described in U.S. Provisional
Patent Application No. 62/265,790, entitled “DISTANCE
AND METHOD OF INDEXING SANDBOX LOGS FOR
MAPPING PROGRAM BEHAVIOR.,” which i1s hereby
incorporated by reference herein for all purposes. The file
nodes can be connected to a behavior node by an edge. All
of the files that are connected to a particular behavior node
share (1.e., exhibit) the behavior indicated by the behavior
node. Some of the nodes 1n the graph may be assigned a
label indicating the sample file associated with the node
contains malware, 1s clean (1.e. free of malware) or 1t 1s
unknown whether the sample file contains malware or not.
For example, some of the sample files from a database of
iput files may have a previous classification (either auto-
mated or manual) that previously determined that the sample
files contain known malware or are known to be free of
malware. In some aspects, a “potentially unwanted pro-
gram’” can be included as a malware type. In other aspects,
potentially unwanted programs can be labeled separately
from malware. For those nodes that are labeled, a phantom
node 1s created.

Block 204 indicates the start of an iterative label propa-
gation operation. During label propagation, label distribu-
tion data can propagate from one node to other nodes.
Blocks 206-212 can be executed for sample file nodes 1n the
graph during the label propagation operation. The operations
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in blocks 206-212 are described with reference to a current
iteration for a current sample file node, and can be repeated
for other sample file nodes 1n the graph 122. Additionally,
blocks 206-212 may be repeated for a node 1n subsequent
iterations, as labels are propagated through the nodes 1n a

back and forth fashion.

At block 206, data 1s received that indicates the label
distributions of one or more neighbor nodes to a current
sample file node. In some aspects the neighbor nodes can be
nodes that are connected to the same behavior node as the
current sample file node.

At block 208, a check 1s made to determine 11 the current
sample file node has been assigned a label.

If the current sample file node has not been assigned a
label (or assigned a label indicating “unknown” or similar
value), then the classifier proceeds to block 210 to update the
current node’s label distribution for the current sample file
node according to a neighborhood opinion that 1s determined
by the data received for the one or more neighbor nodes. The
classifier then proceeds to block 214 and the method ends
with respect to a current iteration for the current sample file
node. Blocks 206-212 can be repeated for other sample file
nodes. This can cause their label distribution to change, after
which this process may be repeated for the current node
during later iterations.

If the check at block 208 determines that the current
sample file node has already been assigned a label (or been
assigned a label that 1s not “‘unknown’ or similar value), then
at block 212, the data indicating the label distributions for
the neighbor nodes 1s used to determine a neighborhood
opinion that can be associated with the phantom node. The
neighborhood opinion can be an expression of the consensus
of the neighboring nodes as to what the label distribution of
the current sample file node should be. In some aspects, each
node keeps track of its distribution of labels (e.g., clean,
malware and potentially unwanted program labels). In some
aspects, the label distribution can be represented by three
non-negative numbers (one for each label type) that add to
one. During label propagation, each node receives the mes-
sages (1.e., the distribution of labels and weights associated
with the labels) from 1ts neighbors, and calculates a sum of
these distributions. In some aspects, the sum can be a
weighted sum of the label distributions. The node replaces
its current label distribution with the newly calculated label
distribution.

Block 214 indicates the end of an 1teration of the label
propagation operation. In some aspects, the label propaga-
tion operation continues (1.e., returns to block 204) until
changes in the neighborhood opinions (see e.g., blocks 210
and 212) are small enough, e.g., below a predefined or
configurable threshold. When the changes are small enough
and the label distribution settles for all nodes, then the graph
has stabilized and the label propagation operation can be
considered complete.

After completion of the label propagation operation, a
stress level can be determined for the nodes in the graph
having an associated phantom node. Nodes having a suspi-
cious label distribution can be 1dentified based on the stress
level. Blocks 216 and 218 can be executed for each node 1n
the graph that has an associated phantom node atter the label
propagation operation has finished.

At block 216, the classifier determines a diflerence
between the nelghborhood opinion and the current label
distribution of the current sample file node. The diflerence
may be referred to as “stress” of the node. In some aspects,
the difference, or stress, can be a number 1n the range of 0-1.
As an example assume that the order of labels 1s clean,
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malware, and pup. In this example, a known malware node
would have a distribution concentrated on the malware
label. Thus, a known malware node would be x,=(0, 1, 0).
As described above, the incoming messages are processed 1n
the phantom node. For the purposes of the example, assume
that the values processed 1n the phantom node result 1n label
weights of (0.8, 0.2, 0). In some aspects, the ‘stress’ of a
node as calculated as one half of the 1, norm of the
difference between the current label and the neighborhood
opinion of the label, which 1s one half of the sum of absolute
differences. For the example node above, the stress is:
0.5*(10-0.81+11-0.21+10-0)=0.5*1.6=0.8. For example, a
value of 0.98 would indicate that practically all the neigh-
bors have a completely diflerent distribution (thus affecting
the phantom node). It should be noted that other mechanisms
for determining the difference can be used and are within the
scope of the inventive subject matter.

At block 218, the classifier utilizes the difference to
determine if the current label of the current sample file node
1s 1ncorrect. For example, 11 the difference 1s above a
predetermined or configurable threshold, then the current
label may be determined by the classifier to be incorrect.

If a current label 1s determined to be incorrect, then
vartous remedial actions may be taken. For example, in
some aspects, the current node or the sample file associated
with the current node can be flagged for further analysis. In
some aspects, the sample file associated with the flagged
node can be manually analyzed. In alternative aspects, the
sample file can be automatically analyzed by one or more
malware detection tools to determine what the correct label
should be.

FIG. 3 1s an example graph 300 used to illustrate 1denti-
fication of mislabeled samples according to the above-
described systems and methods. The example graph can be
a graph 122 produced by classifier 120 (FIG. 1). In the
example illustrated 1n FIG. 3, nodes that have been labeled
as “malware” are indicated with an “M.” Nodes that have
been labeled as clean (1.e., free of malware) are indicated
with a “C.” Nodes where it 1s unknown whether the sample
file contains malware or 1s clean are indicated with a
question mark “?.” Shaded nodes indicated with a “B” are
behavior nodes that indicate a particular behavior. The
shared behavior signature may be associated with a behavior
signature as determined by classifier 120 or some other
malware detection/analysis tool.

Sample file nodes may have multiple behaviors associated
with the node. In the example 1illustrated 1n FIG. 3, sample
file node 302 exhibits multiple behaviors as indicated by
edges connecting sample file node 302 to behavior nodes
304, 306, 308 and 310. The multiple behaviors may indicate
a contlict or error in classification. For example, some
behaviors are shared with many malware samples while
other behaviors are shared primarily with clean samples.
Alternatively, the multiple behaviors may indicate that the
file exhibits multiple malicious behaviors.

FIG. 4 1s an example graph providing an example of a
phantom node for the example graph illustrated in FIG. 3. In
particular, FIG. 4 1llustrates a portion 320 of graph 300. In
the example illustrated i FIG. 4, a phantom node 420 has
been created and associated with sample file node 310
having a known label indicating that the sample file asso-
ciated with sample file node 310 contains malware. Data
flow 1n the graph portion 320 can be visualized as messages
between nodes. In the example illustrated in FIG. 4, for
nodes having an label of “unknown”, data flow can be
bidirectional as illustrated by bidirectional arrows 408 and
410. However, for sample file nodes where a label 1s known
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(e.g., either malware or clean), data tlow 1s redirected. For
example, data flowing mto the sample file node 310 from
label data propagated from other nodes 1s redirected to the
associated phantom node 420. The propagated data can be
used as described above to determine a neighborhood opin-
ion (1.e., neighborhood consensus) for the label for phantom
node 420. Label data propagated from node 310 to other
nodes can follow the conventional paths during label propa-
gation and 1s not redirected.

As noted above, a stress, can be calculated based on the
difference between the neighborhood opinion and current
label for a current sample file node. In some aspects, the
weilght assigned to data tlowing from a current sample file
node to other neighbor nodes can be weighted according to
the stress value. This can be desirable, because the weighting
can be used to decrease the influence of nodes where the
stress value 1s high (i.e., nodes that are more likely to have
been mislabeled).

The description above has been provided in the context of
using behavioral signatures of sample files to link nodes in
a graph. Other properties could be used instead of, or 1n
addition to behavioral signatures. For example, a shared
installation path or properties of an executable file envelope
could be used.

Further, 1t should be noted that while the above-described
systems and methods have been described 1n the context of
anti-malware software tools and methods, the inventive
subject matter 1s not limited to such environments. The
above-described systems and methods may be applied to
many other environments that utilize label propagation in
graphs.

FIG. 5 1s a block diagram of an example embodiment of
a computer system 300 upon which embodiments of the
inventive subject matter can execute. The description of
FIG. 5 1s intended to provide a brief, general description of
suitable computer hardware and a suitable computing envi-
ronment in conjunction with which the invention may be
implemented. In some embodiments, the mventive subject
matter 1s described 1n the general context of computer-
executable 1nstructions, such as program modules, being
executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc., that perform particular tasks or implement par-
ticular abstract data types.

As indicated above, the system as disclosed herein can be
spread across many physical hosts. Therefore, many systems
and sub-systems of FIG. 5 can be involved 1n implementing
the 1ventive subject matter disclosed herein.

Moreover, those skilled 1n the art will appreciate that the
invention may be practiced with other computer system
configurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
clectronics, smart phones, network PCs, minicomputers,
mainframe computers, and the like. Embodiments of the
invention may also be practiced i distributed computer
environments where tasks are performed by I/O remote
processing devices that are linked through a communica-
tions network. In a distributed computing environment,
program modules may be located 1n both local and remote
memory storage devices.

With reference to FIG. 5, an example embodiment
extends to a machine 1n the example form of a computer
system 500 within which instructions for causing the
machine to perform any one or more of the methodologies
discussed herein may be executed. In alternative example
embodiments, the machine operates as a standalone device
or may be connected (e.g., networked) to other machines. In
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a networked deployment, the machine may operate in the
capacity of a server or a client machine in server-client
network environment, or as a peer machine 1n a peer-to-peer
(or distributed) network environment. Further, while only a
single machine 1s 1llustrated, the term “machine” shall also
be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of mnstruc-
tions to perform any one or more of the methodologies
discussed herein.

The example computer system 500 may include a pro-
cessor 302 (e.g., a central processing unit (CPU), a graphics
processing unit (GPU) or both), a main memory 504 and a
static memory 506, which communicate with each other via
a bus 508. The computer system 500 may further include a
video display unit 510 (e.g., a liguid crystal display (LCD)
or a cathode ray tube (CRT)). In example embodiments, the
computer system 300 also includes one or more of an
alpha-numeric mput device 512 (e.g., a keyboard), a user
interface (Ul) navigation device or cursor control device 514
(e.g., a mouse), a disk drive unit 516, a signal generation
device 518 (e.g., a speaker), and a network 1nterface device
520.

The disk drive unit 5316 includes a machine-readable
medium 522 on which 1s stored one or more sets of mstruc-
tions 524 and data structures (e.g., software instructions)
embodying or used by any one or more of the methodologies
or functions described herein. The instructions 524 may also
reside, completely or at least partially, within the main
memory 504 or within the processor 502 during execution
thereol by the computer system 500, the main memory 504
and the processor 502 also constituting machine-readable
media.

While the machine-readable medium 322 1s shown 1n an
example embodiment to be a single medium, the term
“machine-readable medium™ may include a single medium
or multiple media (e.g., a centralized or distributed database,
or associated caches and servers) that store the one or more
instructions. The term “machine-readable medium™ shall
also be taken to 1include any tangible medium that 1s capable
ol storing, encoding, or carrying instructions for execution
by the machine and that cause the machine to perform any
one or more of the methodologies of embodiments of the
present invention, or that 1s capable of storing, encoding, or
carrving data structures used by or associated with such
instructions. The term “machine-readable storage medium”™
shall accordingly be taken to include, but not be limited to,
solid-state memories and optical and magnetic media that
can store information 1n a non-transitory manner, 1.¢., media
that 1s able to store information. Specific examples of
machine-readable media include non-volatile memory,
including by way of example semiconductor memory
devices (e.g., Frasable Programmable Read-Only Memory
(EPROM), Electrically FErasable Programmable Read-Only
Memory (EEPROM), and flash memory devices); magnetic
disks such as internal hard disks and removable disks;
magneto-optical disks; and CD-ROM and DVD-ROM disks.

The instructions 524 may further be transmitted or
received over a communications network 526 using a signal
transmission medium via the network interface device 520
and utilizing any one of a number of well-known transfer
protocols (e.g., FTP, HT'TP). Examples of commumnication
networks include a local area network (LAN), a wide area
network (WAN), the Internet, mobile telephone networks,
Plain Old Telephone (POTS) networks, and wireless data
networks (e.g., WiF1 and WiMax networks). The term
“machine-readable signal medium” shall be taken to include
any transitory intangible medium that 1s capable of storing,
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encoding, or carrying instructions for execution by the
machine, and includes digital or analog communications
signals or other intangible medium to facilitate communi-
cation of such software.

Although an overview of the inventive subject matter has
been described with reference to specific example embodi-
ments, various modifications and changes may be made to
these embodiments without departing from the broader spirit
and scope of embodiments of the present invention. Such
embodiments of the inventive subject matter may be referred
to herein, individually or collectively, by the term “inven-
tion” merely for convenience and without intending to
voluntarily limit the scope of this application to any single
invention or inventive concept i more than one 1s, 1n fact,
disclosed.

As 1s evident from the foregoing description, certain
aspects of the inventive subject matter are not limited by the
particular details of the examples 1llustrated herein, and 1t 1s
therefore contemplated that other modifications and appli-
cations, or equivalents thereot, will occur to those skilled 1n
the art. It 1s accordingly intended that the claims shall cover
all such modifications and applications that do not depart
from the spirit and scope of the inventive subject matter.
Therefore, 1t 1s manifestly intended that this inventive sub-
ject matter be limited only by the following claims and
equivalents thereof.

The Abstract 1s provided to comply with 37 C.F.R. §
1.72(b) to allow the reader to quickly ascertain the nature
and gist of the technical disclosure. The Abstract 1s submit-
ted with the understanding that 1t will not be used to limat the
scope of the claims.

What 1s claimed 1s:

1. A computer-implemented method for protecting com-
puting devices from mislabeled malware, the method com-
prising:

creating a graph from a plurality of sample executable

files by executing the sample executable files 1n an
isolated execution environment, the graph including
sample file nodes associated with the sample execut-
able files and behavior nodes associated with behavior
signatures, wherein edges 1n the graph connect a behav-
ior node with a set of one or more sample file nodes,
wherein the one or more sample executable files asso-
ciated with the one or more sample file nodes exhibit
the behavior signature associated with the behavior
node;

receiving data indicating a label distribution of a neighbor

node of a sample file node 1n the graph;

in response to determining that a current label for the

sample file node 1s unknown, setting the current label
distribution for the sample file node to a consensus of
label distributions of neighboring nodes;

in response to determining that the current label for the

sample {file node 1s known, performing operations

including:

creating a phantom node associated with the sample file
node,

determining a neighborhood opinion for the phantom
node, based at least in part on the label distribution
of the neighboring nodes,

determining a difference between the neighborhood
opinion and the current label for the sample file node,
and

determining whether the current label i1s incorrect
based, at least 1n part, on the difference; and

in response to determining that the current label for the

sample file node 1s incorrect, performing at least one
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remedial action on the sample executable file associ-
ated with the sample file node having the incorrect
current label.

2. The computer-implemented method of claim 1 turther
comprising performing an iterative label propagation opera-
tion.

3. The computer-implemented method of claim 1,
wherein the at least one remedial action comprises flagging
at least one of the current node and the sample executable
file associated with the current node for further analysis.

4. The computer-implemented method of claim 1 wherein
the at least one remedial action comprises applying at least

one malware detection tool to determine what the current
label should be.

5. The computer-implemented method of claim 1,
wherein the current label indicates that the sample execut-
able file associated with current label contains malware and
wherein said determining whether the current label 1s 1ncor-
rect comprises determining that the sample executable file
associated with the current label does not contain malware.

6. The computer-implemented method of claim 1,
wherein the current label imndicates that the sample execut-
able file associated with current label 1s free of malware and
wherein said determining whether the current label 1s 1ncor-
rect comprises determining that the sample executable file
associated with the current label does contain malware.

7. The method of claim 1, wherein the at least one
remedial action comprises decreasing an influence of the
sample file node during propagation of the current label by
welghting data flowing from the sample file node to neigh-
boring nodes according to the determined difference
between the neighborhood opinion and the current label for
the sample file node.

8. A system comprising;:

at least one processor; and

a non-transitory computer readable storage medium hav-
ing a program stored thereon, the program causing the
at least one processor to execute the steps of:

(a) creating a graph from a plurality of sample executable
files by executing the sample executable files 1n an
isolated execution environment, the graph including
sample file nodes associated with the sample execut-
able files and behavior nodes associated with behavior
signatures, wherein edges 1n the graph connect a behav-
1or node with a set of one or more sample file nodes,
wherein the one or more sample executable files asso-
ciated with the one or more sample file nodes exhibit
the behavior signature associated with the behavior
node;

(b) receiving data indicating a label distribution of a
neighbor node of a sample file node 1n the graph;

(¢) 1 response to determining that a current label for the
sample file node 1s unknown, setting the current label
distribution for the sample file node to a consensus of
label distributions of neighboring nodes,

(d) in response to determining that the current label for the
sample {file node 1s known, performing operations
including:

(1) creating a phantom node associated with the sample
file node,

(1) determining a neighborhood opinion for the phan-
tom node, based at least 1in part on the label distri-
bution of the neighboring nodes,

(111) determining a diflerence between the neighbor-
hood opinion and the current label for the sample file
node, and
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(1v) determining whether the current label 1s incorrect
based, at least 1n part, on the difference; and
(e) 1n response to determining that the current label for the
sample file node 1s incorrect, performing at least one
remedial action on the sample executable file associ-
ated with the sample file node having the incorrect
current label.

9. The system of claim 8, wherein the program further
performs causes the at least one processor to perform an
iterative label propagation operation.

10. The system of claam 8, wherein the at least one
remedial action comprises flagging at least one of the current
node and the sample executable file associated with the
current node for further analysis.

11. The system of claim 8, wherein the at least one
remedial action comprises applying at least one malware
detection tool to determine what the current label should be.

12. The system of claim 8, wherein the current label
indicates that the sample executable file associated with
current label contains malware and wherein said determin-
ing whether the current label 1s 1incorrect comprises deter-
mimng that the sample executable file associated with the
current label does not contain malware.

13. The system of claim 8, wherein the current label
indicates that the sample executable file associated with
current label 1s free of malware and wherein said determin-
ing whether the current label 1s incorrect comprises deter-
mimng that the sample executable file associated with the
current label does contain malware.

14. A non-transitory computer readable storage medium
comprising a set of instructions executable by a computer,
the non-transitory computer readable storage medium com-
prising:

instructions for creating a graph from a plurality of

sample executable files by executing the sample
executable files 1n an 1solated execution environment,
the graph including sample file nodes associated with
the sample executable files and behavior nodes asso-
ciated with behavior signatures, wherein edges in the
graph connect a behavior node with a set of one or more
sample file nodes, wherein the one or more sample
executable files associated with the one or more sample
file nodes exhibit the behavior signature associated
with the behavior node;

instructions for receiving data indicating a label distribu-

tion of a neighbor node of a sample file node in the
graph;
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instructions for, in response to determining that a current
label for the sample file node 1s unknown, setting the
current label distribution for the sample file node to a
consensus of label distributions of neighboring nodes;
instructions for, in response to determining that the cur-
rent label for the sample file node 1s known, performing
operations including;
creating a phantom node associated with the sample file
node, determining a neighborhood opinion for the
phantom node, based at least in part on the label
distribution of the neighboring nodes,
determining a difference between the neighborhood
opinion and the current label for the sample file node,
and
determining whether the current label 1s 1incorrect
based, at least in part on the difference; and
instructions for, in response to determining that the cur-
rent label for the sample file node 1s incorrect, perform-
ing at least one remedial action on the sample execut-
able file associated with the sample file node having the
incorrect current label.

15. The non-transitory computer readable storage medium
of claim 14 further comprising instructions for performing
an 1iterative label propagation operation.

16. The non-transitory computer readable storage medium
of claim 14, wherein the at least one remedial action
comprises flagging at least one of the current node and the
sample executable file associated with the current node for
further analysis.

17. The non-transitory computer readable storage medium
of claiam 14, wherein the at least one remedial action
comprises applying at least one malware detection tool to
determine what the current label should be.

18. The non-transitory computer readable storage medium
of claim 14, wherein the current label indicates that the
sample executable file associated with current label contains
malware, further comprising instructions for determiming,
that the sample executable file associated with the current
label does not contain malware.

19. The non-transitory computer readable storage medium
of claam 14, wherein the current label indicates that the
sample executable file associated with current label 1s free of
malware, further comprising instructions for determining
that the sample executable file associated with the current
label does not contain malware.
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