12 United States Patent

Cattaneo

US010198277B2

US 10,198,277 B2
*Feb. 5, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(63)

(1)

(52)

(58)

FACILITATING DEVICE DRIVER

INTERACTIONS

Applicant: Amazon Technologies, Inc., Seattle,
WA (US)

Inventor: Fiorenzo Cattaneo, Snoqualmie, WA
(US)

Assignee: Amazon Technologies, Inc., Seattle,
WA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 14/991,799

Filed: Jan. 8, 2016

Prior Publication Data

US 2016/0124759 Al May 5, 2016

Related U.S. Application Data

Continuation of application No. 12/414,469, filed on
Mar. 30, 2009, now Pat. No. 9,256,440.

Int. CL
GO6F 9/445 (2018.01)
GO6F 13/40 (2006.01)
(Continued)
U.S. CL
CPC GO6F 9/44505 (2013.01); GO6F 9/4411

(2013.01); GO6F 13/4027 (2013.01); GO6F
9/54 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

12/2003 Asselin
7/2006 Le

0,658,489 Bl

7,082,598 B1* GO6F 9/4413

703/21

ttttttttttttttttttttttttt

(Continued)

FOREIGN PATENT DOCUMENTS

5/1999
8/1999

WO
WO

9939254 A2

WO 9939254 A2 * GO6F 13/102

ttttttttttt

OTHER PUBLICATTIONS

“Driver Wrapper,” retrieved on Jan. 27, 2009, from http://en.
wikipedia.org/wiki/Device driver wrapper, 1 page.

(Continued)

Primary Examiner — Umut Onat

(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Techniques are described for facilitating interactions with
device driver modules. In at least some situations, the
techniques 1nclude managing interactions between device
driver modules and other programs or hardware devices so
as to minimize disruptions related to the device driver
modules, including when changes to existing device driver
modules are made. Such device driver module changes may
have various forms and may occur for various reasons,
including to mstall new versions of device driver modules or
otherwise upgrade existing device driver modules. Further-
more, the interactions with device driver modules may be
managed 1n various manners, including to allow changes to
occur to a device driver module while that device driver
module 1s 1n use on a computing system, but without causing
other programs on the computing system to be restarted or
to lose existing connections to the device driver module
being changed.

20 Claims, 8 Drawing Sheets

400
Gttach Wrapped Devica Drivaer qutiny

|

Receive indication of targst
gevice diiver 1o attach

¥

Load device driver if nesded

using device driver's name for
itself and giving davice driver a
naw nama, and associate it

Y

Yes / Saved device \\v\/_ 420

“\\ driver state? //' No 425
2 v [/
Provide indication to 430 FReceive and sltore
target davice driver of L~ indication of link to
bnk 10 saved davices new saved device
drivar state information driver state information
li
Changes from \‘/ 440
previously attached
davice driver? / Yes l){ 445
Cptionalky modify
- storad information to
reflect changes
h
455
Provide indication that device e

driver wrapper is ready (o use

l

499
(RETURN)/

US 10,198,277 B2

Page 2
(51) Int. CL
GO6F 9/4401 (2018.01)
GO6F 9/54 (2006.01)
(56) References Cited
U.S. PATENT DOCUMENTS
9,218,128 B1* 12/2015 Yuschik GO9B 5/06
9,256,440 B1* 2/2016 Cattaneo GO6F 9/4411
2006/0070089 Al* 3/2006 Shoaib GOO6F 9/4411
719/321
2009/0089815 Al 4/2009 Manczak et al.
2009/0150909 Al1* 6/2009 Barreto GO6F 9/4411

719/324

OTHER PUBLICATIONS

Red Hat GFS 5.2.1 —Administrator’s Guide, Chapter 11, “Using
GNBD,” 2004 Red Hat, Inc., Raleigh, North Carolina, 7 pages.

* cited by examiner

US 10,198,277 B2

Sheet 1 of 8

Feb. 5, 2019

U.S. Patent

061 HMOMIDU

PLOJ

Op L JOALD SJIASD
abeiols paddeim

Opl Jeddeim
JOALID D0IASD

; 0L

¢7 L 83IA8p abelols

_ | _

GL] SB0IABD £ DALD BIpaul
O/l 18410 8jgepess-ssinduios

UNQFN

[ot SOIIASD
abelols alowel

4201 -

2¢1 Z uoneoldde

gri SUELSIUI

|

:

}

m

:

WBISAS o]l M

|

w

¥} Jehe m

80IABD %00|Q

_

(&L | uoneoydde

gocL eords
jonef-1otiey b epgl eoeds
Wwiv)sAs bunetsedo | [8A81-18SN
O£ Alowsud
071 abeios 1810
¢}l UOloOzauUGD L1 Aejdsip
MIOM]SU

0L} SjusuodwWwod O/ G0l NdD

ikl

ekl

nkipiebinkiakl iabinlsilnkih _ ihlnjoninbnlehpbnlndscl ikl e bk

o.m [.Ey.w% .mESano

US 10,198,277 B2

Sheet 2 of 8

Feb. 5, 2019

U.S. Patent

44 |
UOREUWLIOJU PLO} _
Mwm_wmmu gy1 1OALD BOIABD
abelo)s obes0)s paddeim

[Pl UOHBLUIOJUI
ajels uoneohdde

__

901

Op 1 Joddeim
1L0})L_ JBALIP 92IABD

G7Z1 @0IA8p abrils

L0k

qL01

[t 1ehe
SUIARD MO0

9yl @93eliolul
WoIsAs ajl

qos | eoeds
[6AB]~|oUISN
wolsAs bunessdo

[(TEEPE TR T T T T T -

Ay

-

Mgy gy Gl s R el R e

|
w
w
j
M
i
!
:
i

L

Z&1 ¢ uopeoydde

B

1e) | uoneoidde

eog | eoeds

[1BA8)-18SN

0£1 Aowsw

US 10,198,277 B2

Sheet 3 of 8

Feb. 5, 2019

U.S. Patent

/21 8%inap
abeli0)1s ajousl

8yl JOAUD
82lA8p aberi0]s

bpl UOBLLIOLUI
o)e}s uoljeoljdde

6p) JOALP |
w@_EE‘_&:_ 201Aap BbeIO}S
51818 a_ paddeim mau 2104

a0IASD
abelols

- - o

J1 b4

0pl aorlisSiul

:
|
i
.
:

LIDISAS 3l “ ¢ 7 uoneolidde
“
|
_

[p] JoAe;
B0IABD YO0|]

|

A4 (o1 1 uonesydde
as
oyl 1oddeim J0€} 9I'dS _
1104 jonsl-leulsy b epsL aoeds
JONIP BINEP woisAs Bunesodo | [9ASj-IBSN
0¢ 1 Arowews
C7 L @oIASD aberlols 07 | SJIASD oDLI0ls

US 10,198,277 B2

L

S

-t 44

= UONBUWLIOUI

E -

7 S2IASPD
abelols

. -

Yo—

—

e

el

=

W

e

U.S. Patent

L} UORBWIOJUL
a1e1s uoijeoydde

6701 , |

6¥) JOALD ,
ooInep 8beI0)s 20}

paddelm mau

q.01

0p L teddeim
320+ J2ALID I0VIASD

GZ L 90Inap abelo)s

L

/¥] JoAe
92IABP X00[]

aL bi4

9y} SOBLSIUL

WwiaysAs ojl 2¢l Z uoneoydde

1L | uoneoydde

goc, eords
joAB[~jaUIBY | epgl 8oeds
wiojsAs buneiedo | [oAB[-18SH

oS, Aloweus

US 10,198,277 B2

Sheet 5 of 8

Feb. 5, 2019

U.S. Patent

Z "bi4

¢6¢ 097 G8¢
) weishs SDINS jomjau 10M18U SUIBISAS
Bunndwos youms [¢ >0 AHOM HOM] Sunndwos K. g6z
loBeuRLL UIMIOMIS U jeuiajul |BUISIXS 18UJ0
. 66¢
U06¢ ¢9¢ 097
swo)sAs Bunnduwod 1soy i |
8pC 19ALD
q8tc - BUIASP
swis)sAs Bunndwod jsoy E paddeim
(2092
BOBE ope Jaddeim
_ 9¢Z uonesydde ._wmgg AN
DUIYOBW fBNLIA
852 667 “ | L ERPR PR Pessr g K1owew
sauyoeW _ . |
e || 190EUEN WA 062 | Boep 8BRI0NS [g7z gop~f NdlO
Alouwiau |
C
| bC7 SS2IASD (/] JaUI0 Gi¢ UOOBUUOD
obeI0)S SJUBUOdW0D AXA HIoMIou |
O/l NdO :
04¢ | SALp eipawl £l fords:
162 062 262 | [ogepearigndwoo| St |
WwisisAs bunnduwos jsou swetodwos ol |
00¢ o
Ote wajsAs Bupndwod jsoy

U.S. Patent Feb. 5, 2019 Sheet 6 of 8 US 10,198,277 B2

300
(Device Driver Wrapper Routine)/

v

Perform mitialization activities e 365

. * , 1
Receive attach instruction e 310

Y
I Attach wrapped device driver l L 520
—)
Y
- . 325
Receive instruction L
) Change
wrapped 360
Provide Yy / _"__330 device _ / _
handie arver || Detach wrapped
) ? ——
< Type: >] device driver
Device | -
335 Other driver
Y [200 interaction
i Perf th -
va:d.e haqdle to eincajir g; t{;d er Perform ongoing
device driver Soeration as operation regarding
wrapper P * attached device driver
appropriate
S —
_*_______________ SN
Yy 395 399
e . _Yes <Continue 7 y %(END)/
o NO

Fig. 3

U.S. Patent Feb. 5, 2019 Sheet 7 of 8 US 10,198,277 B2

- 400
étta{:h Wrapped Device Driver Routin%f

!

Receive indication of target |/~ 409
device driver to attach

L.oad device driver if needed, e 410
using device driver's name for
iiseif and giving device driver a

new name, and associate it

Yes Saved device 420
driver state? No 425
Frovide indication to 430 Receive and store
target device driver of L indication of link to
HNK 10 saved device new saved device

l driver state information driver state information

e e e

Changes from 440
previously attached
device driver? Yes 445

No Optionally modify

stored information {o
reflect changes

455
Provide indication that device L
driver wrapper is ready {o use

4 499
< RETURN Y

U.S. Patent Feb. 5, 2019 Sheet 8 of 8 US 10,198,277 B2

Ve 500
(Detach Wrapped Device Driver Routine>

!

Receive indication to detach current 909
wrapped device driver
Initiate pause of or queuing of new 019
incoming requests for wrapped
device driver

Wait for existing requests for 925
wrapped device driver to compiete
De-associate wrapped device driver 239

from device driver wrapper, and
optionally untoad it

599
(RETURN >/

Fig. 5

US 10,198,277 B2

1

FACILITATING DEVICE DRIVER
INTERACTIONS

This application 1s a continuation of U.S. patent Ser. No.
12/414,469, filed Mar. 30, 2009 and enfitled “Facilitating

Device Driver Interactions,” now U.S. Pat. No. 9,256,440.

BACKGROUND

A device driver module on a computing system may be
changed for various reasons, but making modifications to an
existing device driver module that 1s 1n use can be very
disruptive, such as by causing other programs to have to be
restarted, or in some cases causing a reboot of the computing,
system. In addition, the advent of virtualization technologies
for commodity hardware has introduced further related
problems, including when multiple different programs share
access to individual hardware devices and other hardware
resource, and that access 1s disrupted due to a change of a
corresponding device driver module. Nonetheless, virtual-
ization technologies, such as those provided by XEN,
VMWare, or User-Mode Linux, also provide some benefits
with respect to allowing various computing resources to be
cliciently and securely shared between multiple users and
programs. For example, virtualization technologies may
allow a single physical computing system to be shared
among multiple users by providing each user with one or
more virtual machines hosted by the single physical com-
puting system, with each such virtual machine being a
software simulation acting as a distinct logical computing
system that provides users with the 1llusion that they are the
sole operators and administrators of a given hardware com-
puting resource, while also providing application 1solation
and security among the various virtual machines.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1D illustrate examples of using a device driver
wrapper module to facilitate interactions with device driver
modules.

FIG. 2 1s a block diagram 1llustrating example computing
systems suitable for executing a device drniver wrapper
module to facilitate interactions with device driver modules.

FIG. 3 illustrates a flow diagram of an example embodi-
ment of a Device Driver Wrapper routine.

FI1G. 4 illustrates a flow diagram of an example embodi-
ment of an Attach Wrapped Device Driver routine.

FIG. 5 illustrates a flow diagram of an example embodi-
ment of a Detach Wrapped Device Driver routine.

DETAILED DESCRIPTION

Techniques are described for facilitating interactions with
device driver modules. In at least some embodiments, the
techniques include managing interactions with device driver
modules by other programs or hardware devices so as to
mimmize disruptions related to the device driver modules,
including when changes are made to existing device driver
modules that are 1n use. Such device driver module changes
may have various forms and may occur for various reasons,
including as part of installing new versions of device driver
modules or otherwise upgrading existing device driver mod-
ules, as discussed in greater detail below. Furthermore, the
interactions with device driver modules may be managed 1n
various manners, including to allow changes to occur to a
device driver module while that device driver module 1s 1n
use by one or more other programs on a computing system,

10

15

20

25

30

35

40

45

50

55

60

65

2

but without causing the other programs to be restarted or to
lose existing connections to the device driver module being
changed, as discussed in greater detail below. At least some
of the described techniques for facilitating device driver
interactions may be automatically performed in at least some
embodiments by a device driver wrapper module, as
described below.

Device driver modules that are managed by the described
techniques may be of various types 1n various embodiments,
and as previously noted, device driver module changes may
occur for various reasons. For example, in some embodi-
ments, some or all of the device driver modules that are
managed may be storage device drivers associated with
non-sequential and/or sequential hardware storage devices
(e.g., hard disk drives, magnetic tape drives, optical disk
drives, flash memory drives, etc.), while 1n other embodi-
ments some or all of the device dnver modules may be
assoclated with other types of devices for which state
information 1s maintained (e.g., video cards and other
graphic devices, network interface cards and other network
adapters, printers, virtual storage devices, other virtual
devices, etc.). In addition, in some embodiments, a {first
device driver module associated with a particular hardware
device may be replaced with or otherwise changed to a
second device driver module that 1s also associated with that
same hardware device, but that includes different function-
ality than the first device driver, such as 1f the second device
driver 1s a newer version of the first device driver or
otherwise fixes bugs in or upgrades the first device driver
(e.g., to 1ix bugs in the first device driver, to fix bugs 1n
firmware or microcode of the associated hardware device,
¢tc.). Furthermore, in some embodiments, a second device
driver module that replaces a first device driver module may
further implement other types of changes, such as to be
associated with a different hardware device than the first
device driver (e.g., a hardware device of a diflerent type,
such as 11 the first device driver 1s associated with a first type
of non-sequential hardware storage device and the second
device driver 1s associated with a second type ol non-
sequential or sequential hardware storage device).

In addition, as previously noted, the interactions with
device driver modules may be managed in various manners
in various embodiments. For example, a device driver
wrapper module 1s used in some embodiments to manage
interactions on behalf of an associated device driver module,
including to support changes to the associated device driver.
In particular, other programs may desire to establish handles
or other persistent references to a particular device driver
module, and then use those open persistent references to
send /O (“input/output™) operation requests or other com-
munications to that particular device driver—such other
programs may include, for example, application programs,
other device driver modules or other operating system
kernel-level modules, etc. However, i such persistent ret-
erences are established to a particular device driver module,
and that device driver module needs to later be unloaded
from memory or otherwise modified, execution of those
other programs may need to be terminated. Thus, to prevent
such problems, a device driver wrapper module mstead may
be istalled or otherwise registered 1n place of a particular
associated device driver module associated with a particular
hardware device, such as by using the name that the asso-
ciated device driver module would otherwise use, or by
otherwise registering the wrapper module as being the
primary device driver module for the particular hardware
device. After such installation or other registration of the
device driver wrapper module, other programs that attempt

US 10,198,277 B2

3

to establish a persistent reference to the associated device
driver module (or to whichever device dniver module 1s
associated with a particular hardware device that the asso-
ciated device driver module 1s configured to support) will
instead receive a persistent reference to the device driver
wrapper module, and 1n some or all embodiments the other
programs will be unaware that the persistent reference 1s not
directly associated with the associated device driver module.
With the persistent references being established to the device
driver wrapper module, changes to the associated device
driver module do not cause those persistent references to be
invalidated, or otherwise necessitate that the persistent ret-
erences be changed or modified, thus minimizing disrup-
tions to the other programs that are using the persistent
references.

When a device driver wrapper module operates 1n place of
an associated device driver module, the device driver wrap-
per module may manage interactions with the associated
device driver in various manners. For example, the device
driver wrapper module may attach and wrap the associated
device driver 1n such a manner that all interactions to and
from the associated device driver to access functionality of
the associated device driver first pass through and are
managed by the device driver wrapper module. Such attach-
ing and wrapping operations may involve various actions by
the device driver wrapper module, such as registering one or
more callbacks with the associated device driver module so
that particular communications sent by the associated device
driver module are received by the device driver wrapper
module. In addition, the device driver wrapper module may
implement the same external interfaces (e.g., 1octls, or
input/output controls; device I/O controls; data read/write
operations and other I/O operations; etc.) as the associated
device driver module that 1t wraps, to enable the device
driver wrapper module to recerve and forward communica-
tions sent to the associated device driver. The device driver
wrapper module may further take steps to maintain and use
various state information on behalf of the associated device
driver module 1n at least some embodiments, such as appli-
cation state mformation about I/O requests and other com-
munications received Ifrom other application programs,
operating system modules or other programs via established
persistent references to the device driver wrapper module
and/or device state information about a connection to or
other state of a particular hardware device that the associated
device driver module 1s configured to support, as described
in greater detail below. In addition, in some embodiments
and situations, the device driver wrapper module may take
turther actions to support particular types of changes 1n a
new attached second device driver module that replaces a
previously attached first device driver module. For example,
such changes may include a version change in a second
device driver module that causes the second device driver
module to use different data structures or otherwise receive
or send communications 1n a different manner than the prior
version, or changes that reflect differences in interacting
with a second hardware device associated with the second
device driver module that 1s different from a first hardware
device associated with the first device driver module (e.g., to
accommodate different types of hardware devices).

In addition, a device driver wrapper module may have
vartous forms in various embodiments. For example, in
some embodiments, a device driver wrapper module may be
implemented as a loadable kernel module, a user-level
device dniver program, or otherwise as a device driver
module to be executed by an operating system. In addition,
the loading of a device driver wrapper module may be

10

15

20

25

30

35

40

45

50

55

60

65

4

triggered 1n various manners, such as to occur automatically
as part of the boot process for the computing system on
which the device driver wrapper module 1s loaded (e.g., as
loaded by the operating system kernel after it 1s loaded, by
being included as part of the operating system kernel that 1s
initially loaded during the boot process, etc.), in response to
an instruction from a human user, 1n response to a request
from another program for a persistent reference to the device
driver wrapper module or to otherwise use the device driver
wrapper module, etc. Furthermore, in some embodiments,
cach device driver module that 1s to be attached and wrapped
may have a distinct associated device driver wrapper module
(e.g., a wrapper module that 1s configured to support the
same 1nterfaces as the wrapped device driver module), while
in other embodiments a single device driver wrapper module
may be configured to be able to consecutively or simulta-
neously attach and wrap multiple distinct device driver
modules (e.g., multiple programs of a single type of device
driver) and/or multiple distinct types of device driver mod-
ules. In at least some embodiments, a device driver wrapper
module may also be configured to attach and wrap a device
driver module that 1s part of the root file system and/or the
boot file system or partition (e.g., a storage device driver for
a hardware storage device that stores the root file system
and/or the boot file system or partition) or otherwise part of
the boot sequence, so at to enable the device driver module’s
upgrade or other modification without rebooting a comput-
Ing system.

For 1illustrative purposes, some embodiments are
described below i which specific types of changes to
specific types of device driver modules are managed 1n
specific ways so as to facilitate specific types of interactions
with the device driver modules. For example, in at least
illustrative embodiments, a device driver wrapper module
wraps one or more storage device driver modules, and may
receive communications for the wrapped storage device
driver module(s) that are sent via a block device layer of the
operating system. These examples are provided for 1llustra-
tive purposes and are simplified for the sake of brevity, and
the mventive techniques may be used in a wide variety of
other situations, some of which are discussed below, with the
techniques not being limited to use with storage device
drivers, local storage devices, virtual machines, data centers
or other specific types of data storage systems, computing
systems or computing system arrangements. For example, as
noted 1n greater detail elsewhere, a device drniver wrapper
module may wrap one or more device driver modules of
types other than storage device drivers, and if so may receive
communications for the wrapped device driver module(s)
that are sent via corresponding layers of the operating
system other than a block device layer. In addition, 1n some
embodiments, particular device driver modules and/or
device driver wrapper modules may execute 1n user-level
memory space rather than operating system or kernel-level
memory space.

FIGS. 1A-1D 1illustrate examples 1n which an embodi-
ment of a device dniver wrapper module may execute, as
well as examples of interactions 1n which the device driver
wrapper module may engage. In particular, 1n the example of
FIG. 1A, a computing system 100 1s executing an embodi-
ment of a device driver wrapper module 140 to provide
enhanced functionality to applications and other modules on
the computing system 100, although in other embodiments
a device driver wrapper module may instead support appli-
cations and other modules on one or more other computing
systems that are remote from computing system 100. In this
example, computing system 100 includes a CPU 105, a local

US 10,198,277 B2

S

storage device 125 and optionally other storage 120,
memory 130, and various I/O (“input/output™) components
110, with the illustrated I/O components 110 1n this example
including a display device 111, a network connection com-
ponent 112 (e.g., a network 1nterface controller card), one or
more computer-readable media drives 113, and other 1I/O
devices 115 (e.g., a keyboard, mouse, speakers, microphone,
etc.).

In this example, the memory 130 1s divided into two
portions, a user-level space 130a 1n which application pro-
grams execute, and an operating system space 1306 1n which
the operating system kernel and optionally other parts of the
operating system execute. Two applications are executing 1n
the user-level space 130a in this example, those being
application 1 131 and application 2 132. The embodiment of
the device driver wrapper module 140 1s executing in the
kernel space 1305 1n this example, as 1s a storage device
driver 148, a file system interface module 146, and a block
device layer module 147. In this example, the storage device
driver 148 corresponds to the local hardware storage device
125 (e.g., a hard disk drive), and the device driver wrapper
module 140 has previously attached and wrapped the storage
device driver 148, such as by establishing connections 1074
and 107e via which the device driver wrapper module 140
and wrapped storage device driver 148 may interact. In
addition, the device driver wrapper module 140 has further
established a persistent connection 1077 to the local storage
device 125 to enable interactions with the local storage
device on behall of the wrapped storage device dniver
module 148. However, 1n other embodiments and situations,
the wrapped device drniver module may instead interact
directly with the associated hardware device, such as via
optional connection 107i, whether instead of or in addition
to via connections 107¢ and 107/,

In this example, application 2 desires to perform interac-
tions with a file system (not shown) that 1s implemented on
local storage device 125, and thus imitiates a connection
107a to the file system interface 146 provided by the
operating system, such as via an open handle or other
persistent reference. The file system interface 146 further
has established an open handle or other persistent reference
10756 to the block device layer module 147, such that file
system I/0 requests from application 2 using the persistent
reference 107a pass through the file system interface 146
and to the block device layer 147. Furthermore, the block
device layer 147 has established an open handle or other
persistent reference 107¢ to enable 1t to pass block I/0O data
operation requests to the local storage device 125. In par-
ticular, the block device layer 147 has established the
persistent reference 107¢ with what it believes to be the
storage device driver 148 that corresponds to the local
storage device 125. However, the device driver wrapper
module 140 has previously taken the place of the wrapped
storage device driver 148 with respect to such interactions,
and thus the persistent reference 107¢ from the block device
layer 147 1s instead established with the device dniver
wrapper module 140. Accordingly, when the block device
layer 147 receives a request from application 2 via the file
system 1nterface 146, the block device layer 147 forwards a
corresponding block I/0 data operation request to the device
driver wrapper module 140 via the persistent reference 107¢.
The device driver wrapper module 140 1n turn forwards the
received request to the wrapped storage device driver 148
via the connection 1074, and may optionally modily various
state information (not shown) that the device driver wrapper
module 140 maintains to retlect the operation mnitiated by
application 2.

10

15

20

25

30

35

40

45

50

55

60

65

6

When the wrapped storage device driver 148 receives the
block I/O data operation request from the device driver
wrapper module 140, 1t proceeds to 1nitiate a corresponding
interaction via the connection 107¢ with what 1t believes to
be the local storage device 125. However, 1n a manner
similar to the request sent by the block device layer 147, the
device drniver wrapper module 140 instead intercepts the
communication sent via the connection 107e, and forwards
the communication on as appropriate to the local storage
device 125 via the connection 107f. In thus manner, the
device driver wrapper module 140 acts as an intermediary
that represents the wrapped storage device driver 148 to the
other modules and devices, and interacts with them on
behalf of the wrapped storage device driver 148, although 1n
other embodiments the wrapped storage device driver 148
may 1instead interact directly with the local storage device
125 via optional connection 107i. In addition, 1t will be
appreciated that responses to I/0O requests, as well as inter-
rupts or other information, may be received 1n an opposite
direction to that illustrated, such as with a read IO operation
from application 2 resulting in the local storage device 125
passing data back to the device driver wrapper module 140
via the connection 107/, and with that data similarly being
passed via the connections 107e, 1074, 107¢, 107b, and
107a to application 2 (or with connection 107; used instead
of 107f and 107e).

In addition, FIG. 1A {further illustrates that in some
embodiments and situations, some applications may interact
directly with the block device layer 147 without 1nteracting
with the file system interface 146, such as 11 application 1 1s,
for example, a database server program. If so, I/O requests
initiated by application 1 to the block device layer module
147 will be handled in the same manner as previously
described with respect to application 2, other than not being
passed through the file system interface 146 and correspond-
ing connections 107a and 1075. While two applications are
illustrated here as interacting with the device driver wrapper
module 140 wvia the block device layer 147, it will be
appreciated that in other embodiments the interactions may
occur 1n other manners, such as with different numbers of
application programs (e.g., zero, one, three, etc.), with
application programs interacting directly with the device
driver wrapper module 140, efc.

Furthermore, while the wrapped device driver module 1n
this example 1s a storage device driver associated with a
local storage device, 1t will be appreciated that the wrapped
device driver module may have other forms 1n other embodi-
ments and situations, such as the following non-exclusive
list: a storage device driver configured to support a remote
storage device 127 (e.g., a storage device local to another
remote computing system, a network storage device, a
device on a storage area network, etc.) over a network 190;
a storage device driver configured to support a different local
storage device, such as a virtual or non-virtual other storage
device 120; a graphics device driver, such as for display 111;
a network connection driver, such as for network connection
112 (e.g., to manage communications over network 190); a
computer-readable media drive driver, such as for computer-
readable media drive; etc.

It will be appreciated that computing system 100 1s
merely illustrative and not intended to limit the scope of the
present invention. For example, computing system 100 may
be connected to other devices that are not 1llustrated, includ-
ing through network 190 and/or one or more other networks,
such as the Internet or via the World Wide Web (“Web™).
More generally, a computing system or other computing
device may comprise any combination of hardware or

US 10,198,277 B2

7

soltware that can interact and perform the described types of
functionality, including without limitation desktop or other
computers, database servers, network storage devices and
other network devices, PDAs, cellphones, wireless phones,
pagers, electronic organizers, Internet appliances, television-
based systems (e.g., using set-top boxes and/or personal/
digital video recorders), and various other consumer prod-
ucts that include appropriate communication capabilities. In
addition, the functionality provided by the illustrated mod-
ule 140 may 1n some embodiments be distributed 1n addi-
tional modules. Similarly, 1n some embodiments, some of
the functionality of module 140 may not be provided and/or
other additional functionality may be available. For
example, 1 the illustrated embodiment of FIG. 1A, the
functionality of the device driver wrapper module 140 1s
provided without modifying other parts of the operating
system such as block device layer 147, and 1n some embodi-
ments without moditying the wrapped device driver module
148. As one alternative, 1n some embodiments the function-
ality of the device driver wrapper module may be built into
an operating system, thus enabling some or all of the
functionality of the device driver wrapper module to be
simultaneously provided to multiple device driver modules.
For example, 11 the functionality of the device driver wrap-
per module 1s merged with other functionality of block
device layer 147, the device driver wrapper module func-
tionality may be provided by the modified layer 147 to some
or all of multiple block device driver modules loaded 1n the
operating system (not shown i FIG. 1A), or similarly may
be provided as part of other modules of the operating system
with corresponding functionality provided to other types of
device drniver modules.

It will also be appreciated that, while various items are
illustrated as being stored 1n memory or on storage while
being used, these items or portions of them may be trans-
terred between memory and other storage devices for pur-
poses of memory management and data integrity. Alterna-
tively, 1n other embodiments some or all of the software
modules may execute 1n memory on another device and
communicate with the illustrated computing systems via
inter-computer communication. Furthermore, 1n some
embodiments, some or all of the modules may be imple-
mented or provided in other manners, such as at least
partially in firmware and/or hardware, including, but not
limited to, one or more application-specific integrated cir-
cuits (ASICs), standard 1ntegrated circuits, controllers (e.g.,
by executing appropriate instructions, and including micro-
controllers and/or embedded controllers), field-program-
mable gate arrays (FPGAs), complex programmable logic
devices (CPLDs), etc. Some or all of the modules and data
structures may also be stored (e.g., as software instructions
or structured data) on a computer-readable medium, such as
a hard disk, a memory, a network, or a portable media article
to be read by an appropniate drive or via an appropriate
connection. The modules and data structures may also be
transmitted as generated data signals (e.g., as part of a carrier
wave or other analog or digital propagated signal) on a
variety of computer-readable transmission mediums, includ-
ing wireless-based and wired/cable-based mediums, and
may take a variety of forms (e.g., as part of a single or
multiplexed analog signal, or as multiple discrete digital
packets or frames). Such computer program products may
also take other forms in other embodiments. Accordingly,
the present invention may be practiced with other computer
system configurations.

FIG. 1B continues the example of FIG. 1A, with addi-

tional details 1llustrated with respect to the memory 130 and

10

15

20

25

30

35

40

45

50

55

60

65

8

the modules contained within it, but with various of the other
components of the computing system 100 external to the
memory 130 not illustrated for the sake of brevity. For
example, additional details are illustrated in FIG. 1B with
respect to state information that 1s maintained by the device
driver wrapper module 140 and the wrapped storage device
driver 148. In particular, as the wrapped storage device
driver 148 1s 1nitialized and performs operations, 1t main-
tains various mformation 144 1n memory space 1305 that
includes information about the storage device 125, such as
for use 1n communicating with the local storage device 125,
and maintains a link 143 to that external state information
144. Furthermore, the device driver wrapper module 140
maintains a similar link 142 to that state information 144,
such as for use in upgrading or otherwise modilying the
particular storage device driver that 1s attached to and
wrapped by the device driver wrapper module 140, as
discussed 1n greater detail with respect to FIGS. 1C and 1D.
In addition, as previously noted, the device driver wrapper
module 140 may maintain various state information 141
about the applications or other modules with which 1t
interacts, such as application 1, application 2, and/or block
device layer 147. For example, the application state infor-
mation may include a list of all pending I/O operations for
cach minor device or sub-device corresponding to the stor-
age device driver 148, such as in the form of an I/O queue
for each such device. The device state information 144 may
have various forms depending on the type of corresponding
storage device, such as information about hardware registers
and I/O queues of a SCSI controller, or a network socket
state of a connection to a remote storage network device. In
particular, in some embodiments, the wrapper module 140
may maintain minimal state information that enables a
wrapped device driver module to rebuild 1ts own internal
state information, such as for use by a newly attached device
driver module that replaces a previously attached device
driver module that generated that maintained state informa-
tion, while the wrapped device driver module(s) maintain
the logic or other instructions for particular mteractions with
a corresponding hardware device. In addition, while FIG. 1B
does not 1illustrate the optional connection 107; of FIG. 1A
between the wrapped device driver module 148 and the local
storage device 125, 1t will be appreciated that in some
embodiments such an optional connection may be provided

and used, whether instead of or 1n addition to connections
107¢ and 107/.

FIG. 1C continues the example of FIG. 1B, and i
particular illustrates interactions performed by the device
driver wrapper module 140 with respect to moditying the
device driver that 1s attached to and wrapped by the device
driver wrapper module 140. In particular, in the example of
FIG. 1C, the connections 1074 and 107¢ that were previ-
ously illustrated 1n FIGS. 1A and 1B between the device
driver wrapper module 140 and the storage device driver
148 have been severed, and the previously wrapped storage
device driver 148 has further optionally had its execution
terminated and been unloaded from the operating system
memory space 1305. Before terminating the execution of the
storage device driver 148, the wrapper module 140 may
further instruct the storage device driver 148 to perform
appropriate actions, such as to release all resources and
update state information 144. In addition, 1n this example, a
new storage device driver 149 to replace device driver 148
has been loaded 1n the operating system space 1305, but 1s
not yet attached to and wrapped by the device driver wrapper

module 140.

US 10,198,277 B2

9

Nonetheless, despite device driver 148 being unattached
and optionally having its execution terminated, the device
driver wrapper module 140 maintains the other information
that 1t previously had used with respect to the wrapped
storage device drniver 148, including the application state
information 141 and the link 142 to the storage device state
information 144 that was created by the previously wrapped
storage device driver 148. Furthermore, the device dniver
wrapper module 140 maintains the connections 107¢ and
107/ with the block device layer module 147 and the local
storage device 125, respectively. In this manner, despite the
changes in the associated storage device driver that 1is
attached to and wrapped by the device driver wrapper
module 140, the connections to other programs and devices
remain unchanged. Furthermore, the block device layer 147
and storage device 125 may be unaware that any change has
taken place with respect to the attached storage device driver
for the device driver wrapper module 140.

In addition, as part of the process of replacing previously
attached storage device driver 148 with new storage device
driver 149, the device driver wrapper module 140 may have
temporarily suspended 1I/O operation requests and other
communications from the block device layer 147 and/or the
local storage device 125 while the transition from the
previously wrapped storage device driver 148 to the new
storage device driver 149 1s made. For example, in some
embodiments, the wrapper module 140 may send a corre-
sponding communication to block device layer 147 or
otherwise to the operating system to temporarily suspend
such requests, such as if the operating system supports such
temporary suspensions. In other embodiments, such as if the
operating system does not support such temporary suspen-
sions, the wrapper module 140 may take other actions to
temporarily suspend I/O requests and other communica-
tions, such as by receiving and temporarily queuing such
communications while the transition takes place.

Furthermore, as discussed 1n greater detail elsewhere, the
new storage device driver 149 may differ from the previ-
ously wrapped storage device driver 148 1n various manners,
such as 11 1t 1s an upgrade to or different version of the same
storage device driver. However, 1n other embodiments, the
change 1n underlying storage device driver may allow other
types ol changes to be made, including for the actual
underlying storage device to be changed (e.g., to change to
another local storage device 126 or instead to a remote
storage device 127), with the new storage device driver 149
corresponding to that new storage device. If such a change
in underlying storage device 1s made, however, the device
driver wrapper module 140 may have to further change the
previously established connection 107f to create a new
connection to the new storage device that will be used for
subsequent 1nteractions, although the connections from and
interactions by the applications and the block device layer
147 do not change. In other embodiments, such as when the
wrapped device driver module mstead maintains and uses an
optional direct connection 107; to an associated storage
device, the wrapped device driver module may instead make
the change in the direct connection to the new storage
device. In addition, when changing storage devices, the
device driver wrapper module 140 may take actions in at
least some embodiments to facilitate the change, such as by
coordinating the copying of some data from the prior
associated storage device to the new storage device,
although 1n other embodiments any such data copying may
instead be handled 1n other manners. Furthermore, while not
illustrated here, 11 the particular storage device to which the
device driver wrapper module 140 1s connected 1s changed.,

10

15

20

25

30

35

40

45

50

55

60

65

10

the new storage device may 1n some embodiments be of a
different type than the previous storage device (e.g., to
change from sequential magnetic tape to a non-sequential
hard disk drive), and 11 so further changes may be made by
the wrapper module 140 to support such a change (e.g., by
changing or re-imitializing the storage device state informa-
tion 144, by changing aspects of the interface via which
particular I/O commands are received from the new storage
device driver 149 and passed on to the new storage device,
etc.). Sumilarly, the wrapper module 140 may further make
other changes in other situations, including 1t the new
storage device driver 149 uses diflerent data structures or
different interfaces or other interaction mechamsms than the
previously attached device driver module 148. In some
embodiments, the device driver wrapper module 140 may
further store version information to reflect a current version
of the storage device driver that it attached and wrapped.,
such as to enable the wrapper module 140 to select from and
use different data structures or interaction mechanisms that
correspond to the particular storage device driver that is
currently wrapped. In addition, as part of attaching new
storage device driver 149, various changes may be made to
the stored device state information 144 by the wrapper
module 140 and/or the new device driver 149, such as to
correspond to a version change of the new storage device
driver relative to the prior storage device driver. As one
example, the new device driver 149 may add statistics
collection functionality, and device state information 144
may be modified to include corresponding information (e.g.,
by appending the new statistics collection information to the
end of information 144). Furthermore, if newly attached
device driver 149 1s instead an older version of previously
wrapped device driver 148 (e.g., if device driver 149 was
initially attached to wrapper module 140, was replaced with
new upgrade attached device driver 148, and then a rollback
from new attached device driver 148 to previously attached
device driver 149 occurs), corresponding backwards
changes to the stored device state information 144 may be
made, or mstead 1n some cases the older version device
driver 149 may be configured to ignore the additional state

information previously added for new version device driver
148.

FIG. 1D continues the example of FIG. 1C, and 1n
particular 1llustrates the situation after the new storage
device drniver 149 has been attached to and wrapped by the
device driver wrapper module 140, such that the suspension
of communications from other programs has ended. In
particular, in this example, the device driver wrapper module
140 has established new connections 107g¢ and 107/
between 1t and the new wrapped storage device driver 149,
and has further supplied information to the new wrapped
storage device driver 149 to enable 1t to establish a link 1435
to the previous state information 144. As part of enabling
device driver 149 to establish the line 1435, the wrapper
module 140 may further mstruct the storage device driver
149 to perform appropriate actions, such as to rebuild its
own 1internal state from the information 144 and/or infor-
mation 141. After the new storage device driver 149 1s
attached and wrapped, the device driver wrapper module
140 may continue to operate 1n a manner analogous to that
previously described in FIG. 1A for the previously wrapped
storage device driver 148.

In this manner, the device driver wrapper module 140
tacilitates interactions with device drivers by other programs
and devices, and enables existing persistent references and
other connections to be maintained even when the underly-
ing storage device driver changes.

US 10,198,277 B2

11

In addition, as previously noted, 1n some embodiments the
wrapper module 140 may attach and wrap a particular
device driver module, so as to enable the wrapper module to
receive at least some communications on behalf of the
wrapped device driver and/or to perform other actions on
behalf of the wrapped device driver. The wrapper module
140 and a wrapped device drniver may interact 1n various
manners to support functionality of the wrapper module 140
in at least some embodiments. Examples of particular man-
ners for a wrapper module 140 to attach and detach a
wrapped device drniver follow, including 1n which a target
device driver to be wrapped cooperates in the attachment
and detachment processes (e.g., based on modifications
made to the target device driver to support these processes),
but 1n other embodiments such attaching and detaching may
be performed in other manners (e.g., without knowledge
and/or cooperation of the target device dniver to be
wrapped).

Example Attach Operation Worktlow

A first file handle 1s created that allows 1octl calls to be
made to the device driver wrapper module, such as by
opening an operating system control path for the wrapper
module (e.g., using /dev/gnbd_wrapper_ctl). A second file
handle 1s then created that allows 1octl calls to be made to a
target device driver module to be wrapped, such as by
opening an operating system control path for the target
device driver (e.g., using /dev/gnbd_wrapped_ctl). An attach
utility of the wrapper module then makes a WRAPPED _
DEVICE_ATTACH 1octl call to the target device driver, as
discussed below, passing to it the first handle to the wrapper
module. When the target device driver recerves that 1octl
call, 1t converts the first handle to an internal callback
pointer (e.g., 1n a manner specific to the operating system),
referred to 1n the example below as the “ep” pointer, which
it then uses to make direct 1octl calls to the wrapper module.
The interaction then proceeds as follows, with some minor
details omitted for the sake of clarty, as will be appreciated
by one of ordinary skill 1n the art.

initialize underlying hardware device if any (and/or per-

form any other device-specific operations, such as

setting up network connections to a remote device);
call a provided EWRAPPER_DEVICE_INTER-

NAL IS _ EWRAPPER 1octl, as discussed below, to
ensure that the ep internal pointer points to the wrapper
module;

call a provided EWRAPPER_DEVICE_INTERNAL _
GET INFO 1octl, as discussed below, to retrieve call-
backs to be used by the target device driver;

increment a device use count for both the wrapper module
and the target device drniver so that neither will be
unloaded;

allocate memory for internal per-device number (“minor
device”) structure;

for each of the device numbers (or minor devices),
retrieve a pointer to a portion of the wrapper module
that corresponds to the minor device using the ewi_get_
device callback, as discussed below;

initialize device 1octl and device_request callbacks, as
discussed below, to enable the wrapper module to call
the target device driver when wrapped;

create external entry points 1f appropriate (e.g., /proc or
/sysis entry points 1f the operating systems supports
them);

retrieve a pointer to the target device driver’s previous
saved state, 1 applicable, from the wrapper module,
and 1f the saved state has a lower version then the
current version of the target device driver, convert the

10

15

20

25

30

35

40

45

50

55

60

65

12

state to the new state layout 1 appropriate (possibly
updating the saved state pointer if the memory 1s
reallocated), and otherwise do nothing;

imitialize data structures for the target device driver (inter-

nal data, pointers, queues and hardware state if any,
etc.); and

set the status to ATTACH, completing the wrapping

process.

Example Detach Operation Worktlow

The iteraction proceeds as follows, with some minor
details omitted for the sake of clarity, as will be appreciated
by one of ordinary skill in the art.

for each of the device numbers (or minor devices), do the

following:

quiesce the minor device status by calling ewi_set_qui-
esced_device, as discussed below; and

wait for any currently pending I/O operations to com-
plete;

deiitialize hardware and/or suspend network connections

and/or suspend any in progress 1/O data operations 1f
not completed within a timeout period;

set device state to DETACH by calling ewi_set_

detached_device, as discussed below;
remove all external points, 11 any;
i1 there are I/O operations which were suspended, queue
them to the wrapper module by calling ewi1_queue_
back_request, as discussed below, so that the wrapper
module will hold these I/O operations and re-issue
them to the wrapped device driver after it 1s reattached;

deinitialize the device_1octl and device_request callbacks,
as discussed below, so that the wrapper module 1s no
longer enabled to call the wrapped device driver; and

cleanup any allocated memory structures and perform
other housekeeping operations.

In addition, as previously noted, in some embodiments the
wrapper module 140 may implement the same external
interface as that of the device driver module(s) that 1t wraps,
sO as to enable 1t to receive communications on behalf of the
wrapped device driver module(s), and the wrapper module
140 may optionally further implement one or more addi-
tional interfaces to support operations specific to the wrap-
per module 140 1n at least some embodiments. In addition,
in some embodiments a wrapped device driver may be
specialized or modified to implement particular functional-
ity to assist interactions with a device driver wrapper mod-
ule. For example, the wrapper module 140 and a wrapped
device driver module may use a set of 10ctl calls and a set
of function API callbacks to communicate with each other,
as well a wrapper module data structure which 1s exposed to
the wrapped device driver, so as to enable the wrapper
module 140 and a wrapped device driver to interact in
various manners to support functionality of the wrapper
module. The particular determination of which calls are
implemented as 1octl calls and as API callbacks may vary in
different embodiments, such as to implement all of the API
callbacks as 1octls 1n some situations (e.g., in the case of a
user-level implementation of at least one of the wrapper
module 140 and the wrapped device driver module, such as
iI a particular operating system being used does not allow
callbacks between kernel and user-level modules). Non-
exclusive examples of functions that may be implemented
(e.g., as 10ctls, as callbacks that are exported for use by the
wrapped device driver, etc.) include the following, although
it will be appreciated by one of ordinary skill in the art that
other functions may be used and/or that these functions may
be implemented 1n other manners 1n other embodiments:

US 10,198,277 B2

13

Example Loctls Provided by the Device Driver Wrapper
Module

EWRAPPER_DEVICE_PRINT—debug 10ctl to print the

wrapper module state for a given device, such as 1n the
kernel log;

EWRAPPER_DEVICE_NO_OP—debug 10octl to ensure

that the wrapper module 1s answering;
EWRAPPER_DEVICE_INTERNAL_IS_EWRAP-

PER—returns a “magic number” identifier when
called, such as to enable a wrapped device driver to
ensure that a file handle passed to 1t from a user attach
program corresponds to the wrapper module; and

EWRAPPER_DEVICE_INTERNAL_GET_INFO—in-
ternal request made by a wrapped device driver to
obtain the callbacks used for attachment and operation,
as discussed 1n greater detail below.

Example Callbacks Provided by the Device Driver Wrap-

per Module

In this example, these callbacks (which may be obtained

by a wrapped device driver using the EWRAPPER_DEVI-
CE_INTERNAL_GET_INFO 1octl, as previously dis-
cussed) are used by a wrapped device driver. In other
embodiments, these callbacks may instead be implemented
as, for example, 10ctls that the wrapped device driver may
use for the wrapper module.
ewi_get_device—given a device number, it returns a
pointer to a wrapper module data structure that contains
generic data information, such as may include, but 1s
not limited to, the following: a device I/O queue; an 1/O
queue count; a status of the wrapper module; a device
name; a pointer to saved wrapped device driver state,
such as for saving/restoring the device driver state
across detach/attach sequences; a version number of the
wrapped device driver state; various structures used by
the operating system (e.g., callbacks to a higher level
block device layer, block device layer data structures
associated to the given device, etc.);
ewi_get_devices—obtain the number of devices;
ew1_end_request—instruct the wrapper module to com-
plete a given I/O request with a given 1/0 status;
ewi1_suspend_requests—instruct the wrapper module to
suspend I/O requests (e.g., based on the wrapped
device driver not being able to accept 1/0 requests);
ewi1_resume_requests—instruct the wrapper module to
resume 1I/O requests (e.g., based on the wrapped device
driver being able to accept 1/O requests);
ewi1_queue_back_request—instruct the wrapper module
to queue back the I/0O request, such as to queue it back
up to a higher layer (e.g., the block device layer) or into
its own 1nternal queue;
ewi1_set_attached_device—instruct the wrapper module
to treat the associated target device driver as being
attached, so as to reflect that the target device driver 1s
ready to receive /O operations, as well as user 1/0
control requests;
ewi1_set_quiesced_device—instruct the wrapper module
to fully quiesce the target device driver, such that the
wrapper module no longer treats the wrapped device
driver as being ready and will hold/suspend pending
I/O requests and any other user I/O control requests;
ewi1_set_detached_device—instruct the wrapper module
to treat the previously wrapped device driver as being
detached, so as to reflect that the wrapper module will
no longer receive and handle I/O operations and user
I/O control requests for the previously wrapped device
driver:

10

15

20

25

30

35

40

45

50

55

60

65

14

ew1_get_class_device_max_callbacks/ewi_class_device_
create callback/ewi class device remove callback—
for operating systems that support /proc or /sysis
semantics of allowing user programs to access/control
state of device via file system objects, to create and
destroy such objects and associate such objects with a
wrapped device driver callback; and

ewl_spin_lock/ewi_spin_unlock—instruct the wrapper
module to lock/unlock a wrapper module data structure
so that the wrapped device driver may exclusively
access 1ts fields, such as to serialize access to such
ficlds to ensure that only the wrapped device driver or
wrapper driver (but not both) accesses such fields at
any given time.

Example Loctls Provided by a Wrapped Device Driver

WRAPPED_DEVICE_ATTACH-—instruct the wrapped

device driver to attach itself to the wrapper module; and

WRAPPED_DEVICE_DETACH-—instruct the wrapped

device driver to detach 1itself from the wrapper module.

Example Callbacks Provided by a Wrapped Device Driver

wrapped_driver_ioctl—used by the wrapper module to

forward user 1octl requests to the wrapped device
driver; and

wrapped_device_request—used by the wrapper module

to forward requests (e.g., block I/O requests, such as
read or write operations) to the wrapped device driver,
such as part of a “strategy” routine used by some
operating systems. In addition, with respect to actions
involved 1n wrapping an attached device driver module,
the wrapper module 140 may 1n some embodiments
hold all externally visible state and entry points (e.g.,
function calls and callbacks), including, for example,
open handles, I/O queues, generic device structures, an
open count for each minor device, etc. While at least
some entry points may in at least some embodiments
merely be pass-through functions that call the attached
storage device driver module without further action, 1n
some embodiments some entry points may further
involve the wrapper module 140 performing additional
functionality (e.g., for open/close functions, for which
the module 140 may also modily a use count of the
wrapper module 140).

In addition, 1n at least some embodiments, one or more
executing device drniver wrapper modules on one or more
computing systems may be managed from another remote
computing system, such as automatically by an executing
program on the other computing system and/or manually by
a human user interacting with the other computing system.
Such management from the remote computing system may
include sending instructions to, for example, load or other-
wise execute a particular device driver wrapper module,
have a particular device driver wrapper module attach and
wrap a particular device driver, have a particular device
driver wrapper module replace a currently wrapped device
driver with a particular other device driver to be attached and
wrapped, have a particular device driver wrapper module
take particular operations to support a currently wrapped
device driver and/or a new device driver to be attached and
wrapped (e.g., to modily associated state information main-
tained by the device driver wrapper module 1n a particular
manner, such as to support a new version of a device driver
to be attached and wrapped), efc.

In some embodiments, at least some of the described
techniques are performed on behalf of a program execution
service that manages execution of multiple programs on
behalf of multiple users of the program execution service
and/or on behalf of a non-local block data storage service

US 10,198,277 B2

15

that manages access ol executing programs to remote block
data storage volumes. In some embodiments, one or both of
the services may have groups of multiple co-located physi-
cal computing systems i1n or more geographic locations,
such as 1n one or more geographically distributed data
centers, and such a program execution service may execute
users’ programs on those computing systems. In such
embodiments, users of the program execution service (e.g.,
customers of the program execution service who pay fees to
use the program execution service) may execute programs,
and users of the block data storage service (e.g., customers
of the block data storage service who pay fees to use the
block data storage service) may use non-local block data
storage volumes provided via the block data storage service.
In some situations, a single organization may provide at least
some of both program execution service capabilities and
block data storage service capabilities (e.g., in an integrated
manner, such as part of a single service), while i other
embodiments the block data storage service may be pro-
vided 1n environments that do not include a program execu-
tion service (e.g., internally to a business or other organi-
zation to support operations ol the organization).
Furthermore, in some embodiments, the program execution
service and/or block data storage service may further use
some or all of the described techniques as part of executing
programs for users and/or as part of providing to executing,
programs access to remote block data storage volumes,
including with respect to managing device drivers corre-
sponding to remote block data storage volumes. Additional
details related to examples of use of a program execution
service and/or a block data storage service are included 1n
U.S. patent application Ser. No. 11/395,463, filed Mar. 31,
2006 and entitled “Managing Execution Of Programs By
Multiple Computing Systems,” now U.S. Pat. No. 8,190,
682; and 1 U.S. application Ser. No. 12/188,943, filed Aug.
8, 2008 and entitled “Providing Executing Programs With
Reliable Access to Non-Local Block Data Storage,” now
U.S. Pat. No. 8,015,343; each of which is incorporated
herein by reference in 1ts entirety.

In addition, computing system 100 (or other computing
system on which an embodiment of the device driver
wrapper module executes) may have various forms 1n vari-
ous embodiments. Multiple such computing systems may,
for example, be co-located 1n a physical location (e.g., a data
center), and at least some of those computing systems may
cach include suflicient computing resources (e.g., volatile
memory, CPU cycles or other CPU usage measure, network
bandwidth, swap space, etc.) to execute multiple programs
simultaneously. For example, in at least some embodiments,
some or all of the computing systems may each host multiple
virtual machines that each may execute one or more pro-
grams on behalfl of a user, with each such host computing
system having an executing hypervisor, root partition, DomO
component or other virtual machine monitor module that
manages the virtual machines for that host computing sys-
tem. In such embodiments, an embodiment of the device
driver wrapper module may execute as part of the executing
hypervisor or other virtual machine monitor module, as
turther described with respect to FIG. 2.

FIG. 2 1s a block diagram 1llustrating example computing
systems suitable for executing an embodiment of a device
driver wrapper module. In particular, FIG. 2 1llustrates an
example data center 299, such as may be used 1n some
embodiments as part of providing a program execution
service or otherwise executing numerous programs. The
example data center 299 includes host computing systems
200, 250 and 290 that are each capable of executing user

10

15

20

25

30

35

40

45

50

55

60

65

16

programs, with some details being illustrated only with
respect to computing system 200 for the sake of brevity. The
host computing systems, as well as an example manager
computing system 292 (e.g., to manage operation of the host
computing systems, such as on behalf of a program execu-
tion service) are connected to one another via an internal
network 280 and various networking devices that include an
illustrated networking device 262 and network switch
devices 260a-2607%. The network 280 may, for example, be
an 1interconnection network that joins multiple disparate
physical networks within the data center 299 and possibly
provides access to external networks and/or systems, such as
computing systems 295 (e.g., in one or more other data
centers) via external network 285 (e.g., the Internet). In the
illustrated example, the networking device 262 provides a
gateway between the network 280 and host computing
systems 250 and 290a-290#, such as by acting as a router or
a bridge.

In this example, at least some of the host computing
systems 200, 250 and 290 are cach configured to host
multiple virtual machines that may each execute one or more
programs, and further to use one or more device driver
wrapper modules and the described techniques to provide
enhanced functionality to the various executing programs.
For example, with respect to host computing system 200,
which 1s shown 1n additional detail relative to host comput-
ing systems 250 and 290a-290# for illustrative purposes, the
computing system includes a CPU 205, various I/O com-
ponents 210, storage device 2235, and memory 230 i a
manner similar to that of computing system 100 of FIG. 1A.
The illustrated I/O components 210 also similarly include a
display 211, network connection 212, computer-readable
media drive 213, and other I/O devices 215. In addition, the
memory 230 1s separated into diflerent sections that support
multiple virtual machines 238, as well as a virtual machine
(“VM”) manager module 235 (e.g., a root partition, DomO
component, or other virtual machine monitor module) to
manage the virtual machines 238.

Each of the virtual machines 238 may have a configura-
tion similar to that illustrated for memory 130 with respect
to FIGS. 1B-1D, including having a portion of the virtual
machine’s memory space being a user-level space that
executes one or more applications 236 and having another
portion being an operating system kernel-level space that
executes one or more device drivers 237, such as 1s shown
with respect to example virtual machine 238a. Furthermore,
while not illustrated in FIG. 2, each of the virtual machines
238 may similarly have distinct logical devices or compo-
nents that correspond to some or all of the various compo-
nents 1llustrated with respect to computing system 100 of
FIG. 1A, such as a logical CPU, various logical I/O com-
ponents, one or more logical storage devices, etc. While the
various virtual machines 238 may each have distinct logical
devices and components, the actual functionality corre-
sponding to those logical devices and components may
nonetheless be provided by the actual physical devices of
host computing system 200, such that the various logical
CPUs for the various virtual machines 238 may each cor-
respond to a portion of the actual CPU cycles for CPU 205,
and such that various logical local storage devices for the
vartous virtual machines 238 may each correspond to a
partition or other subset of the actual local storage device
225 of host computing system 200.

Furthermore, while each of the virtual machines may have
one or more device driver modules 237 that correspond to
the logical devices and components of that virtual machine,
those device driver modules 237 do not interact directly with

US 10,198,277 B2

17

the actual physical devices and components of host com-
puting system 200 that support those logical devices.
Instead, the VM manager module 235 may execute one or
more device dniver modules that interact directly with the
corresponding actual physical devices and components of
host computing system 200 on behalf of the various virtual
machines 238. In this example, the VM manager module 235
1s executing a device driver 248 that may, for example, be a
storage device driver that 1s configured to support and
interact with local storage device 225, and the module 235
may further have one or more other device driver modules
(not shown) corresponding to other devices of host comput-
ing system 200. If the device driver 237 of virtual machine
238a 1s, for example, a logical storage device driver that
corresponds to a portion of local storage device 2235, the
device driver 237 receives 1/0 operation requests from an
application program 236 on virtual machine 238a, and
performs corresponding interactions with a corresponding
storage device driver of the VM manager module 2335, such
as device driver 248. Those interactions with the corre-
sponding device driver of the VM manager module 235 may
be performed in various manners, such as if, for example,
virtual machine 238a mounts or otherwise 1s provided with
a logical device driver module (e.g., via use of GNBD, or
“Global Network Block Device,” technology) correspond-
ing to device dniver 248. Other virtual machines 238 may
similarly have distinct logical storage device drivers that
also perform corresponding interactions with the same
single storage device driver 248 of the VM manager module
235.

The VM manager module 235 may further execute one or
more device driver wrapper modules that each attach and
wrap a device dniver module loaded in the VM manager
module 235, such as device driver module 248, so as to
tacilitate 1nteractions between the various virtual machines
and the wrapped device driver module in a manner similar
to that previously described with respect to FIGS. 1A-1D. In
particular, in the example of FIG. 2, the host computing
system 200 has loaded a device driver wrapper module 240
in the VM manager module 235 portion of memory 230,
with the device driver wrapper module currently attached to
and wrapping a device driver module 248 that 1s also
executed as part of the VM manager module 235 (e.g., as
part of an operating system kernel-level memory space, not
shown, of the VM manager module 235). Thus, if multiple
ol the virtual machines 238 each has a device driver 237 that
1s represented by and linked to the single device driver 248
in the manager module 235, the device driver wrapper
module 240 may intercept any communications receirved
from those various device drivers 237 on the various virtual
machines 238 on behall of various applications 236, and
turther interact with the local storage device 225 on behalf
of the wrapped device driver module 248. In this manner, the
device driver wrapper module 240 may make changes to the
device driver module 248 1in a manner that 1s transparent to
the virtual machines 238 and their applications 236 and
device drnivers 237, thus preventing disruptions to a large
number of distinct applications and device driver modules
that would otherwise occur 1f the device driver module 248
was modified while 1n use.

In a manner similar to host computing system 200, host
computing system 250 includes a CPU 2352, I/O components
2353, storage 251, and memory 254, although particular I/O
components are not illustrated. In addition, the memory 254
includes multiple virtual machines 258 and a VM manager
module 255, although the virtual machines 258 and manager
module 255 lack some details illustrated with respect to

5

10

15

20

25

30

35

40

45

50

55

60

65

18

virtual machines 238 and manager module 235 of host
computing system 200, including indication of one or more
device driver wrapper modules that may be executing as part
of manager module 255. Some or all of the other host
computing systems 290a-2902 may also include the same or
similar components to those of host computing system 200,
including to operate multiple virtual machines and one or
more device driver wrapper modules as part of a manager
module, but those details are not illustrated here for the sake
of brevity. In addition, while only a limited number of
devices are illustrated in this example, 1t will be appreciated
that 1n a typical arrangement, data center 299 may include
hundreds or thousands of host computing systems such as
those 1illustrated here, organized into a large number of
distinct physical networks (e.g., 1n a hierarchical manner).
Furthermore, 1n a similar manner to that described with
respect to FIG. 1A, it will be appreciated that computing
systems 200, 250, 290a-290%, and 292, as well as network-
ing devices 260a-260% and 262, are merely illustrative and
are not intended to limit the scope of the present invention.

FIG. 3 1s a tlow diagram of an example embodiment of a
Device Driver Wrapper routine 300. The routine may be
provided by, for example, execution of the device driver
wrapper module 140 of FIGS. 1A-1D and/or the wrapper
module 240 of FIG. 2, such as to facilitate interactions with
an attached or otherwise associated device driver module. In
the illustrated embodiment, the routine may attach various
device drivers of various types at various times, although 1n
other embodiments each device driver module may have a
distinct copy of the routine that 1s specialized for that device
driver module.

The 1llustrated embodiment of the routine begins at block
305, where the routine performs various 1nitialization activi-
ties upon being started. As described in greater detail else-
where, the routine may be mitiated 1n various manners,
including by the operating system (e.g., at computer boot
time), as requested by a human user, etc. In situations in
which the routine 1s associated with a particular target device
driver to be wrapped, the imitialization activities may include
the routine taking actions to replace that target device driver
with respect to further interactions that are imitiated by other
programs and/or a corresponding associated peripheral
device or other hardware device, although 1n the illustrated
embodiment the routine instead performs such activities at
the time of attaching a particular target device driver. In
addition, 11 the routine 1s configured to take the place of a
particular device driver, and if the operating system supports
such activities, the routine may in block 305 take actions to
indicate that the routine 1s not yet ready to receive 1/O
requests, such as by providing a corresponding notification
to the operating system.

After block 305, the routine continues to block 310 to wait
until an attach instruction 1s received for a particular target
device driver module (e.g., from a human user, immediately
in an automated manner 1f the routine 1s pre-configured to
replace a particular target device dniver, etc.). After the
attach instruction 1s received, the routine continues to block
320 to execute a routine to attach and wrap the indicated
target device driver, with FIG. 4 illustrating one example of
such a routine. After block 320, the routine continues to
block 325 to wait for and recerve an additional instruction,
and 1n block 330 determines the type of instruction before
turther proceeding.

In particular, with respect to block 330, if the received
instruction 1s to provide a handle or other persistent refer-
ence to the device driver wrapper routine, such as for use by
an application program or other device driver module, the

US 10,198,277 B2

19

routine continues to block 335 to provide such a handle to
the requester, and to optionally store application state infor-
mation to reflect the handle. In other embodiments, such
other modules or application programs may obtain handles
to the drive driver wrapper routine 1n other manners that do
not mvolve a response from the routine 300, such as by
instead accessing publicly exported handles (11 such a fea-
ture 1s supported 1 the embodiment), interacting with an
operating system to receive such a handle, etc.

If 1t 1s mstead determined 1n block 330 that the recerved
instruction 1s a request to perform an I/O operation on behalf
ol a currently wrapped device driver, the routine continues
to block 345 to perform the ongoing I/O operation as
appropriate. For example, 1f the wrapped device driver
supports a corresponding hardware storage device, the inter-
action request may be to read or write a particular block of
data, such as 1f the request 1s recerved from a corresponding
block device layer module. In performing block 345, the
routine 300 may perform various interactions with the
wrapped device drniver, and may further store various state
information with respect to the program from which the
request 1s recerved or initiated.

If 1t 1s mstead determined 1n block 330 that the recerved
instruction 1s to change the current wrapped device driver to
a new indicated target device driver, the routine continues to
block 360 to perform a routine to detach the current wrapped
device driver, with FIG. § providing one example of such a
routine. After block 360, the routine returns to block 320.

If 1t 1mnstead determined 1n block 330 that the receirved
instruction 1s of another type, the routine continues instead
to block 390 to perform one or more other indicated opera-
tions as appropriate. For example, such other indicated
operations may include requests for status information about
the device driver wrapper module and/or the current
wrapped device driver (e.g., from an admimstrative user, for
an executing program, etc.), indications to perform particu-
lar maintenance operations, an indication for the device
driver wrapper routine to terminate operation, etc. After
blocks 335, 345, and 390, the routine continues to block 395
to determine whether to continue, such as until an explicit
indication to terminate 1s received. If it 1s determined to
continue, the routine returns to block 325, and otherwise
continues to block 399 and ends.

FIG. 4 1s a flow diagram of an example embodiment of an
Attach Wrapped Device Driver routine 400. The routine may
be provided by, for example, execution of a device driver
wrapper module as previously described with respect to
FIG. 3, such as with respect to block 320 of FIG. 3.

In the illustrated embodiment, the routine begins at block
405, where an 1ndication of a particular target device driver
module to attach and wrap 1s indicated. The routine contin-
ues block 410 to load the target device driver module if
needed, and to configure the device driver wrapper routine
to replace the target device driver module with respect to
interactions by other programs (e.g., to use the target device
driver module’s name for itself, while giving the target
device driver module a new name to use while wrapped). In
other embodiments, a target device driver module may be
wrapped even if not currently loaded. In addition, the routine
in block 410 attaches the target device driver module with
the device driver wrapper 1n such a manner as to enable to
the device driver wrapper module to pass 1/O requests to the
wrapped target device driver module and to recerve response
information from the wrapped target device driver module.
The routine then continues to block 420 to determine
whether device driver state information has been saved with
respect to a previously attached device driver module for

10

15

20

25

30

35

40

45

50

55

60

65

20

which the current target device dniver module 1s a replace-
ment, and if so continues to block 430 to provide an
indication to the current target device driver module of a link
to such saved device driver state information from the
previously wrapped target device driver module. Otherwise,
the routine continues instead to block 4235 to, after the target
device dniver module indicates an external storage location
in which it will save device driver state information, receive
and store an indication of a link to that external location.
After blocks 425 and 430, the routine continues to block
440 to determine if the current target device driver module
1s a replacement for a previously attached device driver
module and further includes changes related to how the
device driver wrapper routine interacts with the new
attached device drniver module relative to the previously
attached device driver module (e.g., changes to data struc-
tures, iterfaces or other interaction mechanmisms, etc.), such
as for a new version of a device driver module that includes
one or more upgrades. If so, the routine continues to block
445 to optionally modily any stored information regarding
interactions with the previously wrapped device driver mod-
ule to retlect the changes for the current wrapped target
device driver module, and to further store version informa-
tion or other indications related to the interactions that are to
occur for the new attached device driver module. After block
445, or 1f 1t was determined 1n block 440 that there were no
such changes to accommodate, the routine continues to
block 455 to optionally provide an indication that the device
driver wrapper routine 1s ready to use, such as 1f the routine
was previously indicated to temporarily not be ready (e.g.,
with respect to block 305 and/or block 360 of FIG. 3). After
block 455, the routine continues to block 499 and returns.
FIG. 5 1s a tlow diagram of an example embodiment of a
Detach Wrapped Device Drniver routine 500. The routine
may be provided by, for example, execution of a device
driver wrapper module as previously described with respect
to FIG. 3, such as with respect to block 360 of FIG. 3.
The 1llustrated embodiment of the routine begins at block
505, where an indication 1s received to detach the current
wrapped device driver module. The routine continues to
block 515 to initiate a suspension of new 1coming requests
or other communications for the wrapped device driver
module, such as by sending an appropriate indication to the
operating system, or to otherwise 1nitiate temporary queuing
of new incoming requests until the device driver wrapper
routine 1s ready to receive such requests. The routine then
continues to block 525 to wait for any existing 1/0 requests
tor the wrapped device driver module to be completed. After
block 525, the routine then continues to block 535 to
disassociate the wrapped device driver module from the
device driver wrapper routine, such as by severing any links
or other associations between the device driver wrapper
module and the wrapped device driver module. In addition,
the routine may optionally unload the previously wrapped
device driver module from memory in block 335. After
block 535, the routine continues to block 599 and returns.
It will be appreciated that in some embodiments the
functionality provided by the routines discussed above may
be provided 1n alternative ways, such as being split among
more routines or consolidated into fewer routines. Similarly,
in some embodiments, 1llustrated routines may provide more
or less functionality than 1s described, such as when other
illustrated routines 1nstead lack or include such functionality
respectively, or when the amount of functionality that 1s
provided 1s altered. In addition, while various operations
may be illustrated as being performed 1n a particular manner
(e.g., 1n serial or 1n parallel) and/or in a particular order, 1n

US 10,198,277 B2

21

other embodiments the operations may be performed 1in
other orders and i1n other manners. Similarly, the data
structures discussed above may be structured in different
manners 1n other embodiments, such as by having a single
data structure split into multiple data structures or by having
multiple data structures consolidated into a single data
structure, and may store more or less mformation than 1s
described (e.g., when other 1llustrated data structures instead
lack or include such information respectively, or when the
amount or types of information that is stored 1s altered).

From the foregoing 1t will be appreciated that, although
specific embodiments have been described herein for pur-
poses of illustration, various modifications may be made
without deviating from the spirit and scope of the invention.
Accordingly, the imnvention 1s not limited except as by the
appended claims and the elements recited therein. In addi-
tion, while certain aspects of the mvention are presented
below 1n certain claim forms, the mventors contemplate the
various aspects of the mmvention in any available claim form.
For example, while only some aspects of the invention may
currently be recited as being embodied 1n a computer-
readable medium, other aspects may likewise be so embod-
1ed.

What 1s claimed 1s:

1. A computer-implemented method comprising:

associating, by a computing system, a first device driver

with a device driver wrapper that 1s executing on the
computing system, wherein the first device dniver 1s
configured to receive communications using a first
interface and maintains first state information during
operation;

receiving, by the device driver wrapper, one or more

communications that are for the first device driver and
that use the first interface, and providing the receirved
one or more communications to the first device driver
using the first interface;

maintaiming, by the device driver wrapper, second state

information that 1s associated with operations of the
first device driver and 1s separate from the first state
information;

replacing the first device driver with a second device

driver, wherein the second device driver 1s configured

to receive communications using a second interface

that 1s diferent than the first interface; and

managing, by the device driver wrapper and based at least

in part on the second state information that 1s associated

with the operations of the first device driver, one or

more additional communications that use the first inter-

face, including;

receiving, by the device driver wrapper, the one or
more additional communications;

moditying, by the device driver wrapper, a form of the
one or more additional communications that uses the
first interface into a different form that uses the
second interface; and

providing, by the device driver wrapper, the one or
more additional communications to the second
device driver in the modified form that uses the
second 1nterface.

2. The computer-implemented method of claim 1 further
comprising replacing the second device driver with the first
device driver as part of a rollback.

3. The computer-implemented method of claim 1 wherein
the receiving of the one or more additional communications
includes recerving a first data structure for the first interface,
wherein the moditying of the form of the one or more
additional communications mncludes moditying the one or

10

15

20

25

30

35

40

45

50

55

60

65

22

more additional communications to use a second data struc-
ture for the second interface, and wherein the providing of
the one or more additional communications to the second
device driver includes providing the modified one or more
additional communications to the second device driver with
the second data structure.

4. The computer-implemented method of claim 1 wherein
the recerving of the one or more additional communications
includes using a first interaction mechanism with the first
interface, wherein the moditying of the one or more addi-
tional communications includes modifying the one or more
additional communications to use a second interaction
mechanism with the second interface, and wherein the
providing of the one or more additional communications to
the second device driver includes providing the modified
one or more additional communications to the second device
driver using the second interaction mechanism.

5. The computer-implemented method of claim 1 wherein
the first interface includes first 1octls (input/output controls)
and the second interface includes different second 10ctls, and
wherein the method further comprises generating, by the
device driver wrapper, the modified form of the one or more
additional communications by replacing at least one first
ioctl i the one or more additional communications with at
least one second 1octl.

6. The computer-implemented method of claim 1 wherein
the first interface includes first device input/output controls
and the second interface includes different second device
input/output controls, and wherein the method further com-
prises generating, by the device driver wrapper, the modified
form of the one or more additional communications by
replacing at least one first device input/output control 1n the
one or more additional communications with at least one
second device input/output control.

7. The computer-implemented method of claim 1 wherein
the first interface includes first read/write operations and the
second interface includes diflerent second read/write opera-
tions, and wherein the method further comprises generating,
by the device driver wrapper, the modified form of the one
or more additional communications by replacing at least one
first read/write operation in the one or more additional
communications with at least one second read/write opera-
tion.

8. The computer-implemented method of claim 1 turther
comprising providing, by the computing system and to an
executing program, a reference to the device driver wrapper
that 1s used by the executing program 1n sending the one or
more communications and the one or more additional com-
munications, wherein the maintaining of the second state
information includes maintaining information about the one
or more communications received from the executing pro-
gram via the provided reference, and wherein the replacing
of the first device driver with the second device driver 1s
performed without changing the provided reference.

9. The computer-implemented method of claim 8 wherein
the replacing of the first device driver with the second device
driver further includes temporarly suspending communica-
tions from the executing program during the replacing, and
wherein the managing of the one or more additional com-
munications includes updating the second state information
based at least in part on the one or more additional com-
munications.

10. The computer-implemented method of claim 1
wherein the second device driver 1s a different version of the
first device driver, wherein the replacing of the first device
driver with the second device driver includes configuring the
executing device driver wrapper to modily contents of the

US 10,198,277 B2

23

received one or more additional communications to use the
second interface, and wherein the managing of the one or
more additional communications mcludes updating the sec-
ond state information to indicate the different version for the
second device drniver and includes storing imnformation cor-
responding to additional functionality of the second device
driver that 1s not provided by the first device driver.

11. The computer-implemented method of claim 1
wherein the first device driver 1s configured to 1nteract with
a first device of a first type, and wherein the second device
driver 1s configured to interact with a second device of a
second type, and wherein the managing of the one or more
additional communications includes storing information
corresponding to the second type of the second device
driver.

12. The computer-implemented method of claim 1
wherein the first and second device drivers are both asso-
ciated with a single device, wherein the second device driver
provides Tunctionality for interacting with the device that 1s
different from functionality provided by the first device
driver for interacting with the device, wherein the method
turther comprises determining to replace the first device
driver with the second device driver based at least 1n part on
the different functionality provided by the second device
driver, and wheremn the managing of the one or more
additional communications includes storing information
corresponding to the different functionality provided by the
second device driver.

13. A non-transitory computer-readable medium having
stored contents that cause a computing system to at least:

execute a device driver wrapper to operate 1n place of a

first device driver on the computing system;

receive, by the executing device driver wrapper, one or

more communications that are for the first device driver
and that use a first data structure, and forward the
received one or more communications using the first
data structure to the first device driver:

maintain, by the executing device driver wrapper, state

information associated with operations of the first
device driver, but separate from state information main-
tamned by the first device driver;

replace the first device driver with a second device driver

that 1s configured to use a second data structure that 1s
different than the first data structure; and

manage, by the executing device driver wrapper and

based at least in part on the state information that 1s
maintained by the executing device driver wrapper and
1s associated with the operations of the first device
driver, one or more received additional communica-
tions that use the first data structure, including to
modily a form of the one or more additional commu-
nications that uses the first data structure into a different
form that uses the second data structure, and to provide
the one or more additional communications to the
second device driver in the modified form that uses the
second data structure.

14. The non-transitory computer-readable medium of
claim 13 wherein the device driver wrapper manages inter-
actions with multiple device dnivers on the computing
system, and wherein the stored contents include software
instructions that, when executed, program the computing
system.

15. The non-transitory computer-readable medium of
claim 13 wherein the stored contents further cause the
computing system to modily, by the executing device driver
wrapper, the state information to reflect differences between
the first and second device drivers, and to provide, by the

10

15

20

25

30

35

40

45

50

55

60

65

24

executing device driver wrapper, the modified state infor-
mation to the second device driver for use by the second
device dniver.

16. The non-transitory computer-readable medium of
claim 13 wherein the managing of the one or more additional
communications by the executing device driver wrapper
turther 1ncludes:

modifying the recerved one or more additional commu-
nications to use an interface that includes use of the
second data structure and that the second device driver
1s configured to support; and

modifying the received one or more communications to
use a first interface that the first device driver 1s
configured to support and that 1s different from the
intertace supported by the second device driver.

17. The non-transitory computer-readable medium of
claim 13 wherein the stored contents further cause the
computing system to provide a reference for the device
driver wrapper to an executing program, wherein the one or
more communications and the one or more additional com-
munications are received via use of the provided reference
by the executing program, wherein the maintaining of the
state 1nformation includes maintaining information about
the one or more communications received from the execut-
ing program via the provided reference, and wherein the
managing ol the one or more additional communications
includes updating the state information based at least in part
on the one or more additional communications, the state
information being separate from other state information
maintained by the first device driver.

18. A computing system configured to facilitate interac-
tions with device drivers, comprising:

One Or MOore Processors;

a first device driver configured to recerve communications

using a {irst mechanism;

a second device driver configured to receive communi-
cations using a second mechanism that 1s different than
the first mechanism; and

a memory with stored instructions that, when executed by
at least one of the one or more processors, cause the
computing system to manage interactions with device
drivers on the computing system by:
receiving one or more communications via the first

mechanism that are intended for the first device
driver, and providing the received one or more
communications to the first device driver using the
first mechanism, wherein the first device driver uses
first state information during operation;
maintaining second state information that 1s associated
with operations of the first device driver and 1is
separate from the first state information, and a link to
the first state information used by the first device
driver;
determining to use the second device driver 1n place of
the first device drniver, and using the link to cause
third state information used by the second device
driver during operation to be updated based at least
in part on the first state information; and
managing, based at least in part on the second state
information that 1s associated with operations of the
first device driver, one or more additional commu-
nications received via the first mechanism, including
modilfying a manner for providing the one or more
additional communications to the second device
driver to use the second mechanism instead of the
first mechanism, and providing the one or more

US 10,198,277 B2

25

additional communications to the second device
driver imn the modified manner using the second
mechanism.

19. The computing system of claim 18 wherein the first
device driver 1s configured to use a {irst interface, wherein
the second device driver 1s configured to use a second
interface different from the first interface, and wherein the
stored instructions further cause the computing system to
generate a modified form of the one or more additional
communications that uses the second interface and to use the
modified form as part of the providing of the one or more
additional communications 1n the modified manner.

20. The computing system of claim 18 wherein the one or
more communications and the one or more additional com-
munications are received Ifrom one or more programs
executing on the computing system, and wherein the stored
istructions further cause the computing system to manage
the interactions with the device drivers by providing a
device driver wrapper to perform the managing of the
interactions, including to perform the using of the link by:

modilying the first state information to reflect diflerences

between the first device driver and the second device
driver; and

providing the modified state information to the second

device driver to use as the third state information, to
cause the second device driver to use the third state
information.

5

10

15

20

25

26

	Front Page
	Drawings
	Specification
	Claims

