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FIG. 7D
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with threshoiding
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FIG. 8D
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1340 134
A% Ak
' parent 1 parent 2

lower higher R: Rz

f249 | / 1344
it R, - R . <threshold,

A = threshold - (sz -R ); )
A A »1346
R:-:I :R:{l B _;R:-:E :R}:Z T
2 2 .
RyIAY A Ay _Iﬂ
. . o
SUrEl AT e R
;RH] ‘ /5?:1 /6:12' o _/@zq : RHZ.
1349 l generate g combinations £, B, ..., B, wheres = ¢’
\ . _
, : 1352
/6’1 —> FI‘ h N ___/ 1354
N Py S 2 3
5, > |F select ' with I
T ‘ - 0 highest F” - ‘JX‘ISSE

|

1390 F1G. 13D
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J 1363 -

im:ﬁﬁdu&[
1362 \-n best observed F

/ 1361 }range

current F ——y

if range < threshold, range = threshold

1365
/

L, .. range
' bestE — worstF

m,
L worst observed F 1364 /

/1372 /1370

1373 — mutation _range (/3’1) = [max (181 } — niin (,81 )j m, *nl,
if mutation _range ([, ) < threshold, mutation _range(5,) = threshold

R, =mutation _range(f) /2 / 1374

1367 / a = age n generations

ﬁl_Rﬁt _ 18;1

JBE — R i ﬁ£1 ﬁzr: "t ﬁ?:_,r ﬁz +Rﬁ1

- >
6.-R, |16 8.8, | ] 5.+&,

no : * ! J '
l generate ¢° combinations &, 5,, ..., 8], wheres = ¢

1376
\

1377
, } < 1378
A F | %] 1379
. : : select f'with B -
. . ) j highest F" ? : T\
ﬁ; > F: I mutant 1380
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Cfif mlojc-i“e .\. )

15023 receive refl, ref2,
AN model metadata,

Jitness

&

. select number of
1902b ~__|individuals m based
on number of model

bestF and
[s

ldentlfy mods| T
| parl'inlgters F parameters S, that |~ 15021
l | produce bestF
— I ' fitness value
- determine minimum ™

1502¢ ~__| intensity min/ and
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max/ for image / E

4

maxNo Chcmge AN

~ 1502k
- allocate two arrays numlterations <
of individuals, genA maxiier? !
15024 ~_ and genB, each —
| with m elements ; numlterations++
and each with |
| Storage for 2, o s |
parameter values 15021 \\
J, next generation
bestF = 0; | T |
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o \; be?:z‘B @; 5 L
. noChange = ; 1902h ™. Wwhile change and
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— - generation)
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( generation0 ‘>
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METHODS AND SYSTEMS FOR
NORMALIZING IMAGES

TECHNICAL FIELD

The current application 1s directed to digital-image pro-
cessing and, in particular, to methods and systems that
normalize intensities within 1images in preparation for digi-
tal-image comparison.

BACKGROUND

Digital-image processing 1s a broad and a important field
that provides foundation technologies for many types of
diagnosis, monitoring, surveillance, data collection, and data
analysis. Digital-image-processing methods are used 1n
medical 1maging, optical-character-recognition systems,
processing and analysis of 1mage data collected by surveil-
lance, monitoring, and remote-sensing systems, production
of informational and entertainment videos, and digital pho-
tography. A variety of sophisticated mathematical tech-
niques have been developed to address many problem
domains 1n digital-image processing, including reduction of
noise in digital images, sharpening of imaged features in
digital 1mages, extraction of information from digital
images, and many other such problem domains.

In many areas of digital-image processing and analysis,
two or more different images are compared in order to
extract differential information from the two or more 1mages
corresponding to various types of changes. As one example,
frames of surveillance videos may be compared to one
another by automated techniques in order to extract infor-
mation related to temporal changes 1n the environment being,
monitored. Surveillance videos are often collected continu-
ously from various types of environments, such as building
entrances and the interiors of train stations and airports, and
automated, analytical methodologies based on automated
comparison of frames from such videos are applied to hours
of days of recorded surveillance video 1n order to pinpoint
particular anomalous events that occurred at particular
points of time during surveillance. In other cases, frame-
comparison-based methods are employed in real time to
detect anomalous events and trigger alerts. As another
example, a time sequence of digital medical images of a
tumor or other pathology may be compared 1n order to detect
changes 1n the tumor or other pathology over time. Often,
digital 1mages are compared by subtracting the intensity
values 1n one 1mage from the intensity values of another, in
order to detect intensity differences between the two 1images.
However, many intensity diflerences between images may
arise from phenomena unrelated to the types of changes and
events ol interest. For example, the intensities 1n two dii-
ferent medical 1mages may differ systematically due to
differences in the 1maging devices used to acquire the
images, differences in 1image-device settings and parameters,
random and systematic noise 1n the digital images, and many
other types of intensity-altering phenomena. Normalization
of 1images 1s therefore a major problem domain in i1mage
processing. Normalization seeks to reduce or eliminate
systematic intensity variation between images, 1n prepara-
tion for image comparison, without losing or obscuring the
meaningful, but often subtle, intensity diflerences that are
sought to be extracted by digital-image-comparison tech-

niques.

SUMMARY

The current document 1s directed to digital-image-nor-
malization methods and systems that generate accurate
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intensity mappings between the intensities in two digital
images. The intensity mapping generated from two digital
images 1s used to normalize or adjust the intensities 1n one
image in order to produce a pair of normalized digital
images to which various types of change-detection method-
ologies can be applied 1n order to extract diflerential data. In
one approach, a mapping model is selected to provide a basis
for statistically meaningful intensity normalization. In this
implementation, a genetic optimization approach is used to
determine and refine model parameters. The implementation
produces a hybrid intensity mapping that includes both
intensity mappings calculated by application of the mapping
model and intensity mappings obtained directly from com-
parison of the images.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general architectural diagram for vari-
ous types ol computers.

FIG. 2 1illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown in FIG. 1.

FIG. 3 illustrates a virtual machine and virtual-machine
execution environment.

FIG. 4 illustrates two different types of digital images.

FIGS. SA-B illustrate digital-image comparison.

FIGS. 6A-D illustrate the eflect of noise on the digital-
image-comparison process discussed above with reference
to FIGS. 5A-B.

FIGS. 7TA-D show similar examples to those shown 1n
FIG. 6 A-D, but with the pixels corresponding to the imaged
cruciform object having relatively low intensity values com-
pared to the intensities of the pixels corresponding to the
imaged cruciform object 1n FIG. 6A.

FIGS. 8A-D show a different example of image compari-
son using the same illustration conventions used 1n FIGS.
6A-D and FIGS. 7A-D.

FIGS. 9A-B 1llustrate a typical result obtained by digital-
1mage comparison.

FIGS. 10A-B 1llustrate underlying concepts of the cur-
rently disclosed normalization methods and systems.

FIG. 11 provides a control-flow diagram for one imple-
mentation of the currently disclosed methods and systems.

FIGS. 12A-G 1llustrate tabulation of pixel-intensity map-
pings and generation of a difference metric value for a
particular mapping model.

FIGS. 13A-F 1illustrate aspects of a genetic mapping-
function-parameter-fitting method that 1s used to optimize
parameter values for a mapping function that maps mtensi-
ties from a first image to a second 1mage within at least a pair
ol 1mage domains.

FIGS. 14A-B 1llustrate the final intensity-mapping model
produced by the currently disclosed methods and system.

FIGS. 15A-K provide control-flow diagrams that 1llus-
trate one implementation of the routine “fit model,” called 1n
step 1111 of FIG. 11.

DETAILED DESCRIPTION OF EMBODIMENTS

The current document 1s directed to digital-image-nor-
malization methods and systems. In a first subsection, below,
an overview ol computer systems 1s provided, with reference
to FIGS. 1-3. In a second subsection, provided below, a
description of digital images and digital-image-comparison
operations 1s provided with reference to FIGS. 4-9B. In a
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third subsection, implementations of the currently disclosed
methods and systems are provided with reference to FIGS.

10A-15K.

Overview of Computer Systems and Computer
Architecture

FIG. 1 provides a general architectural diagram for vari-
ous types of computers. The computer system contains one
or multiple central processing units (“CPUs”") 102-105, one
or more electronic memories 108 interconnected with the
CPUs by a CPU/memory-subsystem bus 110 or multiple
busses, a first bridge 112 that interconnects the CPU/
memory-subsystem bus 110 with additional busses 114 and
116, or other types of high-speed interconnection media,
including multiple, high-speed serial interconnects. These
busses or serial interconnections, in turn, connect the CPUs
and memory with specialized processors, such as a graphics
processor 118, and with one or more additional bridges 120,
which are interconnected with high-speed senial links or
with multiple controllers 122-127, such as controller 127,
that provide access to various diflerent types of mass-storage
devices 128, clectronic displays, mput devices, and other
such components, subcomponents, and computational
resources. It should be noted that computer-readable data-
storage devices include optical and electromagnetic disks,
clectronic memories, and other physical data-storage
devices. Those familiar with modern science and technology
appreciate that electromagnetic radiation and propagating
signals do not store data for subsequent retrieval, and can
transiently “store” only a byte or less of information per
mile, far less information than needed to encode even the
simplest of routines.

FIG. 2 illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown 1n FIG. 1. The computer system 200 1s
often considered to include three fundamental layers: (1) a
hardware layer or level 202; (2) an operating-system layer or
level 204; and (3) an application-program layer or level 206.
The hardware layer 202 includes one or more processors
208, system memory 210, various different types of input-
output (“I/O”) devices 210 and 212, and mass-storage
devices 214. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 204
interfaces to the hardware level 202 through a low-level
operating system and hardware interface 216 generally
comprising a set of non-privileged computer instructions
218, a set of privileged computer instructions 220, a set of
non-privileged registers and memory addresses 222, and a
set of privileged registers and memory addresses 224. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 226 and a system-call interface 228 as an
operating-system interface 230 to application programs 232-
236 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
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another’s execution and cannot change the overall state of
the computer system 1n ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
242, memory management 244, a file system 246, device
drivers 248, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that 1s mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
vartous different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor resources and
other system resources with other application programs and
higher-level computational entities. The device drivers
abstract details of hardware-component operation, allowing
application programs to employ the system-call interface for
transmitting and receiving data to and from communications
networks, mass-storage devices, and other 1/O devices and
subsystems. The file system 246 facilitates abstraction of
mass-storage-device and memory resources as a high-level,
casy-to-access, file-system interface.

FIG. 3 illustrates a type of virtual machine and virtual-
machine execution environment, using the same 1llustration
conventions as used in FIG. 2. FIG. 3 shows a first type of
virtualization. The computer system 300 in FIG. 3 includes
the same hardware layer 302 as the hardware layer 202
shown 1n FIG. 2. However, rather than providing an oper-
ating system layer directly above the hardware layer, as 1n
FIG. 2, the virtualized computing environment 1llustrated 1n
FIG. 3 features a virtualization layer 304 that interfaces
through a virtualization-layer/hardware-layer interface 306,
equivalent to interface 216 1 FIG. 2, to the hardware. The
virtualization layer provides a hardware-like mterface 308 to
a number of virtual machines, such as virtual machine 310,
executing above the virtualization layer 1n a virtual-machine
layer 212. Each virtual machine includes one or more
application programs or other higher-level computational
entities packaged together with an operating system,
referred to as a “‘guest operating system,” such as application
314 and guest operating system 316 packaged together
within virtual machine 310. Each virtual machine 1s thus
equivalent to the operating-system layer 204 and applica-
tion-program layer 206 in the general-purpose computer
system shown 1n FIG. 2. Each guest operating system within
a virtual machine interfaces to the virtualization-layer inter-
tace 308 rather than to the actual hardware intertace 306.
The virtualization layer partitions hardware resources nto
abstract virtual-hardware layers to which each guest oper-
ating system within a virtual machine interfaces. The guest
operating systems within the virtual machines, 1n general,
are unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface. The
virtualization layer ensures that each of the virtual machines
currently executing within the virtual environment receive a
fair allocation of underlying hardware resources and that all
virtual machines receive suflicient resources to progress in
execution. The virtualization-layer interface 308 may differ
for diflerent guest operating systems. For example, the
virtualization layer 1s generally able to provide virtual
hardware interfaces for a variety of diflerent types of com-
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puter hardware. This allows, as one example, a virtual
machine that includes a guest operating system designed for

a particular computer architecture to run on hardware of a
different architecture. The number of virtual machines need
not be equal to the number of physical processors or even a
multiple of the number of processors.

The virtualization layer includes a virtual-machine-moni-
tor module 318 (“VMM”) that virtualizes physical proces-
sors 1n the hardware layer to create virtual processors on
which each of the virtual machines executes. For execution
eiliciency, the virtualization layer attempts to allow virtual
machines to directly execute non-privileged 1nstructions and
to directly access non-privileged registers and memory.
However, when the guest operating system within a virtual
machine accesses virtual privileged instructions, virtual
privileged registers, and virtual privileged memory through
the virtualization-layer interface 308, the accesses result in
execution of virtualization-layer code to simulate or emulate
the privileged resources. The virtualization layer addition-
ally 1mncludes a kernel module 320 that manages memory,
communications, and data-storage machine resources on
behalf of executing virtual machines (“VM kernel”). The
VM kernel, for example, maintains shadow page tables on
cach virtual machine so that hardware-level virtual-memory
facilities can be used to process memory accesses. The VM
kernel additionally includes routines that implement virtual
communications and data-storage devices as well as device
drivers that directly control the operation of underlying
hardware communications and data-storage devices. Simi-
larly, the VM kernel virtualizes various other types of I/O
devices, including keyboards, optical-disk drives, and other
such devices. The virtualization layer essentially schedules
execution of virtual machines much like an operating system
schedules execution of application programs, so that the
virtual machines each execute within a complete and fully
functional virtual hardware layer.

Digital Images and Digital-Image-Comparison
Operations

FIG. 4 illustrates two different types of digital images. A
two-dimensional digital image 402 1s a rectilinear grid of
pixels, with each pixel identified by the grid-cell coordinates
of the pixel according to a two-dimensional Cartesian coor-
dinate system 404. Each pixel, such as pixel 406, includes an
intensity value 1 408. In the current discussion, digital
images are considered to have grayscale intensities, where 1
1s one of a number of successive integer intensity values
ranging from O to maxI. For example, maxl may equal 255,
in which case each pixel intensity 1s encoded as a byte.
Alternatively, each pixel intensity may be encoded as a
two-byte word, 1n which case maxl 1s 65,535. Each pixel of
an RGB-encoded color image may include three different
intensity values for the three color channels red, green, and
blue or may include another type of encoding according to
another of various other color models. A three-dimensional
digital 1mage 410 1s a volume of voxels, such as voxel 412,
the positions of which are generally described by a three-
dimensional Cartesian coordinate system 414. The currently
disclosed methods and systems for image normalization are
applicable both to two-dimensional and to three-dimen-
sional digital images.

FIGS. 5A-B illustrate digital-image comparison. In FIG.
5A, a first digital image 502 and a second digital image 504
are acquired by digital-image-capture devices at two difler-
ent points 1 time. In this example, as 1n all the remaining
examples provided below, pixels are shown with exagger-
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6

ated dimensions relative to the image size, for clarity of
illustration. In a typical digital image, there may be several
hundred or more pixels per centimeter 1 the x and y
directions of a two-dimensional digital image or tens to a
hundreds of voxels per centimeter 1n the x, vy, and z direc-
tions of a three-dimensional digital image. Pixel sizes often
depend on the medium in which pixels are displayed and
may differ dramatically among printed images and 1images
rendered for display on LCD display devices.

Both the first image 502 and the second image 504 1n FIG.
5A show a cruciform imaged object 5306 with relatively
low-1ntensity pixels on a high-intensity background 508. In
one convention, small-magnitude intensity values corre-
spond to dark or black pixels while high-magnitude intensity
values correspond to light or white pixels. In the example
shown 1n FIG. SA, 1t 1s obvious that the cruciform object 1s
larger 1n the second 1mage 504 than in the first image 502.
However, 1n many real-world imaging examples, the difler-
ences between the contents of two 1mages are not apparent
to a human viewer by visual ispection. Instead, many of the
most 1nteresting diflerences may be quite subtle.

In order to automatically process the pair ol images
shown 1n FIG. SA to determine the differences between the
two 1mages, the pixel intensities of the corresponding pixels
in the two 1mages may be subtracted, as shown by the
digital-image-subtraction operation 510 1n FIG. 5B, to pro-
duce a difference 1mage 512. The subtraction operation
involves, for a given pair of corresponding pixels 514 and
516, generating a single difference pixel 518 containing the
difference of the intensities 1n the original pixel pair 514 and
516 that 1s placed into the same position 1n the difference
image 512 as the positions of the pixel pair in the original
images 502 and 504. The computed differences are often
resealed to fall within the intensity range [0, maxI]. In this
example case, the difference image 512 displays those pixels
522 that have diflerent intensity values in the original digital
images 502 and 504 and those diflerences accurately reflect
a cruciform border region that represents growth of the
cruciform object.

While straight subtraction of digital images 1s one method
for creating a difference 1image that highlights diflerences
between two original 1mages, there are many other tech-
niques for generating difference 1images that use different or
additional operations on the intensity values of the two
original 1mages. Nonetheless, all of the various different
types of comparison operations between digital images seek
to highlight meaningiul differences between the two 1mages.
Meaningful differences are generally diflerences 1n image
intensities that reflect physical diflerences in the imaged
objects and environments, such as change of tissue type 1n
medical images or the sudden appearance of an object 1n the
imaged environment in a surveillance-video frame. Auto-
mated comparison operations are used to detect and display
subtle differences 1n 1images that would not be apparent to
human viewers and to automate the process of 1dentifying
even differences 1n 1mage sequences that would be apparent
during visual inspection, were there time for visual inspec-
tion, such as in surveillance videos, or both.

FIGS. 6A-D illustrate the effect of noise on the digital-
image-comparison process discussed above with reference
to FIGS. SA-B. FIGS. 6 A-D use common 1illustration con-
ventions subsequently used for FIGS. 7A-9B. Fach digital
image 1s shown as a rectilinear grid of pixels with single-
digit intensity values. Blank pixels are assumed to have the
intensity value 0. FIG. 6 A shows a pair of images 602 and
604 similar to images 502 and 504 i1n FIG. SA. In this

example, the 1imaged cruciform object 606 has relatively




US 10,192,295 B2

7

high intensity values while the background pixels have
relatively low intensity values. Rendered as positive images,
the cruciform object would appear lightly colored or white
on a dark background, but, for clanty of illustration, nega-
tive or inverse renderings of the images are shown 1n FIG.
6A. In addition to relatively high-intensity pixels that com-
prise the cruciform object 606, ecach 1image contains low-
intensity values corresponding to noise. For example, pixel
608 1n the second image 604 has an intensity value of 2
while the pixel at the same location 1n the first image 602 has
an intensity value 0. In many cases, noise 1s a stochastic
phenomena and produces different patterns of anomalous
pixels 1n each different image. Furthermore, the intensities
of the pixels within the imaged cruciform object 606 in each
image are non-uniform, the non-uniformity a product of
both noise and perhaps 1image-acquisition-device-character-
istic differences. As a result, when a difference 1mage 610,

shown 1n FIG. 6B, 1s produced by the comparison method
510 discussed above with reference to FIG. 5B, the difler-
ence 1mage 1s visually cluttered. In FIG. 6B, the non-0
valued pixels are shown darkened while the O-valued pixels
are shown unshaded, an inverted or negative 1image of the
positive difference image produced by the diflerence opera-
tion. This cluttered difference image does include the same
difference pixels 522 produced in the example shown 1n
FIG. 5B, but also includes non-0 valued pixels, such as pixel
612 at the position of pixel 608 in the second 1mage shown
in FIG. 6 A, resulting from noise. Noise can therefore clutter
and mask the differences of interest or meaning 1n a difler-
ence 1mage produced by a comparison operation. A thresh-
olding operation may be used to attempt to eliminate noise
pixels from a difference image. As shown 1n FIG. 6C, only
difference pixels with unrescaled absolute-value intensities
greater than 1 are shaded 1n the thresholded difference image
620. By removing difference pixels with intensities 1 and -1,
much of the clutter 1n the difference image 610 shown in
FIG. 6B has been removed. An even better difference image
622 1s shown in FIG. 6D, produced by showing only those
difference pixels with at least absolute-value difference
intensity 2. When the intensity differences of the pairs of
pixels 1n the onginal image of 1nterest are large compared to
the intensity differences of noise pixels and background
pixels, thresholding can remove much of the unwanted noise
signal to produce a clear, meaningful difference 1mage.
However, when the intensity-valued differences of the
pixel pairs of interest in the original images have magnitudes
on the order of the magmtudes of noise differences, thresh-
olding may not be eflective. FIGS. 7TA-D show similar
examples to those shown 1n FIG. 6 A-D, but with the pixels
corresponding to the imaged cruciform object having rela-
tively low intensity values compared to the intensities of the
pixels corresponding to the imaged cruciform object in FIG.
6A. The unthresholded difference image 710 in FIG. 7B
produced by the comparison operation 510 discussed above
with reference to FIG. 5B applied to original images 702 and
704 shown in FIG. 7A 1s more visually cluttered than
difference 1mage 610 in FIG. 6B. A thresholded version of
the difference image 712 1n FIG. 7C, with diflerence pixels
having unrescaled absolute-value 1ntensities less than 2 not
displayed, has less clutter but does not reveal the cruciform-
outline pattern of the difference pixels of interest, originally
shown 1n the difference image 512 1n FIG. 5B. A second
thresholded difference image 714 1n which only difference
pixels with unrescaled absolute-value intensities of 2 or
greater are displayed, provides relatively little information.

Thus, as shown 1n the example of FIGS. 7A-D, when the
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intensity differences between two 1mages are subtle, the
differences may be entirely masked by the presence of noise
in the two 1mages.

FIGS. 8A-D show a different example of image compari-
son using the same illustration conventions used 1n FIGS.

6A-D and FIGS. 7A-D. The original images 802 and 804

shown 1n FIG. 8A both contain the imaged cruciform object
806. However, original 1image 802 additionally includes a
systematic variation in 1mage intensity, with the portion of
the image 808 below a diagonal line from the top left-hand
pixel 810 to the bottom right-hand pixel 812 having higher
intensities than the portion of the image 814 above the
diagonal line. Similarly, the second original image 804 has
a lower, roughly triangular region 816 with generally higher
intensities than the upper portion 818 of the image. Such
systematic intensity diflerences and patterns may be caused
by shading or i1llumination differences in the environment
being 1imaged or by systematic variations in recorded pixel
intensities during image capture within the 1mage-capture
device. FIG. 8B shows the unthresholded difference image
820 in similar fashion to the unthresholded diflerence
images shown in FIGS. 6B and 7B. Because of the system-
atic pixel-intensity differences within each of the original
images, the unthresholded difference 820 appears to have
more difference pixels than non-difference pixels and 1s
dominated by differences generated from the systematic
intensity variation within the two original 1images rather than
from the increase 1n size of the cruciform object 806. When
the difference image 1s thresholded to remove difference
pixels with unrescaled absolute-value intensities less than 2,
the thresholded difference image 822, shown in FIG. 8C, 1s
much less cluttered, but also fails to clearly show the
differences of interest that represent an increase in size of the
cruciform object. When the difference image 1s thresholded
to remove diflerence pixels with unrescaled absolute-value
intensities of 1 and 2, to produce the difference image 824
shown 1n FIG. 8D, there 1s almost no difference information
ol interest remaiming 1n the thresholded difference image.
Thus, systematic intensity variation within the original
images may completely frustrate an attempt to extract mean-
ingful difference information from the two 1mages.

FIGS. 9A-B illustrate a typical result obtained by digital-
image comparison. In the examples of FIGS. 5A-8D, the
difference pixels of interest were readily apparently from
visual inspection of the example original images shown in
FIGS. SA, 6A, 7A, and 8A. By contrast, in many real-world
image-analysis problems, the diflerences may not be readily
apparent during visual inspection of the original 1images. For
example, FIG. 9A shows original images 902 and 904 1n
which all of the pixels have intermediate or high intensities.
Neither the imaged cruciform object nor the increase 1n size
of the imaged cruciform object 1s readily apparent from
these displayed intensities. However, when the two 1mages
are differenced to produce diflerence 1mage 906 shown 1n
FIG. 9B, the pattern of difference pixels nicely shows the
growth of size of the imaged cruciform object 908 along
with several noise-induced differences 910 and 912. Thus, 1n
many cases 1 which computational digital-image compari-
son 15 used, the comparison may reveal meaningful patterns
that are not apparent to human viewers. Such subtle patterns
of intensity difference are often completely obscured by the
presence ol noise or systematic intensity variations, as
discussed above with reference to FIGS. 7TA-D and 8A-D. It
1s to facilitate comparison of digital images that the normal-
1zation methods and systems disclosed 1n the current docu-
ment were developed.
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Implementations of the Currently Disclosed
Methods and Systems

The current document 1s directed to normalization meth-
ods and systems that reduce or eliminate certain types of
intensity variations among digital images prior to applying
comparison operations to the digital images in order to
detect meaningful differences in intensity between the digi-
tal 1mages. The currently disclosed methods and systems
seek to remove systematic intensity variation without exac-
erbating noise-induced intensity variations between images,
which can lead to obscuring or eliminating the meaningful
differences between digital images sought by digital-image
comparison. The currently disclosed normalization methods
and systems attempt to normalize digital images largely
based on the intensity values of pixels or voxels within the
images themselves rather than by using extrinsic iforma-
tion, and thus are useful 1 a wide variety of automated
digital-image-processing and digital-image-analysis sys-
tems, including systems that identify and highlight mean-
ingiul differences in time sequences ol medical images,
systems that identily the time points of anomalies and events
within long sequences of video frames, and systems that
analyze 1mages obtained by remote sensing.

FIGS. 10A-B 1illustrate underlying concepts of the cur-
rently disclosed normalization methods and systems. As
shown in FIG. 10A, the currently disclosed normalization
methods seek to generate a mapping model, such as a
mapping function 1002 for two-dimensional images or a
mapping function 1004 for three-dimensional 1images that,
given the position and intensity of a pixel 1006 1n a first
image 1008, generate a corresponding intensity 1010 for an
equivalently located pixel in a second image 1012. By
applying the mapping model to each pixel in the first image,
a normalized 1mage 1s produced that can be compared to the
second 1mage by using any of many different types of
comparison operations to reveal intensity diflerences of
interest between the two 1mages. Of course, the mapping
model can also be applied 1n an opposite sense to the second
image to normalize the intensities in the second image to
those of the first image.

FIG. 10B illustrates, for the two-dimensional-image case,
a range ol different types of analytical functions, that may be
contemplated as mapping models for intensity normaliza-
tion. A first class of mapping functions 1020 generates
corresponding intensities 1 for intensities 1 without regard for
the position of the pixel with that intensity in the first image.
In other words, 1n this class of mapping functions, only the
intensity 1 1s provided as an argument. The mapping func-
tions may be any of a variety of different types ol expres-
sions, including linear mapping functions 1021-1022 and
quadratic mapping function 1024. Note that, in FIG. 10B,
capital letters represent constant parameters 1n the example
mapping functions.

In a second class of mapping functions 1030, each map-
ping function takes both the intensity as well as the position
of a pixel in the first 1image as arguments and generates a
corresponding intensity for a pixel at that same position 1n
the second 1mage. However, as shown by example mapping
function 1032, the position arguments are used only to
determine to which of several different subregions, or
domains, the image any particular mapping function applies.
In model 1032, when the pixel 1s in an upper leit triangular
domain of the image, a first linear function 1033 i1s used
while, when the input pixel 1s 1n a lower triangular region or
domain of the image, a second linear function 1034 1s used.
Thus, the second class of mapping functions essentially
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divide or partition an 1mage into multiple domains, for each
of which a domain-specific mapping function 1s generated
for normalization of the intensities within an 1mage.

A third class of mapping functions 1040 specifically maps
individual pixel intensities to corresponding individual pixel
intensities. For these mapping functions, both the position
and the intensity of a pixel are variables within the mapping
function. As shown 1n the downward-pointing vertical arrow
1046 1n FIG. 10B, the specificity of the mapping functions
significantly increase over the classes 1020, 1030, and 1040.
Were model functions of the final class 1040 obtainable, and
were they accurate, such mapping functions may be reason-
ably expected to provide the most precise and accurate
intensity normalization. However, the problem with this
level of specificity 1s that there 1s insuflicient data, when only
the 1intensity values within the two 1images are considered, to
try to determine parameter values for such functions 1n a
single pass at parameter optimization. As the model func-
tions become more specific, the danger of the functions
being dominated by stochastic noise, rather than real inten-
sity-diflerence variations between the images, greatly
increases, as a result of which a normalization process that
attempted to employ such mapping functions in an 1nitial
single-pass optimization would likely mask meaningtul dif-
ferences obtained by subsequent image comparison and
would 1instead generate a large amount of unwanted and
meaningless noise-induced differences. Thus, as indicated
by arrow 1048 1n FI1G. 10B, the currently disclosed normal-
1zation methods and systems 1nitially use either models of
the first class 1020 or the second class 1030, with the
additional caveat that the domains specified 1n the second
class of mapping functions must be sufliciently large to
provide a sound statistical basis for determining mapping-
function parameters.

FIG. 11 provides a control-flow diagram for one imple-
mentation of the currently disclosed methods and systems.
In step 1102, the normalization procedure receives refer-
ences to two 1mages, refl and retl, as well as image metadata
that describes the types of images, their sizes, and other
image parameters. In step 1104, the routine “normalize”
calls a routine “preprocess 1images” to prepare the images for
normalization. The routine “preprocess images’ registers the
images, so that each positionally equivalent pair of pixels
selected from the two 1mages correspond to the same point
within the 1imaged environment. Registration may involve
rotation and translation of the two images, as well as
cropping, and may also mvolve more complex operations
when extrinsic information about the subject matter to which
the content of the 1images pertains 1s available. Preprocessing
may also 1identity domains with diflerent intensity variations
within the 1images and may compute mimmum and maxi-
mum 1ntensities to allow for selection of appropriate data
structures used 1n the normalization process. In step 1106, a
set of possible mapping functions, or models, for normal-
ization 1s selected. In many cases, normalization may use
only a single mtensity-mapping function when either multi-
domain 1imaging 1s not supported or when multiple domains
cannot be identified. However, in the general case, the
normalization process may try numerous diflerent mapping
functions to determine which mapping function produces the
best normalization. In that case, in step 1108 and the for-loop
of steps 1110-1114, normalization 1s attempted for each
mapping function and the best mapping function is selected.
In step 1111, the routine “fit model” 1s called to fit model
parameters of a currently considered model, or mapping
function, to the data, as discussed below, using the fitness
function fitness 1, also discussed below. Note that the fitness
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function 1s passed to the routine “fit model” as an argument
and 1s referred to internally within the routine “fit model” by
the internal argument name “fitness.” The best mapping
function 1s then used to generate, as discussed below with
reference to FIGS. 14A-B, an image-adjustment model, in
step 1118, and the 1image-adjustment model 1s then applied,
in step 1120, to the image referenced by refl to normalize
image 1 with respect to i1mage j i1n preparation for an
Image-comparison operation.

The final three steps i FIG. 11, shown within dashed
rectangle 1122, are applied, 1n certain implementations, to
address the problem of inhomogeneities. Inhomogeneities of
various different types are spatial artifacts 1n 1images, includ-
ing, for example, spatial artifacts 1n medical magnetic-
resonance 1mages (“MRIs) as well as 1llumination changes
in scenes 1maged by surveillance cameras. Inhomogeneities
may arise from characteristics of 1mage-acquisition devices,
including systematic spatial response differentials, from
characteristics of the objects or scenes being imaged, includ-
ing varying illumination intensities, varying illumination
spectral characteristics, and temporal changes 1n the absor-
bance and reflectivity of imaged surfaces, and other such
changes. These artifacts can be relatively continuous, large-
scale intensity fluctuations across an 1mage. Thus, amelio-
ration of inhomogeneities mvolves an itensity model, such
as mapping functions 1040 discussed above with reference
to FIG. 10B, that take 1nto consideration the spatial locations
of pixels within an 1mage. In step 1124, a spatial mapping
function 1s selected for parameter fitting, in step 1126, via a
call to the above discussed function “fit model,” called
previously in step 1111. In this call to the function *“fit
model,” a different fitness function fitness 2, discussed
below, 1s passed to the function “fit model.” The model 1s
then used, in step 1128, to refine the normalization of the
image referenced by refl. In certain implementations, the
series of steps 1106 through 1120 may be alternated with
steps 1124 through 1128 in multiple iterations to carry out
multiple passes at normalization and refinement, with the
iterations continuing until a convergence criterion 1s met or
until a fixed number of iterations have been executed. In
alternative implementations, amelioration of mhomogene-
ities may precede normalization, 1n one pass, or in each of
multiple iterations. In yet additional implementations, vari-
ous characteristics of the mput 1images determine whether or
not amelioration of inhomogeneities 1s attempted and, i
attempted, whether or not amelioration of inhomogeneities
precedes or follows normalization.

FIGS. 12A-G 1llustrate tabulation of pixel-intensity map-
pings and generation of a diflerence metric value for a
particular mapping model. FIGS. 12A-E all use the same
illustration conventions, next discussed with reference to
FIG. 12A. The examples are based on two-dimensional
images, but the illustrated methods are equally applicable to
three-dimensional 1mages. In each figure, a first example
image 1202 and a second example image 1204 are shown,
similar to pairs of 1mages shown m FIGS. SA, 6A, 7A, 8A,
and 9A. Below the two 1images, a table 1206 1s shown 1n each
figure. The table represents a mapping of intensity values
that occur 1n the first image 1202, referred to as image “A,”
to 1ntensity values in the second 1mage 1204, referred to as
image “B.” The population of this data table is 1llustrated 1n
FIGS. 12B-E. The illustrated mapping 1s a mapping for
non-0 intensities 1 1mage A to corresponding intensities in
image B, in the currently discussed example. In certain
medical images, for example, areas or volumes of the image
may be omitted from normalization, such as areas or vol-
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umes corresponding to air, or non-tissue volumes. These
omitted areas or volumes may, of course, have non-zero
intensities.

FIG. 12B shows a first step in the population of data table
1206. A pair of equivalently located pixels 1208 and 1209
are indicated by arrows 1210 and 1211 1n images A and B.
The intensity value 3 of pixel 1210 in image A 1s mapped to
intensity value 9 of pixel 1211 1n 1mage B. Therefore, the
cell 1212 1n table 1206 corresponding to mapping of inten-
sity value 3 to intensity value 9 from 1image A to image B 1s
incremented to 1. FIG. 12C shows consideration of a next
pair of pixels represented by arrows 1214 and 1216. In this
case, the intensity value 3 1n 1mage A 1s mapped to the
intensity value 7 1in image B. Thus, the cell 1218 corre-
sponding to a mapping of intensity value 3 to intensity value
7 1s incremented to the value 1. FIG. 12D shows a third step
in table population. Arrows 1220 and 1222 indicate a third
pair of pixels. In this case, itensity value 4 1s mapped to
intensity value 9, as a result of which cell 1224 in table 1206
1s incremented to the value 1. This process proceeds through
all of the shaded pixel pairs 1n 1mages A and B to populate
table 1206, as shown 1n FIG. 12F.

As shown 1 FIG. 12F, table 1206, produced by consid-
ering a sequence of positionally equivalent pixels in images
A and B, as discussed above with reference to FIGS. 12A-F,
can be alternatively considered to be a set of histograms
1230-1234, with each row 1n table 1206 providing the data
for a single, corresponding histogram. Histogram 1230
shows the distribution of intensity values in image B for
pixels 1n 1mage B positionally corresponding to pixels in
image A with itensity value 1. Similarly, histogram 1231
shows the distribution of intensities of pixels 1n 1mage B
positionally corresponding to pixels 1n image A with inten-
sity value 2.

The currently disclosed methods and systems seek to use
the tabulated intensity-mapping data, such as the data tabu-
lated 1n example 1206 or, equivalently, tabulated 1n histo-
grams 1230-1234 shown in FIG. 12F, to generate parameters
for a mapping function. FIG. 12G shows a plot 1240 of the
mapping function j=mi+b, where the values for the param-
eters m and b have been determined to be 2.2 and 1,
respectively. The diflerence metric 1s used to evaluate how
closely the mapping function fits the tabulated data. Com-
putation of the diflerence metric 1s illustrated in the lower
portion of FIG. 12G. First, a table 1242 of diflerences 1s
computed. Fach row in this table corresponds to the map-
ping from a particular intensity value in image A to another
intensity value 1 i1mage B, and also corresponds to a
particular bar within one of the histograms. The elements
within a row, or the columns of the table, correspond to: (1)
the intensity value in image A 1244; (2) a corresponding
intensity value computed using the mapping function 1245;
(3) the intensity value observed in 1image B 1246; and (4) the
absolute value of the diflerence between the observed inten-
sity value and the itensity value computed by the mapping
function 1247. Thus, the first row 1248 1n table 1242
corresponds to the first bar 1250 1n histogram 1230. This bar
represents the number of pixels with intensity value 1 in
image A whose positionally corresponding pixel in image B
has the intensity value 3. According to the mapping function,
the intensity value 1 (1252 in FIG. 12G) in 1mage A 1s
mapped to the imtensity value 3.2 (1254 1 FIG. 12G)
image B. The absolute value of the diflerence between the
computed value 3.2 and the observed value 3 1s 0.2.

In the central portion of FIG. 12G, an example calculation
of the difference metric D 1s shown 1256. This difference
metric 1s computed as a sum of terms, each term correspond-
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ing to a row 1n table 1242. Fach computed absolute-value
difference in the final column of table 1242 1s multiplied by
the height of the histogram bar corresponding to the row in
FIG. 1242 that contains the absolute-value diflerence to
produce a numeric sum of terms 1258 that represents the
sum of the absolute values of the differences between the
observed pixel values 1n 1mage B and the pixel values
computed by the mapping function based on corresponding
intensities 1 1mage A. The computation of the difference
metric D 1s alternatively illustrated by two equations 1260
and 1262. The first equation 1s equivalent to the computation
shown 1n the example 1256. The outer summation is over the
distinct intensity values observed in image A. The inner
summation 1s over the distinct intensity values observed 1n
image B for a given intensity value observed in 1mage A.
The terms of the expression are the product of the number
of pixels with a particular intensity value 1n image B times
the absolute value of the difference between that intensity
value and the computed intensity value. Alternatively, as
shown by equation 1262, the difference metric 1s the sum,
over all corresponding pairs of pixels in 1images A and B, of
the absolute value of the difl

erence between the observed
intensity value of each pixel 1n 1mage B and the value
computed by the mapping function for the intensity value of
the corresponding pixel in 1image A.

FIGS. 13A-F illustrate aspects of a genetic mapping-
function-parameter-fitting method that 1s used to optimize
parameter values for a mapping function that maps intensi-
ties from a first image to a second 1mage within at least a pair
of 1mage domains. The genetic parameter-fitting method 1s
used 1teratively to produce successive generations of indi-
viduals, each corresponding to a set of mapping-function
parameter values. The method simulates evolution of 1ndi-
viduals to produce a most fit individual with the best model

parameter values.

FIG. 13A illustrates an individual. The individual 1302
can be thought of as a data structure that includes a set of
mapping-function parameter values 1304, a fitness value
1305, and a timestamp 1306. The fitness value 1s computed
from the difference metric, computation of which 1s dis-

cussed above with reference to FIG. 12G. The timestamp 1s,
in the described implementation, an indication of the num-
ber of generations over which the particular individual has
survived. Computation of the fitness value 1s shown by
equation 1308 in FIG. 13A. The fitness value 1s 1—the ratio
of the difference metric for the set of parameter values
contained in the individual divided by the maximum
observed difference metric. Fitness values range from 0 to 1
1310, with 1 representing a maximally fit, or perfectly fit,
mdwldual In alternative 1mplementat10ns different com-
puted fitness values with difference ranges and senses may
be used. For example, the difference metric can be used as
the fitness value, 1n which case a value of 0 would be best
and 1ncreasing positive values would represent decreasing
fitness. The parameter values 3, -, . . . ,, are the constant
parameter values for a mapping function. As discussed
above, a linecar mapping function may have two parameter
values, 1n which case an individual would contain the two
parameter values [3, and [3,. There 1s a set of lowest-possible-
and highest-possible values for each parameter value, so that
the parameter values can be assumed to fall within the
ranges specified by the lowest and highest values 1312. In
certain 1implementations, these ranges are empirically esti-
mated. Thus, for example, the value of parameter 3; 1314 1s
assumed to fall within the range [B,; B,,] 1315. As
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discussed below with reference to FIG. 15K, a modified
fitness value 1s used for fitting spatial mapping functions to
data.

FIG. 13B illustrates construction of a first generation of
individuals, generation O. In this construction, used 1n cer-
tain 1mplementations, a number q of different, evenly
spaced, candidate parameter values within the range of
values for each parameter 1s computed as represented by the
matrix-like set of nodes 1316 1n FIG. 13B. These candidate
parameter values can be used to generate (q+2)” different
sets of candidate parameters p.. The value q 1s selected so
that the number of candidate parameter-value sets 3. 1s
approximately equal to, but equal to or greater than, the
number of individuals used in the genetic optimization
method. A unique set of candidate parameter values [3. 1s
assigned to each individual, such as the candidate set of
parameter values B.' 1317 assigned to individual 1318. The
timestamp for each generation-0 individual 1s set to O.
Finally, a fitness value 1s computed for each candidate set of

parameter values/individual and included in the individual
data structure. Generation 0 1s shown i FIG. 13B as the
individuals 1n the row of individuals 1319.

FIG. 13C illustrates production of a next generation n+1
of individuals 1320 from a generation n of individuals 1322.
In a first step, a set of combined or pairwise fitness values
1s computed for the possible combinations of two 1mndividu-
als selected from generation n 1324. Computation of the
pairwise {itness values may be simply addition of the fitness
values of each individual in the pair of 1ndividuals, but may
also be represented by a more complex function 1n alterna-
tive implementations. The set of pairwise fitness values 1s
sorted 1325 1n descending magnitude order. Then, a child
individual 1s produced from the parent individuals in gen-
eration n corresponding to pairwise fitness values selected
from the set of pairwise fitness values 1326 1n magnitude-
descending order. For example, a first child individual 1328
1s obtained by breeding parent individuals 1330 and 1331
corresponding to the pairwise fitness value 1332. A number
of child individuals 1s produced 1n this manner equal to 90
percent of the total number of individuals 1n a generation.
Then, the 10% most fit individuals from generation n are
selected as the remaining 10% 1334 of the individuals 1n
generation n+1. Thus, 90% of the individuals 1n a subse-
quent generation n+1 are children bred from the most {it
pairs of individuals 1n generation n and 10% of the indi-
viduals 1n a subsequent generation n+1 are replicates of the
10% most fit individuals of generation n. Of course, the 90%
death ratio and 10% survival ratios for successive genera-
tions are only one possible pair of ratios. In alternative
implementations, different death and survival ratios may be
used and, i certain implementations, the ratios may vary
over parameter fitting through successive generations.

FIG. 13D 1illustrates how two {it parents from generation
n are bred to produce a child individual, such as the breeding
of individuals 1330 and 1331 from generation n, in FIG.
13C, to produce child 1328. In FIG. 13D, the two parents
1340 and 1341 are shown at the top of the figure. Pairs of
corresponding parameter values of these two parents are
sorted 1nto pairs of parameter values that includes a first
lower-valued parameter and a second higher-valued param-
cter 1342. These sorted pairs of parameter values are then
used to produce parameter-value ranges 1343. In most cases,
the range R, -R, 1s equal to the range represented by ordered
parameters [3,-3,. However, when the difference between
the highest value and lowest value 1n the range 1s less than
a threshold value 1344, the range values are adjusted to span
the minimum threshold range 1346. This handles a case 1n
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which the difference between the highest value and lowest
value 1s sufliciently small that the differences between
adjacent parameter values for a parameter would be too
small to produce meaningiul changes in the overall fitness
for the mapping function. Next, as indicated by matrix 1348,
a set of candidate parameter values, evenly spaced within the
range for each parameter value, 1s generated. A number q of
candidate values for each parameter value i1s generated,
where g 1s a parameter of the genetic optimization method.
A number " parameter combinations, each combination
including a candidate value for each of the n model param-
cters, 1s selected from this set of candidate parameter values.
Then, a corresponding fitness value 1s generated for each of
the g” combinations, as indicated by columns 1349 and 1350
in FIG. 13D. The set of candidate parameter values with the
highest fitness value 1s then selected as the set of parameter
values for the child 1352. The corresponding fitness metric
1s included 1n the child 1354 along with a new timestamp
value of 0.

After producing children and copying {it individuals from
a previous generation to produce individuals of the next
generation, as discussed above with reference to FIG. 13C,
cach of the individuals 1s mutated. FIG. 13E illustrates the
mutation operation. At the top of FIG. 13E, a next-genera-
tion mndividual 1s shown 1360. Two multipliers are computed
for the individual. A first multiplier m, reflects the current
optimality of the individual. The computed fitness for the
individual 1361 1s used to determine a range 1362 that is
equal to the distance between the current fitness and the
best-observed fitness 1363. The first multiplier m, 1364 1s
computed as the ratio of that range to the difference between
the best and worst observed fitnesses multiplied by a weight
w, 1365. A second multiplier m, 1s generated from an
exponential decay curve 1366. The current age, in genera-
tions of the individual, such as the age 2 (1367 1n FIG. 13F),
1s used to compute a corresponding m, value 1368. The
more optimal the parameter set of the individual, as reflected
by the smallness of the computed range 1362, the smaller the
multiplier m; 1364. The older the individual, the smaller the
multiplier m,. The product of these two multipliers 1370 1s
used as a multiplier of the total possible range of parameter
values 1372 to produce a mutation range 1373 for the
parameter. Then, an evenly spaced set of candidate param-
cter values, shown within the dashed square 1374, 1s gen-
erated within this range for each model parameter. Thus, the
more fit the individual and the older the individual, the
smaller the adjustments to the parameter values that are
made during the mutation process. A set of combinations of
candidate parameter values, one candidate parameter value
selected from each row 1n the matrix 1374, represents the set
ol possible parameter-value sets for the mutated 1individual.
The fitness values for each candidate set of parameter values
are then computed, as represented by columns 1376 and
1377 in FIG. 13E, and the candidate set of parameter values
corresponding to the highest-computed fitness 1s used as the
set of parameter values for the mutant individual 1378. The
computed fitness value for the set of parameter values 1s
inserted into the individual 1379 but the timestamp remains
unchanged 1380.

FIG. 13F illustrates completion of construction of a next
generation. As shown in FIG. 13F, mutation 1382 of each
individual in the pre-mutation set of individuals produces a
complete subsequent generation n+1 1384. It should be
noted that the currently disclosed genetic mapping-function-
parameter-fitting method 1s fully deterministic, unlike com-
monly used genetic mapping-function-parameter-fitting,
methods. The term “deterministic,” as used 1n the preceding,
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sentence, means that the same parameter values would be
obtained for a given data set each time the currently dis-
closed genetic mapping-function-parameter-fitting method
1s applied to the data set. Many stochastic genetic mapping-
function-parameter-fitting methods employ pseudo-random-
number generators to select parameter values during breed-
ing and mutation, as a result of which generally different
parameters are produced each time the commonly used
genetic mapping-function-parameter-fitting methods are
applied to a given data set. Determinism 1s a highly desirable
characteristic for i1mage normalization, particularly {for
medical 1mages. However, stochastic parameter-fitting,
methods may also be used 1n alternative implementations. In
fact, many other parameter-fitting methods may be used 1n
alternative implementations, including least-squares, Gauss-
Newton non-linear least squares, and various optimization
methods.

FIGS. 14A-B 1llustrate the final intensity-mapping model
produced by the currently disclosed methods and system.
Recall the data table 1206 1n FIGS. 12A-E. Each row 1n this
data table corresponds to a histogram, as discussed above
with reference to FIG. 12F. As shown in FIG. 14A, an
intensity that occurs as a value of a pixel in the first image
1402 corresponds to a histogram of pixel intensities in the
second 1mage. When, as shown 1n histogram 1404, there 1s
a single prominent peak 1406 in the histogram, as deter-
mined either by the height of the peak or the relative height
of the peak with respect to the next-highest peak, the final
mapping model simply maps intensity 1402 to the intensity
value J ,, corresponding to the prominent peak 1408. Thus, 1n
the prominent-peak case, the mapping function generated by
the genetic parameter-fitting method 1s not used. By con-
trast, as shown in histogram 1410, when there 1s no single
prominent peak in the distribution of intensities, the map-
ping function F(1) is used to generate the intensity value
1412 for normalizing intensity value 1 in the first image.
Thus, final intensity-mapping model 1s a hybrid model,
containing both observed intensity correspondences as well
as computed 1ntensity correspondences. A hybrid model can
be thought of as a discontinuous model 1n relation to a model
solely based on a mapping function.

The final intensity-mapping model for each image domain
1s a table of computed mappings, such as table 1420 in FIG.
14B. An intensity value of a pixel in the image to be
normalized 1s used as an index 1422 in the table 1420 to
select a corresponding normalized value 1424 for the nor-
malized image. However, 1n cases where there are far more
possible intensity values than observed intensity values, in
which case the table 1420 would be very large and sparse,
a tree-like index 1426 can be developed to index a set of
compact tables 1428-1430. An intensity value from the
original image 1s used to traverse the index 1426 to identily
the appropriate compact table, and the intensity 1s then used
as an index into that table, following subtraction of the
intensity 1n the first entry of the table from the intensity
value, 1 order to find a corresponding normalized 1mage
intensity. Many other types of model data structures are
possible.

FIGS. 15A-K provide control-flow diagrams that 1llus-
trate one implementation of the routine “fit model,” called n
step 1111 of FIG. 11. The routine “fit model” carries out the
parameter-fitting method discussed above with reference to
FIGS. 12A-13F. Note that, 1n certain cases, routines are
shown with explicit input parameters, while, 1n other cases,
it 1s assumed that a called routine can access variables within
the scope of the calling routine. In FIG. 15A, the routine *“fit
model” receives references to the two images, a selected
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mapping function, or model, 1mage metadata, and a refer-
ence to a fitness function, in step 1502a. In step 15025, the
number of m individuals to be used 1n each generation of the
genetic method 1s determined based on the number of model
parameters P. In step 1502¢, the minimum and maximum
intensity values in image I 1s determined from the metadata.
In step 15024, two arrays of individuals, referenced by
reference variables genA and genB, are allocated to each
contain m elements or individuals, each with storage for P
parameter values. In step 1502¢, a number of variables are
mitialized, including the variables bestF, worstF, best{3,
noChange, and maxNoChange. In step 1502/, the variable
numlterations 1s set to O and the variable maxlIter 1s set to the
number of generations to produce during the genetic opti-
mization method. In step 1502g, the routine “generation 0
1s called to generate the first generation of individuals, as
discussed above with reference to FIG. 13B. Then, in the
for-loop of steps 1502/-1502%, the routine “next generation™
1s 1teratively called, 1n step 1502;, until either no change 1n
fitness has been observed for some number of preceding
iterations, as represented by the value 1n the variable
noChange, or until the maximum number of iterations
maxlIter has been carried out, as determined 1n step 1502/, In
step 1502/, the parameters of the individual that produced
the best fitness value are selected as the model parameters
and are returned, 1n step 1502 along with the fitness value
for those parameters.

FIG. 15B provides a control-flow diagram for the routine
“generation 0,” called in step 1502g of FIG. 15A. In step
1504a, the reference curGen 1s set to the wvalue of the
reference genA and the reference nextGen 1s set to the value
of reference genB. In the for-loop of steps 15045-15044, a
set of candidate model parameter values 1s generated, as
shown 1n matrix 1316 of FIG. 13B. Then, in the for-loop of
steps 1504¢e-1504;, each of the individuals in generation O 1s
initialized. A set of unique parameter values is selected from
the candidate parameter values for the individual 1n step
1504/. The timestamp for the individual 1s set to O 1n step
1504¢2. In step 1504/, the routine referenced by the param-
cter fitness supplied to routine *“fit model” 1s called 1n order
to compute the metric value D for the selected set of
parameter values, as discussed above with reference to FIG.
12G. Initially, the metric value 1s 1inserted as the fitness value
into the mdividual 1n step 1504:. In steps 15044 and 1504/,
the variables bestF and worstF are mmitialized with a first
fitness value for the first generation-0 individual, and then,
in step 1504, the routine “setFs” 1s called to transform the
metric values in the individuals of generation 0 to {itness
values, according to equation 1308 i FIG. 13A while
keeping track of the best and worst observed fitness values.

FIG. 15C provides a control-tlow diagram for the routine
“fitness 1,” one of the fitness routines called 1n step 1504/
of FIG. 15B. Again note that, in step 1504/ of FIG. 15B, the
routine “fitness 17 1s called via the internal argument name
“fitness.” This fitness function 1s used for normalization, as
discussed above with reference to FIG. 11. In step 15064, the
routine “fitness 17" receives a set of model parameters 3, and
a reference to the variable maxD which contains the maxi-
mum metric value so far observed. In step 15065, local
variable D 1s set to 0. In the outer loop of steps 1506¢-1506/,
cach image domain 1s considered. In the mner loop of steps
15064-1506g, the diflerence metric value for the model 1s
computed, as discussed above with reference to FIG. 12G.
When the computed difference metric D 1s greater than the
value 1n maxD, as determined 1n step 15067, maxD 1s set to
the value of D 1n step 1506;.
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FIG. 15D provides a control-flow diagram for the routine
“setFs,” called 1n step 1504m of FIG. 15B. In the for-loop of
steps 1508a-1508g, each individual 1n the array referenced
by curGen 1s considered, and the difference metric stored as
the fitness value 1n the individual 1s transformed, by equation
1308 1n FIG. 13A, 1nto a fitness value. That 1s, 1n step 1504
of FIG. 15B and step 1516i of FIG. 15H, discussed below,
a difference-metric value 1s mitially inserted into the field F
of each individual, and now, i1n the routine “setFs,” the
difference-metric value 1s changed to a fitness value using
equation 1308 in FIG. 13A. In addition, the computed fitness
values are compared with the values stored in bestF and
worstF and those values are updated when the currently
computed fitness value 1s better or worse than the fitness
values 1n bestF and worstFE, respectively. The parameter set
for the best fitness value 1s maintained in the variable best{3.

FIG. 15E provides a control-flow diagram for the routine
“next generation,” called in step 1502; 1n FIG. 15A. This
routine carries out the production of a next generation of
individuals, as discussed above with reference to FIGS.
13C-13F. In step 1510a, the variable v 1s set to 0.9 times the
number of individuals m, the variable curBestF 1s set to the
contents of variable bestE, and two arrays of model param-
cters lowf . and highf3_ are both mitialized. As discussed
above, the number 0.9 1s one possible value for the death
ratio for individuals 1 succeeding generation, but other
death ratios may be used in alternative implementations. In
step 15105, the routine “generate pairwise fitness values™ 1s
called to generate the pairwise fitness values (1324 1n FIG.
13C), as discussed above with reference to FIG. 13C. In step
1510¢, the pairwise fitness values, stored 1 an array piv
along with 1dentifications of the individuals from which they
were generated, are sorted, as discussed above with refer-
ence to sort operation 1325 1n FIG. 13C. In the for-loop of
steps 15104-1510/2, the most fit pairs of parents, selected
based on the sorted pairwise fitness values in the array piv,
are bred, by a call to the routine “breed” in step 1510/, to
produce a child individual for the next generation. Breeding
1s discussed above with reference to FIG. 13D. In step 1510:,
the individuals 1n the array referenced by curGen are sorted
by fitness value and, in the for-loop of steps 15107-15101,
the most fit of the previous-generation individuals are trans-
terred to the final 10% of individuals 1n the next generation,
as discussed above with reference to FIG. 13C. The routine
“update,” called 1n step 1510/, 1s used to update the param-
cter-value arrays lowp, and highf3, to keep track of the
lowest and highest values for each model parameter. In step
15100, the routine “mutate” 1s called to mutate each indi-
vidual 1n the next generation, as discussed above with
reference to FIG. 13F. In step 1510p, the reference curGen
1s set to point to the newly created next generation and the
reference nextGen 1s set to point to the mdividuals of the
previous generation, 1n preparation for another iteration of
generation production. In step 1510g, the routine “setFs™ 1s
called to transtorm the difference metric values in the
individuals of the next generation to fitness values, as
discussed above with reference to FIG. 15D. When the value
stored 1n the local variable curBestF 1s less than bestF,
indicating that a new best fitness value has been produced
during production of the next generation of individuals, the
value of the global vanable noChange 1s set to O 1n step
1510s. Otherwise, the value in global variable noChange 1s
incremented, 1n step 15107, As discussed above, when the
value stored in global variable noChange reaches a threshold
value, the genetic optimization method 1s terminated, since
at least a very good local optimum for the model parameter
values has been obtained.
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FIG. 15F provides a control-flow diagram for the routine
“breed,” called 1n step 1510f of FIG. 1SE. This routine
carries out the generation of a child individual for a subse-
quent generation from two parent individuals 1n a current
generation, as discussed above with reference to FIG. 13D.
In step 15124, the routine “breed” receives references to the
two parent individuals, parent]l and parent2, and the index w
of the child individual 1n the subsequent generation. The
variable best 1s set to the empty set. The varniable localMax
1s set to a large number. In step 15125, ranges of parameter
values are determined, as discussed above with reference to
tables 1342 and 1343 in FIG. 13D. In the for-loop of steps
1512¢-1512¢, the fitness of each of the combinations of
parameter values selected from evenly spaced candidate
parameter values within the ranges of values for each
parameter, discussed above with reference to items 1348-
1350 1n FIG. 13D, 1s evaluated by a call to the routine
“fitness” 1n step 15124. The most fit set of candidate
parameter values 1s monitored 1n the far-loop of steps
1512¢-1512¢, with the variables localMax and best set to the
fitness value and candidate parameters of the best so-far-
observed fitness, 1 step 1512/, In step 1512/, following
termination of the for-loop of steps 1512¢-1512¢, the child
individual, indexed by mdex w, 1s updated with the best set
of parameters and difference metric value obtained 1n the
tor-loop of steps 1512¢-1512¢. The routine “update,” called
in step 1512i, updates the lowp_ and highf3 . arrays to keep
track of the smallest and greatest values for each model
parameter.

FIG. 15G provides a control-flow diagram for the routine
“update,” called in steps 1510/ of FIG. 15E and 1512; 1n
FIG. 15F. In step 1514a, the routine “update” receives a set
of candidate parameter values. In the for-loop of steps
15145-1514g, cach parameter value 1n the received set of
parameter values 1s evaluated against the contents of the two
arrays low[, and highf3 to ensure that these arrays contain
the lowest and highest value for each model parameter so far
observed during the genetic optimization of parameter val-
ues.

FIG. 15H provides a control-flow diagram for the routine
“mutate,” called 1n step 15100 of FIG. 15E. The routine
“mutate” carries out the mutation of individuals in a next

[ 1

generation, as discussed above with reference to FIGS. 13E
and 13F. In the for-loop of steps 1516a-1516/, cach indi-
vidual 1n the next generation 1s considered. In step 15165,
local variables best and localMax are 1mnitialized, similarly to
the mitiation of local variables 1n step 1512a of FIG. 15F of
the same name. In step 1516¢, sets of candidate parameter
values are selected from a range of candidate values for each
model parameter shown as array 1374 of candidate param-
cter values 1n FIG. 13E. For each combination of a param-
cter-value set P generated from these candidate parameter
values, the routine “fitness™ 1s called, 1 step 1516e, to
generate a difference metric for the currently considered set
of model parameter values. As in the for-loop of steps
1512¢-1512¢g 1n FI1G. 15F, the set of parameters that gener-
ates the lowest diflerence metric 1s determined 1n the for-
loop of steps 15164-1516/% of FIG. 15H. In step 15161, the
currently considered individual 1s updated with the best
determined set of candidate parameters obtained by param-
cter mutation 1n steps 151656-1516/.

FIG. 151 provides a control-flow diagram for the routine
“generate model,” called 1 step 1118 of FIG. 11. In step
1518a, one or more data structures for the intensity map
discussed above with reference to FIG. 14B are initialized.
In the outer for-loop of steps 15185-1518i, each image
domain 1s considered. In the mner for-loop of steps 1518c¢-
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1518/, each discrete intensity value observed in the cur-
rently considered domain 1n 1image I 1s considered. In step
15184, the distribution of intensities in 1mage J for the
currently considered intensity i i1mage I 1s determined.
When this distribution shows a single prominent peak, as
determined 1n step 1518e, as discussed with reference to
FIG. 14A, then that peak intensity i1s entered into the
intensity map for the currently considered intensity of the
currently considered domain 1n step 1518f. Otherwise, 1n
step 1518¢g, an intensity 1s generated using the mapping
function fit to the data by the genetic optimization method,
as discussed above with reference to FIG. 14A.

FIG. 15] provides a control-flow diagram for the routine
“apply model” called 1n step 1120 of FIG. 11. In step 15204,
the routine “apply model” receives a reference to 1mage I
and a reference to the intensity-map data structure generated
in step 1118 of FIG. 11. In the outer for-loop of steps
15205-1520g, cach domain of the image 1s considered. In
the inner for-loop of steps 1520¢-15207, the intensity map
for the currently considered domain 1s used to modify the
intensity value of each pixel within that domain of image I.

FIG. 15K provides a control-flow diagram for the routine
“fitness 2,” another of the fitness routines called 1n step
1504/ of FIG. 15B. As discussed above, with reference to
FIG. 11, this fitness function 1s called during amelioration of
inhomogeneities. In step 1522q, the routine “fitness 2~
receives a set of model parameters 3. and a reference to the
variable maxD, which contains the maximum metric value
so far observed. In step 15225, local vaniable D 1s set to O.
In the outer for-loop of steps 1522¢-1506/, cach i1mage
domain 1s considered. In the mner for-loop of steps 1522d-
1506%, cach different intensity value in the currently con-
sidered domain of the image referenced by refl 1s consid-
ered. In the mnermost for-loop of steps 15227-1506;, ecach
intensity in the 1mage referenced by refl corresponding to
the currently considered intensity 1n the image referenced by
reil 1s considered. In step 1522¢, the information referenced
by the table 1242 or histograms, discussed above with
reference to FIG. 12G, 1s collected for the currently consid-
ered intensity 1n the image referenced by refl. In step 1522g,
the local vaniable d 1s set to the metric value computed
according to expression 1260 in FIG. 12G. In step 15224,
the metric value stored 1n local variable d 1s multiplied by
the number of pixels having the currently considered inten-
sity value of the 1image referenced by retl raised to the power
w, where w 1s a parameter for the function “fitness 2.” This
multiplicative factor penalizes non-compact distributions of
intensity values in the image referenced by refl correspond-
ing to an intensity value in the image referenced by retl.
Thus, data fitting for spatial mapping functions used to
ameliorate inhomogeneities seeks to produce compact dis-
tributions of intensity values 1n the image referenced by retl
corresponding to each intensity value the image referenced
by retfl. When the computed difference metric D 1s greater
than the value 1n maxD, as determined in step 1506:, maxD
1s set to the value of D 1n step 1506;. Various other numeric
values may be computed to penalize non-compact distribu-
tions.

Although the present imvention has been described 1n
terms of particular embodiments, it 1s not intended that the
invention be limited to these embodiments. Modifications
within the spirit of the mvention will be apparent to those
skilled in the art. For example, any of many different
implementations may be generated by modilying any of
many different implementation and design parameters,
including selection of hardware and computing platforms,
programming languages, modular organization, control
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structures, data structures, and other such implementation
and design parameters. Although a genetic approach to
parameter optimization has proved to be eflicient and robust,
other types of optimization methods may be employed to
generate the currently disclosed intensity map. The currently
disclosed normalization method may be applied to color
images as well as grayscale images, with each color channel
of a color 1image separately normalized, 1n one approach, or
a single-pass normalization may be used i which the
intensity values for the color channels are combined.

It 1s appreciated that the previous description of the
disclosed embodiments 1s provided to enable any person
skilled 1n the art to make or use the present disclosure.
Various modifications to these embodiments will be readily
apparent to those skilled 1n the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure 1s not intended to be limited to the
embodiments shown herein but 1s to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The 1nvention claimed 1s:
1. An 1mage-normalization system comprising:
a computer system that includes one or more processors,
one or memories, and one or more-storage devices; and
computer instructions, stored in the one or more memo-
ries, that, when executed on the one or more processors,
control the computer system to
receive two digital images, including a first image and
a second 1mage, each having image units that are
cach associated with a position and an intensity,
identily one or more domains common to both the first
image and the second image,
select one or more mapping functions,
determine parameters for the one or more mapping
functions,
select a final mapping function,
generate a hybrid intensity-mapping model that
includes both intensity mappings calculated by
application of the final mapping model and intensity
mappings obtained directly from 1image-unit intensi-
ties, and
use the hybrid intensity-mapping model to adjust inten-
sities 1n one of the two 1mages.
2. The image-normalization system of claim 1 wherein the
two digital images are one of:
a pair of two-dimensional digital i1mages in which
domains are areas and units are pixels; and
a pair of three-dimensional digital 1mages in which
domains are volumes and units are voxels.
3. The image-normalization system of claim 1
wherein the first and second 1mages are registered with
one another so that each equivalent pair of pixels
selected from the two 1mages correspond to the same
point within the 1imaged environment;
wherein, when a first 1mage unit i1s associated with a
position in the first image that 1s equivalent to a position
associated with a second image unit in the second
image, the first and second 1mage units are equivalent;
and
wherein a mapping function 1s one of
a parameterized function that returns an intensity value
associated with an 1mage unit 1n one of two digital
images based on the intensity value associated with
an equivalent image unit in the other of the two
digital images,
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a parameterized function that returns an intensity value
for an 1mage unit 1n one of two digital images based
on the domain of, and intensity value associated
with, an equivalent 1mage unit 1n the other of the two
digital images; and

a parameterized function that returns an intensity value
for an 1mage unit 1n one of two digital images based
on the mtensity value and position of the equivalent
image unit 1n the other of the two digital images.

4. The 1mage-normalization system ol claim 3 wherein
determining parameters for the one or more mapping func-
tions further comprises:

using a fitness metric for the mapping function and a

current set of mapping-function parameters based on a

cumulative sum of the absolute-value diflerences

between computed intensity values for each of a set of
image units of the second 1image by

initializing an accumulator; and

for each domain,
for each intensity value 1n the first 1image,

for each equivalent intensity 1n the second image
associated with an image unit 1n the second
image equivalent to an image unit in the first
image associated with the intensity value,
determining a number of image units in the
second 1mage associated with the equivalent
intensity value that are equivalent to image
unmits 1 the first 1mage associated with the
intensity value,
generating a product of the determined number
of 1mage umts and an absolute value of a
difference between the equivalent intensity
value and an 1ntensity value produced by apply-
ing the mapping function to the intensity value,
multiplying the product by the determined num-
ber of 1mage units raised to a parametric value
to produce a second product, and
adding the second product to the accumulator.

5. The 1image-normalization system of claaim 3 wherein
determining parameters for the one or more mapping func-
tions further comprises:

generating a fitness metric for the mapping function and

a current set of mapping-function parameters based on

a cumulative sum of absolute-value differences

between each computed intensity value for each of a set

of 1mage units of the second 1mage and the observed
intensity values for each of the set of image units of the
second 1mage.

6. The image-normalization system of claim 3 wherein
cach computed intensity value for each of the set of image
units of the second image 1s obtammed by applying the
mapping function to an equivalent image unit of the first
image.

7. The image-normalization system of claim 5 wherein the
fitness metric 1s determined as one minus the ratio of a
currently computed cumulative sum of the absolute-value
differences to a maximum observed cumulative sum of the
absolute-value differences.

8. The image-normalization system of claim 5 wherein a
genetic approach 1s used to determine values for the param-

cters of a mapping function by:
imitializing each individual 1n a set of individuals repre-
senting a {irst generation with a first set ol parameter
values for the mapping function, a determined fitness
value, and an nitial age value;
iteratively
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producing a next set of individuals representing a next

generation by

breeding parent individuals with largest pairwise
fitness values 1n the preceding generation to pro-
duce children that comprise a first portion of the
individual 1n the next generation,

selecting individuals with largest fitness values 1n the
preceding generation to produce survivors that
comprise a second portion of the individual in the
next generation

until one or more termination conditions are met; and

selecting the parameter values of the individual with the

largest fitness value 1n the last-produced generation as
the parameter values for the mapping function.

9. The image-normalization system of claim 8 wherein
breeding two individuals in a preceding generation to pro-
duce a child individual 1n a next generation comprises:

determining a range of values for each parameter based on

the values of the parameter 1n the two individuals;
selecting, from the determined range of values for each
parameter, a parameter value for each parameter for the

child individual; and

setting the age of the individual of the next generation to

the mitial value.

10. The image-normalization system of claim 8 wherein
producing a next set of individuals representing a next
generation further comprises mutating each individual pro-
duced by breeding parent individuals and by selecting
individuals with largest fitness values by:

determining a range of values for each parameter based on

the values of the parameter 1n the individual, the age
value associated with the individual, and a difference
between the individuals fitness value and a best
observed fitness value;:

selecting, from the determined range of values for each

parameter, a parameter value for each parameter for the
individual; and

determining a fitness value for the individual using the

selected parameter values.

11. The 1mage-normalization system of claim 4 wherein
selecting a final mapping function further comprises select-
ing a mapping function from the one or more selected
mapping functions that produces a fitness value with greatest
magnitude.

12. The image-normalization system of claim 1 wherein a
hybrid intensity-mapping model 1s generated based on the
final mapping function and on distributions of intensities 1n
the second 1mage corresponding to each intensity in the first
image by:

for each domain,

for each intensity value in the first 1image,

determine a number of equivalent intensities 1n the
second 1mage associated with an image unit in the
second 1mage equivalent to an 1mage unit in the
first image associated with the intensity value and,
for each equivalent, a number of 1image units in the
second 1mage associated with the equivalent
intensity value that are equivalent to 1image units
in the first 1mage associated with the intensity
value,

when there 1s a single prominent equivalent intensity,
mapping the itensity value to the single promi-
nent equivalent intensity, and

when there 1s no single prominent equivalent inten-
sity, mapping the intensity value to an intensity
value generated by the final mapping function.
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13. The image-normalization system of claim 1 further
including:
alter using the hybrid intensity-mapping model to adjust
intensities i one of the two 1mages,

selecting a spatial mapping function,

determining parameters for the selected spatial map-
ping function, and

applying the spatial mapping function to the first image
to ameliorate inhomogeneities.

14. A method that normalizes digital images carried out by
a computer system that includes one or more processors, one
Or memories, one or more-storage devices, and computer
instructions, stored in the one or more memories, that, when
executed on the one or more processors, control the com-
puter system to carry out the method, the method compris-
ng:

recerving two digital images, including a first image and

a second 1mage, each having image units that are each

associated with a position and an intensity,

identifying one or more domains common to both the first
image and the second image,

selecting one or more mapping functions,

determining parameters for the one or more mapping
functions,

selecting a final mapping function for each image domain,

generating a hybnid itensity-mapping model that
includes both intensity mappings calculated by appli-
cation of the final mapping model and intensity map-
pings obtained directly from 1image-unit intensities, and

using the hybrid intensity-mapping model to adjust inten-
sities 1n one ol the two 1mages.

15. The method of claim 14

wherein the first and second 1mages are registered with
one another so that each equivalent pair of pixels
selected from the two 1mages correspond to the same
point within the 1imaged environment;

wherein, when a first 1image unit i1s associated with a
position in the first image that 1s equivalent to a position
associated with a second image unit in the second
image, the first and second 1mage units are equivalent;
and

wherein a mapping function i1s one of

a parameterized function that returns an intensity value
associated with an 1image unit 1n one of two digital
images based on the intensity value associated with
an equivalent image unit 1n the other of the two
digital 1mages,

a parameterized function that returns an intensity value
for an 1mage unit 1n one of two digital images based
on the domain of, and intensity value associated
with, an equivalent image unit 1n the other of the two
digital 1images; and

a parameterized function that returns an intensity value
for an 1mage unit 1n one of two digital images based
on the mtensity value and position of the equivalent
image unit 1n the other of the two digital images.

16. The method of claim 15 wherein determining param-
cters for the one or more mapping functions further com-
Prises:

generating a fitness metric for the mapping function and

a current set of mapping-function parameters based on

a cumulative sum of absolute-value diflerences

between each computed intensity value for each of a set

of 1mage units of the second 1mage and the observed
intensity values for each of the set of image units of the
second 1mage.
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17. The method of claim 16 wherein each computed
intensity value for each of the set of image umts of the
second 1mage 1s obtained by applying the mapping function
to an equivalent image unit of the first image.

18. The method of claim 14 wherein a hybrid intensity-
mapping model 1s generated based on the final mapping
function and on distributions of intensities 1n the second
image corresponding to each intensity 1n the first image by:

for each domain,

for each intensity value in the first 1image,

determine a number of equivalent intensities 1n the
second 1mage associated with an image unit in the
second 1mage equivalent to an 1mage unit 1n the
first image associated with the intensity value and,
for each equivalent, a number of image units in the
second 1mage associated with the equivalent
intensity value that are equivalent to 1image units
in the first image associated with the intensity
value,

when there 1s a single prominent equivalent intensity,
mapping the mtensity value to the single promi-
nent equivalent intensity, and

when there 1s no single prominent equivalent inten-
sity, mapping the intensity value to an intensity
value generated by the final mapping function.

19. The method of claim 14 further including;:

after using the hybnd intensity-mapping model to adjust

intensities 1 one of the two 1mages,
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selecting a spatial mapping function,
determining parameters for the selected spatial map-
ping function, and
applying the spatial mapping function to the first image
to ameliorate inhomogeneities.
20. A physical data-storage device storing computer
instructions, that, when executed on the one or more pro-
cessors of a computer system that includes the one or more
Processors, one or memories, one or more-storage devices,
control the computer system to carry out image normaliza-
tion by:
recerving two digital images, including a first image and
a second 1mage, each having image units that are each
associated with a position and an i1ntensity,

identilying one or more domains common to both the first
image and the second image,

selecting one or more mapping functions,

determiming parameters for the one or more mapping

functions,
selecting a final mapping function for each image domain,
generating a hybnd intensity-mapping model that
includes both intensity mappings calculated by appli-
cation of the final mapping model and intensity map-
pings obtained directly from 1image-unit intensities, and

using the hybrid intensity-mapping model to adjust inten-
sities 1n one ol the two 1mages.
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