12 United States Patent

Naveh et al.

US010185566B2

US 10,185,566 B2
Jan. 22,2019

(10) Patent No.:
45) Date of Patent:

(54) MIGRATING TASKS BETWEEN
ASYMMETRIC COMPUTING ELEMENTS OF

A MULTI-CORE PROCESSOR

(75)

(73)

(%)

(21)

(22)

(86)

(87)

(65)

(1)

Inventors:

Assignee:

Notice:

Appl. No.:
PCT Filed:

PCT No.:

Alon Naveh, Ramat Hasharon (IL);
Yuval Yosef, Hadera (IL); Eliezer
Weissmann, Haifa (IL); Anil
Aggarwal, Portland, OR (US); Efraim
Rotem, Haifa (IL); Avi Mendelson,
Haifa (IL); Ronny Ronen, Haifa (IL);
Boris Ginzburg, Haifa (IL); Michael
Mishaeli, Zichron Yaakov (IL); Scott

D. Hahn, Hillsboro, OR (US); David
A. Koufaty, Portland, OR (US);

Ganapati Srinivasa, Portland, OR
(US); Guy Therien, Beaverton, OR

(US)

Intel Corporation, Santa Clara, CA
(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 938 days.
13/994,142
Apr. 27, 2012

PCT/US2012/035339

§ 371 (c)(1).
(2), (4) Date:

PCT Pub. No.:

Jun. 14, 2013

WO02013/162589

PCT Pub. Date: Oct. 31, 2013

Prior Publication Data

US 2014/0129808 Al May 8, 2014
Int. CI.

GO6F 9/30 (2018.01)
GO6F 9/48 (2006.01)
GO6F 9/50 (2006.01)

418

412

s
-
3

(52) U.S. CL
CPC ... GO6F 9/30145 (2013.01); GOGF 9/4856

(2013.01); GO6F 9/5094 (2013.01);

(Continued)

Field of Classification Search
CPC ... GO6F 9/30145; GO6F 9/5094; GO6F 9/4856

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

11/1992 C(Cole et al.
4/1994 Bordonaro GO6F 7/32

(Continued)

5,163,153 A
5307485 A *

FOREIGN PATENT DOCUMENTS

5/2003
10/2006
10/2004

EP 1 282 030 Al
EP 1715405
KR 10-2004-0091211

OTHER PUBLICATTONS

Intel Developer Forum, IDF2010, Opher Kahn, et al., “Intel Next
Generation Microarchitecture Codename Sandy Bridge: New Pro-
cessor Innovations,” Sep. 13, 2010, 58 pages.

(Continued)

Primary Examiner — Benjamin P Geib
Assistant Examiner — William V Nguyen
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

(57) ABSTRACT

In one embodiment, the present mvention includes a mul-
ticore processor having first and second cores to indepen-
dently execute instructions, the first core visible to an
operating system (OS) and the second core transparent to the
OS and heterogeneous from the first core. A task controller,
which may be included i or coupled to the multicore
processor, can cause dynamic migration of a first process
scheduled by the OS to the first core to the second core
transparently to the OS. Other embodiments are described
and claimed.

19 Claims, 10 Drawing Sheets

Racakre Peformance State
Updats In Powsr Controllsr [\

Ideriify N Unusad
/! Lerge Cores

414

e
e Oy Maore
Threads OFf Padormanca
Domain Exacuting On
Lo Foveer

ldentity Up Te N Thraads YVith
Highizst Pefomance Monitor

values Ovar Threshold
Perdformanca State

o
420

!

Migrafe Threedis)
To Langa Core|s)

Ronuestsd
Perlommance Slals
Excand Suaraniead
Ferfdsmance Jlate

Ce O More
Threads OF Perfomman e
Domaln Exscuting ON

Kirate Thieed(s) To
low Power Gore(s)

430

US 10,185,566 B2

Page 2
(52) U.S. CL 2010/0162023 Al* 6/2010 Rotem GO6F71/33£33
CPC ... GOGF 2209/5018 Q0I3.01); Y02D 1022 5100191007 A1 72010 Dodefa et
(2018.01); (2018.01); 2010/0332909 Al* 12/2010 Larson GOGF 11/3476
(2018.01) 714/40
2011/0154090 Al 6/2011 Dixon et al.
(56) Ref Cited 2011/0314480 Al1* 12/2011 Chinya GO6F 9/3009
eferences Cite 718/108
. 2011/0320766 Al1™* 12/2011 Wucoooeeeenl, GO6F 9/30076
U.S. PATENT DOCUMENTS 712/28
2012/0072920 Al* 3/2012 Kawamura GO6F 9/30123
5,522,087 A 5/1996 Hsiang 718/108
2’23&’%‘5 i li; ggg RK/I_atter 2012/0079235 ALl* 3/2012 Iyer ..ccooeevueenna.. GOGF 9/5027
DL n 712/30
5,931,950 A 8/1999 Hsu 2012/0079290 Al 3/2012 Kumar
6,748,546 Bl 6/2004 Mirov et al. 2012/0159123 Al* 6/2012 Naffziger GOG6F 1/3243
6,792,392 Bl 9/2004 Knight 712/37
6,823,516 Bl 11/2004 - Cooper 2012/0233477 Al* 9/2012 W GOGF 1/3287
6,829,713 B2 12/2004 Cooper et al. o 713/320
O 10,708 B2 22000 Singh 2012/0246506 Al 9/2012 Knight
. . s
7.043.649 B2 52006 Terrell 2013/0007494 Al 1/2013 Branover GO6F71;)3/§£
093,147 B2 872006 Farkas et al 2013/0061064 Al 3/2013 Ananthakrishnan et al.
7,111,179 Bl 9/2006 Girson et al. _ _ _ . .
2013/0080803 Al 3/2013 Ananthakrishnan et al.
7,194,643 B2 3/2007 Gonzalez et al. _ _ _ .)
: 2013/0080804 Al 3/2013 Ananthakrishnan et al.
7,272,730 Bl 9/2007 Acquaviva et al. _ _ .)
2013/0111120 Al 5/2013 Ananthakrishnan et al.
7,412,615 B2 8/2008 Yokota et al. _ _ . .
: 2013/0111121 Al 5/2013 Ananthakrishnan et al.
7,434,073 B2 10/2008 Magklis _ _ . .
2013/0111226 Al 5/2013 Ananthakrishnan et al.
7,437,270 B2 10/2008 Song et al. 5013/0111736 A 59013 Ananthakrichnan of a
7,454,632 B2 11/2008 Kardach et al. : : At RISTIAl ¢ 4t
7,529,956 B2 5/2009 Stufflebeam
7,539,885 B2 5/2009 Ma OTHER PUBI ICATIONS
7,730,340 B2 6/2010 Hu et al.
8,219,788 B1* 7/2012 Chengc.cocovvvnvvves GOOL 9/455 SPEC—Power and Performance, Design Overview V1.10, Standard
7127225 Perf Infi ion C Oct. 21, 2008, 6
2001/0044909 Al 11/2001 Oh et al. erformance Information Corp., Oct. 21, 20Us, O pages.
2002/0194509 Al 12/2002 Plante et al. Intel Technology Journal, “Power and Thermal Management in the
2003/0061383 Al 3/2003 Zilka Intel Core Duo Processor,” May 15, 2006, pp. 109-122.
2004/0064752 Al 4/2004 Kazachinsky et al. Anoop lIyer, et al., “Power and Performance Evaluation of Globally
2004/0098560 Al 5/2004 Storvik et al. Asynchronous Locally Synchronous Processors,” 2002, pp. 1-11.
oo AL 0 G Semcns, o . “Hiig Syt Dy 3 GALS
2005/0022038 Al 1/2005 Kaushik et al. FOLESSOL AVCTOAICTITECTHIS, bp. 2222,
2005/0033881 Al 2/2005 Yao Joan-Manuel Parcerisa, et al., “Efficient Interconnects for Clustered
2005/0132238 A1 6/2005 Nanja Microarchitectures,” 2002, pp. 1-10.
2005/0188372 Al 8/2005 Inoue et al. Grigorios Magklis, et al., “Profile-Based Dynamic Voltage and
2006/0050670 Al 3/2006 Hillyard et al. Frequency Scalling for a Multiple Clock Domain Microprocessor,”
2006/0053326 Al 3/2006 Naveh 2003, pp. 1-12.
2006/0059286 Al 3/2006 Bertone et al. ’ “ :
_ . Greg Semeraro, et al., “Dynamic Frequency and Voltage Control for
2006/0069936 Al 3/2006 Lint et al.,
2006/0117207 Al 6/2006 Magklis et al. a Multiple Clock Domain Architecture,” 2002, pp. 1-12.
7006/0184287 Al 8/2006 Belady et al. Greg Semeraro, “Energy-Eflicient Processor Design Using Multiple
2007/0005995 Al 1/2007 Kardach et al. Clock Domains with Dynamic Voltage and Frequency Scaling,”
2007/0016817 Al 1/2007 Albonesi et al. 2002, pp. 29-40.
2007/0079294 Al 4/2007 Knight Diana Marculescu, “Application Adaptive Energy Efficient Clus-
2007/0106827 Ajh 5/2007 Boatright et al. tered Architectures,” 2004, pp. 344-349.
2007/0156992 Al 7/2007 Jahagirdar I Benini [«g Ievel D .. p M »»
2007/0214342 Al 9/2007 Newburn . benini, et al., "System-Level Dynamic Power Management,
2007/0239398 Al 10/2007 Song et al. 1999, pp. 23-31. | |
2007/0245163 Al 10/2007 T.u et al. Ravindra Jejurikar, et al., “Leakage Aware Dynamic Voltage Scaling
2008/0028240 Al 1/2008 Arai et al. for Real-Time Embedded Systems,” 2004, pp. 275-280.
2008/0250260 Al ~ 10/2008 Tomita Ravindra Jejurikar, et al., “Dynamic Slack Reclamation With Pro-
2008/0281476 Al* 11/2008 Bose GO5D 23/1932 crastination Scheduling in Real-Time Embedded Systems,” 2005,
700/300 pp. 13-17
2009/0006871 Al 1/2009 Liu et al. | . « : SRR
2000/0150695 A 1 6/2009 Song ef al. R. Todl.mg; et al.,, “Some Strategies for Kalman Filtering and
2009/0150696 Al 6/2009 Song et al. Smoothing,” 1996, pp. 1-21. | o o
2009/0158061 Al 6/2009 Schmitz et al. R.E. Kalman, “A New Approach to Linear Filtering and Prediction
2009/0158067 Al 6/2009 Bodes et al. Problems,” 1960, pp. 1-12.
2009/0172375 Al 7/2009 Rotem et al. International Application No. PCT/US2012/028865, filed Mar. 13,
2009/0172428 Al . 7/2009 Lee 2012, entitled “Providing Eflicient Turbo Operation of a Processor,”
2009/0182980 Al 7/2009 Raghavareddy GOﬁfflgggé by Intel Corporation.
5009/0187917 Al 79000 T ee Intematlo.nal %}Jphcatv.an No. PCT/U.SZOI2/O28902, filed Mar. 1.3,
2009/0227654 Al* 9/2000 Hum ... GO6E 13/24 2012, entitled “Dynamically Controlling Interconnect Frequency in
713/100 a Processor,” by Intel Corporation.
2009/0235105 Al 0/2009 Branover et al. International Application No. PCT/US2012/028876, filed Mar. 13,
2010/0115309 Al 5/2010 Carvalho et al. 2012, entutled “Dynamically Computing an Electrical Design Point
2010/0146513 Al 6/2010 Song (EDP) for a Multicore Processor,” by Intel Corporation.

US 10,185,566 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 13/600,568, filed Aug. 31, 2012, entitled, “*Config-
uring Power Management Functionality in a Processor,” by Malini
K. Bhandaru, et al.

Nvidia, “Whitepaper; Variable SMP—A Multi-Core CPU Architec-
ture for Low Power and High Performance,” 2011, 16 pages.
Philip M. Wells, et al., “Dynamic heterogeneity and the Need for
Multicore Virtualization,” 2009, 10 pages.

Rakesh Kumar, et al., “Single-ISA Heterogeneous Multi-Core Archi-
tectures: The Potential for Processor Power Reduction,” Dec. 2003,
12 pages.

Arm, “Whitepaper; Big.Little Processing with ARM Cortex—A1S5
& Cortex-A7,” Sep. 2011, 8 pages.

International Searching Authority, “Notification of Transmittal of
the International Search Report and the Written Opinion of the
International Searching Authority,” dated Dec. 20, 2012 in Interna-
tional application No. PCT/US2012/035339.

* cited by examiner

U.S. Patent

Jan. 22, 2019

Sheet 1 of 10

US 10,185,566 B2

10
0% Run-Queues OS Run-QQueus
188, 1500
l Thwveag 1 I Thread 3
l Thread ' Thread 2 ©.Giata
Requesis
| osscheaer |]
! 155 :
__________________ —
Virtual Lores
| \ i6h Y
Virtual Virtual
Core {0 Core i
165, 165,
| CProcessor
Lncors Ung
| Task 144
| AFIC — C
1 ;5 - Cantrolier ke N fzg
] e 44 142 b
| A
| o ' Performance Monitoring information
: |
Core Uni L 4
140 Physical FPhysical
y b 4 Smalt Core § Small Core 1
Fysical FPhysical 130, 1300
Lame Coras Farce Cors 1
Jt - . .) Falrtormanos Herfoimancs
ig__%@ 125":
= - ponitoring Monioring
Lini Ling
138, I 136
HMarformance Merormance
pontoring Ling Mioniornng Und
126, 126,
}
i ol
N
110

FIG. 1

US 10,185,566 B2

GGO

Sheet 2 of 10

UFL
G4

HOw

Jan. 22, 2019

U.S. Patent

¢ 9Ol

Y4
HU BULIORUOI
SOUBUIIOLS 4

Zee
S{YTY

SHUM UOHNDBXD

| Shd 191siDay
FSPUSIKZ

Sli-i 181SiI0a M

0¢d

Gig

auibu

i lighiighiiiin

il

SHUN Pu- UG-

GOC

J8p0sa0T

L0 IIS U

X1

BYNB DY
UCIINIISU]

LOC

U3

_ LIGHIE LS R VA

00¢

U.S. Patent Jan. 22,2019

Sheet 3 of 10

US 10,185,566 B2

Receive Performance State Update
In Power Controller

305

Does Requested
Performance State
Exceed Threshold

Performance Siate?

Yes NO

Are One Or More
Threads Of Performance
Domain Executing On Low
Power Core(s)?

Migrate Thread(s) To

L.arge Core(s)
320

FIG. 3

Are One Or More

Threads Of Performance
Domain Executing On Large
core(s)?

325

Yes

Migrate Thread(s) To Low
Power Core(s)

330

U.S. Patent Jan. 22,2019 Sheet 4 of 10 US 10,185,566 B2

()
Analyze Ferformance Monior
formaton For Workioad
355
LI0es
Pernrmance
boniior information
xoead LHillzation
Threshold 7
360
Are AT
Oone Or Mors One Qr More
1 hreads Of Ferformance NG PO Threads OF Performance
Domain Executing On | | o Domain Executing On
LOw FPower Large
570} Core(s)? oore(sy?
@ 350
Yeos Yes

Migrate Thread{s) To Migrate Threadi{s) 1o
Large Lore(s) Low FPower Core(s)
375 385

FIG. 4

U.S. Patent

Jan. 22, 2019

Sheet 5 of 10

£
-
.

Fooeive Ferformance Siate
Undate In Power Controller

US 10,185,566 B2

identity N Unused

/ Large £ores
412

£

N Greater Than >0

444
Yog

Are
one Or RMore
Threads Of Performance
omain Exaeculing On
Low Fower

{%}7
415 Core{s)".

Yes

Requesied
FPerformance Slate
=xcaed Guaraniaed
Herformance Slate
And Threshold
Farformancs

ldentify Up To N Threads With

Highest Performance Monitor
Vaiues Over Threshold

Ferformance Siale

418

Migrate Thread(s)
<1 To Large Cora(s)

420
I

416

ND

FIG. 5

4{5

Are
One Or More
Tnreads Of Fearformancs
Domain BExecuting On
Large
Cora{s)?

425
Yes

Migrate Thread(s) 1o

L.ow Power Core(s)

430

U.S. Patent Jan. 22,2019 Sheet 6 of 10 US 10,185,566 B2

L5
{1
2

Anaiyze Performances Monitor
iniormation For Workload |

455

Lges
Herformansce
Maonitor Infermation
mxceed Utiization Threshiold
And Does Reguested
Forformance State oxceed
(auarantesd
Farformancs
Siagie?

Yes INDD

identify N Unused |
Large Lores

462 260

Are
One O Mors
Threads OF Parformance
Lioinain Executing On
Large
Lore(sy?

INO
464

430}

Age
Cne Qr More
Threags OF Merformance
Lomain Executing On
Low Power
Lore(s)?

Migrate Thread{s} To
Low Power Core(s)

485
47
Y as

identify Up To N Threads With

Highes! Performance Moniior
Values Over Threshoid

412 Farformance Stais
Migrate Thread{s}

/1 e Fo

475 10 Large Core(s)

FIG. 6

S. Patent Jan. 22,2019 Sheet 7 of 10 S 10.185.566 B2

To
1
Uncore

COrs
SR

6o

Exception
Handier

628

Task Controi Logic

Fower Control 680

630

= || ARG
CT B0 || 888

hared Cache

y

i, 7

i
6440 || 6504

&
<

sysiem
Memaory

US 10,185,566 B2

Sheet 8 of 10

Jan. 22, 2019

U.S. Patent

8 3
=Tal8%e.
e ™ ooz __ -
377 YA R
VY | B Y SAMNAICT NINOD SGACI f OHYORA S
. 0z
- | ¥ . . —
¥/ 29 | alr
O CHANY SIMNATIO O ID0INE SNY
34 L Q6L 281 .«
4/ A/ G%s
SET 557 TET | SO Y MDD
Vil zil
537 89l | / ™ TI7 G
d d-d dd d-d
| 014] | _
¥/ . 4T < 2Ll FA
AMOWIIN H O e H O AHOWIN
3H0U 1_ THOD _
| DO Ny
GEFS w .ﬂ 071
\\ HOSSIADOH | \ HOSSIDON
004 ayel Gil

U.S. Patent Jan. 22,2019 Sheet 9 of 10 US 10,185,566 B2

0
interrupt Controlier fask ontrol Logic
835 AN
o300
_ SR
L.arge L.arge | Smail Smnall \
Core Core n | Cora oora n 320
8124 B2, 8225 B22m
Conerent
Shareg Cache Shared Cache Master Agent
612 829 850
"1

interconnedct
540

1O/ Tom Sysiem
Memaory Faort

FIG. 9

U.S. Patent Jan. 22,2019 Sheet 10 of 10 US 10,185,566 B2

$18.
Processor
Lincore Lint
Task G944 ;
'ETE Controlier — igg
s M e —
-) T "~ Performance Monitoring Information
Core Un# . -
g0 Small Non-88 || Small Non-X86
¥ — Sore § Core M
| | Lamge X886 Core O Large X86 Core N 930, O30m
925 925, R I
229 22, Performance Performance
ponifonng Monioring
Ut Unit
830, 838
Faronmance | Farformancs
Monitoring Unid mionitoring Unit
926,

FIG. 10

US 10,185,566 B2

1

MIGRATING TASKS BETWEEN
ASYMMETRIC COMPUTING ELEMENTS OF
A MULTI-CORE PROCESSOR

TECHNICAL FIELD

Embodiments relate to migration of tasks 1in a multicore
Processor.

BACKGROUND

Modemn processors are often implemented with multiple
cores. Typically, all of these cores are of a homogenous
nature. That 1s, each core 1s of an identical design and thus
has an 1dentical layout, implements the same instruction set
architecture (ISA), and so forth. In turn, an operating system
(OS) of a system including the processor can select any of
these multiple cores to handle tasks.

As time progresses, processors are being introduced with
heterogeneous resources. Oftentimes these resources are
specialized accelerators to perform specialized tasks. How-
ever, 1t 1s anticipated that processors will be mtroduced that
include heterogeneous cores that have diflerent characteris-
tics. An OS that 1s designed for a symmetric system cannot
be used with such a processor without additional hardware
or soltware support to hide diflerences between the cores.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system arrangement in
accordance with an embodiment of the present invention.

FIG. 2 1s a block diagram of a processor core 1 accor-
dance with one embodiment of the present invention.

FIG. 3 1s a flow diagram of a method for dynamically
migrating threads 1n accordance with an embodiment of the
present invention.

FIG. 4 1s a flow diagram a method for dynamically
migrating threads in accordance with another embodiment
ol the present invention.

FIG. 5 1s a flow diagram of a method for dynamically
migrating threads between cores 1n accordance with a still
turther embodiment of the present invention.

FIG. 6 1s a flow diagram of a method for dynamically
migrating threads between cores i accordance with yet
another embodiment of the present mnvention.

FIG. 7 1s a block diagram of a processor in accordance
with another embodiment of the present invention.

FIG. 8 1s a block diagram of a system 1n accordance with
an embodiment of the present invention.

FIG. 9 1s a block diagram of a processor in accordance
with another embodiment of the present invention.

FIG. 10 1s a block diagram of a processor 1n accordance
with another embodiment of the present invention.

DETAILED DESCRIPTION

In various embodiments a multicore processor can include
heterogeneous resources including cores having heteroge-
neous capabilities, for example, with the same instruction set
architectures (ISAs) but having differing performance capa-
bilities or even different ISAs. Furthermore, the heteroge-
neous nature of these resources can be maintained transpar-
ently to an operating system (OS). To this end, embodiments
provide a mechanism that can be implemented 1n a very
lightweight manner, leveraging information and logic pres-
ent 1 a given processor to control allocation of tasks to the
different resources transparently to the OS. In thus way,

10

15

20

25

30

35

40

45

50

55

60

65

2

embodiments can take advantage of the features of the
different resource types to efliciently perform instructions
with reduced power consumption and improved execution
speeds. Embodiments are directed to processor architectures
and hardware support that provide for resources to be used
transparently to an operating system, and thus avoid the need
to enable a heterogeneous processor or other resource to be
supported by the operating system or hypervisor.

By integrating cores with different performance capabili-
ties such as large cores having high single thread perfor-
mance and small cores having higher power efliciency,
overall power efliciency ol a processor can be increased
without sacrificing performance. This processor can be an
asymmetric multiprocessor, namely an OS-transparent
asymmetric multiprocessor (AMP) system, details of which
are described below. In various embodiments having such a
heterogeneous architecture, control between the cores can be
realized without OS support in a system in which the OS
assumes that all cores are equal. Embodiments may further
cnable fast, transparent (to OS) switch of code execution
between the different types of cores.

In various embodiments, only a single core type can be
exposed to the OS, which may be a legacy OS, with one or
more other core types present in the processor remaining
completely hidden from the OS. Although described as
cores, understand that in various embodiments other pro-
cessing engines such as fixed function units, graphics units,
physics units and so forth may also be transparent to the OS.
For purposes of discussion, assume that the large core type
1s exposed to the OS. Accordingly, the OS schedules pro-
cesses to one or more of these large cores. The re-assignment
of processes to the transparent cores, and related to 1t process
migration between cores, can be done leveraging informa-
tion readily available in the processor, such as performance
state mnformation and/or performance monitoring informa-
tion received 1n a task controller of the processor, also
referred to herein as a task control unit. Note that as used
herein, a process migration may generally refer to migration
ol an execution context between cores or other resources.

In one embodiment, this task controller may be a separate
logic or unit of the processor, and can be used to migrate
processes between cores transparently to the OS. In other
embodiments, this task controller may be combined and
incorporated with a power control umt or other power
controller of the processor. However, these units may logi-
cally be different 1n that the task controller receives inputs
from the power control unit, performance counters, and so
forth, and makes a decision on thread migration. As such, the
task controller acts more like a micro-scheduler than a
power controller. In various embodiments, the task control-
ler can cause assignment of tasks to physical cores, thus
maintaining transparency of the actual hardware structure
with respect to the OS. In some embodiments, the task
controller can be configured to communicate with an
advanced programmable interrupt controller (APIC) of the
processor to thus provide virtualization between a virtual
core to which the OS allocates a task and a physical core on
which the task 1s actually executing. To this end, 1n some
embodiments the APIC can receive process allocations from
the OS which include a core identifier (which 1n some
embodiments can be 1n the form of an APIC ID) and mnitially
assign the task using an APIC ID-to-core ID mapping table
to a core visible to the OS, e.g., a large core. Then, the task
controller can cause a migration of this process to a core that
1s not visible to the OS, e.g., a small core and reflect the
switch by interfacing with the APIC to update the mapping
table of the APIC. Thus the task controller may replace

US 10,185,566 B2

3

under the hood the physical core that the OS controls. As
part of this replacement, the task controller can update the
APIC mapping 1n order to hide from the OS the fact that the
physical cores were replaced.

Although the scope of the present invention 1s not limited
in this regard, 1n some embodiments the task controller can
cause a process migration between cores mainly based on
following factors: operating system performance requests,
performance monitoring information, and availability of
physical resources like power and thermal. Note that the task
controller can stop a process execution on one core and
migrate 1t to another physically diflerent core at any time
during a process life.

Referring now to FIG. 1, shown 1s a block diagram of a
system arrangement in accordance with an embodiment of
the present mvention. As shown m FIG. 1, system 100
includes a processor 110 which can be a multicore processor
that includes a core unit 120 having heterogeneous resources
such as cores physically disparate 1 size and available
resources. Specifically 1n the embodiment of FIG. 1, differ-
ent types of hardware or physical cores can be present,
including a plurality of so-called large cores 125,-125,
(generically large core 1235), and a plurality of so-called
small cores 130,-130_, (generically small core 130) (note
that different numbers of large and small cores may be
present). In many embodiments, these different core types
can be of the same ISA but having performance diflerences
such as by way of different micro-architectures such as a
larger, out-of-order core type and a smaller, in-order core
type.

Note however that 1n still other embodiments, the hetero-
geneous cores can be of different ISAs such as a given
instruction set architecture and a subset of this instruction set
architecture. For example, large cores 125 can execute all
instructions of an ISA, while small cores 130, which may
have a lesser number of architectural and micro-architectural
resources including different/smaller register structures,
execution units and so forth, can only execute a subset of the
ISA. In this way, the different ISAs can partially overlap. In
other embodiments, the ISAs to be handled by the different
core types can be completely different. In cases where the
ISAs are different, non-supported instructions can be
executed on a core by an emulation engine, or can instead be
handled by 1ssuing a fault which can cause a migration back
to a supporting core.

As further seen 1n FIG. 1, processor 110 further includes
an uncore unit 144 with various components, representative
ones of which are shown 1n FIG. 1. As seen, uncore unit 144
includes a power controller 140, also referred to herein as a
power control unit (PCU). In various embodiments PCU 140
may be a hardware-based logic that can perform power
management and control for the processor. Processor 110
can operate 1 one of multiple performance states. In one
embodiment, an OS can 1ssue a request to change a pertor-
mance state or so-called P-state of a core via a request to a
PCU 140. In turn responsive to this request, the PCU can
communicate a performance state with a task controller or
task control unit (TCU) 142. Along with additional infor-
mation such as performance monitoring information from
the cores, TCU 142 can trigger an asynchronous interrupt to
enable an OS transparent migration between different core
types. Similar migrations can occur due in part to perfor-
mance state information received i TCU 142 from PCU
140.

Note that the performance states can be according to an
OS-based mechanism, namely the Advanced Configuration

and Platform Interface (ACPI) standard (e.g., Rev. 3.0b,

10

15

20

25

30

35

40

45

50

55

60

65

4

published Oct. 10, 2006). According to ACPI, a processor
can operate at various power and performance states or
levels. With regard to power states, ACPI specifies different
power consumption states, generally referred to as so-called
C1 to Cn states. When a core 1s active, it runs at a so-called
C0 state, and when the core 1s 1dle 1t may be placed 1n a core
low power state, a so-called core non-zero C-state (e.g.,
C1-C6 states). In addition to these power states, a processor
can further be configured to operate at one of multiple
performance states, namely from PO to PN. In general, the
P1 performance state may correspond to the highest guar-
anteed performance state that can be requested by an OS. In
general the different P-states correspond to different oper-
ating frequencies at which a core can run.

Note that the P-state control can be more finely controlled
than on a processor-wide basis. In different embodiments,
cach core (or even portion of the core) can operate at
independent performance levels and accordingly, one or
more cores or portions thereol can be considered to be an
independent performance domain.

Increasing the performance or efliciency of code execu-
tion can be defined by minimizing the amount of time that
it takes to complete a defined amount of work. Increasing the
performance efliciency mostly causes consumption of more
power, while saving power typically has a negative eflect on
the performance efliciency.

Increasing the power/performance efliciency of code
execution can be defined by minimizing the ratio between
the energy that 1s consumed to complete a defined amount of
work and the execution time that it takes to execute this
work. For example saving power but still executing the same
amount of work or minimizing the time to execute the same
amount of work without increasing the power consumption
increases the power/performance efliciency. Embodiments
may be used to increase the power/performance efliciency.

FIG. 1 also shows the presence of APIC 145 that may
receive various incoming interrupts, both from the OS as
well as hardware-based interrupts and map such interrupts to
a requested core. Furthermore, in accordance with an
embodiment of the present invention, dynamic remapping
can occur based on control from TCU 142 such that the TCU
can dynamically migrate threads between the asymmetric
cores transparently to the OS. Note that 1n some implemen-
tations may provide a distributed APIC architecture such
that an APIC may be present 1n each core, with a central
APIC unit present, e.g., in the PCU/TCU.

As further shown 1n FIG. 1, the OS may further provide
P-state requests directly to PCU 140, which can provide
such mformation to TCU 142 to perform dynamic migra-
tions 1n accordance with an embodiment of the present
invention. As further seen, TCU 142 may also receive
incoming performance monitoring information from corre-
sponding performance monitoring units 126,-126, and
136,-136_ of the cores.

Incoming thread allocations from the OS are made to a
given virtual core that can either be a large or small core
depending upon the implementation. In general, only one
type ol core 1s visible to the OS. Note that switching of
processes between the different cores can be done much
faster (and at higher frequencies) than an OS context switch.
For example, an OS-triggered context switch can occur
approximately one per millisecond (ms), while hardware-
triggered context switches can occur within several tens of
microseconds (us).

As further seen 1n FIG. 1, a software view of system 100
1s also provided. Specifically, system 100 can execute an OS
that 1s designed for a symmetric processor and can be used

US 10,185,566 B2

S

with processor 110 although the processor 1s of an asym-
metric design. This asymmetry can be hidden from the OS
via task controller 142 using mechanisms as described
herein by enabling the OS to control only a single core type,
and by making only single types of cores visible for the OS
control.

As seen, the solftware portion of system 100 can include
multiple OS run queues 150,-150_ (generically run queues
150). Each queue can include multiple threads, e.g., sched-
uled by an OS scheduler 155. As seen, OS scheduler 155 has
a view of the hardware of processor 110 as having virtual
cores 160 that include virtual large cores 165,-165 , e.g.,
corresponding to large cores 125,-125, . That 1s, the small
cores remain transparent to the OS. Note that in other
implementations, the OS may have a virtual view of the
small cores and the large cores can remain transparent to the
OS. In general, the OS will enumerate only a single type of
core. Without loss of generality the examples described
herein assume two different die size of core type, with or
without the same ISA support. Embodiments may also
include a processor including two or more types of cores,
while the difference between the cores may not necessarily
be the die size of the cores or the group of ISA that each core
supports.

Using the arrangement in FIG. 1, the software provides
threads to be executed within processor 110. More specifi-
cally, via OS scheduler 155 threads, e.g., 0 and 1 of OS run
queue 150, can be scheduled to virtual core 165, which the
OS associates with large core 125, and the threads 2 and 3
of run queue 150 can be scheduled to virtual core 165 ,
which the OS associates with large core 125,. Although
shown with this particular implementation in the embodi-
ment of FIG. 1, understand the scope of the present inven-
tion 1s not limited in this regard.

Embodiments can be implemented in many diflerent
processor types. For example, embodiments can be realized
in a processor such as a multicore processor. Referring now
to FIG. 2, shown 1s a block diagram of a processor core in
accordance with one embodiment of the present invention.
As shown 1n FIG. 2, processor core 200 may be a multi-stage
pipelined out-of-order processor. Processor core 200 1s
shown with a relatively simplified view 1n FIG. 2 to illustrate
various features used 1n connection with dynamic hardware
context switching 1n accordance with an embodiment of the
present mvention.

As shown 1n FIG. 2, core 200 includes front end units 210,
which may be used to fetch mstructions to be executed and
prepare them for use later in the processor. For example,
front end units 210 may include a fetch unit 201, an
instruction cache 203, and an instruction decoder 205. In
some 1mplementations, front end units 210 may further
include a trace cache, along with microcode storage as well
as a micro-operation storage. Fetch unit 201 may fetch
macro-instructions, €.g., from memory or instruction cache
203, and feed them to instruction decoder 205 to decode
them 1nto primitives such as micro-operations for execution
by the processor. Front end units 210 may further include an
emulation engine 207 that can receive incoming instructions
that are not supported by the underlying ISA of the core and
emulate them, e.g., via binary translation or in another
manner, to thus provide emulated mstructions to the pipeline
to enable their execution within a non-supported core.

Coupled between front end units 210 and execution units
220 1s an out-of-order (OOQ) engine 2135 that may be used
to recetve the micro-instructions and prepare them for
execution. More specifically OOO engine 2135 may include
various buflers to re-order micro-instruction flow and allo-

10

15

20

25

30

35

40

45

50

55

60

65

6

cate various resources needed for execution, as well as to
provide renaming ol logical registers onto storage locations
within various register files such as register file 230 and
extended register file 235. Register file 230 may include
separate register files for integer and floating point opera-
tions. Extended register file 235 may provide storage for
vector-sized units, e.g., 256 or 512 bits per register.

Various resources may be present 1in execution units 220,
including, for example, various integer, floating point, and
single 1nstruction multiple data (SIMD) logic units, among,
other specialized hardware. For example, such execution
units may include one or more arithmetic logic units (ALUs)
222.

When operations are performed on data within the execu-
tion units, results may be provided to retirement logic,
namely a reorder bufler (ROB) 240. More specifically, ROB
240 may 1nclude various arrays and logic to receive infor-
mation associated with instructions that are executed. This
information 1s then examined by ROB 240 to determine
whether the instructions can be validly retired and result data
committed to the architectural state of the processor, or
whether one or more exceptions occurred that prevent a
proper retirement of the instructions. Of course, ROB 240
may handle other operations associated with retirement.

As shown 1 FIG. 2, ROB 240 1s coupled to cache 250
which, in one embodiment may be a low level cache (e.g.,
an .1 cache) and which may also include TLB 255, although
the scope of the present invention i1s not limited n this
regard. From cache 250, data communication may occur
with higher level caches, system memory and so forth. Also
shown 1 FIG. 2 1s a performance monitoring unit 270,
which can monitor execution 1n the core, e.g., via a set of
counters that can be programmably configured to count
various events and report results to a variety of locations,
including a TCU for purposes of dynamic context switching
in accordance with an embodiment of the present mnvention
(not shown 1n FIG. 2 for ease of illustration).

Note that while the implementation of the processor of
FIG. 2 1s with regard to an out-of-order machine such as of
a so-called x86 ISA architecture, the scope of the present
invention 1s not limited 1 this regard. That 1s, other embodi-
ments may be implemented in an in-order processor, a
reduced instruction set computing (RISC) processor such as
an ARM-based processor, or a processor of another type of
ISA that can emulate 1nstructions and operations of a dii-
ferent ISA via an emulation engine and associated logic
circuitry. Also understand that the core of FIG. 2 may be a
large core, and a lesser number of components, widths, and
so forth may be present in the small cores.

Referring now to FIG. 3, shown 1s a tlow diagram of a
method 1n accordance with an embodiment of the present
invention. In one embodiment, method 300 may be 1mple-
mented by logic within a TCU to dynamically control
migration of one or more threads between different core
types based performance state updates received in the TCU.
As seen, method 300 may begin by receiving a P-state
update 1n a power control unit (block 305). For example, a
P-state update can be received from the OS, e.g., based on
the OS’s analysis of code execution. As an example, the
P-state update request can be a request to increase the
performance state or decrease the performance state from a
current level. In turn, the PCU can provide this request to the
TCU.

Still referring to FIG. 3, control passes to diamond 310
where 1t can be determined whether the requested perfor-
mance state exceeds a threshold performance state.
Although the scope of the present invention 1s not limited in

US 10,185,566 B2

7

this regard, in one embodiment this threshold performance
state may correspond to a maximum guaranteed operating
frequency, e.g., a P1 state. IT a higher state 1s requested, the
determination 1s in the aflirmative and accordingly, control
passes to diamond 315.

At diamond 315 it can be determined whether one or more
threads within a performance domain are executing on a low
power core. This analysis can be done on a per performance
domain basis. That 1s, in some embodiments a processor can
be configured to have multiple performance domains such
that each domain can operate at an independent performance
state (e.g., a diflerent performance state, and corresponding
voltage and operating frequency). As an example, an AMP
processor can be configured with multiple independent
internal voltage regulators to enable operation using per core
P-states (PCPS).

If 1t 1s determined that the one or more threads of a given
performance domain are executing on a low power core,
control passes to block 320 where such thread can be
migrated to one or more large cores. Otherwise, the method
may conclude.

Referring still to FIG. 3, i the determination at diamond
310 indicates that the requested P-state does not exceed the
threshold performance state, control passes to diamond 325
where i1t can be determined whether one or more threads
within this performance domain are executing on large
cores. It so, control passes to block 330 where these threads
can be migrated to low power cores. In accordance with
various embodiments, this context switch can be transparent
to the OS. In general operations to perform dynamic migra-
tion constitute saving a state of the executing core and
providing at least that portion of the state for use in the
process to the 1dentified other core type. If these threads are
not operating on such large cores as determined at diamond
325, method 300 may directly conclude. Although shown at
this high level 1n the embodiment of FIG. 3, understand the
scope of the present invention 1s not limited 1n this regard.
For example migrations may be aflected and (possibly
limited) by thermal state as described more fully below.

In some embodiments prior to the context switch of
threads between different cores, 1t may also be determined
whether a given process has been switched between the
cores greater than a threshold number of times. If this count
value exceeds a threshold, this indicates that for some reason
the process continues to be switched back to the large core
from the small core (e.g., for execution of mstructions of the
code not supported by the small core). The control switch
threshold can be changed dynamically based on the system
power and performance requirement and the expectation for
better or less power/performance efliciency. Accordingly,
the overhead 1ncurred in performing the migration may not
be worth the effort and thus, a process migration may not
OCCUL.

In other embodiments, a task controller may cause
dynamic migration between cores based on performance
monitor information received in the TCU from one more
cores of the processor. Although this dynamic migration
control can be based solely on this performance monitor
information, 1n some embodiments combinations of control
may occur based on this performance monitor information
and P-state information from the OS.

Referring now to FIG. 4, shown 1s a flow diagram a
method for dynamically migrating threads between cores
based on performance monitor information. As seen 1n FIG.
4, method 350, which may be implemented 1 a TCU of a
processor, can begin by analyzing performance monitor
information for a workload being executed in a given

10

15

20

25

30

35

40

45

50

55

60

65

8

performance domain (block 355). In one embodiment, per-
formance monitoring information can be received from each
of multiple performances domains, and can be analyzed on
a per domain basis. However, in other implementations
performance monitoring information can be received from
multiple domains and analyzed globally. Although the scope
of the present mvention 1s not limited this regard in some
embodiments this performance monitoring information may
include information received from performance monitoring
units of the multiple cores and may correspond to IPC
information, cache statistics, execution performance or so
forth.

Retferring still to FIG. 4, at diamond 360 1t can be
determined whether the performance monitor imnformation
exceeds a utilization threshold. As an example, such utili-
zation thresholds can correspond to a given processor utili-
zation value.

If 1t 1s determined that the performance monitor informa-
tion exceeds this utilization threshold, control passes to
diamond 370 where 1t can be determined whether one or
more threads of the performance domain are executing on
low power cores. If so, control passes to block 375 where the
threads can be migrated to large cores. If not, the method
may conclude.

Still referring to FIG. 4, 11 at diamond 360 it 1s determined
that the performance monitor mnformation does not exceed
the utilization threshold, control passes to diamond 380
where 1t can be determined whether one or more threads of
this performance domain are executing on large cores. If so,
control passes to block 385, where the thread can be
migrated to a low power core.

On top of the performance metric(s) that can be used by
the TCU to decide which type of core 1s to be used, the TCU
1s also aware of the current physical constraints like thermal
or power budgets that may limit the amount of time that 1t
1s possible to use the large core, and to migrate code from the
large core to the small core even if the performance metric(s)
still justity working on the large core. Also the reverse
dynamic change in constraints above may trigger a switch
from the small core to the large core during the run time of
the executed code.

Note that the operations to dynamically migrate cores
based on performance state request updates and/or perior-
mance monitoring information can occur in an AMP that
includes equal numbers of large and small cores so that 1T an
ISA exception occurs due to a given type of core not
supporting a certain 1struction, an available core 1s present
to handle a migration due to a fault.

Nevertheless an AMP processor can be implemented
without having equal numbers of large and small core pairs.
In such embodiments, dynamic migrations may occur when
a processor to be operated 1n a turbo range, namely above a
maximum guaranteed operating frequency where the hard-
ware 1s not obliged to meet an OS performance request;
rather 1t simply tries to honor the request. In such 1mple-
mentations threads that are most likely to gain from switch-
ing to a larger, higher power core may be migrated based on
the amount of such cores available. It 1s possible 1n other
implementations that fewer small cores than large cores may
be present, with operation generally 1n the inverse than the
described turbo flow.

Referring now to FIG. 5, shown 1s a flow diagram of a
method for dynamically migrating between cores in the
context ol an AMP having asymmetric numbers of small and
large cores.

In one embodiment, method 400 may be implemented by
migration logic within a TCU to dynamically control migra-

US 10,185,566 B2

9

tion of one or more threads between diflerent core types and
when the numbers of the first and second types of cores (e.g.,
large and small) are asymmetrical. As with method 300
described above in FIG. 3, migration may be based on
performance state updates received 1n the TCU. As seen,
method 400 may begin by receiving a P-state update 1n a
power control unit (block 4035).

Still referring to FIG. 5, control passes to diamond 410
where 1t can be determined whether the requested perfor-
mance state exceeds a threshold performance state and
turther whether the requested performance state exceeds a
guaranteed performance state. In various embodiments, this
guaranteed performance state may correspond to a PO per-
formance state. Although the scope of the present invention
1s not limited 1n this regard, 1n one embodiment the threshold
performance state may correspond to at least one perior-
mance bin greater than the guaranteed performance state. IT
a higher state i1s requested, the determination 1s 1n the
alirmative and accordingly, control passes to block 412.
There the number of available (e.g., unused) large cores can
be 1dentified. Next control passes to diamond 414, where 1t
can be determined whether this number N i1s greater than
zero. If not, there are no available large cores, and accord-
ingly a dynamic migration does not occur and thus the
method may conclude. Otherwise 1f N 1s greater than zero,
control passes to diamond 415.

At diamond 415 1t can be determined whether one or more
threads within a performance domain are executing on a low
power core, which may be done on a per performance
domain basis.

If 1t 1s determined that the one or more threads of a given
performance domain are executing on a low power core,
control passes to block 418 where up to N threads having
highest performance monitor values greater than a threshold
performance state can be identified. In one embodiment, the
performance monitor values may correspond to utilization
values, although other metrics are equally appropriate, such
as mstructions per cycle. Control next passes to block 420
where such threads can be migrated to one or more of the
available large cores.

Referring still to FIG. 5, 1 the determination at diamond
410 1ndicates that the requested P-state does not exceed the
threshold performance state, control passes to diamond 425
where 1t can be determined whether one or more threads
within this performance domain are executing on large
cores. I so, control passes to block 430 where these threads
can be migrated to low power cores. In accordance with
various embodiments, this context switch can be transparent
to the OS, as described above. If these threads are not
operating on such large cores, method 400 may directly
conclude. Although shown at this high level 1n the embodi-
ment of FIG. 5, understand the scope of the present inven-
tion 1s not limited in this regard.

Referring now to FIG. 6, shown 1s a flow diagram a
method for dynamically migrating threads between cores
based on performance monitor information for the case of
asymmetric numbers ol heterogeneous cores. As seen 1n
FIG. 6, method 450, which may be implemented 1n a TCU
of a processor, can begin by analyzing performance monitor
information for a workload being executed in a given
performance domain (block 455).

Refernng still to FIG. 6, at diamond 460 1t can be
determined whether the performance monitor imformation
exceeds a utilization threshold and whether the requested
performance state exceeds a guaranteed (e.g., PO) perfor-
mance state. IT 1t 1s determined that the performance monitor
information exceeds this utilization threshold and a higher

10

15

20

25

30

35

40

45

50

55

60

65

10

than guaranteed performance state 1s requested, control
passes to block 462 where the number N of unused large
cores can be i1dentified. Control next passes to diamond 464
where 1t can be determined whether this number N 1s greater
than zero. If not, no dynamic migration 1s possible and thus
the method may conclude.

Otherwise, control passes to diamond 470 where it can be
determined whether one or more threads of the performance
domain are executing on low power cores. If so, control
passes to block 472, where up to N threads having the
highest performance monitor values over a threshold per-
formance state can be identified. Then control passes to
block 475 where these threads can be migrated to large
cores. If not, the method may conclude. Still referring to
FIG. 6, 11 at diamond 460 1t 1s determined that the perfor-
mance monitor information does not exceed the utilization
threshold, control passes to diamond 480 where it can be
determined whether one or more threads of this performance
domain are executing on large cores. If so, control passes to
block 485, where the thread can be migrated to a low power
core.

Referring now to FIG. 7, shown 1s a block diagram of a
processor 1n accordance with another embodiment of the
present invention. As shown 1n FIG. 7, processor 600 may
be a multicore processor including a first plurality of cores
610,-610_ that can be exposed to an OS, and a second
plurality of cores 610a-x that are transparent to the OS. In
various embodiments, these different groups of cores can be
ol heterogeneous size, performance, power, and other capa-
bilities, and understand that these transparent cores can be
the larger or smaller cores depending on the embodiment.

As seen, the various cores may be coupled via an inter-
connect 613 to a system agent or uncore 620 that includes
various components. As seen, the uncore 620 may include a
shared cache 630 which may be a last level cache. In
addition, the uncore may include an integrated memory
controller 640, various interfaces 630a-r, an advanced pro-
grammable interrupt controller (APIC) 665, and a power
control unit 660. Note that the shared cache may or may not
be shared between the different core types in various
embodiments.

As further seen i FIG. 7, power control unit 660 can
include various logic units and storages. In the embodiment
shown, power control unit 660 can include an exception
handler 652 that can be configured to receive and handle via
hardware exceptions occurring on cores and/or other com-
ponents that are transparent to an OS. In this way, this
handler can respond to interrupts such as invalid opcode
exceptions without OS support. In addition, power control
unit 660 can include a state storage 654 that can be used to
store the architectural state (and micro-architectural state) of
large and small cores for purposes ol context switches,
including maintaining state of a large core that i1s not
transierred to a small core on a context switch. Still further,
power control unit 660 can include a task control logic 658
to determine whether a given process should be migrated
between heterogeneous core types. Power control logic 660
may further include a P-state logic 656, which can receive
incoming P-state requests from an OS and determine an
appropriate operating frequency for all or portions of the
processor based on such requests, e.g., taking ito account
other constraints on the processor such as thermal, power
and so forth. P-state logic 656 may provide information
regarding these determined P-states to task control logic
658.

Although shown with this particular logic in the embodi-
ment of FIG. 7, understand the scope of the present inven-

US 10,185,566 B2

11

tion 1s not limited 1n this regard. For example, the various
logics of power control unit 660 can be implemented 1n a
single logic block 1n other embodiments.

APIC 665 may receive various interrupts and direct the
interrupts as appropriate to a given one or more cores. In
some embodiments, to maintain the small cores as hidden to
the OS, power control unit 660, via APIC 665 may dynami-
cally remap incoming interrupts, each of which may include
an APIC identifier associated with 1t, from an APIC ID
associated with a large core to an APIC ID associated with
a small core. The assumption 1s that the APIC ID that was
allocated for the core type that was visible to the operating
system during boot time 1s migrated between the core types
as part of the core type switch.

With further reference to FIG. 7, processor 600 may
communicate with a system memory 680, €.g., via a memory
bus. In addition, by interfaces 650, connection can be made
to various ofl-chip components such as peripheral devices,
mass storage and so forth. While shown with this particular
implementation 1n the embodiment of FIG. 7, the scope of
the present invention 1s not limited in this regard. For
example, 1n some embodiments a processor such as shown
in FIG. 7 can further include an integrated graphics engine,
which may be of a separate graphics domain.

Embodiments may be implemented in many diflerent
system types. Referring now to FIG. 8, shown 1s a block
diagram of a system in accordance with an embodiment of
the present invention. As shown i FIG. 8, multiprocessor
system 700 1s a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. As shown 1n
FIG. 8, each of processors 770 and 780 may be multicore
processors, including first and second processor cores (1.€.,
processor cores 774a and 774b and processor cores 784a
and 784bH) each of which can be heterogeneous cores,
although potentially many more cores may be present in the
processors. Hach of the processors can include a power
control unit and a task control unit or other logic to perform
context switches 1n a transparent manner to an OS, as
described herein.

Still referring to FIG. 8, first processor 770 further
includes a memory controller hub (MCH) 772 and point-to-
point (P-P) intertaces 776 and 778. Similarly, second pro-
cessor 780 includes a MCH 782 and P-P interfaces 786 and
788. As shown 1n FIG. 8, MCH’s 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of system
memory (e.g., DRAM) locally attached to the respective
processors. First processor 770 and second processor 780
may be coupled to a chupset 790 via P-P interconnects 752
and 754, respectively. As shown i FIG. 8, chipset 790
includes P-P interfaces 794 and 798.

Furthermore, chipset 790 includes an interface 792 to
couple chipset 790 with a high performance graphics engine
738, by a P-P interconnect 739. However, 1n other embodi-
ments, graphics engine 738 can be internal to one or both of
processors 770 and 780. In turn, chipset 790 may be coupled
to a first bus 716 via an interface 796. As shown in FIG. 8,
various 1nput/output (I/0) devices 714 may be coupled to
first bus 716, along with a bus bridge 718 which couples first
bus 716 to a second bus 720. Various devices may be
coupled to second bus 720 including, for example, a key-
board/mouse 722, communication devices 726 and a data
storage unit 728 such as a disk drive or other mass storage
device which may include code 730, 1n one embodiment.
Further, an audio I/O 724 may be coupled to second bus 720.
Embodiments can be incorporated into other types of sys-

10

15

20

25

30

35

40

45

50

55

60

65

12

tems including mobile devices such as a smartphone, tablet
computer, Ultrabook™, netbook, or so forth.

In the above embodiments, it 1s assumed that the hetero-
geneous cores are of the same ISA or possibly of a reduced
set of instructions of the same ISA. For example, with
reference back to FIG. 1, it can be assumed that both large
cores 1235 and small cores 130 may be of an x86 architecture.
For example, the large cores 125 may correspond to cores
having a micro-architecture of an Intel™ Core™ design and
the small cores 130 can be of an Inte]™ Atom™ design.
However understand the scope of the present imnvention 1s
not limited 1n this regard and 1n other embodiments, an AMP
processor can include cores of a different design such as
ARM-based cores available from ARM Holdings of Sunny-
vale, Calif. For example, the large cores may correspond to
a Cortex™ A1S5 design, while the small cores can be of a
Cortex™ A7 design. Or an AMP processor may include
MIPS-based cores available from MIPS Technologies of
Sunnyvale, Calif. Furthermore, as will be described below,
embodiments can mix cores of different vendors/licensors
and/or ISAs such as cores according to an x86 ISA and cores
according to an ARM-based ISA.

Referring now to FIG. 9, shown 1s a block diagram of a
processor 800 1n accordance with another embodiment of
the present mvention. In one embodiment, processor 800
may correspond to a system-on-a-chip (SoC) that can be
implemented using heterogencous cores of a reduced
instruction set computing (RISC) ISA. As an example, these
cores can be ARM-based cores having heterogeneous
resources. As seen 1n FIG. 9, processor 800 includes a first
processor cluster 810 and a second processor cluster 820.
First processor cluster 810 may include a plurality of large
cores 812.-812 . As seen, each of these cores may be
coupled to a shared cache memory 815, which 1 one
embodiment may be a level 2 (L2) cache memory. Each of
large cores 812 may be of an out-of-order architecture.
Second processor cluster 810 may include a plurality of
small cores 822,-822 . As seen, each of these cores may be
coupled to a shared cache memory 825, which 1 one
embodiment may be a L2 cache memory. Each of small
cores 822 may be of an in-order architecture.

First processor cluster 810 and second processor cluster
820 may be coupled via one or more interrupt channels to an
interrupt controller 830 that may process interrupts received
from the various cores. As seen, interrupt controller 830 may
include a task control logic 835 in accordance with an
embodiment of the present invention to enable transparent
migration of tasks between the diflerent processor clusters.
As Turther seen, each processor cluster can be coupled to an
interconnect 840 which 1 an embodiment can be a cache
coherent interconnect that further communicates with an
input/output coherent master agent 850. As seen, intercon-
nect 840 also may communicate ofi-chip, e.g., to and from
a DRAM as well as to provide for communication with other
components via a system port. Although shown with this
particular implementation 1n the embodiment of FIG. 9,
understand the scope of the present invention 1s not limited
in this regard.

As mentioned above, 1t 1s also possible to mix cores of
different vendors. For example, x86-based cores can be
provided on a single die along with ARM-based cores. And
with such an architecture, embodiments provide for dynamic
migration of processes between these diflerent types of cores
transparently to an OS.

Referring now to FIG. 10, shown 1s a block diagram of a
processor 1n accordance with another embodiment of the
present mvention. As shown i FIG. 10, processor 900 can

US 10,185,566 B2

13

be a multicore processor that includes a core unit 920 having,
heterogeneous resources. Specifically in the embodiment of
FIG. 1, different types of hardware or physical cores can be
present, including a plurality of large cores 925,-925, (ge-
nerically large core 925), and a plurality of small cores
930,-930_ (generically small core 930) (note that different
numbers of large and small cores may be present). In the
embodiment of FIG. 10, different micro-architectures are
present, icluding large cores 925 that may be of an x86
architecture and small cores 930 that may be of an ARM,
MIPS or other architecture. As examples, the large cores
may be of an Intel™ Core™ design and the small cores may
be of an ARM Cortex™ design. However, 1n other embodi-
ments the large cores may be ARM-based and the small
cores may be x86-based.

As further seen 1n FIG. 10, processor 910 further includes
an uncore unit 944 having a power controller or PCU 940.
PCU 940 may receive requests to change P-state of a core.
In turn responsive to this request, the PCU can communicate

a performance state with a TCU 942. As further seen, TCU
942 may further receive additional information such as
performance monitoring information from performance
monitors 926,-926, and 936,-936_ of the cores. TCU 942
can trigger an asynchronous interrupt to enable an OS
transparent migration between diflerent core types based on
this information.

FIG. 10 also shows the presence of APIC 945 that may
receive various ncoming interrupts, both from the OS as
well as hardware-based interrupts and map such interrupts to
a requested core. Furthermore, in accordance with an
embodiment of the present mvention, dynamic remapping
can occur based on control from TCU 942 such that the TCU
can dynamically migrate threads between the asymmetric
cores transparently to the OS.

Embodiments thus hide physical heterogeneity from the
OS and enable taking advantage of heterogeneity without
the need for OS support.

The following examples pertain to further embodiments.
In one aspect, a multicore processor includes first and
second cores to independently execute instructions, where
the first core 1s visible to an OS and the second core 1s
transparent to the OS and heterogeneous from the first core.
The processor may further include a task controller coupled
to the first and second cores to dynamically migrate a first
process scheduled by the OS to the first core to the second
core, where this dynamic migration 1s transparent to the OS.
The task controller can dynamically migrate the first process
based at least 1in part on a performance state request recerved
in a power controller from the OS, and can dynamically
migrate the first process further based on performance
monitor information obtained during execution of the first
process on the first core.

In one aspect, the first core 1s of a first ISA, and the second
core 1s of a second ISA, and where the second core includes
an emulation engine to emulate an mstruction of the first ISA
that 1s not included 1n the second ISA. Multiple first cores
and second cores may be included, where a number of the
first cores 1s asymmetric to a number of the second cores. A
first performance domain may include at least one of the first
cores, and the task controller 1s to dynamically migrate the
first process from the first core to the second core based at
least 1 part on a performance state request received 1n a
power controller from the OS corresponding to the first
performance domain, and to thereafter dynamically migrate
the first process from the second core to the first core based
on performance monitor information obtained during execu-
tion of the first process on the second core.

10

15

20

25

30

35

40

45

50

55

60

65

14

The task controller can dynamically migrate N processes
each from one of the second cores to one of the first cores,
when there are at least N unutilized cores of the plurality of
first cores. The N processes may be of X processes executing
on the second cores, where X 1s greater than N and the N
processes each have a higher utilization value than the
remaining X—N processes.

An exception handling umit can handle an exception
occurring during execution of the process on the second core
transparently to the OS. The task controller may include a
first counter to count a number of times the first process has
been switched between the first and second cores, and
prevent migration of the first process from the first core to
the second core when a value of the first counter 1s greater
than a first threshold.

Another aspect includes a method for receiving a perfor-
mance state update from an OS in a task controller of a
multicore processor including a first plurality of cores and a
second plurality of cores, the first plurality of cores visible
to the OS and the second plurality of cores transparent to the
OS and heterogeneous from the first plurality of cores. The
performance state update can request at least one of the first
plurality of cores to operate at a requested performance state.
Then 1t can be determined whether the requested perfor-
mance state exceeds a guaranteed performance state and a
threshold performance state and 1t so, transparently to the
OS, at least one thread 1s migrated from at least one of the
second plurality of cores to at least one of the first plurality
of cores, where the OS allocated the at least one thread to
one of the first plurality of cores.

In addition, 1t can be determined whether the at least one
thread has switched between the first and second plurality of
cores greater than a threshold number of times and i1 so, the
at least one thread can be maintained on the first plurality of
cores. N unused ones of the first plurality of cores and up to
N threads executing on the second plurality of cores with
highest performance monitor values over a threshold per-
formance monitor value can be 1dentified, and the N threads
can be migrated from the second plurality of cores to the first
plurality of cores, while at least one thread 1s not migrated
from the second plurality of cores to the first plurality of
cores while migrating the N threads.

Another aspect includes a system with a multicore pro-
cessor including a first plurality of cores and a second
plurality of cores executing in a plurality of performance
domains, where the second plurality of cores heterogeneous
to the first plurality of cores and transparent to an OS. A
power controller can receive a performance state update
from the OS for a first performance domain of the plurality
of performance domains and performance monitor informa-
tion from the first and second plurality of cores and cause a
context switch to dynamically migrate a process from execu-
tion on a second core of the second plurality of cores to a
first core of the first plurality of cores transparently to the
OS, based on the performance state update and the perfor-
mance monitor information. A dynamic random access
memory (DRAM) may be coupled to the multicore proces-
sor. The second core can include an emulation logic to
emulate an 1nstruction of a first ISA, where the second core
ol a different ISA than the first ISA. A number of the first
plurality of cores may be diflerent than a number of the
second plurality of cores.

Embodiments may be used in many different types of
systems. For example, in one embodiment a communication
device can be arranged to perform the various methods and
techniques described herein. Of course, the scope of the
present invention 1s not limited to a communication device,

e

US 10,185,566 B2

15

and instead other embodiments can be directed to other
types ol apparatus for processing instructions, or one or
more machine readable media including instructions that in
response to being executed on a computing device, cause the
device to carry out one or more of the methods and tech-
niques described herein.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system
to perform the instructions. The storage medium may
include, but 1s not limited to, any type of disk including
floppy disks, optical disks, solid state drives (SSDs), com-
pact disk read-only memories (CD-ROMs), compact disk
rewritables (CD-RWs), and magneto-optical disks, semicon-
ductor devices such as read-only memories (ROMs), ran-
dom access memories (RAMs) such as dynamic random
access memories (DRAMSs), static random access memories
(SRAMSs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMSs), magnetic or optical
cards, or any other type of media suitable for storing
electronic instructions.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia-
tions therefrom. It 1s intended that the appended claims
cover all such modifications and varnations as fall within the
true spirit and scope of this present invention.

What 1s claimed 1s:

1. A multicore processor comprising:

a first core to execute instructions independently from

other cores;

a second core to execute mstructions mndependently from
other cores, the first core visible to an operating system
(OS) adapted for a symmetric processor and the second
core transparent to the OS and heterogeneous from the
first core, the multicore processor comprising an asym-
metric processor;

a hardware task controller coupled to the first and second
cores to dynamically migrate a first process, scheduled
by the OS to a first virtual core associated with the first
core via an allocation of the first process to the first core
based on a mapping table having an association
between a first 1dentifier sent from the OS to the first
core, to the second core, where the dynamic migration
1s transparent to the OS; and

a hardware power controller coupled to the hardware task
controller and the first and second cores and to receive
a performance state request for the first core from the
OS and communicate the performance state request to
the hardware task controller, wherein the hardware task
controller 1s to dynamically migrate the first process

based at least 1n part on the performance state request
for the first core received in the hardware task control-
ler from the hardware power controller and perfor-
mance monitor mformation received in the hardware
task controller from the first core during execution of
the first process on the first core, via an update to the
mapping table to associate the first identifier with the
second core, wherein the hardware task controller 1s to
prevent the dynamic migration of the first process to the
second core when a number of switches of the first
process between the first core and the second core
exceeds a threshold number of switches and enable the
dynamic migration of the first process when the number
of switches 1s less than the threshold number of
switches.

10

15

20

25

30

35

40

45

50

55

60

65

16

2. The multicore processor of claim 1, wherein the first
core 1s of a first 1struction set architecture (ISA), and the
second core 1s of a second ISA.

3. The multicore processor of claim 2, wherein the second
core mcludes an emulation engine to emulate an 1nstruction

of the first ISA that 1s not included in the second ISA.

4. The multicore processor of claim 1, further comprising
a plurality of first cores including the first core and a
plurality of second cores including the second core, wherein
a number of the plurality of first cores 1s asymmetric to a
number of the plurality of second cores.

5. The multicore processor of claim 4, further comprising,
a first performance domain including at least one of the
plurality of first cores, wherein the hardware task controller
1s to dynamically migrate the first process from the first core
to the second core based at least in part on a performance
state request received 1n the hardware power controller from
the OS corresponding to the first performance domain.

6. The multicore processor of claim 5, wherein the hard-
ware task controller 1s to thereafter dynamically migrate the
first process from the second core to the first core based on
performance monitor information obtained during execution
of the first process on the second core.

7. The multicore processor of claim 4, wherein the hard-
ware task controller 1s to dynamically migrate N processes
cach from one of the plurality of second cores to one of the
plurality of first cores, when there are at least N unutilized
cores of the plurality of first cores.

8. The multicore processor of claim 7, wherein the N
processes are ol a plurality of X processes 1n execution on
the plurality of second cores, X greater than N and wherein
the N processes each have a higher utilization value than the
remaining X—N processes.

9. The multicore processor of claim 1, further comprising,
an exception handling unit to handle an exception occurring
during execution of the first process on the second core
transparently to the OS.

10. The multicore processor of claim 1, wherein the
second core 1s of a diflerent instruction set architecture (ISA)
than the first core, and the different ISA 1s partially over-
lapping with an ISA of the first core.

11. The multicore processor of claim 1, wherein the
hardware task controller 1s to dynamically migrate the first
process further based on a detection that the performance
state request exceeds a guaranteed performance state and a
threshold performance state.

12. The multicore processor of claim 11, wherein the
threshold performance state exceeds the guaranteed perfor-
mance state by at least one performance bin.

13. A method comprising:

recerving a performance state update from an operating

system (OS) m a controller of a multicore processor
including a first plurality of cores and a second plurality
of cores, the first plurality of cores visible to the OS and
the second plurality of cores transparent to the OS and
heterogeneous from the first plurality of cores, wherein
the performance state update requests at least one of the
first plurality of cores to operate at a requested pertor-
mance state;

determining that the requested performance state exceeds

a guaranteed performance state and a threshold perfor-
mance state exceeding the guaranteed performance
state, the threshold performance state at least one
performance state greater than the guaranteed perfor-
mance state;

US 10,185,566 B2

17

maintaining a count of a number of switches of at least
one thread between the first plurality of cores and the
second plurality of cores;

responsive to determining that the requested performance

state exceeds the guaranteed performance state and the
threshold performance state, migrating, transparently to
the OS, the at least one thread from at least one of the
second plurality of cores to at least one of the first
plurality of cores, wherein the OS allocated the at least
one thread to one of the first plurality of cores, when the
count of the number of switches of the at least one
thread between the first plurality of cores and the
second plurality of cores 1s not greater than a threshold
number of times; and

maintaining the at least one thread on the second plurality

of cores responsive to determining that the count of the
number of switches of the at least one thread between
the first plurality of cores and the second plurality of
cores 1s greater than the threshold number of times.

14. The method of claim 13, further comprising identi-
tying N unused ones of the first plurality of cores and
identifying up to N threads executing on the second plurality
of cores with highest performance monitor values over a
threshold performance monitor value.

15. The method of claim 14, further comprising migrating
the N threads from the second plurality of cores to the first
plurality of cores.

16. The method of claim 13, wherein the second plurality
of cores 1s of a different instruction set architecture (ISA)
than the first plurality of cores, and the different ISA 1s
partially overlapping with an ISA of the first plurality of
cores.

17. A system comprising:

a multicore processor including a first plurality of cores

and a second plurality of cores to execute 1n a plurality
of performance domains, the second plurality of cores

10

15

20

25

30

18

heterogeneous to the first plurality of cores and trans-
parent to an operating system (OS), and a power
controller, wherein the power controller 1s to receive a
performance state update from the OS for a first per-
formance domain of the plurality of performance
domains and performance monitor information from
the first and second plurality of cores and to cause a
context switch to dynamically migrate a process from
execution on a second core of the second plurality of
cores to a first core of the first plurality of cores
transparently to the OS, based on the performance state
update and the performance monitor information,
wherein the second plurality of cores 1s of a different
instruction set architecture (ISA) than the first plurality
of cores, and the different ISA 1s partially overlapping
with an ISA of the first plurality of cores and the power
controller includes a counter to count a number of
switches of the process between the first and second
cores, wherein the power controller 1s to prevent the
dynamic migration of the process between the first core
and the second core when the number of switches
exceeds a threshold number of switches and enable the
dynamic migration of the process when the number of
switches 1s less than the threshold number of switches:
and

a dynamic random access memory (DRAM) coupled to

the multicore processor.

18. The system of claim 17, wherein the second core
includes an emulation logic to emulate an instruction of a
first 1nstruction set architecture (ISA), the second core of a
different ISA than the first ISA.

19. The system of claim 17, wherein a number of the first
plurality of cores 1s d1

[

‘erent than a number of the second

.5 Pplurality of cores.

	Front Page
	Drawings
	Specification
	Claims

