US010181268B2

a2 United States Patent (10) Patent No.: US 10,181,268 B2

Gupta et al. 45) Date of Patent: Jan. 15, 2019
(54) SYSTEM AND METHOD FOR TOY VISUAL (58) Field of Classification Search
PROGRAMMING None

See application file for complete search history.
(71) Applicant: Play-i, Inc., San Mateo, CA (US)

(72) Inventors: Saurabh Gupta, Sunnyvale, CA (US); (56) References Cited

Vikas Gupta, Palo Alto, CA (US); -
Orion Elenzil, San Mateo, CA (US); U.S. PATENT DOCUMENTS

Leisen Huang, San Mateo, CA (US) D290,032 S 5/1987 Horiuchi
5,638,522 A 6/1997 Dunsmuir et al.
(73) Assignee: Play-i, Inc., San Mateo, CA (US) D471,243 S 3/2003 Cioffi et al.

0,604,021 B2 8/2003 Imai et al.
0,668,211 Bl 12/2003 Fujita et al.

: : 6,895,305 B2 5/2005 Lathan et al.
patent 1s extended or adjusted under 35 D559.288

(*) Notice: Subject to any disclaimer, the term of this

S 1/2008 Matsuda
U.S.C. 154(b) by 85 days. D624.610 S 9/2010 Wu et al.
D639.353 S 6/2011 Stibolt
(21) Appl. No.: 15/582,924 D641,805 S 7/2011 Kichijo et al.
D650.866 S 12/2011 Clahsen
. D672.402 S 12/2012 Macadam
(22) Filed: May 1, 2017 D688.328 S /2013 Holm
D689.957 S 9/2013 J
(65) Prior Publication Data S
(Continued)

US 2017/0236446 Al Aug. 17, 2017
FOREIGN PATENT DOCUMENTS

Related U.S. Application Data

(63) Continuation of application No. 15/260,863, filed on
Sep. 9, 2016, now Pat. No. 9,672,756, which 1s a

continuation-in-part ol application No. 14/737,347, Primary Lxaminer — Bhanash v Al_lllll
filed on Jun. 11, 2015, now Pat. No. 9,498.882. (74) Attorney, Agent, or I'irm — Jetirey Schox

WO 103525 8/2012

(60) Provisional application No. 62/219,323, filed on Sep.
16, 2015, provisional application No. 62/011,478, (57) ABSTRACT

filed on Jun. 12, 2014, provisional application No.

A method for programmatic robot control including, at a
62/015,969, filed on Jun. 23, 2014.

user device: displaying a set of icons and receiving a
program for a robot, wherein receiving a program for a robot

(51) Int. Cl. includes receiving a selection of a state 1con associated with

GO6F 19/00 (2018.01) _ .. » . ‘ .
H a state; associating a transition with the state; and creating a
GO9B 19/00 (2006.01) - - s
H relationship between the transition and an event. The method
GO9B 5/02 (2006.01) finet;
H nctions to provide a user with an environment for creating
A63H 30/04 (2006.01) o -
a program to control the robot, and can additionally function
(52) US. Cl. to control the robot.
CPC G09B 19/0053 (2013.01); A63H 30/04
(2013.01); GO9B 5/02 (2013.01); GO>B
2219/36025 (2013.01); Y10S 901/04 (2013.01) 20 Claims, 10 Drawing Sheets
r—‘l
i Comectngwoarbot |
A 2N
: E Identifying the robot E
A 2
: E Determining information about the robot l
i + > 5100
| Displaying a set of icons
i + o 5200
. Receiving a program for the robot
i.: b :F:-:-:-:-:-:-!} _________________ ,..:: L +_ _______
| | Determiningasetof | 1 | Providing a preview |
| imechineccdeblocks |} f ofaseorevent |
S » l
:‘ """" L SRR t “"““““““"': e 5300
! Executing the program :

US 10,181,268 B2
Page 2

(56)

D701,923
8,812,157
1)718,394
8,880,359
9,079,305
748,204
9,446,510
9,459,838

2004/0186623

20

20

11/0276058
13/0324004

20

| 7/0291295

References Cited

U.S. PATENT DOCUMENTS

S
B2
S
B2
B2

S
B2
B2
Al
A
A
A

4/201
8/201
11/201
11/201
7/201
1/201
9/201
10/201
9/2004
11/2011
12/2013
10/2017

oy N e Y R N N N LN

Jensen
Morioka et al.

Welss
Inaba et al.

Williamson et al.

Simonds et al.
Vu et al.

[am et al.
Dooley et al.
Choi et al.
Schwartz
Gupta et al.

U.S. Patent Jan. 15,2019 Sheet 1 of 10 US 10,181,268 B2

L
| S AU I \ A
I i . [| { - :]
| ; Dete;fmmmgaset of » Providing a preview
: | machine code blocks | | | ofastateorevent !
. ST TTTTTTTTTTTI
R et : |
uuuuuuuu L A A

FIGURE 1

U.S. Patent Jan. 15,2019 Sheet 2 of 10 US 10,181,268 B2

storage

I'd

Determinestatesand |4 -~-——r e e =

events based on rchot :

--------------- Display state icons
on user device
. - P o S210
: | . .
: : Heceive stale selection
: i
: | i "_' 822{}
. Hepeat to receive ! Associate transition
: program ! with selected state
’ {
- 5230
) i R\
; : o 5232
, I o
; : - Select transition
y i
: 1
{ 'en 5235
])
! . Detaermine event
i
] :
! x— 5238 :
: . Associate determined :
, event with transition :
i :
T . . .
| Program execution selection received
Determine machine i- i
code for each state in .
program - stale machine code block
________________ tight 1/ cyan {light_1; rgh: 0, 255, 255}
r""' S300
: ”"'"']350) | | ""‘ 5310
! N oot instruction 1o operate in next state
~ etermine that connected to current state by transition 5320 —yg

event associated
with transition
connected o
: current state has
+occurred based on
: sensor data

7 Operate -
: according to .
+ instruction

ﬂﬂﬂ

FIGURE 2

U.S. Patent Jan. 15, 2019 Sheet 3 of 10 US 10,181,268 B2

storage 100
~ O

Connection established

Determine statesangd -~~~ ccm e e ————
events based on robot |

identifier - x— S100 (B

"""""""""""""""" Display state icons
on user device [m) — S200
. ,— 5210 :
Receive stale selection m ;

' S220
Associate transition

with selected state

Repeat {0 receive

program . Determine event

p— S238

. Associate determined CE)@'Q :
event with transition O O O :

- & & °F B B E % B> 2 & 2B F B B EmE B & R R E B B - BB &a B F F R N8 B S 88 B E O BFEF BB T OB EFR PR B A B R FE "B BB MR & F MR AR W ROARR E S R R A T W A A A & & W A B B N &

Determineg machine
code for each stale

and event in program -
uuuuuuuuuuuuuuuuu light 1/ cyan {ight_1; rgb: 0, 255, 2505}

state machine code block

- S310
instruction to operate according to program

i i
Operate in a state | ;
i

S350
50—y :
. Determine that event associated with ;
i
i

: transition connected to current state
: has occurred

FIGURE 3

U.S. Patent Jan. 15,2019 Sheet 4 of 10 US 10,181,268 B2

Display state icons
on user device [m
"— S210
Recelve state

Connection established

V' S310
Instruction to operate in state p— 9320
""""""""""""""""""""""""" - Operate
| according to
< instruction

FIGURE 4

U.S. Patent Jan. 15, 2019 Sheet 5 of 10 US 10,181,268 B2

FIGURE 5

FIGURE 6

U.S. Patent Jan. 15, 2019 Sheet 6 of 10 US 10,181,268 B2

Delay Time (seconds)

FParameter Value

Selection
Selected
—vent
-«
. Event J
‘ Hraview
Option
- P

FIGURE 7

FIGURE 8

U.S. Patent Jan. 15, 2019 Sheet 7 of 10 US 10,181,268 B2

-IGURE ©

FIGURE 10

U.S. Patent Jan. 15, 2019 Sheet 8 of 10 US 10,181,268 B2

Delay Time (seconds)

FIGURE 11

%

||"ﬂ-_| ;

FIGURE 12

U.S. Patent Jan. 15, 2019 Sheet 9 of 10 US 10,181,268 B2

FIGURE 13

U.S. Patent Jan. 15,2019 Sheet 10 of 10 US 10,181,268 B2

00

storage L
¥ r'd

| Connection established
+ ______________________________

Determine statesand r-dd--———c e — -
events based on robot |
identifier -

Display state icons
on user device

r 5210
Recelve state selection

’ Recelve preview option
selection

Determine machine
code for each state in

program - T s
e - light 1/ cyan {ight_1;rgb: 0, 255, 255}

m Instruction associated with previewed state $320 —y
i Indicate s i >|-- Operate
m PIEVIEWING ¢ - Sensor data , according to

L L L L L L L L L L L L L oL L Lo oo Tla! instruction
Determinethat f—-[® —— -~~~ ———=—--~--—=----—-—--—------
instructions have

been performed

r——
I

l

-

Lisplay state icons
oh user device

FIGURE 14

US 10,181,268 B2

1

SYSTEM AND METHOD FOR TOY VISUAL
PROGRAMMING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 15/260,865, filed 9 Sep. 2016, which 1s a continuation-

in-part of U.S. application Ser. No. 14/737,347 filed 11 Jun.
20135, which claims priority to U.S. Provisional Application
No. 62/011.478 filed on 12 Jun. 2014 and U.S. Provisional

Application No. 62/015,969 filed on 23 Jun. 2014 which are

incorporated 1n their entireties by this reference.
This application 1s a continuation of U.S. application Ser.

No. 15/260,863, filed 9 Sep. 2016, which claims the benefit
of U.S. Provisional Application Ser. No. 62/219,325 filed on
16 Sep. 2015, which are incorporated in their entireties by
this reference.

TECHNICAL FIELD

This invention relates generally to the programming edu-
cation field, and more specifically to a new and useful
system and method for programming robotic toys in the
programming education {field.

BACKGROUND

There has been a recent emphasis 1n the education field to
teach children and young people programming. Many view
programming as a useiul skill 1n our computerized world,
and there are several core concepts that could be introduced
at an early stage. However, the complexity around program-
ming makes 1t a challenging topic to introduce to children.
The concepts can be viewed by children as too difficult or
not interesting enough. Thus, there 1s a need in the program-
ming education field to create a new and useful system and
method for reinforcing programming education through
robotic feedback. This mvention provides such a new and
usetul system and method.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1s a flowchart representation of the method.

FI1G. 2 1s a schematic representation of a first variation of
the method.

FIG. 3 1s a schematic representation of a second variation
of the method.

FIG. 4 1s a schematic representation of a variation of
real-time robot response during program scripting.

FIG. 5 1s a specific example of a visual programming
interface without any added states.

FIG. 6 1s a specific example of a visual programming,
interface with a first state and a transition connecting the
start state with the first state.

FIG. 7 1s a specific example of the event option selection
window.

FIG. 8 1s a specific example of a visual programming
interface with a first state and a transition connecting the
start state with the first state, wherein the event selected 1n
FIG. 7 1s associated with the transition.

FIG. 9 1s a specific example of subsequent state, transi-
tion, and event addition to the program.

FIG. 10 1s a specific example of altering the appearance
properties of a first transition 1n response to addition of the
second transition to the program.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 1s a specific example of the event option selection
window with unavailable event options indicated.

FIG. 12 1s a specific example of a program written within
the visual programming interface.

FIG. 13 1s a schematic representation of a system that can
implement the method.

FIG. 14 1s a specific example of previewing a state.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following description of the preferred embodiments
of the invention 1s not intended to limait the invention to these
preferred embodiments, but rather to enable any person
skilled 1n the art to make and use this 1nvention.

1. Overview.

As shown 1n FIG. 1, the method for programmatic robot
control 1 includes, at a user dev: displaying a set of icons
S100; and recerving a program for a robot S200, including
receiving a selection of a state icon associated with a state
S210, associating a transition with the state 5220, and
creating a relationship between the transition and an event
S5230. The method 1 functions to provide a user with an
environment for creating a program to control the robot, and
can additionally function to control the robot.

2. Benefits

The method 1 can confer several benefits. A programming,
environment that 1s mostly or entirely visual can be simpler
and easier to use than traditional text-based programming.
Furthermore, strong graphical associations between pro-
gramming e¢lements (e.g., 1cons) and program execution
clements (e.g., robot behaviors, events) can be easier for
children to understand than text elements or abstract icons.
Intuitive touch interfaces, using aspects such as the drag-
and-drop paradigm, also contribute to the ease-of-use of a
programming environment. Restrictions on the use or avail-
ability of some programming structures and concepts can
serve to simplity the programming process. Restrictions can
be used to ensure that only one part of a program executes
at any given time (e.g., the robot 1s only 1n a single state at
any given time), which can prevent potential confusion
arising from concurrent execution of multiple portions of a
program. For example, program execution can begin from a
single unique start state, and event selection can be restricted
to prevent the creation of branch points that could lead to
entering two states concurrently.

Cooperative execution by a robot and user device (e.g.,
wherein the robot executes the states and the user device
determines whether events have occurred) can confer sev-
cral additional benefits. First, this can remove program
compilation and some aspects ol program execution from
the robot to the user device, which simplifies the construc-
tion of the robot and lowers the robot manufacturing cost.
This can also enable older toys, previously manufactured
without user-accessible programming capabilities, to be
user-programmable by simply adding a chip that includes
basic computing and/or communication functionalities (e.g.,
WiF1 chip) to the toy. Second, this can allow the user to
debug the program in real-time, since the robot will not
execute the next state until after the event occurs (since the
robot has not received the instruction for the next state).
Third, this allows for any sort of programming method
and/or language to be used to program the robot, because the
robot does not need to compile the program; this allows a
user to progress through various programming methods of
varying complexities while using the same robot. Fourth,
this allows the robot to accommodate multiple state types,

US 10,181,268 B2

3

from single-instance states controlling a single output to
states that extend over a period of time and control multiple
outputs. This benefit 1s conferred because the user device
creates (e.g., compiles) the machine code for the simple or
complex state, and the robot simply acts according to the
instruction.

3. System

As shown in FIG. 2, the method 1 1s preferably performed
by a user device 100, more preferably a mobile device (e.g.,
tablet, smartphone, laptop, etc.), but can alternatively be
performed by a desktop, server system, or any other suitable
computing device. The programming 1s preferably per-
tormed with the device display (and/or other output, such as
a speaker, haptic feedback mechanism, etc.) and a device
input (e.g., touchscreen or touchscreen interface, mouse,
etc.), wherein the device display or outputs can present the
specified method outputs (e.g., state i1cons, event 1cons,
transition icons, controls, etc.) and the device inputs can
receive the inputs (e.g., state selections, event selections,
transition endpoint selections, parameter value selections,
etc.); and the processing, receipt, and sending i1s preferably
performed by a device processing unit (e.g., processing
system, CPU, GPU, microprocessor, etc.) and/or communi-
cation module (e.g., WiF1 radio, Bluetooth radio, BLE radio,
wired connection, etc.). However, portions of the method 1
can be performed by any other suitable portion of the device,
remote device (e.g., second user device, remote server
system, etc.), or any other suitable computing system. The
user device 1s preferably remote (e.g., separate from) the toy
robot, but can alternatively be collocated with, connected to,
or otherwise associated with the toy robot.

The method 1 can additionally be performed 1n conjunc-
tion with a robot 200, preferably an electronic toy, but
alternatively any other suitable robotic system. The robot
200 can 1nclude one or more active outputs, such as lights,
speakers, and motorized components (e.g., motorized arms,
legs, wheels, ears, eyes, etc.), but can alternatively be
substantially passive (e.g., manually actuated), static, or
have any other suitable set of outputs. The robot 200 can
include one or more mputs (e.g., sensors, buttons, etc.).
Examples of inputs include light sensors (e.g., ambient light
sensors, cameras, LIDAR systems, etc.), audio sensors (e.g.,
microphones), motor encoders, proximity sensors, orienta-
tion sensors (e.g., accelerometers, gyroscopes, etc.), location
sensors (e.g., trilateration systems, GPS systems, etc.),
switches, or any other suitable set of sensors.

4. Method

Block 5100 recites displaying a set of 1cons. Block S100
preferably functions to display i1cons available for use 1 a
program, but alternatively can function to display any 1cons
related to creating a program, or to display any suitable
1cons.

The 1cons can be associated with aspects relating to the
toy robot, or can be associated with aspects relating to the
user device, to other robots, to other user devices, to
program design, control, or execution, or to any other
suitable entities or concepts. In some embodiments, some
icons can be associated with states the toy robot 1s capable
of operating in, while other 1cons can be associated with
cvents the toy robot 1s capable of undergoing. The states,
events, and associated 1cons are preferably pre-determined
(e.g., by a toy enfity, such as a toy manufacturer), but can
alternatively be user-defined, automatically generated (e.g.,
based on past states or events generated by a given user
population), or otherwise determined.

States can be associated with one or more toy robot
subsystems (e.g., head, light array, wheels), or can be

10

15

20

25

30

35

40

45

50

55

60

65

4

associated with the entire toy robot, or can be otherwise
suitably related to toy robot operation. Each state preferably
represents a fixed set ol output parameter values (e.g., a
specific set of lights to emit light at a specific color and
intensity), but can alternatively represent a variable output
(e.g., wherein the variable values can be dynamically deter-
mined based on connected states and events), represent an
input, or represent any other suitable robot parameter.
Examples of states include light colors, light intensity,
specific light control, robot component movement (e.g.,
forward, backward, to the side, head movement, tail move-
ment, arm movement, individual wheel control, etc.), play-
ing a sound, robot data capture (e.g., sound, 1image, or video
capture), or include any other value for any other suitable
output and/or input variable. In a specific example, a state
can be associated with two independent subsystems, such as
turning on a green light while tilting the robot head upward.
Additionally or alternatively, a state can be a sub-routine
(e.g., fTunction) and/or sub-state-machine (e.g., a second state
machine within a state machine). A sub-routine can include
a progressing through a sequence of programmatic elements,
or can be otherwise suitably defined. A sub-state-machine
can 1nclude states, transitions, and events, and can be similar
to or diflerent from the state machine 1n which 1t 1s embed-
ded. However, sub-routines and/or sub-state-machines can
be any other suitable program elements.

Events can be associated with one or more toy robot input
systems (e.g., sensors or input devices), associated with
other mput systems, associated with time intervals, associ-
ated with progress through actions associated with a state, or
associated with other suitable conditions. Fach event pret-
erably represents a fixed set of input variable values (e.g., a
specific mput received at a specific location relative to the
robot, a specific wavelength of sound, a specific input
threshold value being exceeded, a sustained nput recerved
for more than a threshold period of time, etc.), but can
alternatively represent a variable mput (e.g., a range of
iputs, etc.), represent an output, represent any other suitable
robot parameter, or represent any other suitable parameter.
In a specific example, examples of events can include
timers, robot tilt (e.g., relative to a gravity vector, relative to
a previous robot orientation, etc.), robot acceleration (e.g.,
along or against a gravity vector, along a robot axis, along
a vector at an angle relative to a gravity vector and/or robot
axis, etc.), button depression, button release, sound detec-
tion, sound direction detection, secondary robot direction
detection (e.g., based on the beacon strength of a secondary
robot, based on visual system feedback, etc.), secondary
robot proximity detection, obstruction detection (e.g., based
on motor feedback or wvisual systems), overcoming the
obstruction, robot component actuation (e.g., head turning,
tall wagging, wheels turning, etc.), component movement
cessation, robot vibration or shaking, or include any other
suitable event.

Each icon can illustrate the toy robot 1n the state (e.g.,
respective associated state) or undergoing the event (e.g.,
respective associated event); can include any other suitable
illustration or representation representative of the respective
state(s) or event(s) associated with the 1con (e.g., ammation,
text, etc.); be otherwise graphically associated with the
state(s) or event(s); or otherwise suitably associated with a
program e¢lement (e.g., state, event, etc.). In some embodi-
ments, a state icon can 1illustrate a toy robot subsystem
operating 1n a state associated with that subsystem, and an
event 1con can illustrate a toy robot input system undergoing
an event associated with that input system.

US 10,181,268 B2

S

The 1cons are preferably displayed as a set of unconnected
icons on a virtual tray or i a virtual menu, but can
alternately be displayed as a set of unconnected 1cons, be
displayed as a set of partially- or fully-connected icons, or
displayed in any other suitable manner. The icons can be
displayed simultaneously, or can be displayed at separate
times (e.g., serially), 1n groups, individually, or their display
can have any other suitable temporal relation. The 1cons can
be ungrouped, be grouped by type (e.g., state 1cons or event
icons), be grouped by category represented (e.g., icons
representing states or events relating to light, sound, motion,
time, or proximity), or be otherwise suitably grouped. The
icons can be displayed in response to device connection to
the robot, 1n response to a robot client (e.g., native applica-
tion, web application, etc.) being launched on the device, or
be displayed 1n response to occurrence of any other suitable
display event.

Receiving a program for the robot S200 functions to
receive programming for the robot. The program can include
a program including a set of programming elements, or
include any other suitable set of programming components.
The program 1s preferably received from a user, but can
alternatively be received from storage (e.g., user device
storage, remote storage, the robot, etc.), or be recerved from
any other suitable source. The program can be received
using a touchscreen interface, but can alternately be received
using a mouse nterface, a keyboard intertace, a voice
command interface, a visual interface, or any other suitable
interface.

The program 1s preferably received through a drag-and-
drop paradigm (e.g., drag-and-drop selection method), but
can alternatively be recerved through an add-and-label para-
digm (e.g., wherein the system can automatically determine
the output or event associated with the added label, or
receive the definition from the user), or be recerved through
any other suitable program construction paradigm. The
drag-and-drop paradigm can include: detecting a continuous
selection beginning at a first location and ending at a second
location; 1dentifying a first 1con located at or near the first
location, wherein the first 1con 1s associated with a first
program element (e.g., program state, program transition,
program event); and associating the program element with
the second location, with a second 1con located at or near the
second location, or with a second program element associ-
ated with the second 1con. The continuous selection can be
a continuous touch (e.g., a finger held on a touchscreen
interface), but can alternately be a held mouse button, a held
keyboard key, or any other suitable continuous selection.

The program 1s preferably represented as (and/or defines)
a fimite-state machine, but can optionally be represented as
(and/or define) a pushdown automaton, a stack automaton,
Turing machine, or any other suitable virtual machine. The
finite-state machine can include program states connected by
program transitions, wherein each transition 1s directed from
a respective first state to a respective second state and 1s
associated with one or more program events. A transition
preferably indicates that, when the program 1s in the first
state associated with the transition, the program advances to
the second state associated with the transition 1n response to
the occurrence of one or more of the associated events.
However, the program can alternately be represented 1n any
other suitable manner.

The program 1s preferably represented graphically, but
can additionally or alternatively be represented textually
(c.g., by a table listing the first and second states for each
transition), or be otherwise suitably represented. A graphical
representation of the program can include a set of state 1cons

10

15

20

25

30

35

40

45

50

55

60

65

6

connected by a set of graphical representations of transi-
tions, wherein the graphical representations of the transi-
tions are associated with event 1cons (e.g., wherein the event
icons are proximal the transitions; wherein the event icons
overlay a portion of the transitions, etc.). However, the
graphical representation of the program can additionally or
alternatively include other graphical representations of the
program states, transitions, or events, include text represen-
tations of the program states, transitions, or events, linked by
graphical elements or arranged 1n a graphical representation
of the program structure, or be otherwise constructed. The
state 1cons and event 1cons 1n the graphical representation of
the program can be identical to some or all of the icons
displayed 1n Block 5100, but alternatively can be similar to
some or all of the 1cons displayed 1n Block S100, can be
otherwise associated with some or all of the 1cons displayed
in Block S100, or can be any other suitable i1cons. The
graphical representation of the program can be a state
diagram (preferably a directed graph, but alternately a
statechart or any other suitable state diagram), but alter-
nately can be any other suitable graphical representation.
The graphical representations of the program states and
program events can be circular icons, but can alternately be
any suitable shape or other graphical representation. The
graphical representations of the program transitions can be
single arcs and line segments, but alternately can include
multiple arcs or line segments or other paths, or can include
other shapes, or be any other suitable graphical representa-
tion. For example, graphically representing the program can
include representing the program as a set of connected icons
on a virtual stage rendered on the display of the user device,
separate from the state options that can be visually repre-
sented as a set of unconnected 1cons on a virtual tfray 1n
Block S100 (example shown in sequence 1 FIGS. 5-12).

Receiving a selection of a state icon associated with a
state S210 functions to receive an indication of the state. The
state 1con 1s preferably one of the set of 1cons displayed 1n
Block 5100, but can alternatively be any suitable icon. The
state icon 1s preferably representative of the state, and more
preferably includes an 1illustration of the robot operating in
the state, but alternatively can be any icon associated with a
state and displayed 1n Block S100, or any other suitable icon.
In response to receiving the selection of the state icon, the
state (e.g., code associated with the 1con) 1s pretferably added
to the program, but can alternately be otherwise associated
with the program. In some embodiments, Block S210 can be
repeated to receive indications of additional states (e.g.,
second state, third state, etc.). Each of the states indicated
can be different from each other, 1dentical to each other, or
identical to some and different from others. Diflerent states
can be indicated by different state icons, the same state 1con,
or otherwise represented.

In embodiments 1 which the program 1s represented
graphically, a representation of the state (preferably the state
icon, but alternately any other suitable representation) can be
added to the graphical representation of the program (e.g.,
by allowing a user to select state 1cons by dragging the state
icons from the tray into the stage; by double tapping the state
icon; etc.). The placement of the state representation can be
specified by the user (e.g., by dropping the state represen-
tation at a desired location when using the drag-and-drop
paradigm; by tapping the destination location; etc.), or can
be determined automatically, possibly based on the place-
ment of other elements of the graphical representation of the
program, or can otherwise be suitably determined. In one
embodiment, the desired location of the state representation
1s specified by the user, and the exact location of the state

US 10,181,268 B2

7

representation 1s determined such that it 1s close to the
desired location and such that the elements of the graphical
representation of the program remain easily viewed (e.g.,
overlap less than a threshold amount, such as 0% or 10%).
In variations of the embodiment, the location of the state
representation can be determined such that the state repre-
sentation 1s a predetermined distance from other elements of
the graphical representation of the program (e.g., coincident,
at least 2 mm apart, apart by at least a distance equal to 10%
of the representation’s width) or overlaps other elements of
the graphical representation of the program by no more than
a predetermined amount (e.g., 20% overlap, 1 mm overlap).
In further variations of the embodiment, the position and/or
appearance properties (e.g., size, shape, transparency) of one
or more of the other elements of the graphical representation
ol the program can be altered 1n response to the addition of
the representation of the state, 1n order to satisiy a minimum
separation or maximum overlap constraint, or to otherwise
maintain easily viewed elements of the graphical represen-
tation of the program, or for any other suitable purpose.

Associating a transition with a first state S220 functions to
link the first state to a program element (e.g., a second state,
an event, a second transition, a program execution termina-
tor, a sub-routine, a sub-state-machine, etc.) through the
transition. In a first embodiment, the program element 1s a
second transition, wherein Block S220 can include associ-
ating the first state with the second state through the tran-
sition. The states linked 1n Block S220 can be states indi-
cated (e.g., selected) 1n Block S210, or alternately they can
be other states associated with the program, or any other
suitable states. The first and second state can be 1dentical to
cach other or different from each other. The transition can
have an origin and a destination, and can be directed from
its origin to its destination. The transition can originate from
the first state and be directed toward the second state, or
alternately can originate from the second state and be
directed toward the first state. In one variation, the transition
includes a single origin and a single destination, such that
the transition can only be associated with two states: an
origin state and a destination state. In this variation, the
transition can optionally be precluded (e.g., prevented) from
concurrent origin and destination association with the same
instance of a state icon (e.g., the transition cannot loop back
on the same state). In a second vanation, the transition can
include one or more origins and one or more destinations. In
a third variation, the transition can loop back on the same
state. However, the transition origin and destination can be
otherwise limited or enabled. In a second embodiment,
Block 5220 does not include associating the transition with
a second state. Block S220 can additionally include associ-
ating the transition with the program element, or can exclude
associating the transition with any additional program ele-
ments.

In a first embodiment, the transition can be associated
with the first state in response to a user input (e.g., drag-
and-drop input, touchscreen input, keyboard input, voice
input). For example, the transition can be automatically
associated with the first state in response to: all or a portion
of a first state 1con bemng dragged proximal or over a
threshold portion of the second state icon (e.g., the entire
first state 1con being dragged proximal to the second state
icon; wherein the first state icon includes a transition sub-
icon, the transition sub-icon being dragged over a transition
termination portion ol the second state icon); adding a
transition and linking a first and second end of the transition
to the first and second states, respectively (e.g., selecting a
transition 1con from the tray and subsequently dragging an

5

10

15

20

25

30

35

40

45

50

55

60

65

8

origin end of the transition to the first state icon and dragging
a destination end of the transition to the second state 1con;
wherein a transition 1con 1s displayed proximal to each state
icon on the stage, selecting the transition 1con proximal the
first state 1con and dragging 1t to the second state icon);
receipt of the second state selection (e.g., after adding the
first state, such as when the first state can be the only state
in the virtual space; etc.), or otherwise linking the first and
second states 1n response to receipt ol any other suitable
state interaction. The visual representation of the first and/or
second state can additionally indicate that the state has been
selected for transition association. For example, the first and
second state 1cons can be highlighted 1n response to selec-
tion. Alternatively, the transition can be associated with
states selected through a menu presenting state options, or
selected by typing 1dentifiers associated with the states, or by
any other suitable selection process. Preferably, a transition
can be allowed to originate from and terminate at any states,
or any states selected from a set of states (e.g., the set of
states selected for the current program), but alternately,
some transition associations may be precluded. For example,
all transitions can be precluded from originating from and/or
terminating at one or more states (e.g., start state, end state,
interrupt state); and/or specific transitions can be precluded
from originating from and/or terminating at one or more
states, preferably based on one or more characteristics of the
transition (e.g., preclude origination from a first state based
on termination at a second state, preclude termination at a
first state based on origination from a second state, preclude
origination from and/or termination at a {irst state based on
association with a first event). In a second embodiment, 1n
response to the selection of a first or second state icon
associated with the first or second state, respectively (e.g., a
selection received in Block 5210), the transition can be
automatically associated with the first and second states.

The transition can be represented graphically (e.g., a path
connecting the graphical representations of the first and
second state) in a graphical representation of the program.
The shape and location of the graphical representation can
be a straight line segment connecting the graphical repre-
sentations of the first and second states, or can be determined
automatically (e.g., based on the positions of the graphical
representations of the first and second states, other states,
and other transitions). The graphical representation can
include indications of the direction of the transition (e.g.,
arrowheads, color changes, thickness changes), or alter-
nately can be dictated by the user (e.g., by dragging along a
desired path). In some embodiments, the positions and/or
appearance properties of other graphical representations can
be altered at a suitable time (e.g., in response to the
association of a transition with two states, in response to
receipt ol a user request to automatically orgamize the
graphical representation of the program).

In a specific example, a graphical representation of a
program represents a first and second state and a first
transition directed from the first state to the second state,
wherein the graphical representation of the first transition 1s
a line segment with endpoints at the graphical representa-
tions of the first and second states. In the specific example,
in response to the association of a second transition with the
first and second state, directed from the second state to the
first state, the graphical representation of the first transition
can be altered to be a first arc with endpoints at the graphical
representations of the first and second states, and a graphical
representation of the second transition can be displayed as a
second arc with endpoints at the graphical representations of
the first and second states, wherein the second arc 1s different

US 10,181,268 B2

9

from the first arc (e.g., mirroring the first arc, having
different curvature than the first arc, having different color
and/or thickness than the first arc). In the specific example,
in response to association of a third transition with the first
and second state, directed from the second state to the first
state, the graphical representation of the third transition can
be 1dentical to the graphical representation of the second
transition.

Block S220 can be repeated to associate additional tran-
sitions with states, wherein each state can be associated with
one or more transitions. Fach transition can additionally or
alternatively be associated with one or more events. In
repetitions of Block S220, additional transitions can be
assoclated with the first and second state, with the first or
second state and a third state, with a third and fourth state,
or with any other suitable combination of states.

Block 5230 recites creating a relationship between a
transition and an event and can include selecting the tran-
sition S232, determining the event S235, and associating the
cvent with the transition S238. Selecting the transition S232
can be performed automatically (e.g., automatically select-
ing the transition of Block S220 1n response to performance
of Block 5220, automatically selecting a ftransition 1n
response to an event associated with the transition becoming,
unavailable for use 1n the program), or can be performed in
response to receipt of a user selection (e.g., user selection of
the transition, user selection of an event associated with the
transition, user selection ol a state associated with the
transition, etc.), or can be performed through any other
suitable selection process.

Determining the event S2335 can be performed automati-
cally (e.g., 1n response to transition association with a state,
transition creation, etc.). For example, the event can be a
predetermined default event, or can be selected based on the
program (e.g., based on a state, based on a type of state,
based on events associated with transitions originating from
a state, based on part of the program digraph structure, etc.),
or can be selected randomly from a set of events, or can be
otherwise suitably selected. Alternately, the event can be
determined S233 1n response to receiving a user selection,
such as receiving a selection of an event 1con, wherein the
event 1con can be associated with the event. However, the
event can be determined in any other suitable manner. The
event 1con can include an 1llustration of the robot undergoing
an event (e.g., a person speaking near the robot, a wall 1n
front of the robot, the robot being pushed by a hand), or can
be representative of an event, or can be otherwise associated
with an event. In some embodiments, the user selection can
be received using an event selection window. The event
selection window can automatically open in response to
performance of Block 5220 (e.g., immediately following
any performance of Block 5220, following a performance of
Block S220 only when a default state cannot be selected
automatically), or can open 1n response to user selection of
a set event option (e.g., selecting a transition, selecting an
existing event associated with a transition, selecting a set
event button). The event selection window or any other
suitable event selection interface can include event options
available to the user based on the robot capabilities and/or
events associated with the first and/or second states. In
response to event option selection, the selected event can be
associated with the transition between the first and second
states, such that the transition from the first state to the
second state 1s performed 1n response to occurrence of the
selected event.

Restrictions can be imposed regarding events available
for a specific event determination process. In a first embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment, every transition originating from a state can be
required to not be associated with an event identical to the
events associated with all other transitions originating from
the state (e.g., all transitions originating from a common
state must be associated with diflerent events). To perform
Block 5235 1n compliance with such a restriction, selection
of events that would not satisiy this requirement (e.g., events
associated with other transitions originating from the state,
events that may be automatically associated with other
transitions originating irom the state) can be precluded. In
some variations, event icons associated with events pre-
cluded from selection can be highlighted, grayed out,
removed (e.g., not displayed), or otherwise indicated as
precluded, or can remain unmarked. Alternately, automatic
selection of an event that should not be available can be
precluded, or compliance with such a restriction can be
achieved 1n any other suitable manner. In one example,
when a first and second transition each originate from a first
state and a first event 1s already associated with the first
transition, the method can include precluding selection of
the first event for association with the second transition, such
that a second event, different from the first event, must be
selected for association with the second transition. However,
event selection can be otherwise permitted or limited.

In a second embodiment, such a restriction can be omit-
ted. In such alternate embodiments, an event or set of
identical events associated with multiple transitions origi-
nating from a first state can lead to concurrent execution of
multiple states, to sequential execution of multiple states, to
execution of only one state, to continued execution of the
first state, to any other suitable program execution, to
program termination, or to any other suitable result. In
specific examples, the event can be associated with a first
transition directed from the first state to a second state, and
a second transition directed from the first state to a third
state. In the specific examples, when the program 1s in the
first state, 1n response to occurrence of the event the program
can progress to both the second and third states concurrently,
to the second state and then the third state, to only one of the
second and third state (e.g., chosen randomly, chosen based
on a predetermined order, chosen based on a user input), can
remain in the first state, can stop execution, or can behave in
any other suitable manner.

In a third embodiment, the restrictions can be imposed on
some events but not others. In one variation, whether or not
an event can be reused for transitions associated with (e.g.,
originating from) a common state 1con can be determined
based on the state represented by the common state 1con
and/or the state represented by the opposing transition
endpoint. In one example, the same event can be used for
multiple transitions connected to a shared origin state when
the unshared destination states of the multiple transitions are
for different (e.g., distinct) robot subsystems and/or 1nputs.
In a specific example, the same button push can cause the
robot to concurrently transition from a first state to a
plurality of destination states, wherein each destination state
1s for a different robot subsystem (e.g., drivetrain, lights, and
audio). In a second example, when the destination states act
on the same subsystem (e.g., both act on the drivetrain), the
same event can be precluded from being associated with the
transitions to said destination states from the common origin
state.

In a second variation, whether or not an event can be
reused for transitions associated with (e.g., originating from.,
terminating at, etc.) a common state icon 1s dependent on the
event itself. For example, multiple transitions connected to
(e.g., originating from) a common state 1con can be associ-

US 10,181,268 B2

11

ated with the same temporal event, while only one transition
connected to (e.g., originating from) the common state icon
can be associated with a specific robot 1nput (e.g., button,
video, or audio). However, events can be otherwise
restricted from association with the transitions.

Block S238 recites associating the event with the transi-
tion. Block S238 1s preferably performed automatically in
response to completion of Blocks S232 and S2335, but can
alternately be performed 1n response to a user selection (e.g.,
event-transition association selection), or can be performed
in any other suitable manner. The association preferably
includes a programmatic association (e.g., when a program
1s 1n a first state, the occurrence of an event programmati-
cally associated with a transition originating from the first
state can prompt the program to move to a second state,
wherein the second state 1s at the destination of the transi-
tion), but alternately can be any suitable association. A
graphical representation of the association (e.g., an event
icon displayed near the graphical representation of the
transition) 1s preferably displayed, but the association can be
otherwise indicated, or can be unindicated.

Block 5230 can be repeated to create additional relation-
ships between transitions and events, or additional relation-
ships between transitions and events can be created 1n any
other suitable manner. Each transition can be associated with
one or more events. In some embodiments, when a transition
1s associated with multiple events, all events associated with
the transition can be required to occur before the robot state
transitions from the first state to the second state, wherein
different event options leading to the same state transition
are preferably associated with different transitions between
the two states, but can alternately be associated with the
same transition. In a second embodiment, when the transi-
tion 1s associated with multiple events, a given event of the
plurality must occur to trigger robot state transition. In a
third embodiment, the robot state can be transitioned in
response to occurrence of any of the events associated with
the transition(s) connecting the first state to the second state.
In a fourth embodiment, the robot state can be transitioned
in response to occurrence of a predetermined number, speci-
fied subset, specified series, or other combination of the
events associated with the transition(s) connecting the first
state to the second state. However, multiple events associ-
ated with a single transition can be interpreted in any other
suitable manner. Multiple events can be associated with the
transition by selecting the transition after 1t has been added
to the stage (e.g., wherein subsequent selection can open the
event selection window), but can alternatively be associated
with the transition by dragging the event to the transition or
otherwise associating an event with the transition. In the
former vanation, the event previously associated with the
transition can be highlighted, grayed out, or otherwise
indicated as already selected. However, the previously
selected event(s) can remain unmarked. The multiple events
associated with a transition preferably have no order, but can
alternatively be ordered (e.g., wherein the event order can be
automatically determined, user-specified, or otherwise deter-
mined). Alternatively, when an ordered set of events 1s
desired, the first and second states can be linked by a set of
intermediary “do nothing™ states, connected 1n sequence by
the ordered set of events. In this variation, the robot transi-
tions to the next “do nothing” state (e.g., maintains the prior
state) 1n response to the occurrence of a first event, and waits
for further input (e.g., the next event to occur) before
transitioning to the next state.

The program can additionally include one or more start
states, which can be displayed on the stage (e.g., represented

10

15

20

25

30

35

40

45

50

55

60

65

12

by start icons), or displayed elsewhere, or alternately can be
not displayed. The start states can be automatically included
in the program (e.g., automatically added 1n response to
creation of a new program, automatically added 1n response
to connecting to or identifying a toy robot), or can be added
in response to receipt of a user selection to add a start state,
or can be otherwise introduced to the program. In one
variation, at least one state must be connected to a start state
by a transition for the program to execute. However, a start
state can be otherwise used in writing the program. The
number of start states 1n a program may be required to be
equal to a specific number, or may be limited to be no more
than a specific number. For example, the specific number
may be one, or may be one for each logical unit (e.g., robot
subsystem, controlled robot, controlled robot model, pre-
defined robot group, etc.), or may be any other suitable
number. Alternately, the number of start states may be
otherwise restricted, or may be unrestricted.

The program can additionally include one or more listener
states, which can be displayed on the stage (e.g., represented
by listener 1cons), or displayed elsewhere, or alternately can
be not displayed. The listener states are preferably added to
the program 1n response to receipt of a user selection to add
a listener state, but additionally or alternatively can be
automatically included in the program (e.g., automatically
added 1n response to creation of a new program, automati-
cally added 1n response to connecting to or identifying a toy
robot), and/or otherwise introduced to the program. A lis-
tener state 1s preferably associated with one or more tran-
sitions originating from the listener state. When an event
occurs, wherein the event 1s associated with a transition
originating from a listener state, program execution preler-
ably results 1n a transition to the state at the destination of the
transition, even if the program is not currently in the listener
state. Preferably, no transitions terminate at listener states
(e.g., the user 1s precluded from associating transition des-
tinations with listener states). Alternatively, transitions can
terminate at listener states (e.g., wherein transitioning nto a
listener state through a transition i1s analogous to transition-
ing into other states of the program).

When a state or event has one or more user-adjustable
parameters (e.g., the pattern of lights 1lluminated 1n a light
state, the audio recording played 1n a sound generation state,
the distance and direction traveled in a motion state, the
threshold volume for a sound detection event, the amount of
time for a timer event), the parameter values for the user-
adjustable parameters can be specified by the user. The
user-adjustable parameters can be displayed, and program
writing can be paused until a parameter value or exit option
1s selected (e.g., through a menu of parameter values,
through a numerical control, through a text input). Parameter
value selection preferably associates the parameter value
with the state instance or event instance, but can be other-
wise stored. The parameter value can be associated with the
state and/or event by: incorporating the parameter value into
the respective state instruction or event instruction (e.g.,
replacing a predetermined variable with the selected param-
eter value, etc.), or otherwise associated with the respective
state or event. The user-specified parameter value can be
received at a control for selecting the parameter value (e.g.,
control panel) displayed on the user device, received as a
text mput, or otherwise received.

Receiving the program S200 can additionally include
creating a new state, which functions to enable the user to
expand the set of states that can be used to program the
robot. The new state preferably includes fixed parameter
values for one or more user-adjustable parameters but can

US 10,181,268 B2

13

alternatively include a range of parameter values for one or
more user-adjustable parameters. The fixed parameter val-
ues can be for a single point 1n time, for a period of time
(e.g., wherein each timestamp within the period of time 1s
associated with a fixed parameter value for the user-adjust-
able parameters), or for any suitable amount of time. Addi-
tionally or alternatively, the new state can be a sub-routine
and/or sub-state-machine. In a specific variation, the new
state can be created using a state creation tool, wherein the
available parameter value options for different user-adjust-
able parameters (wherein the parameter values and/or user-
adjustable parameters can be determined based on the robot
identifier) can be presented in graphical form. However, the
new state can be automatically generated (e.g., based on
prior selected states, based on other user-generated states,
etc.), recerved from other users, or otherwise generated. The
new states can additionally be created using the drag-and-
drop paradigm (e.g., wherein diflerent parameter values are
selected by dragging a shider or selecting a predetermined
option, such as a waveform, etc.), but can alternatively be
created using a text-based paradigm, or otherwise created. In
response to completion of the creation of a state (e.g., in
response to selection of a “save” option during state cre-
ation, 1n response to a predetermined amount of time elaps-
ing without user interaction during state creation), the new
state, including the parameter values, can be stored (e.g.,
written to memory) in association with the robot 1dentifier,
user 1dentifier, user device, or stored in association with any
other suitable piece of information. The new state can be
stored by the user device, a remote computing system, the
robot, or by any other suitable computing system as part of
the set of predefined states for the robot. The new state can
be stored and/or available to the user: transiently, perma-
nently, or for any other suitable period of time. The new state
can appear 1n the state tray in response to creation, such that
the user can use the new state 1n writing the program, or can
be automatically added to the program in response to
creation, or can be otherwise made available for program-
ming.

Receiving the program S200 can additionally include
editing the states, events, and/or transitions on the stage. The
states, events, and/or transitions can be replaced, removed,
edited, or otherwise adjusted. States can be replaced by
dragging a new state over the old state within the stage, such
that the new state icon overlaps the area of the old state 1con
by a predetermined threshold (e.g., more than 50%). State
replacement preferably preserves the transition connections
with other states, but can alternatively remove the transition
connections. However, the states can be otherwise replaced.
States can be removed by dragging the state to a virtual
trashcan, but can be otherwise removed. States can be edited
by selecting the states and selecting a new sub-option, but
can alternatively be otherwise edited. Events can be replaced
or edited by selecting the event (and/or associated transition)
and selecting a new event from the event option window, but
can alternatively be otherwise edited. Events can be
removed by dragging the state to a virtual trashcan, but can
be otherwise removed. In a first variation, transition end-
points cannot be edited, and transitions can only be removed
entirely from the stage (e.g., wherein the associated events
can additionally be removed with transition removal). In a
second variation, the transition endpoints can be edited by
selecting the endpoint and dragging the free transition end to
a new stage. However, the transitions, states, and/or events
can be otherwise edited. The edited state, event, and/or

10

15

20

25

30

35

40

45

50

55

60

65

14

transition can be available: indefinitely, for the programming,
session, for a predetermined period of time, or for any other
suitable temporal period.

The method 1 can include executing the program S300.
Executing the program S300 can include sending an instruc-
tion to a robot S310 and at the robot, 1n response to receiving
the instruction, operating according to the instruction S320.
In some embodiments, Block S300 can also include sending
sensor data S330 (e.g., from the robot), receiving data
indicative of robot operation S340, and determiming that an
event has occurred S350. Block S300 can be performed 1n
conjunction with a single robot or with a group of robots
(e.g., robots of a specific model, robots 1n a predefined
group, robots selected by a user, robots associated with a
user device), or can be performed without a robot. Addi-
tionally or alternatively, executing the program S300 can
include virtually simulating robot execution of the program
(e.g., with a virtual model of the robot, by animating the
state graphics, etc.), or any other suitable execution of the
program.

Program execution S300 can be performed 1n response to
occurrence ol an execution incident (e.g., execution event).
The execution incident can be: selection of an execution
icon displayed on the user device, a predetermined time
period or timestamp being met, a predetermined state pro-
gram being created, a predetermined state or event param-
cter being met (e.g., a threshold number of states being
selected, a threshold number of events being selected, etc.),
connection with a toy robot (e.g., a predetermined robot, any
robot suitable for program execution), receipt of an indica-
tion from a toy robot (e.g., an indication that the robot 1s
ready to begin execution, an indication that the robot battery
has exceeded a threshold charge value or SOC), or be any
other suitable execution incident. The program 1s preferably
executed within a predetermined period of time after execu-
tion incident occurrence (e.g., within 1 second, within 10
seconds, immediately upon connection with the toy robot
and execution incident occurrence, etc.), executed immedi-
ately upon execution mncident occurrence, or be executed at
any other suitable time.

The method 1 can include determining a set of machine
code blocks. Determining a set of machine code blocks
functions to determine instructions for robot control and/or
operation. The machine code blocks are preferably robot-
readable 1nstructions (e.g., machine code), but can alterna-
tively be higher-level instructions or be any other suitable set
of instructions. A machine code block 1s preferably deter-
mined for each state within the program (e.g., within the
state machine), but a machine code block can alternatively
be determined for multiple states within the program (e.g.,
wherein the machine code block includes instructions for
and/or to operate 1n multiple states), multiple machine code
blocks can be determined for a single state within the
program, or any suitable number of machine code blocks can
be determined for any suitable number of states within the
program. Each machine code block 1s preferably specific to
a robot sub-system (e.g., the drivetrain, the lights, the audio,
etc.), but can alternatively be for multiple robot sub-systems.
The machine code blocks can be determined 1n response to
state addition to the program, in response to a program
execution selection (e.g., selection of the “start” or “play”
icon; selection of a “run” option; etc.), 1 response to a
precursor event being met, i response to the machine code
for a precursor state being sent to the robot, or be determined
at any other suitable time. The machine code blocks are
preferably determined by the user device, but can alterna-
tively or additionally be determined by a remote computing

US 10,181,268 B2

15

system, by the robot (e.g., wherein the machine code blocks
can be stored within the robot and retrieved 1n response to
receipt ol an execution command for the block), or by any
other suitable computing system. The machine code blocks
can be retrieved based on the state from a database storing
code for each state (e.g., based on the output variable value,
based on a state identifier associated with the state icon,
etc.), generated based on the state (e.g., calculated, popu-
lated using a template, assembled from a set of template
code blocks, etc.), or be otherwise determined. In one
variation, the machine code block can be generated upon
state creation (e.g., synthesized from sub-blocks associated
with the selected variable values for the new state) and
stored 1n a database, on the user device, or in the robot. In
response to state addition to the program and/or execution of
a program including the state, the respective machine code
can be retrieved from storage and sent to the robot. In a
second variation, the machine code block for a state can be
generated 1n response to determining that an event associ-
ated with a transition terminating at the state has occurred
(e.g., S350; in near-real time, such as when the state
becomes active; etc.), and an instruction to operate in the
state can subsequently be sent to the robot (e.g., S310) 1n

response to machine code block generation. However, the
machine code can be otherwise determined.

Machine code blocks are preferably not determined for
events and/or transitions, wherein the user device and/or
robot inputs are preferably processed on the user device to
determine whether the events are satisfied. Alternatively,
machine code blocks can be determined for events and/or
transitions, wherein the event and/or transition machine
code blocks can subsequently be sent to the robot after
determination. In this variation, the robot can process the
robot inputs on-board to determine whether the events have
been satisfied. In this variation, the event and/or transition
machine code blocks can be sent to the robot: after the
machine code block for the preceding state 1s sent to the
robot, concurrent with the machine code block for the
preceding state and/or following state(s), before the machine
code block for the preceding state, or at any other suitable
time. However, the machine code blocks for events and/or
transitions can be otherwise determined and used.

Block S310 recites sending an 1nstruction to a robot. The
instruction 1s preferably an instruction to operate in a state
(e.g., to turn a first wheel at a first rate and a second wheel
at a second rate), more preferably the state corresponding to
the current point 1n program execution (e.g., the current state
of the state machine), but can be any suitable instruction.
The instruction can include a machine code block, or can
include a reference to a machine code block (e.g., an
identifier associated with a machine code block previously
sent to the robot), or can include a call to a robot-presented
function, or can be any other suitable instruction for robot
operation. In some variations, the instruction can include a
stop command (e.g., an instruction to the robot to stop
execution of a previous instruction before operating 1n the
state requested by the current instruction), but in other
variations the instruction does not include a stop command
(e.g., wherein a subsequently received instruction can be
queued or override the current 1nstructions being performed,
can be performed concurrently with the current instructions,
etc.). When a state has user-adjustable parameters, the
associated parameter values are preferably incorporated into
the corresponding 1nstruction (e.g., integrated into a
machine code block, included 1n a list of parameter values
in the mstruction).

10

15

20

25

30

35

40

45

50

55

60

65

16

The instruction 1s preferably sent to the robot to be
controlled, but can alternatively be sent to any other suitable
robot. The instruction 1s preferably sent over a data connec-
tion between the robot and the user device, but can alterna-
tively be sent over a secondary data connection, a one-way
data connection, or be sent 1n any other suitable manner. The
instructions for each state are preferably sent one at a time
(e.g., sent piecemeal), after each preceding event has been
satisfied. In some variations, the instruction for a state can
include sub-instructions, each of which can be sent one at a
time (e.g., sending a first sub-1nstruction corresponding to a
first stage of an animation, then, after a predetermined
amount of time, in response to acknowledgment from the
robot, or 1n response to determination that an event has
occurred, sending a second sub-instruction corresponding to
a second stage of the animation). Alternatively, the instruc-
tions can all be sent together (e.g., wheremn execution
commands for individual code blocks can be sent after the
user device has determined that an event has been satisfied),
as shown 1n FIG. 3, or sent 1n any other suitable grouping.
Instructions for each event are preferably not sent to the
robot, but can alternatively be sent to the robot (e.g., wherein
an 1instruction encoding the entire program can be sent
wholesale to the robot, wherein the instruction includes
machine code blocks corresponding to a state and to events
associated with transitions originating from the state, etc.).
However, the instruction can be otherwise sent to the robot.

In response to receiving the istruction, operating accord-
ing to the mnstruction at the robot S320 functions to execute
an action at the robot. The instruction 1s preferably an
instruction to operate 1n a state, in which case operating
according to the instruction includes operating 1n the state
(e.g., Tor a forward motion state, operating wheels to move
the robot forward). In one variation, operating according to
the instruction includes controlling a robot subsystem asso-
ciated with the state to operate 1n said state. However, the
robot can be otherwise operated according to the mstruction.
Operating according to the mstruction can include stopping
other operation (e.g., stopping all operation before begin-
ning forward motion, stopping head rotation but not chang-
ing light operation, etc.). Stopping can be performed 1in
response to a stop command, 1n response to receipt of an
instruction, or in response to any other suitable occurrence.
Operating according to the instruction preferably includes
executing machine code associated with the instruction, but
can include any suitable operation. S320 1s preferably per-
formed for each successive mstruction received by the robot
(e.g., immediately upon receipt, after a delay after receipt,
cached until occurrence of an event, etc.), but can alterna-
tively be performed for a subset of the received instructions
or for any other suitable set of instructions.

Sending sensor data at the robot S330 functions to com-
municate data potentially indicative of the occurrence of an
event. The sensor data 1s preferably robot sensor data, but
can alternatively be user device data, or be any other suitable
data. The sensor data can be sampled by the robot (e.g., by
the robot sensors) and/or recorded by the robot (e.g., by the
robot processor and/or memory), or otherwise determined.
The sensor data can include sensor measurements, sensor
signals, data synthesized from one or more sensor measure-
ments (e.g., ratios between different types of sensor mea-
surements, measurement rate of change, etc.), or any other
suitable sensor data. The sensor data can be sent by the robot
continuously, or sent in batches (e.g., sent at a predetermined
frequency, sent 1n response to receiving a request to send one
or more batches), or sent 1n any other suitable manner. The
robot preferably samples, records, and/or sends the sensor

US 10,181,268 B2

17

data during instruction execution (e.g., during robot opera-
tion in the first state), but can alternatively obtain and/or
process sensor data 1in any other suitable manner at any other
suitable time. The robot can begin sampling, recording,
and/or sending the sensor data substantially concurrently
with a communication or execution incident (e.g., connect-
ing to the user device, receiving an indication that execution
will begin, receiving an instruction, operating according to
an istruction S320, completing operation according to an
instruction, receiving a request for sensor data, etc.), after a
time interval (e.g., a predetermined time interval, a time
interval specified by an instruction) following a communi-
cation or execution incident, in response to entering a state
(e.g., an “on” state), or at any other suitable time. The robot
can stop sampling, recording, and/or sending the sensor data
substantially concurrently with a communication or execu-
tion incident (e.g. disconnecting from the user device,
receiving an indication that execution will end, recerving an
istruction, operating according to an instruction S320,
completing operation according to an instruction, receiving
a request to stop sending sensor data, losing connection to
the user device, etc.), after a time interval following a
communication or execution incident, 1n response to enter-
ing an ofl state, or at any other suitable time. The robot can
continue sampling, recording, and/or sending the sensor data
(e.g., continuously, sporadically, at a predetermined {ire-
quency, etc.) during the time interval between beginning
sampling, recording, and/or sending the sensor data and
ending sampling, recording, and/or sending the sensor data.
Receiving data indicative of robot operation S340 func-
tions to determine data indicative of the occurrence of an
event. The data indicative of robot operation 1s preferably
robot sensor data (e.g., wherein the sensor data 1s recerved
from the toy robot), but can alternatively be user device data,
or be any other suitable data. The data indicative of robot
operation 1s preferably the sensor data sent in Block $S330,
but can alternatively be data sent in any other suitable
manner. In one example, the data indicative of robot opera-
tion 1ncludes robot component power provision parameter
values (e.g., amount of power, cycle time, cycle frequency,
etc. provided to a robot speaker, motor, or other component,
as controlled and recorded by a robot processing unit). In a
second example, the data indicative of robot operation
includes robot sensor data, such as data from a robot
proximity sensor, light sensor, or speaker. In a third example,
the data indicative of robot operation includes user device
data, wherein the user device records 1mages, video, audio,
or any other suitable input indicative of robot operation.
The data 1s preferably determined (e.g., received) by the
user device, but can alternatively be determined by the
robot, a remote computing system, or by any other suitable
system. The data 1s preferably measured by the robot sensors
and sent by the robot to the user device, but can alternatively
be measured by the user device (e.g., by the camera or
microphone of the user device), be measured by a second
user device, be measured by a second robot, be measured by
an independent sensor or sensors (€.g., camera, microphone,
proximity detector, trilateration system), or be measured by
any other suitable input. All data measured by the robot 1s
preferably sent to the user device (e.g., streamed to the user
device, sent at a predetermined frequency, etc.), wherein the
user device preferably processes the data and determines
whether an event was satisfied, wherein the event i1s asso-
ciated with the transition connected to the previous state for
which machine code was sent to the robot. Examples of data
indicative of robot mputs include robot acceleration (e.g.,
rolling, dropping, etc.), robot button presses, sounds, the

10

15

20

25

30

35

40

45

50

55

60

65

18

identifiers of sound sensors detecting sound, light intensity,
the identifiers of light sensors detecting light, component
motor feedback, visual system measurements, or any other
suitable data indicative of an event.

Block S350 recites determining that an event has
occurred. Determining that an event has occurred can be
performed at the user device, at the robot, at a second user
device, at a second robot, or at any other suitable device.
Determining that an event has occurred can be performed
based on data indicative of robot operation, preferably data
indicative of robot operation received 1 Block S340, but
additionally or alternatively can be performed based on time
data, preferably time elapsed after a communication or
execution incident (e.g., sending an instruction, receiving
acknowledgment of instruction receipt, beginning execu-
tion), any suitable sensor data, or any other suitable infor-
mation. In one example, the method can include determining
that an event has occurred based on the set of sensor
measurements received from the robot (e.g., before, during,
and/or after instruction execution). Determining that an
event has occurred can include estimating, calculating,
receiving information indicating that the event has occurred,
or any other suitable process of determining that the event
has occurred. For example, determining that an event has
occurred can include condition satisfaction (e.g., il/then
statement), pattern matching, regression (e.g., estimating
that the probability an event has occurred exceeds a thresh-
old probability), and/or classification.

Executing the program S300 preferably includes repeat-
ing Block 5310, more preferably repeating all elements of
Block 8300, one or more times, according to the program
(e.g., Tor a plurality of states). After the first performance of
Block S310, wherein a first istruction i1s sent to the toy
robot to operate 1n a first state, repeating Block S310 to send
a second struction to the toy robot to operate 1n a second
state Tunctions to progress the robot along the program. The
second 1nstruction 1s preferably sent 1n response to Block
S350, wherein the event that 1s determined to have occurred
1s preferably associated with a transition that originates from
the first state (associated with the first instruction) and
terminates at the second state (associated with the second
instruction), but alternately can be associated with any other
transition or not be associated with a transition. Alternately,
the second 1struction can be sent at any other suitable time.
In a first example, the event associated with a transition
connecting a first and second state can be the robot being
thrown into the air, wherein the instruction to operate 1n the
second state can be sent in response to the accelerometer
measurements received from the robot indicating that the
robot was thrown 1nto the air. In a second example, the event
associated with a transition connecting the first and second
state can be a timer, wherein the second state 1s preferably
entered upon expiration of the timer. In a first vanation, the
user device can send the instruction to operate 1n the second
state 1n response to timer expiration, wherein the user device
tracks the time. In this variation, the time can be tracked
from 1nstruction transmission to the robot, from an instruc-
tion performance imitiation time (e.g., determined by the
user device, based on the sensor data received from the
robot), or from any other suitable start time. In a second
variation, the user device can send a first machine code
block for the first state, wait for the robot to send back data
indicative of first machine code block performance, track the
amount of time after receipt of the data indicative of first
machine code block performance, and send the second
machine code block for the second state when the amount of

US 10,181,268 B2

19

time substantially matches the time specified by the timer.
However, the second instruction can be sent at any other
suitable time.

Robot sensor data processing and subsequent machine
code block transmission to the robot can be repeated until
the program terminates. The program can terminate in
response to recerving a “‘stop” selection from the user,
reaching a “stop” state 1n the program, reaching a state with
no subsequent transitions in the program, determining that a
program termination condition associated with the robot
(c.g., low robot battery charge, robot subsystem failure,
robot failure to follow an instruction, robot approaching a
maximum range from the user device or other device) has
been reached (e.g., based on data received from the robot,
based on robot operation data, etc.), until a preset time has
clapsed (e.g., total program execution time, time without a
state change, time without user input), or at any other
suitable time. However, the program can be otherwise
executed by the robot and/or the user device.

Executing the program S300 can include tracking the
current state ol program execution (e.g., as related to the
state machine), preferably at the user device, but alternately
at the robot, at another robot or user device, or at any suitable
device. Tracking the current state can include tracking the
instructed state (e.g., a first state, wherein the instruction
sent 1n the most recent performance of Block S310 1s an
instruction to operate 1n the first state), tracking the state 1n
which the robot 1s operating (e.g., based on confirmation
recerved from the robot, determined {from data indicative of
robot operation), or tracking any other state. An indication of
the current state (e.g., indication that the robot has entered
the current state) can be displayed during program execu-
tion, not be displayed at all, or otherwise presented. The
indication 1s preferably displayed on the graphical represen-
tation of the state machine (e.g., 1n the graphical represen-
tation, highlighting the state icon associated with the current
state), but alternately can be displayed as a graphical rep-
resentation of the state independent of any graphical repre-
sentation of the state machine, can be displayed as text, or
can be otherwise suitably displayed. The indication can be
displayed beginning substantially concurrent with sending
the 1nstruction to operate 1n a state (e.g., within five seconds
of sending the instruction, within 500 ms of sending the
instruction, within 30 ms of sending the instruction, etc.),
substantially concurrent with determining that the robot 1s
operating in the state or has entered the instructed state, after
some preset time delay, 1n response to receiving a request to
display the current state, or at any other suitable time.

Executing the program S300 can occur automatically in
response to some or all of Block 5200, or can be performed
1in response to a program execution selection (e.g., selection
of the “start” or “play” icon, selection of a “run” button on
the robot), 1n response to connecting to the robot, detecting,
another robot, determining information (e.g., about the
robot, about another robot), or any other suitable occurrence.
Executing the program S300 can occur immediately 1n
response to an occurrence, after a preset delay (e.g., a delay
time specified by the user through a timer function, a delay
time specified by the robot or the user device), or at any
other suitable time interval. Alternately, executing the pro-
gram S300 can occur at a preset time (e.g., a time of day
specified by the user through an alarm function, a time and
date specified by the robot or user device, on the birthday of
a user), or at any other suitable time.

In some embodiments, user-adjustable parameters asso-
clated with a first state or event can be dependent upon
tactors other than the first state or event (e.g., a second state

10

15

20

25

30

35

40

45

50

55

60

65

20

or event, a previous iteration of the first state or event, sensor
data recerved 1n Block S340). In a first example, wherein a
head rotation state includes a user-adjustable parameter
defining the rotation speed, the user specifies that the rota-
tion speed 1s to be determined based on which state the robot
was operating in immediately before operating in the head
rotation state. In a second example, wherein a forward
motion state includes a user-adjustable parameter defining
the distance to move, the user specifies that the distance 1s
to be a function of the number of times the forward motion
state has been entered during program execution (e.g., for
the third iteration of the forward motion state, the robot 1s to
move forward three inches). In a third example, wherein a
light-emission state includes a user-adjustable parameter
defining the color of light to emait, the user specifies that the
color of light should be determined by audio data specitying
the color (e.g., robot 1s to emit green light in response to
audio data that 1s determined to be an utterance of the word

“oreen”).

In other embodiments, some or all user-adjustable param-
cters are precluded from being dependent upon some or all
such factors (e.g., prior states, sensor data, etc.). For
example, 1 Block S200, the user device receiving the
program can provide no interface for creating such depen-
dencies. In still other embodiments, the parameter values for
cach state or event can be independent of the parameter
values for other states or events (selected or unselected),
such that parameter values are not passed between states
linked by a transition. However, states and/or events can
receive and/or be defined by parameter values recerved from
other, secondary states and/or events connected to or asso-
ciated with the first state and/or event by one or more
transitions. However, parameter values can be otherwise
passed, or be precluded from passing between, diflerent
states or events.

The method 1 can additionally include providing a pre-
view of a state or event. Providing a preview of a state or
event can include virtually simulating robot execution of the
state (e.g., with a virtual model of the robot, by animating,
the state graphics, etc.) or occurrence of the event (e.g., by
displaying a representation of event occurrence, by animat-
ing the event graphics, etc.).

Providing a preview of a state can additionally or alter-
natively include sending an instruction associated with the
previewed state, preferably to a connected robot but alter-
nately to any suitable device, which can function to provide
substantially mstantaneous feedback on how the state mani-
fests on the robot to the user (example shown 1n FIG. 14).
The instruction can be an 1nstruction for the robot to operate
in the state (e.g., be the instructions associated with the
previewed state, such as the machine code, etc.); an mnstruc-
tion for the robot to perform a preview action associated
with the state, preferably a preview action representative of
operating in the state (e.g., similar to operating 1n the state,
but occurring for a shorter or longer duration, at a lower or
higher volume, over a shorter or longer distance, etc.); or
any other suitable instruction. In a first example, wherein
operating 1n the state includes playing an audio recording,
the preview action can be playing the audio recording 1n a
different manner (e.g., playing at an altered volume and/or
speed, playing a truncated portion of the recording). In a
second example, wherein operating i1n the state includes
motion, a preview action can be moving 1 a siumilar but
different manner (e.g., following the same path but at a
different speed, following a similarly-shaped path but with
shorter path segments). The instruction can be sent 1n a

US 10,181,268 B2

21

manner similar to that described 1n Block S310, or can be
sent 1n any other suitable manner.

Providing a preview of an event can additionally or
alternatively include determining that a condition has been
met (e.g., the event has occurred, a preview event similar to
the event has occurred) and, 1n response to determining that
the condition has been met, indicating that the condition has
been met. Determining that the condition has been met can
be performed 1n a manner similar to that described 1n Blocks
S340 and/or S350, or can be performed in any other suitable
manner. In a specific example, the toy robot can be opera-
tional and streaming sensor data or other robot operation
data to the user device throughout the programming and/or
preview process, wherein the user device determines that the
previewed event has occurred based on the robot operation
data. In a second specific example, the user device can send
a streaming instruction to the robot in response to receipt of
the event preview request, wherein the robot sends (e.g.,
streams) robot operation data to the user device 1n response
to streaming instruction receipt, and wherein the user device
determines occurrence of the previewed event from the
streamed robot operation data. In a third specific example,
the user device can send an instruction associated with the
previewed event to the robot in response to receipt of the
event preview request, wherein the robot determines occur-
rence ol the previewed event and subsequently sends an
indication to the user device that the previewed event has
occurred. Indicating that the condition has been met can
include displaying an indication on the user device (e.g.,
highlighting the event icon or the transition associated with
the event, displaying the event icon, displaying text), send-
ing an instruction to the robot to perform an action (e.g.,
rotate quickly, turn on lights, play an audio file), or any other
suitable indication.

Providing a preview of a state or event can occur in
response to receiving a selection of a state icon or event 1con
(e.g., providing a preview of a state in response to receiving
selection of an 1con associated with the state in Block S210);
1in response to receiving a selection of a parameter value; 1n
response to receiving a selection of a preview option (e.g.,
selection of a preview button displayed on the user device,
actuation of a preview switch on the robot); in response to
receiving a selection to edit a state, event, or transition; in
response to any other suitable preview occurrence; or at any
other suitable time. Providing a preview can be performed
substantially concurrent with the preview occurrence, within
a predetermined time period after the preview occurrence
(e.g., within ten seconds after, within 1 second after, within
50 ms after, etc.), aiter a predetermined delay time interval,
or at any other suitable time 1nterval. A preview button (e.g.,
preview 1con, preview option, etc.) can be displayed on the
stage, 1n a state or event selection tray or menu, in a
user-adjustable parameter setting menu (e.g., displayed con-
currently with the control for selecting a parameter value),
1n a state creation tool, or 1in any other suitable user interface
clement of the user device display. The state or event
preview button can be displayed in response to receipt of a
state or event 1con selection, or displayed at any suitable
time 1n any other suitable manner. The preview icon can be
different from an execution icon (e.g., run option) or be the
same. Providing a preview i1s preferably not performed
during program execution, but alternately can be performed
during program execution (e.g., by sending instructions to
the robot to stop operating 1n a state, then to perform a
preview action, and then to resume operating 1n the state).

As shown in FIGS. 1, 2, and 3, the method 1 can

additionally include connecting the user device to a robot,

10

15

20

25

30

35

40

45

50

55

60

65

22

which functions to establish a communication channel with
the robot to be programmed. Connecting the user device to
the robot can additionally enable robot 1dentification, state
receipt, event receipt, istruction communication, input data
communication, or enable any other suitable portion of the
method 1, wherein the enabled portions of the method 1 are
preferably performed aifter the user device has been con-
nected to the robot. Alternatively, any portion of the method
1 can be performed before (e.g., as shown 1n FIG. 4), after,
or concurrently with robot connection to the user device.
The robot can be wirelessly connected to the user device
(e.g., via WiF1, Bluetooth, RF, cellular, or any other suitable
wireless connection), connected to the user device via a
wired connection (e.g., USB, Ethemet, FireWire, Lighting,
or any other sutable wired protocol), or be otherwise
connected to the user device. The robot 1s preferably auto-
matically connected to the user device (e.g., wherein the user
device searches for the robot upon startup, and automatically
establishes a connection with the robot upon discovery), but
can alternatively be manually connected to the user device
(e.g., whereimn a user enters the connection information or
plugs the robot 1into the user device) or otherwise connected
to the user device.

As shown 1in FIGS. 1, 2, and 3, the method 1 can
additionally 1include identifying the robot, wherein the states
and/or events can be received based on the robot identifier.
Identifying the robot can include: obtaining an 1dentifier that
identifies the toy robot (e.g., robot i1dentifier) or otherwise
identifving the robot. Obtaining the robot identifier can
include: receiving the robot 1dentifier from the robot, deter-
mining the robot i1dentifier based on an intermediary iden-
tifier (e.g., using an RFID tag, such as by retrieving the robot
identifier associated with the RFID tag or using the RFID tag
as the identifier), determining the robot identifier based on
the connection type, 1dentitying the robot from user device
sensor measurements (e.g., 1dentitying the robot from an
image of the robot recorded by the user device), or otherwise
determining the robot i1dentifier.

The method 1 can additionally 1include determining (e.g.,
receiving, estimating, calculating) information about the
robot, preferably based on the robot i1dentifier but alterna-
tively based on any other suitable information. The infor-
mation can be received from a remote database, the storage
of the user device, the robot (e.g., from the robot storage),
or irom any other suitable system. Determining information
about the robot can include retrieving a set of predefined
states for the robot, retrieving a set of predefined events for
the robot, and/or retrieving any other suitable information
for the robot. Determining information about the robot can
additionally include retrieving or compiling instructions,
commands, and/or machine code associated with some or all
of the states and/or events.

Retrieving a set of predefined states for a robot functions
to 1dentily the robot output options available to the user for
control. The states can be robot-specific, wherein the states
are retrieved based on a robot i1dentifier. The states can be
specific to an individual robot, specific to a robot type,
specific to a robot line, specific to a robot make, or specific
to a robot type. Alternatively, the states can be generic across
all robots of the same make, model, and/or version; all
robots of the same make; all robots of the same type (e.g.,
all dolls have the same states, all trains have the same states,
etc.); generic across all robots, or otherwise associated with
the population of robots. In a first example, a first set of
states can be retrieved for a first robot, while a second set of
states, different from the first set, can be retrieved for a
second robot of the same make, model, and version. In a

US 10,181,268 B2

23

second example, a first set of states can be retrieved for all
toys of the same make and model, and a second set of states,
different from the first set, can be retrieved for all toys of a
second make and model. Alternatively, the robot states can
be retrieved based on a user identifier (e.g., a user account
assoclated with the user device, a user account associated
with the robot, etc.), retrieved based on a user parameter
(e.g., user demographic, such as age or geographic location),
or be retrieved based on any other suitable information.
Examples of states include light colors, light intensity,
specific light control, robot component movement (e.g.,
forward, backward, to the side, head movement, tail move-
ment, arm movement, individual wheel control, etc.), play-

ing a sound, or include any other value for any other suitable
output variable.

Retrieving a set of predefined events for a robot functions
to 1dentity the robot input options (e.g., sensor outputs)
available to the user for use in programming. The events can
be robot-specific, wherein the events are retrieved based on
the robot identifier. The events can be specific to an 1ndi-
vidual robot, specific to a robot type, specific to a robot line,
specific to a robot make, or specific to a robot type. Alter-
natively, the events can be generic across all robots of the
same make, model, and/or version; all robots of the same
make; all robots of the same type (e.g., all dolls have the
same events, all trains have the same events, etc.); generic
across all robots, or otherwise associated with the population
of robots. In a first example, a first set of events can be
retrieved for a first robot, while a second set of events,
different from the first set, can be retrieved for a second
robot of the same make, model, and version. In a second
example, a {irst set of events can be retrieved for all toys of
the same make and model, and a second set of events,
different from the first set, can be retrieved for all toys of a
second make and model. Alternatively, the robot events can
be retrieved based on a user identifier (e.g., a user account
assoclated with the user device, a user account associated
with the robot, etc.), retrieved based on a user parameter
(e.g., user demographic, such as age or geographic location),
or be retrieved based on any other suitable information.

The method 1 can additionally or alternatively include:
providing a programming challenge to a user on the user
device, recerving a program 1n response to the programming
challenge, determiming whether the recerved program sub-
stantially match an answer (e.g., within a predetermined
degree of error), executing the received program (e.g.,
executing cooperatively on the user device and robot,
wherein the robot executes the states and the user device
determines whether the events have occurred), and progress-
ing to a second programming challenge i response to
received program execution. However, the method 1 can
progress to the second programming challenge 1n response
to the recerved program substantially matching the answer,
or progress to the second programming challenge 1n
response to any other suitable condition being met. Addi-
tionally, the method 1 can include providing feedback to the
user. Feedback can include feedback for a received program
that does not substantially match the answer such as high-
lighting an error on the stage (e.g., an incorrect transition,
event, state, or user-adjustable parameter value), sending an
instruction to the robot to perform an error action (e.g.,
executing the program up to the point of the error, then
stopping program execution and performing the error
action), or any other suitable feedback for the received
program. Feedback can also or alternatively include provid-
ing hints (e.g., hints regarding a next state, transition, or
event to select). Hints can be provided after a preset time
without user 1nteraction or without user addition or a state,
transition, or event; 1n response to receipt of a hint request;

10

15

20

25

30

35

40

45

50

55

60

65

24

or at any other suitable time. Hints can include highlighting
an 1con on the user device, animating a representation of a
finger making a drag-and-drop selection, playing an audio
file, sending an 1nstruction to the robot to perform an action
(e.g., a preview action), or any other suitable hint.

The method 1 can additionally or alternatively include
sending the program, including the states and the events, to
the robot, wherein the robot can store the program as a
personality. In this variation, the method 1 can additionally
include the robot executing all or parts of the personality 1n
response to the events being met, wherein the robot deter-
mines whether the events are met based on the robot sensor
measurements. In this variation, non-personality programs
can be cooperatively executed by the robot and user device
(e.g., wherein the robot executes the states and the user
device determines whether events have occurred), while
personality programs can be entirely executed by the robot.
However, the personality and non-personality programs can
be otherwise executed. The robot can additionally send the
personality program to a connected user device, receive
personality updates, changes, or new personalities from the
connected user device, or otherwise communicate and adjust
the personality program.

An alternative embodiment preferably implements the
above methods 1n a computer-readable medium storing
computer-readable instructions. The instructions are prefer-
ably executed by computer-executable components prefer-
ably integrated with a robot control system. The robot
control system can include a visual programming system
configured to facilitate program writing, a programming
state-to-1nstruction conversion system configured to convert
the program to instructions, and a robot data processing
system configured to determine whether connecting events
have been satisfied based on sensor data received from the
robot. The computer-readable medium may be stored on any
suitable computer readable media such as RAMs, ROMs,
flash memory, EEPROMSs, optical devices (CD or DVD),
hard drives, floppy drives, or any suitable device. The
computer-executable component 1s preferably a processor
but the mstructions may alternatively or additionally be
executed by any suitable dedicated hardware device.

Although omitted for conciseness, the preferred embodi-
ments nclude every combination and permutation of the
various system components and the various method pro-
CEeSSes.

As a person skilled 1n the art will recognize from the
previous detailed description and from the figures and
claims, modifications and changes can be made to the
preferred embodiments of the mvention without departing
from the scope of this mvention defined 1n the following
claims.

What 1s claimed 1s:

1. A method for programmatically controlling a toy robot,
comprising:

displaying a set of 1cons at a user device remote from the
toy robot;

at the user device, recerving, from a user, a selection of a
first 1icon from the set of 1cons via a drag-and-drop
selection method, wherein the first 1con comprises an
illustration of the toy robot operating in a first state;

at the user device, receiving, from the user, a selection of
a second icon from the set of icons via the drag-and-
drop selection method, wherein the second 1con com-
prises an 1illustration of the toy robot operating in a
second state;

associating, by a processor, a transition with the first state
and the second state, the transition directed from the
first state to the second state;

at the user device, receiving, from the user, a selection of
an event icon; and

US 10,181,268 B2

25

in response to receiving the selection of the event icon,
associating, by the processor, an event with the transi-
tion, wherein the event icon comprises an 1llustration of
the toy robot undergoing the event wherein the toy
robot 1s controlled based on the first state, the second
state, and the event.

2. The method of claim 1, further comprising, 1n response
to receiving the selection of the first i1con, receiving the
selection of the second icon, and associating the transition
with the first state and the second state: displaying a repre-
sentation of the first state connected to a representation of
the second state by a representation of the transition.

3. The method of claim 2, wherein the representation of
the transition 1s visually associated with a representation of
the event.

4. The method of claim 3, wherein the representation of
the first state comprises the first icon, the representation of
the second state comprises the second 1con, and the repre-
sentation of the event comprises the event 1con.

5. The method of claim 2, wherein the representation of
the first state comprises text descriptive of the first state and
the representation of the second state comprises text descrip-
tive of the second state.

6. The method of claim 5, wherein the first state comprises
a sequence ol programmatic elements, wherein the text
descriptive of the first state comprises text descriptive of the
sequence of programmatic elements.

7. The method of claim 1, further comprising, at the user
device:

in response to receiving the selection of the second icon,

displaying a control mput for selecting a parameter
value;

receiving the parameter value at the control mput; and

based on the parameter value, determining an instruction

for the robot to operate 1n the second state.

8. The method of claim 1, wherein associating the tran-
sition with the first state and the second state 1s automatically
performed in response to receiving the selection of the
second 1con.

9. The method of claim 1, further comprising;:

sending an instruction from the user device to the toy

robot to operate 1n the first state;

at the toy robot, receiving the instruction from the user

device; and

at the toy robot, 1n response to receiving the mstruction,

controlling the robot to operate 1n the first state.

10. The method of claim 9, further comprising;:

at the user device, recerving a set of sensor measurements;

determining, by the processor, that the event has occurred

based on the set of sensor measurements; and

in response to determining that the event has occurred,

sending a second 1nstruction from the user device to the
toy robot to operate 1n the second state.

11. The method of claim 10, further comprising, at the
user device, substantially concurrent with sending the sec-
ond instruction, displaying an indication that the robot has
entered the second state.

12. The method of claim 9, wherein the instruction
comprises a set of machine code blocks associated with the
first state.

13. The method of claim 1, further comprising:

receiving, from the user, a selection of a third 1con from

the set of 1cons via the drag-and-drop selection method,
wherein the third icon comprises an illustration of the
toy robot operating in a third state;

5

10

15

20

25

30

35

40

45

50

55

60

26

associating, by the processor, the first state with the third
state; and

associating, by the processor, the transition with the third
state, the transition directed from the first state and the
third state to the second state.

14. A method for programmatically controlling a toy
robot, comprising:

displaying a set of state icons at the user device, wherein

cach state i1con 1s associated with a respective state,
wherein the respective state 1s one of a set of states the
toy robot i1s capable of operating in, the state icon
comprising an 1llustration of the toy robot operating 1n
the respective state;

at the user device, recerving from a user, via a drag-and-

drop selection method, a selection of a first state 1con
from the set of state 1cons, the first state icon associated
with a first state;

associating, by a processor, a {irst transition with the first

state, the first transition originating from the first state;
associating, by the processor, a first event with the first
transition:

associating, by the processor, a second transition with the

first state, the second transition orniginating from the
first state;
displaying a set of event 1cons at the user device, wherein
cach event icon 1s associated with a respective event;

in response to associating the first event with the first
transition and associating the second transition with the
first state, precluding selection of a first event icon
assoclated with the first event at the user device;

while precluding the selection of the first event 1con, at the
user device, recerving, from the user, a selection of a
second event 1con associated with a second event
different from the first event; and

in response to receiving the selection of the second event

icon, associating, by the processor, the second event
with the second transition wherein the toy robot 1s
controlled based on the first state, the first event, and
the second event.

15. The method of claim 14, further comprising:

at the user device, sending an instruction to the toy robot

to operate 1n the state; and

at the toy robot, 1n response to receiving the mnstruction,

controlling a robot subsystem associated with the state
to operate 1n the state.

16. The method of claim 15, wherein the instruction
comprises a set of machine code blocks associated with the
state.

17. The method of claim 14, wherein associating the first
event with the first transition 1s automatically performed 1n
response to associating the first transition with the state.

18. The method of claim 14, wherein receiving the
selection of the state 1con and receiving the selection of the
event 1icon are performed through a touchscreen interface.

19. The method of claim 14, wherein, for each event icon
of the set, the respective event 1s one of a set of events the
toy robot 1s capable of undergoing, the event 1con compris-
ing an 1llustration of the toy robot undergoing the respective
event.

20. The method of claim 14, wherein receiving the
selection of the second event 1con comprises receiving the
selection of the second event icon via a drag-and-drop
selection method.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 10,181,268 B2 Page 1 of 1
APPLICATION NO. : 15/582924

DATED : January 15, 2019

INVENTOR(S) : Gupta et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In Claim 2, delete “‘state:” and insert --state,-- therefor

Signed and Sealed this
Seventh Day of January, 2020

Andrei lancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

