12 United States Patent

Koryakin et al.

US010180855B1

US 10,180,855 B1
Jan. 15,2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

300

SYSTEM AND METHOD FOR
CONTROLLING IDLE STATE OF
OPERATING SYSTEM
Applicant: Parallels International GmbH,
Schatthausen (CH)
Inventors: Alexey Koryakin, Moscow (RU);
Nikolay Dobrovolskiy, Moscow (RU);
Serguei M. Beloussov, Costa Del Sol
(5G)
Assignee: Parallels International GmbH,
Schaithausen (CH)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 95 days.
Appl. No.: 15/620,902
Filed: Jun. 13, 2017
Int. CL
Gool’ 9/48 (2006.01)
Gool’ 12/08 (2016.01)
U.S. CL
CPC GOol 9/4831 (2013.01); GO6L" 9/4887
(2013.01); GO6F 12/08 (2013.01); GO6F
2212/657 (2013.01)
Field of Classification Search
CPC e GO6F 9/4831
See application file for complete search history.
)| Execute Gu?;::::: by Virtual \’\ 205

310

HLT
Instruction?

YES

NQC

First Idle State
Wait for Interrupt

315

320

No Interrupt {or only
timer device
interrupt) Received
Within Predetermined
Time Petiod?

ND

YES

‘ Protect All Guest Pages from Execution va 3258

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0124761 Al* 5/2016 Tsirkin GOO6F 9/45545
718/1
2018/0308196 Al* 10/2018 Raycccooevvvvvvninnnnnnn, GO6T 1/20

* cited by examiner

Primary Examiner — Charlie Sun
(74) Attorney, Agent, or Firm — Arent Fox LLP

(57) ABSTRACT

A system and method i1s provided for controlling an oper-
ating state of a virtual processor. An exemplary method
includes determining a blocked state of a guest operating
system, and, upon detecting the blocked state, determining,
a number of interrupt events during a first time period. It the
number of interrupts is less than a first threshold or even zero
during a first time period, the method includes protecting
memory pages from execution by the virtual processor.
Moreover, the method includes detecting, during a second
time period, when the processor attempts to execute pro-
tected memory pages and unprotecting these protected
memory page. Then, during a third time period, the method
includes monitoring execution by the processor of the
unprotected memory pages and maintaining the processor in
an 1dle state based on the number of executed unprotected
memory pages during the third time period.

20 Claims, 6 Drawing Sheets

300
(cont’d)

Attempted
Execution of
Protzcted
FPage?

Remove Prnter.:tin from Protected
Page and Add Page to List

v

Monitor Executed Pages and HLT
Instructions for Predefined Period

340

. 345

End
Idle b= 355
NO State

No NedMEatries 330
in the List ¢

Pages Under
Threshold w/fin
Predefined

Reriog

YES

Long Idle State va 360

U.S. Patent Jan. 15, 2019 Sheet 1 of 6 US 10,180,855 B1

v "Big

US 10,180,855 Bl

YET AJOWsN 9ET SIQ paeH ZET NdD
Dm.ﬁ HM M

m.!.l.lu..lll Lkl b I’illl!ﬂ

e 4 A 9T

b~ | oded m C BINPOIA

M ij INNINA e | |CIIUCD) 91ELS SO
~— ...
P -

— w

=

L

Tyl el Nl linlolnli el

€CT NdIJ [ENLIA

&

ZZT 48INpayos

Jan. 15, 2019

¢l SO 15enH

LY
-
C
»
(D
U
L%
(D
L
R
§
-y
J
(D
Q)
L
N
—
s
-+

|

- DTT 2UIyIRIA [BNUIA

00T

U.S. Patent

US 10,180,855 Bl

Sheet 3 of 6

Jan. 15, 2019

U.S. Patent

A 91T
i e — SINPOIA
——— _._.E...........-:-E-.LW OJIUON) 21E
TT ININA - sITe@mild3 | PRIPI SIS0

ge ‘b4

YET AlowBp aeT ¥ysig pieH _ _ ZE€T NdD

L

ZC T 48|npayog

A spemq / 5355920.4

US 10,180,855 Bl

Sheet 4 of 6

Jan. 15, 2019

U.S. Patent

ve “Bid

GZE UOLINJoX4 UO4]L mmmmm 15alcy [y 109104 d

SIA]

i polad Bt
" pauwiIspald UIYUM |
paaiaday (1dndisiul
3DIADP DL

T AuosojdnusiuioN

Uct

EEEE:E HEAA

Q1€ J1e1s 9P| 1541

SdA

d UOIIONIIS U]

A L~ ON

Ult

10553304

S0E "™
L 1enlin AQ WislsAg 3S3N9 31n0axd

00€

S s opisuor L -

09t

US 10,180,855 Bl

1701 v _.
e pauljapeid o
Jjapun seded
T JO 38T oYY UL .

ON
S5t

POLIBd PAUII3PaId 10} SUCIIINIISU]

ShFE ™ 1H pue saded painiaxy JOJIUON

Sheet 5 of 6

1517 03 88ed ppY pue aged

OVE - P2109104d WOJJ UDIID101d SAOWIDY

S3A

a.z_ke_mmmma_g
~ pa1331044

Jan. 15, 2019

SENTIITERRLY,

TN oscorons

Ot

U.S. Patent

.h.ﬁu Eﬁmuﬂuﬁvnm

AE

US 10,180,855 Bl

AE suppsgade

e ppp | 0% oD 9¢ WwaiBhs)
i fict | viapsBoud i g mﬂﬁwmmﬂammw SL tEIISAS
m i i | Gueiado

H —

2 DGO

-~
o

sy {snamdwos 27 G2

2GRS IX

A

rallh o iruliraliirall rulirullh ol
& ot -

Sheet 6 of 6

.\.\.\.\.\.\.\.\.\.\‘M

¥
PR R g R g i R i ey pa e e e s e e e ey t.t.ﬂt.t.ﬂt.lﬂt.ﬂ-ﬁ.‘.ﬂt.‘.ﬂt.‘.ﬂt.‘.ﬂl. ﬂmm.ﬂﬁﬂm\hH%MMMMﬂM . F ﬂﬂﬂﬂﬂﬂﬂﬂlﬂﬂh‘.‘.ﬂﬂﬂﬂﬂﬂﬂﬂﬂ
ThJL ”
: g L 1 ; CE g 332
LG 838 Ioi) o 1 U
. .
HAC AL ot WS fuEty

GG MIOA
23,4821

&7 1364y wirubud

QAL N

3146353 *
34033 m 3% SOl

sifin g mpn

SUCHESLGGY

Taiptnt, pfaiaiy ey e o L R T T s

Jan. 15, 2019

94 W

reinis se'sly selsin ipipiet. se'ss Sweiss deieis Feinie'

2OSBRN0G

¥ WO

vy v Py weYr fy e e ey v

JOsHIGLY
_ o 28 ADuBu esds

U.S. Patent
}
l
!
:
:
:
B
:
i
:
|
:
!
B
I
:
;
E
:
i
i
i
l
;
I
:
i
l
B
I
!
B
;
!
;
i
:
}

US 10,180,855 Bl

1

SYSTEM AND METHOD FOR
CONTROLLING IDLE STATE OF
OPERATING SYSTEM

TECHNICAL FIELD

The present disclosure relates generally to managing
computing system resources, and, more particularly, to a
system and method for controlling the idle state of a com-
puter operating system.

BACKGROUND

In virtual machine technology, a user can create and run
multiple operating environments on a server at the same
time. Each operating environment, or virtual machine,
requires 1ts own operating system (OS) and can run software
applications independently from the other virtual machines.
Virtual machine technology provides many benefits as 1t can
lower information technology (IT) costs through increased
cliciency, flexibility and responsiveness. FEach wvirtual
machine acts as a separate environment that reduces risks
and allows developers to quickly recreate different OS
configurations or compare versions ol applications designed
for different OSs. At the same time, when many virtual
machines are running on a single server, for example, 1t 1s
important to maintain the virtual machines in an idle state for
as much time as possible to decrease energy use and
consumption of other computing system resources.

Generally, every modern (and most legacy) operating
systems have a computing processing unit (“CPU”) or
process scheduler. During operation, the scheduler chooses
a process and active threads from the process that are 1n a
“ready to execute” state. When a new process 1s selected for
execution, the scheduler imitiates process and thread context
switch to save the state of previous executed thread and then
load a new thread. After the context switch, the “ready to
execute” begins execution. At this point, the CPU executes
code of the running thread until there 1s either a synchronous
call to wait for some resource (or synthetic synchronization
object) to be released or until there 1s an asynchronous
hardware 1nterrupt. For example, synchronous calls may be
a Win32 API WaitForMultipleObject() or POSIX pthread-
_cond_wait() or other similar calls that causes the processor
to enter a blocked state while 1t waits for some resource to
be released or some conditional event to occur. Moreover,
hardware interrupt events can happen, for example, as a
result of some embedded device operation (e.g., a local
APIC timer event, an IPI sent from one CPU to another
CPU, or the like) or external peripheral device functioning
(e.g., complete read operation from a hard disk).

In existing operating systems, when the process thread 1s
in a state of waiting for some resource or condition, the
thread will be moved to a “wait” state by the scheduler and
the thread will remain 1n a blocked state until the requested
resource becomes available. For a hardware interrupt, an OS
interrupt handler will start execution and call a specific
device dniver (e.g., a kernel module extension) interrupt
handler to perform the necessary interrupt processing for the
device. The scheduler will then check the time quantum
dedicated to the current process to ensure the time has not
expired and, 1f so, it will pass control to the OS to return
from 1nterrupt routine to repair the interrupted thread con-
text. However, i1 the time quantum has expired during the
hardware 1nterrupt event, the scheduler will push the inter-
rupted thread from the “running” state to the “ready to

10

15

20

25

30

35

40

45

50

55

60

65

2

execute’” state 1n the back of the queue, select the next “ready
to execute” thread, and then switch the context to the new

thread.

To save energy and computing resources, the OS will
normally enter an i1dle state when all (or most) of the
processes and threads are in one of the blocked states and
waiting for some condition. Usually, in hardware, this 1s
implemented as a special processor state where the OS
moves the CPU by executing a special instruction or series
of instructions. For example, on the Intel IA-32, Intel 64 and
AMD64 platform, a HL'T (*halt”) mstruction 1s usually used
for the guest OS to move the processor to the idle state. This
instruction will put the processor to a low energy consump-
tion state and will wait until some subsequent hardware
interrupt happens before leaving the idle state. Sometimes
this 1s done by a MONITOR/MWAIT 1nstruction. Moreover,
for ARM platiorm, the guest OS moves the processor to the
idle state based on WFE or WFI 1instructions.

In a virtualized environment, the virtual machine monitor
(“VMM”) or hypervisor will emulate the corresponding
instructions and place the virtual processor execution to the
blocked state to wait for an emulated asynchronous event or
timeout until some time-based event (e.g., an emulated timer
device interrupt). One technical 1ssue with this configuration
1s that the timeout for the sleep/blocked state of a virtual
processor 1s calculated 1n accordance with the nearest emu-
lated hardware time event (e.g., an interrupt of emulated PIT,
local APIC timer, CMOS, or the like). Moreover, each
virtual processor sleep and wake up transition takes time to
execute additional state transition codes. Furthermore, when
the guest OS 1s 1 a deep 1dle state (especially for conven-
tional non-tickless OSs), the timer mterrupt 1s raised only to
increment certain counters, check for any unblocked pro-
cesses and threads, and then pass the guest OS back to the
sleep state again, by using the HLT or MONITOR/MWAIT
instructions again, for example. Each transition into and out
ol the sleep state consumes useless time (1.e., 1n long sleep
states without active threads) to execute guest interrupt
handlers and driver codes, switcher processor states and, in
case of virtualization, emulate excessive behavior.

SUMMARY

Thus, a system and method 1s disclosed herein for man-
aging consumption of computing system resources, and,
more particularly, for controlling the idle state of a computer
operating system.

According to an exemplary aspect, a method 1s provided
for controlling an operating state of a virtual processor. In
this aspect, the method includes determining if a guest
system has entered a blocked state by executing an instruc-
tion halting the virtual processor until the next interrupt;
upon detecting the blocked state of the guest system, deter-
mining a number of interrupt events during a first time
period; 1I the number of interrupts i1s less than a first
threshold during the first time period, protecting a plurality
of memory pages from execution by the virtual processor;
detecting, during a second time period, when the virtual
processor attempts to execute at least one of the plurality of
protected memory pages; unprotecting the at least one
protected memory page that the virtual processor attempts to
execute during the second time period; monitoring execution
by the virtual processor of the at least one unprotected
memory page during a third time period; and maintaining
the virtual processor 1n an 1dle state based on the number of
executed unprotected memory pages during the third time
period.

US 10,180,855 Bl

3

In another aspect, the method includes adding the at least
one unprotected memory page to a list of executed memory
pages.

In another aspect of the exemplary method, the monitor-
ing comprises determining whether a number of the
executed unprotected memory pages on the list does not
increase during the third time period.

In another aspect, the method includes causing the virtual
processor to leave the idle state and enter an active state
when the number of the executed unprotected memory pages
on the list increases during the third time period, wherein the
active state comprises executing at least one thread by the
virtual processor.

In another aspect of the exemplary method, the virtual
processor 1s for a virtual machine and the plurality of
memory pages are guest pages stored 1n virtual memory of
the virtual machine.

In another aspect of the exemplary method, the protecting
of the plurality of memory guest pages comprises setting an
execute disable bit of at least one page table mapping the
plurality of guest memory pages.

In another aspect of the exemplary method, the guest
system enters the blocked state upon at least one of a
synchronous call to wait for a computing resource and an
asynchronous hardware interrupt.

In another aspect of the exemplary method, the determin-
ing that the guest system has entered the blocked state
comprises detecting an HLT instruction for the virtual pro-
cessor to enter the 1dle state.

In another aspect of the exemplary method, the determin-
ing of the number of interrupt events executed by the virtual
processor comprises determiming that only timer device
interrupts occur during the first time period.

In another aspect, the exemplary method includes delay-
ing the timer device interrupts when the virtual processor 1s
in the 1dle state.

In another exemplary aspect, a system 1s provided for
controlling an operating state of a virtual machine. In this
aspect, the system includes virtual memory configured to
store plurality of executable guest pages; a virtual processor
configured to execute at least a portion of the plurality of
executable guest pages; and a virtual machine monitor
configured to determine if a guest system of the virtual
machine has entered a blocked state, upon detecting the
blocked state of the guest system, determine a number of
interrupt events during a first time period, 1f the number of
interrupts 1s less than a first threshold during the first time
period, protect the plurality of memory pages from execu-
tion by the virtual processor, detect, during a second time
period, when the virtual processor attempts to execute at
least one of the plurality of protected memory pages, and
unprotecting the at least one protected memory page that the
virtual processor attempts to execute during the second time
period, monitor execution by the virtual processor of the at
least one unprotected memory page during a third time
period, and maintain the virtual processor in an idle state
based on the number of executed unprotected memory pages
during the third time period.

In another exemplary aspect, a non-transitory computer
readable medium comprising computer executable nstruc-
tions 1s provided for controlling an operating state of a
virtual processor. In this aspect, instructions are provided for
determining 1f a guest system has entered a blocked state;
upon detecting the blocked state of the guest system, deter-
mimng a number of interrupt events during a first time
period; if the number of interrupts 1s less than a first
threshold during the first time period, protecting a plurality

5

10

15

20

25

30

35

40

45

50

55

60

65

4

of memory pages from execution by the virtual processor;
detecting, during a second time period, when the virtual
processor attempts to execute at least one of the plurality of
protected memory pages; unprotecting the at least one
protected memory page that the virtual processor attempts to
execute during the second time period; monitoring execution
by the wvirtual processor of the at least one unprotected
memory page during a third time period; and maintaining
the virtual processor 1n an 1dle state based on the number of
executed unprotected memory pages during the third time
period.

The above simplified summary of example aspects serves
to provide a basic understanding of the invention. This
summary 1s not an extensive overview of all contemplated
aspects, and 1s intended to neither identity key or critical
clements of all aspects nor delineate the scope of any or all
aspects of the mvention. Its sole purpose 1s to present one or
more aspects 1n a simplified form as a prelude to the more
detailed description of the invention that follows. To the
accomplishment of the foregoing, the one or more aspects of
the invention include the features described and particularly
pointed out in the claims.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated nto
and constitute a part of this specification, illustrate one or
more example aspects of the invention and, together with the
detailed description, serve to explain their principles and
implementations.

FIG. 1 1illustrates a simplified flow diagram of executed
idle system code.

FIGS. 2A and 2B 1illustrate block diagram of exemplary
systems for controlling the 1dle state of a computer operating
system according to an exemplary aspect.

FIGS. 3A and 3B illustrate a flowchart for a method for
controlling the idle state of a computer operating system
according to an exemplary aspect.

FIG. 4 1llustrates a block diagram of an example of a
general-purpose computer system on which the disclosed
system and method can be implemented according to an
exemplary aspect.

DETAILED DESCRIPTION

Various aspects are now described with reference to the
drawings, wherein like reference numerals are used to refer
to like elements throughout. In the following description, for
purposes ol explanation, numerous specific details are set
forth in order to promote a thorough understanding of one or
more aspects. It may be evident 1n some or all instances,
however, that any aspect described below can be practiced
without adopting the specific design details described below.
In other instances, well-known structures and devices are
shown 1n block diagram form in order to facilitate descrip-
tion of one or more aspects. The Iollowing presents a
simplified summary of one or more aspects in order to
provide a basic understanding of the aspects. This summary
1s not an extensive overview of all contemplated aspects, and
1s not intended to identily key or critical elements of all
aspects nor delineate the scope of any or all aspects.

As described above, to save battery life and maximize use
of computing resources, most processes and applications are
designed to enter and remain in a blocked state until some
event occurs. As a result, for 99% of execution time, the
computer operating system 1s waiting for hardware inter-
rupts on HLT instructions. For example, on legacy and

US 10,180,855 Bl

S

semi-modern operating systems, processes configuration
involve periodic a hardware timer interrupt that mostly
interrupts the execution of the HLT instruction. This state
can generally be considered an 1idle systems state. For
modern tickless operating systems, there 1s no periodic
hardware timer. Instead, the timer interrupt occurs when
some process subscribes a deadline or upon a timeout. The
idle system may spend dozens of milliseconds, for example,
on a single HL'T instruction waiting for an interrupt. In either
case, alter the timer interrupt 1s handled, and 11 there are no
threads passed from a blocked state to a “ready to execute”
state, the system enters a deep sleep state again when
another HLT instruction 1s executed. In this process con-
figuration, the program code executed during the idle system
state involves relatively few instructions where the code 1s
always the same and located on the same executable
memory pages.

FIG. 1 illustrates a simplified flow diagram of executed
idle system code. In particular, an example of the Linux
kernel 4.8.12 for the interrupt handling code (1.e., for Intel
64 processor architecture, such as x86_64) 1s 1illustrated as
follows:

1rq_entry:

1mp to common_interrupt

common_interrupt:

call do_IRQ)

do_IRQ):

call handle_irq

handle_1rq:

call generic_handle_1rg_desc

generic_handle_irg_desc:

TBD

ret_from_intr (1.e., as a part of common_interrupt code):

call prepare_exit_to_usermode (e.g., executed 1f there 1s

active thread of user space process)
prepare_exit_to_usermode (e.g., executed if there 1s
active thread of user space process)

call schedule

native_irq_return_iret (as a part of common_interrupt
code):

IRET

Thus, as shown 1 FIG. 1, the processor first enters an 1dle
state by execution of a HLT instruction. The OS interrupt
handler will start execution and call the timer driver inter-
rupt handler to perform the necessary interrupt processing
for the device. The scheduler of the operating system will
then check to determine 1f there any threads 1n a “ready to
execute” state, and, 11 not, a return from the mterrupt will be
performed by a IRET nstruction back to the HL'T nstruc-
tion. Thus, if there are no threads 1n a “ready to execute”
state, the limited OS code portion 1s executed even while
there 1s no code usetul to execute inside the OS. As such, the
OS can be considered to be 1 a system wide 1dles state
because all processes and threads are eflectively 1n a “wait”
state and not “ready to execute”. For example, every process
may be waiting for an I/O operation completion, waiting for
a timer period to elapse, waiting for a key/mouse input with
the GUI mmactive, waiting for some synchronous object to be
released, or the like. Thus, when the OS executes the HL'T
instruction, the processor 1s placed in a low power consump-
tion state until the next hardware interrupt or another asyn-
chronous sensitive event 1s mjected.

According to an exemplary aspect, the disclosed system
and method 1s provided to delay or even 1gnore certain types
of asynchronous events that would otherwise wake up the
processor from the idle state when there are no “ready to
execute” processes/threads. As will be described in detail

10

15

20

25

30

35

40

45

50

55

60

65

6

below, the system and method 1s configured to control the
idle system state behavior of a processor based on an
absence of “ready to execute” processes/threads and does
not depend on process content. As a result, the system and
method can prevent all executable memory pages from
execution except for a few pages, such as pages provided for
timer interrupt handling for the time of the idle system.
Moreover, i the OS attempts to execute a “non-i1dle” page
or the scheduler changes the state of a process/thread from
a blocked state to a “ready to execute” state, execution of the
protected page(s) will raise a page fault exception. In this
instance, the system and method detects the move from an
idle system state to an active state and releases protection of
the protected page(s). Based on the algorithms described
herein, a universal criteria 1s provided for detecting idle
system states for most operating systems. When the system
1s 1n the 1dle state, 1t only executes “i1dle” pages. Otherwise,
the system exits the idle state and returns to the active state.

FIG. 2A 1llustrates a block diagram of a system for
controlling the idle state of a computer operating system
according to an exemplary aspect. In general, one or more
virtual machines 120 can be installed on a host platform
(generally shown as system 100) that includes system hard-
ware 130, a host operating system or kernel (not shown) and
a virtual machine monitor 110, which 1s also known as a
hypervisor. The virtual machine monitor 110 (heremafter
referred to as “VMM 110”) can be computer software,
firmware, and/or hardware, that creates and runs the virtual
machine 120. The VMM 110 provides the guest OS 121 of
the virtual machine 120 with a virtual operating platform
and manages the execution of the guest OS 121.

As shown, the system hardware 130 of the host machine
can include a computer processing unit 312, memory 134
(e.g., random access memory) and a hard disk 136. The host
machine will normally include additional devices, software
modules, and the like, as would be appreciated to one skilled
in the art, but are not shown herein so as to not unnecessarily
obscure the aspects of the disclosure. As software, the code
for the VM 120 will typically execute on the actual system
hardware 130.

In the exemplary aspect, the virtual machine 120 has both
virtual system hardware and guest system software, includ-
ing the guest OS 121. The virtual system hardware can
include guest physical memory 125, a virtual CPU 123, as
well as other hardware components, such as a virtual disk
(not shown), and the like. It 1s noted that all of the virtual
hardware components of the virtual machine 120 can be
implemented 1n software to emulate corresponding physical
components, as would be appreciated to on skilled 1n the art.

As further shown, the guest OS 121 of the virtual machine
120 will include a process scheduler 122 that determines
which process runs by the virtual CPU 123 at a certain point
in time. In general, the process scheduler 122 1s configured
to pause the execution of processes, move the processes 1o
the end of the running queue and start new processes, as 1s
described herein. During operation, the process scheduler
122 will choose a process and active threads (shown as
processes/threads 124) from the process that are 1n a “ready
to execute” state 1n a similar manner as described above.

The VMM 110 provides the interface between the guest
software within the VM 120 and the hardware components
and devices 1n the underlying hardware platform 130 of the
host machine. To control memory management during
operation of the VM 120, when an application (e.g., process
or thread 124, discussed below) requests an executable page
of memory, the guest OS 121 will allocate memory 1n a
virtualized guest address space of the guest physical

US 10,180,855 Bl

7

memory 1235, After that, the allocated guest page 128 1s
mapped to guest page table 126 through correspondent guest
page table entry 127». These guest physical memory pages
are retlected to a host physical address space. In general, a
guest physical address 1s not equal to a host physical one
134. As shown i FIG. 2A, the exemplary aspect 1s provided
for VMM configuration mapping guest pages to virtual
address space by using so called paging cache technique, as
described, for example, in U.S. Pat. No. 7,596,677, entitled
“Paging cache optimization for virtual machines”, the con-
tents of which are hereby incorporated by reference. In this
regard, the VMM 110 can maintain a paging structures,
including one or more page table hierarchies 112 (e.g.,
two-level page tables 1n 1A-32 legacy paging mode, three-
level page tables 1n PAE mode, four-level page tables in
IA-32¢ paging mode and the like) that organize the rela-
tionships between the two address spaces and that map
particular host memory pages 114 reflecting state of guest
physical memory pages 128 to guest virtual memory address
space of the second memory address space of the physical
memory 134, for example. Thus, during operation, when an
active thread of a process 124 attempts to access a page 128
by guest linear address described by correspondent page
table entries 127n, the page table 112, which may include a
plurality of page table entries, will map the guest physical
page 114 (allocated from the guest physical memory 134) to
the guest linear address space. Thus access to guest pages are
controlled through a maintenance of particular PTEs 1n page
tables 112. It should be appreciated that the page mapping
may include additional data structures, such as a control
register 3 (CR3), page tables, page directories, page direc-
tory pointer tables and the like. An exemplary page mapping
1s shown U.S. Pat. No. 7,598,677, the entire contents of
which are hereby incorporated by reference.

When the guest OS 121 1s runming on the virtual machine
120, the guest OS 121 can treat the guest physical memory
125 as 11 1t were the physical memory of a computer system.
In this regard, the guest OS 121 can create virtual memory
address spaces and map these address spaces to the guest
physical memory 1235. Thus, the guest OS 121 can also
maintain a paging structure, including page table 126 that
includes page table entries 127» mapping the wvirtual
memory address spaces to the address spaces in the guest
physical memory 125. Thus, as further shown, when the
process scheduler 122 selects an active thread 124 that 1s in
“ready to execute” state”, the guest OS 121 can retrieve one
or more “guest pages” 128 1n guest physical memory 1235
according to the page mapping set forth i page table 126.

As will be described in detail below, the VMM 110 1s
configured to monitor the guest OS 121 and execution of
guest pages 128 and, based on the number of executed guest
pages, control the idle state of the virtual machine 120
according to the exemplary aspect. In this regard, the VMM
110 includes an OS state control module 116 that 1s config-
ured to protect/unprotect (1.e., release from the protected
state) the execution of guest pages and monitor the execu-
tion thereotf. The OS state control module 116 1s configured
to perform the algorithms disclosed herein including moni-
toring each thread executed by the processor (e.g., virtual
processor 123). As described below 1n detail, the OS state
control module 116 1s configured to protect execution of
guest pages and also create or maintain a list of executed (or
attempted to be executed) guest pages by the guest OS 121.
Moreover, the list of executed pages stays below a certain
number (1.e., a given threshold) during a set period of time,
the OS state control module 116 can place the wvirtual
processor 123 1n a long 1dle system state and delay the

10

15

20

25

30

35

40

45

50

55

60

65

8

execution of insignificant events, such as certain types of
interrupts, for example. As a result, the OS state control
module 116 1s capable of delaying and/or preventing the
continuous transition of the virtual processor 123 from an
active state to an 1dle state, and so forth, which unnecessarily
consumes computing resources and wastes energy.

FIG. 2B 1llustrates another block diagram of a system for
controlling the idle state of a computer operating system
according to a refinement of the exemplary aspect. In
general, F1G. 2B 1llustrates many of the same components as
described above with respective to FIG. 2A, the details of
which will not be repeated herein. According to the exem-
plary aspect of FIG. 2B, the system 200 1s working in
cooperation with hardware assisted nested paging technique
(e.g., Intel EPT or AMD RVI). In this aspect, the nested
paging technology provides an intermediate translation level
from guest physical addresses (1.e., guest page 128) to real
physical addresses (i1.e., page 114). Additionally, nested
paging also provides a way to protect guest physical pages
from different type of guest OS accesses, such as read, write,
execute, no access, for example. Thus, using nested paging
does not require software assisted page table entries substi-
tution like 1 paging cache technique. Rather, EPT page
tables 118 are 1nvisible for the guest OS 121. The particular
entry ol EPT table 118 maps real pages to guest physical
address space by using host physical addresses in accor-
dance with page allocation provided by the host OS. There-
fore, each time the guest OS accesses a page by using virtual
address space and mapped to virtual space through corre-
spondent PTE 127#, the processor uses additional guest to
host physical addresses translation described by EPT entries.
Thus, FIG. 2B illustrates another hardware assisted method
for protecting and manipulating guest physical pages
according to an exemplary aspect. It should be appreciated
that additional paging cache structures 112 are not required.

In general, the term “module” as used herein can refer to
a software service or application executed as part of the
VMM 110. However, in general, the term module can be
considered to be executed on one or more computers,
including real-world devices, components, or arrangement
of components implemented using hardware, such as by an
application specific integrated circuit (ASIC) or field-pro-
grammable gate array (FPGA), for example, or as a com-
bination of hardware and software, such as by a micropro-
cessor system and a set of instructions to implement the
module’s functionality, which (while being executed) trans-
form the microprocessor system into a special-purpose
device. A module can also be implemented as a combination
of the two, with certain functions facilitated by hardware
alone, and other functions facilitated by a combination of
hardware and software. In certain implementations, at least
a portion, and 1 some cases, all, of a module can be
executed on the processor of a general purpose computer.
Accordingly, each module can be realized 1n a variety of
suitable configurations, and should not be limited to any
example implementation described herein.

Moreover, 1n general, it should be appreciated that the
disclosed system and method 1s described herein in the
context of a hosted virtualized computing system. However,
in alternative aspects, the system and method may be
implemented for a non-hosted virtualized computer system,
and may also be implemented directly in a computer’s
primary OS, both where the OS i1s designed to support
virtual machines and where the OS does not support virtual
machines.

FIGS. 3A and 3B illustrate a flowchart for a method for

controlling the 1dle state of a computer operating system

US 10,180,855 Bl

9

according to an exemplary aspect. It should be appreciated
that the following description of the exemplary method
makes reference to the system and components described
above. As shown, imtially at step 305, the virtual machine
120 1s 1n an active state in which the process scheduler 122
of the guest OS 121 1s controlling the execution of active
threads of a process 124 by wvirtual processor 123, for
example. During execution of an active thread by virtual
processor 123, the thread i1s executed until there as a
synchronous call to wait for some resource or there 1s an
asynchronous hardware interrupt, as described above, 1n
which case the thread and/or the guest OS 121 1tself can be
considered to be 1n a “blocked” state. If the thread and/or
guest OS 121 1s blocked and a HLT instruction 1s executed
by the guest OS 121 at step 310, the virtual processor 123
will enter a first i1dle system state, while the guest OS 121
waits for an interrupt of the HL'T instruction. For purposes
of clarity, it 1s shown that 11 the thread is not blocked at step
310, the thread continues to be executed by the wvirtual
processor 123 1n a loop as shown i FIG. 3.

As further shown, at step 320, the VMM 110 1s configured
to monitor the guest iterrupt flow and determine whether
any interrupt occurs within a predefined period. This pre-
defined time period may be set by a system administrator, for
example, and stored 1n local memory (e.g., memory 134) of
the host for the virtual environment, for example. If there are
no guest hardware mterrupts (or only timer device interrupts
from a single device) that are detected at step 320, the
method proceeds to step 325 where all of the executable
guest pages are protected (1.e., placed 1 a protected or
blocked state) by the VMM 110. Otherwise, 11 a hardware
interrupt 1s detected during this predetermined time period,
the guest OS 121 returns to a fully active state and the
process scheduler 122 begins thread execution again at step
305 as further shown.

It 1s noted that according to an exemplary aspect, the
predetermined time period 1s adaptable/configurable to
detect whether the guest OS 121 1s 1n the long idle system
state. For example, the predetermined time period can be set
up empirically 1n accordance with typical behavior of the
correspondent guest OS and adaptable to host OS general
CPU usage. In case of extensive general CPU usage on the
host (e.g., from any kind of non-virtualization and virtual-
ization loads), the idle period can be tuned to state longer
time 1n deep i1dle state to give this time to other CPU
consumers. That 1s, the adaptable period can be used to
avoid false excessive protections where all processes would
otherwise be block until just the fast device I/O operation
execution, such as SSD data block read, GPU drawings, and
the like. In such cases, there 1s no thread to execute only for
a short time period because such devices process 1/O opera-
tion and generate hardware interrupts within a short time
period, such that the system will not be stuck 1n an 1dle state
for a long time. Thus, there 1s no reason to force the system
into the long 1dle system state. Rather, the exemplary system
and method 1s provided to delay insignificant events (e.g.,
timer interrupts as described above) of which delay in
execution will not lead to operation errors. In most cases, the
delayed interrupt will be executed later. Moreover, 1 a
process was subscribed to a particular elapsed time period,
the subscriber code will execute with a delay. The long idle
system state of the virtual processor 123 121 will be reset to
a normal active mode until the next long time period of
mactivity (1.e., the method will return to step 305).

According to the exemplary aspect, at step 325, the VMM
110 1s configured to protect all guest pages from execution
that would otherwise be executed by the guest operating

10

15

20

25

30

35

40

45

50

55

60

65

10

system 121. This can be done by using hardware assisted
virtualization capabilities. For example, 1n an aspect, for x86
virtualization, page-table virtualization can be provided by
Intel’s Extended Page Table (EPT) feature and/or AMD’s
Rapid Virtualization Indexing (RVI) feature, for example.
These extensions provide alternative guest-to-physical
address translation by using nested page tables that also have
an

Execute” access bit.

According to an exemplary aspect, protection 1s set 1n
nested page tables for EPT/RVI enabled modes. Alterna-
tively, 1f the processor extension 1s not used by virtualization
software, the VMM 110 uses processor paging tables to
organize these guest to real page mappings, as also described
in U.S. Pat. No. 7,596,677. Thus, for EPT nested page table

entries, the guest pages can be protected by setting bit 2 (and
bit 10) 11 “mode-based execute control for EPT” VM-

execution control 1s enabled when hardware assisted Intel
VMX mode 1s used), or by setting the XD bit (or the NX bt
for AMD processors) 1n all page table entries in paging
cache memory virtualization mode. By doing so, all guest
pages (e.g., guest page 128 and/or memory page 114)
becomes available for data access, but are protected for code
execution.

Once each guest page has been protected by VMM 110 at
step 3235, 1t 1s protected from execution in the page table
(e.g., page table 126) or nested page table entry (e.g. EPT
table 118). Next, at step 330, the VMM 110 monitors each
page and determines at step 3335 whether the virtual proces-
sor 123 has attempted to execute a protected page (e.g.,
guest page 128) during a predetermined period. These steps
are shown 1n a continuous loop as the VMM 110 monitors
the guest pages. Each time the virtual processor 123 attempts
to execute an instruction located on a protected guest page,
a page fault or VM-Exit occurs at step 3335 and the method
proceeds to step 340. That 1s, for EPT/RVI enable modes, a
EPT fault VM-Exit occurs. Alternatively, 11 the processor
extension 1s not being used by the virtualization software, a
page fault exception (e.g., number 14 1n x86 compatible
architecture) 1s raised by the processor automatically
because of the protection violation.

Upon occurrence of the VM-Exit or the page fault, the
VMM 110 removes protection from the protected page and
adds the page to a list of list of executed pages at step 340.
That 1s, the OS state control module 116 of the VMM 110
can create and maintain a list of executed pages by the
virtual processor 123. Moreover, 1n this regard, it should be
understood that before the first guest instruction 1s executed
(1.e., right after step 325), the list of executed pages main-
taimned by the VMM 110 1s empty. Moreover, according to an
exemplary aspect, all memory pages counted by the moni-
toring algorithm of the VMM 110 during this second time
period are then unprotected, for example, by removing the
“Execute Disable™ bit in a similar manner as the blocking
procedure described above. Therefore, these unprotected
guest pages can subsequently be executed by the virtual
processor 123 without protection violation exits and page
faults. Moreover, according to an exemplary aspect, to
create and update the list, the monitoring algorithm of the
VMM 110 will add a reference (1.e., page physical or linear
address) of the guest page to the list of executed pages. Then,
the VMM 110 restarts the instruction execution so that the
VM-Exit will not happen again the next time the guest OS
121 attempts to execute the previously protected guest page.

As Turther shown, at step 345, the VMM 110 continues to
monitor the executed pages and the HLT instructions for
another predetermined period of time (1.e., a third time
period). If the list of executed pages remains constant or 1s

US 10,180,855 Bl

11

under a predetermined threshold during a predetermined
period at step 350, the virtual processor 123 can be consid-
cred to enter a long idle system state at step 360. This 1s
because the VMM 110 has determined that only 1nsignificant
events (e.g., timer nterrupts) have occurred during this time
period. As further shown, the monitoring process can then
continually repeat at step 345 and so forth. As described
above, 1n the 1dle system state, isignificant events such as
timer interrupts can be delayed to mimimize consumption of
computing system resources. However, once the number of
executed pages does not remain constant or 1ncreases over
the predetermined threshold during the third time period, the
idle system state 1s exited at step 335 and the virtual
processor 123 returns to a fully active state where the next
“ready to execute” thread i1s scheduled by the process
scheduler 122 and executed by the virtual processor 123.

Accordingly, the disclosed system and method 1s advan-
tageously able to detect the absence of “ready-to-execute”
processes/thread by monitoring the number of executed
guest pages during a predetermined time period. Moreover,
the system and method enables long i1dle state optimizations
if the set of executed memory pages 1s short (as determined
at step 350) and 1s kept the same (or below a given threshold)
for the given period of time and includes HLT instruction 1n
the loop. In addition, while the exemplary aspect 1s contem-
plated as being for legacy operating system or an operating,
system that otherwise uses timer interrupts to check for any
unblocked processes and threads, the disclosed system and
method can also be used with tickless OS 1n which the timer
interrupts do not occur at regular intervals and are only
delivered as required.

According to a refinement of the exemplary aspect, the
time period can be tracked by the VMM 110 1n one of three
possible ways. That 1s, the VMM 110 1s configured to
monitor the execution (attempted execution) of guest pages
128 by the guest OS 121. In one exemplary aspect, the
VMM 110 can track time of one of more of the predeter-
mined time periods by using calendar real time (1.e., CMOS
time) of the computing system of the host machine, for
example. In this aspect, the CMOS time can be corrected by
special guest OS tools usually called as time-synchroniza-
tion tool, which 1s provided to correct the real-time CMOS
time counter. Moreover, the VMM 110 can be configured to
track time using timer interrupts to raise short fine-tuned
time-based event subscriptions (e.g., OS scheduler interrupt-
ing the CPU consuming thread, the closest synchronization
object timeout, and the like). Finally, the VMM 110 can be
configured to track time using hardware time relevant coun-
ters (e.g., PITO counters, time stamp counters, and the like).
In this aspect, the counter 1s usually used as deltas on short
term measurements and can be an addition to first two
methods described above.

As described above, the VMM 110 1s configured to
control the operating state of the virtual machine 120,
include the virtual processor 123 and to delay insignificant
events. In general, 1n overcommit condition of the virtual
processor 123 where the virtual machine 120 cannot get
processor time quantum to execute guest code, some 1nter-
rupts can be significantly delayed. The exemplary system
and method can compensate these interrupts 1 the delay 1s
not too significant. Moreover, 1n one aspect, 1f the delay 1s
too large (i.e., over a certain time period), the VMM 110 can
simply 1gnore the corresponding interrupt, but this will not
result 1n errors of the guest OS 121, since time sensitive
checks are executed 1n another path, but also with a delay
due to the overcommit condition of the virtual processor
123). However, using the exemplary system and method

10

15

20

25

30

35

40

45

50

55

60

65

12

disclosed herein I/O device timeouts and IPI timeouts can be
avoilded, which may happen when device operation virtual-
ization 1s delayed so much that time-based timeout happens.

FIG. 4 1llustrates a block diagram of an example of a
general-purpose computer system (which can be a server) on
which the disclosed system and method can be implemented
according to an example aspect. As shown, a general pur-
pose computing device 1s provided 1n the form of a computer
system 20 or the like including a processing unit 21, a
system memory 22, and a system bus 23 that couples various
system components including the system memory to the
processing unit 21. It should be appreciated that computer
system 20 can correspond to the host device described
above, processing unit 21 can correspond to CPU 1322, and
system memory 22 and/or file system 36 can correspond
memory 134.

Moreover, the system bus 23 may be any of several types
of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. The system memory includes
read-only memory (ROM) 24 and random access memory
(RAM) 25. A basic input/output system 26 (BIOS), contain-

ing the basic routines that help transfer information between
clements within the computer 104, such as during start-up,
1s stored in ROM 24.

The computer 20 may further include a hard disk drive 27
(corresponding to hard disk 136, for example) for reading
from and writing to a hard disk (e.g., hard disk 136), a
magnetic disk drive 28 for reading from or writing to a
removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such
as a CD-ROM, DVD-ROM or other optical media. The hard
disk drive 27, magnetic disk drive 28, and optical disk drive
30 are connected to the system bus 23 by a hard disk drive
interface 32, a magnetic disk drive interface 33, and an
optical drive interface 34, respectively. The drives and their
associated computer-readable media provide non-volatile
storage of computer readable instructions, data structures,
program modules and other data for the computer 20.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, 1t should be appreciated by those
skilled 1n the art that other types of computer readable media
that can store data that 1s accessible by a computer, such as
magnetic cassettes, flash memory cards, digital video disks,
Bernoull1 cartridges, random access memories (RAMs),
read-only memories (ROMs) and the like may also be used
in the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 33. The computer 20 includes
a file system 36 associated with or included within the
operating system 35, one or more application programs 37,
other program modules 38 and program data 39. A user may
enter commands and information into the computer 20
through input devices such as a keyboard 40 and pointing
device 42. Other mput devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner or
the like.

These and other mput devices are often connected to the
processing unit 21 through a serial port interface 46 that 1s
coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port or universal
serial bus (USB). A momtor 47 or other type of display
device 1s also connected to the system bus 23 via an
interface, such as a video adapter 48. In addition to the

US 10,180,855 Bl

13

monitor 47, personal computers typically include other
peripheral output devices (not shown), such as speakers and
printers.

The computer 20 may operate 1n a networked environ-
ment using logical connections to one or more remote 3
computers 49. The remote computer (or computers) 49 may
be another computer, a server, a router, a network PC, a peer
device or other common network node, and typically
includes many or all of the elements described above
relative to the computer 20. The logical connections include 10
a network interface 51 and connected to a local area network
(1.e., LAN) 51, for example, and/or a wide area network (not
shown). Such networking environments are commonplace 1n
oflices, enterprise-wide computer networks, Intranets and
the Internet. 15

When used 1n a LAN networking environment, the com-
puter 20 1s connected to the local network 51 through a
network interface or adapter 53. When used in a WAN
networking environment, the computer 20 typically includes
a modem 54 or other means for establishing communica- 20
tions over the wide area network, such as the Internet.

The modem 54, which may be internal or external, 1s
connected to the system bus 23 via the serial port interface
46. In a networked environment, program modules depicted
relative to the computer 20, or portions thereof, may be 25
stored 1n the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

In various aspects, the systems and methods described 30
herein may be implemented 1n hardware, software, firm-
ware, or any combination thereof. If implemented 1n soft-
ware, the methods may be stored as one or more 1nstructions
or code on a non-transitory computer-readable medium.
Computer-readable medium includes data storage. By way 35
of example, and not limitation, such computer-readable
medium can comprise RAM, ROM, EEPROM, CD-ROM,
Flash memory or other types of electric, magnetic, or optical
storage medium, or any other medium that can be used to
carry or store desired program code in the form of instruc- 40
tions or data structures and that can be accessed by a
processor of a general purpose computer.

In the iterest of clarnity, not all of the routine features of
the aspects are disclosed herein. It will be appreciated that
in the development of any actual implementation of the 45
present disclosure, numerous 1implementation-specific deci-
sions must be made in order to achieve the developer’s
specific goals, and that these specific goals will vary for
different implementations and different developers. It will be
appreciated that such a development effort might be com- 50
plex and time-consuming, but would nevertheless be a
routine undertaking of engineering for those of ordinary skaill
in the art having the benefit of this disclosure.

Furthermore, 1t 1s to be understood that the phraseology or
terminology used herein 1s for the purpose of description and 55
not of restriction, such that the terminology or phraseology
ol the present specification 1s to be interpreted by the skilled
in the art in light of the teachings and guidance presented
herein, 1n combination with the knowledge of the skilled in
the relevant art(s). Moreover, 1t 1s not intended for any term 60
in the specification or claims to be ascribed an uncommon or
special meaning unless explicitly set forth as such.

The various aspects disclosed herein encompass present
and future known equivalents to the known modules referred
to herein by way of illustration. Moreover, while aspects and 65
applications have been shown and described, 1t would be
apparent to those skilled in the art having the benefit of this

14

disclosure that many more modifications than mentioned
above are possible without departing from the mnventive
concepts disclosed herein.

The mvention claimed 1s:

1. A method for controlling an operating state of a virtual
processor, the method comprising:

determining if a guest system has entered a blocked state

by executing an 1nstruction halting the virtual processor
until the next mterrupt;

upon detecting the blocked state of the guest system,

determining a number of interrupt events during a first
time period;
1f the number of interrupts 1s less than a first threshold
during the first time period, protecting a plurality of
memory pages from execution by the virtual processor;

detecting, during a second time period, when the virtual
processor attempts to execute at least one of the plu-
rality of protected memory pages;

unprotecting the at least one protected memory page that

the virtual processor attempts to execute during the
second time period;

monitoring execution by the virtual processor of the at

least one unprotected memory page during a third time
period; and

maintaining the virtual processor in an 1dle state based on

the number of executed unprotected memory pages
during the third time period.

2. The method of claim 1, further comprising adding the
at least one unprotected memory page to a list of executed
memory pages.

3. The method of claim 2, wherein the monitoring com-
prises determining whether a number of the executed unpro-
tected memory pages on the list does not increase during the
third time period.

4. The method of claim 3, further comprising causing the
virtual processor to leave the 1dle state and enter an active
state when the number of the executed unprotected memory
pages on the list increases during the third time period,
wherein the active state comprises executing at least one
thread by the virtual processor.

5. The method of claim 1, wherein the virtual processor 1s
for a virtual machine and the plurality of memory pages are
guest pages stored 1n virtual memory of the virtual machine.

6. The method of claim 5, wherein the protecting of the
plurality of memory guest pages comprises setting an
execute disable bit of at least one page table mapping the
plurality of guest memory pages.

7. The method of claim 1, wherein the guest system enters
the blocked state upon at least one of a synchronous call to
wait for a computing resource and an asynchronous hard-
ware nterrupt.

8. The method of claim 1, wherein the determining that
the guest system has entered the blocked state comprises
detecting an HLT instruction for the virtual processor to
enter the 1dle state.

9. The method of claim 1, wherein the determining of the
number of interrupt events executed by the virtual processor
comprises determining that only timer device interrupts
occur during the first time period.

10. The method of claim 9, further comprising delaying
the timer device interrupts when the virtual processor 1s 1n
the 1dle state.

11. A system for controlling an operating state of a virtual
machine, the system comprising:

an electronic memory configured to provide a virtual

memory for storing a plurality of executable guest

pages;

US 10,180,855 Bl

15

a hardware processor configured to execute a virtual
processor for executing at least a portion of the plural-
ity ol executable guest pages; and

a virtual machine monitor configured to:

determine if a guest system of the virtual machine has
entered a blocked state,

upon detecting the blocked state of the guest system,
determine a number of nterrupt events during a first
time period,

if the number of interrupts 1s less than a first threshold
during the first time period, protect the plurality of
memory pages from execution by the virtual processor,

detect, during a second time period, when the wvirtual
processor attempts to execute at least one of the plu-
rality of protected memory pages,

unprotecting the at least one protected memory page that
the virtual processor attempts to execute during the
second time period,

monitor execution by the virtual processor of the at least
one unprotected memory page during a third time
period, and

maintain the virtual processor 1n an 1dle state based on the
number of executed unprotected memory pages during
the third time period.

12. The system of claim 11, wherein the virtual machine
monitor 1s further configured to add the at least one unpro-
tected memory page to a list of executed memory pages.

13. The system of claim 12, wherein the virtual machine
monitor 1s further configured to determine whether a number
of the executed unprotected memory pages on the list does
not increase during the third time period.

14. The system of claim 13, wherein the virtual machine
monitor 1s further configured to cause the virtual processor
to leave the idle state and enter an active state when the
number of the executed unprotected memory pages on the
list increases during the third time period.

15. The system of claim 11, wherein the virtual machine
monitor 1s configured to protect the plurality of memory
guest pages by setting an execute disable bit of at least one
page table mapped to the plurality of memory guest pages.

10

15

20

25

30

35

16

16. The system of claim 11, wherein the guest system
enters the blocked state upon at least one of a synchronous
call to wait for a computing resource and an asynchronous
hardware interrupt.

17. The system of claim 11, wherein the virtual machine
monitor 1s further configured to run the at least one thread
and detect an HTL instruction for the virtual processor to
enter the 1dle state.

18. The system of claim 11, wherein the virtual machine
monitor 1s further configured to determine the number of
interrupt events executed by the virtual processor by deter-
mining that only timer device interrupts occur during the
first time period.

19. The system of claim 9, wherein the virtual machine
monitor 1s further configured to delay the timer device
interrupts when the processor 1s in the idle state.

20. A non-transitory computer readable medium compris-
ing computer executable instructions for controlling an
operating state of a virtual processor, including instructions
for:

determiming 1f a guest system has entered a blocked state;

upon detecting the blocked state of the guest system,
determining a number of interrupt events during a first
time period;

11 the number of interrupts 1s less than a first threshold
during the first time period, protecting a plurality of
memory pages from execution by the virtual processor;

detecting, during a second time period, when the virtual
processor attempts to execute at least one of the plu-
rality of protected memory pages;

unprotecting the at least one protected memory page that
the virtual processor attempts to execute during the
second time period;

monitoring execution by the virtual processor of the at
least one unprotected memory page during a third time
period; and

maintaining the virtual processor in an idle state based on
the number of executed unprotected memory pages
during the third time period.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

