12 United States Patent

US010176206B2

(10) Patent No.: US 10,176,206 B2

Mehta et al. 45) Date of Patent: Jan. 8, 2019
(54) RESOLVING IN-MEMORY FOREIGN KEYS (56) References Cited
IN TRANSMITTED DATA PACKETS FROM N
SINGLE-PARENT HIERARCHIES U.s. PAIENT DOCUMENTS
(71) Applicant: ORACLE INTERNATIONAL 6,850951 B1® 272005 Davison coeE LT
CORPORATION, Redwood Shores, 7861251 B2 12/2010 Harvey et al.
CA (US) 8,140,588 B2 3/2012 Salo et al.
9,177,005 B2 11/2015 Mehta et al.
(72) Inventors: Dhaval Manharlal Mehta, Belmont, %88%8%2;?? i %ggg% gope:lnan of ﬂi*
. Tt : : 1 rundage et al.
gi (Ug)’ Jianying Huang, Rocklin, 2004/0205084 A1l* 10/2004 HAIVEY ooooovvvroooo GOGF 9/465
(US) 2007/0174306 Al1* 7/2007 Gibson GOO6F 17/2247
_ 2008/0120334 Al1* 5/2008 Etgar GO6F 17/30607
(73) Assignee: Oracle International Corporation, (Continued)
Redwood Shores, CA (US)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent 1s extended or adjusted under 35 Gao et al., Towards Process Rebuilding for Composite Web Services
U.S.C. 154(b) by 158 days. in Pervasive Computing, Third International Conference on Perva-
(21) Appl. No.: 14/855,960 sive Computing and AppllC.‘:l’[lOIlSi, 2008. ICPCA 2008, pp. 38-43.
(Continued)
(22) Filed: Sep. 16, 2015 _ _
Primary Examiner — Cheyne D Ly
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP
US 2016/0004737 Al Jan. 7, 2016
o (37) ABSTRACT
Related U.S. Application Data o _ _
_ _ o A web service interface may receive a web service request
(63) Continuation of application No. 13/754,341, filed on that describes multiple objects. Each of the multiple objects
Jan. 30, 2013, now Pat. No. 9,177,005. may be associated with a common object, such as in a
parent-chuld relationship. The web service can identily the
(1) Int. CI. common object and the multiple relationships between
GOOF 17/30 (2006.01) objects, and instead of creating duplicate versions of the
(52) US. Cl common object, the web service can create a single record
CPC .. GO6F 17/30321 (2013.01); GO6F 17/30339 representing the common object 1n, for example, a database.
(2013.01); GO6F 17/30876 (2013.01); GOGI Records for each of the multiple objects referring to the
17/30923 (2013.01) common object can reference the common object record 1n
(58) Field of Classification Search the database using, for example, foreign keys.

USPC e, 70777769, 797, 798, 804
See application file for complete search history.

g2

20 Claims, 12 Drawing Sheets

300

e /

Key Name Prhone Address { Contact Accnunti

O ACME Corp. 555-555-1234

02

904

Street City

Al 123 Peach St Cuperling

CA

A2

Name

C1 Alex Lifeson

A

Name

Number Contact /
ACME Payables | 55432-22345 CH1

US 10,176,206 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0276409 Al 11/2009 Young
2012/0158725 Al 6/2012 Molloy et al.

OTHER PUBLICATIONS

Non-Final Office action for U.S. Appl. No. 13/754,341 dated Feb.
12, 20135, all pages.

Notice of Allowance for U.S. Appl. No. 13/754,341 dated Feb. 12,
20135, all pages.

* cited by examiner

U.S. Patent Jan. 8, 2019 Sheet 1 of 12 US 10,176,206 B2

~120 30

Network

115 \
~105 ~110

100

Database

135

FIG. 1

U.S. Patent Jan. 8, 2019 Sheet 2 of 12 US 10,176,206 B2

200 >

- 225b

Computer

Readable Storage
i Media |

205 210 215 220 ;
- - : 2253

Computer

; | ‘ Sta}rage Readable Storage
- Device(s) Device(s) Device(s) | | Media Reader |

755

Communications Working

Memory

245 | 240

f i Other Code
"1 (Programs)

FIG. 2

¢ Old

US 10,176,206 B2

- e

- _

S |

3 .

g |

=P

e

” |

i O2IARQ | [
| 39 Bl

= ETT ke

g 90¢

—

o~

o

80¢

b0

|
_
|
|
_

O S—

00¢

U.S. Patent

FEYNET

208

WoIsAS atemijogq asudiaiuz

US 10,176,206 B2

Sheet 4 of 12

Jan. 8, 2019

U.S. Patent

1818}

\ 72

(gwelqo)

8747

L 100[00)

Oiv

L

3

L4

B00Y

a0t

POY

g eldo

y 12900 -

Q0

¢ 108[q0

| 18(q0 |

0 109iq0

.f

cOv

US 10,176,206 B2

Sheet 5 of 12

Jan. 8, 2019

U.S. Patent

006G

©

}

29iq0

ouibuz
LOISIOAUOD
e1eq]

riG

380G

POS

G 198190

¥ 10940

905

¢S

¢ 1080

| 108140

0 ¥8lqo

US 10,176,206 B2

so|qeded JNOY | SWEN
GYECT-CEYSS | FOqUINN

Sheet 6 of 12

_ - _ SSBIPPY

LIOSa}IT] Xoly | DWEN

Jan. 8, 2019

90996 YO ‘ouiadng ‘1S yoesd ¢z} | SSOIPPY
'diod JNOV | SWEN

U.S. Patent

UOSaIT] Xaly | 1IPBIUO]D JUNOJIVY

OJUf
WUNGJDY/

U0SI9d
10BIUON

‘ojuy BIO

| ~v00

~Z09

U.S. Patent Jan. 8, 2019 Sheet 7 of 12 US 10,176,206 B2

700

@<Organizatiom>
: <Name>ACME Corp.</Name>
<Phone>555-555-1234</Phone>
<Address>
<Street>123 Peach Street</Street>
<CityrCupertino</City>
<State>CA</State>
<ZIP>94606</Z2IP>
</Address>
<gontact>
<Name>Alex Lifeson</Name>
<Address>
<Street>123 Peach Street</Street>
<City>Cupertino</City>
<State>CA</State>
<ZIP>84606</ 21>
</Address>
</Contact>
<JAccount>
<Name>ACME Pavables</Name>
<Contact>
<Name>Alex Lifeson</Name>
<Addregs>
<Street>123 Peach Street</Street>
<City>Cupertino</City>
<State>CA</State>
<ZIP>94606</21IP>
</Address>
</Contact>
: </Account>
< /Organization>

FIG. 7

Ol

<UOTRRZTURDIO/ >

US 10,176,206 B2

808

o o ARTUNN/ SO R e e P QS <ISTUnNDS

908

t 308{00 o

Sheet 8 of 12

¢ 108lg0 —

208

Z 108iq0

Jan. 8, 2019

L 108lg0

<PUOUd/>PECT~955-G45<BUOUI>
LOUWEN /> dI0D HHOY<SWeN>
CUQTIARZTURDIO

008

U.S. Patent

6 Ol

10 | opezz-zevss | selqeAed INOV | LG

JOBIUOD)

US 10,176,206 B2

Sheet 9 of 12

Jan. 8, 2019

00

U.S. Patent
TN

T — _._..__.__.__.__.__.__.__.__ —

| Aoy |
o BIGR L IUNO0DY m”

U.S. Patent Jan. 8, 2019 Sheet 10 of 12 US 10,176,206 B2

1000

J

1002
receiving a data set that includes a
plurality of objects organized in a

hierarchy
1004
parsing the data set to locate at
least two objects in the plurality of
objects

1006

creating a data record to represent

information assoctiated with the at
least two objects

FIG. 10

U.S. Patent Jan. 8, 2019 Sheet 11 of 12 US 10,176,206 B2

1100

J

1102

receving a data set that includes a
| plurality of objects organized in a
' hierarchy

creating a second data record for
the second object

1106

creating a first data record from
| the first object, wherein the first
| data record references the second
| data record as a child record

| creating a third data record from
| the third object, wherein the third
| data record references the second
' data record as a child record

FIG. 11

US 10,176,206 B2

Sheet 12 of 12

Jan. 8, 2019

U.S. Patent

abrioIs

218

00Z1

19AJ88

subug

- UOISIBAUOD)

eje(d

SJE LIS]U|

DOIAISS GaA

¢l Ol

189G Bleqg

w..,
e s
o
=,
0
O
D

Q0BLIS)U
MIOMISN

0LZL

JUSHD

aubu
Buibeyoed ejeQ

JOSSB820Id
Inadiis

¢0cl

US 10,176,206 B2

1

RESOLVING IN-MEMORY FOREIGN KEYS
IN TRANSMITTED DATA PACKETS FROM
SINGLE-PARENT HIERARCHIES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application 1s a Continuation of U.S. application Ser.
No. 13/734,341, filed Jan. 30, 2013, and entitled “RESOLV-
ING IN-MEMORY FORFEIGN KEYS IN TRANSMITTED

DATA PACKETS FROM SINGLE-PAR;ENT HIERAR-
CHIES,” which 1s incorporated by reference herein.

BACKGROUND

Managing large businesses may mnvolve storing, aggre-
gating, and analyzing large amounts of data. Many organi-
zations use Enterprise Software Systems to manage almost
every form of business data. For example, Enterprise Sofit-
ware Systems can provide business-oriented tools such as
online shopping and online payment processing, interactive
product catalogs, automated billing systems, security, enter-
prise content management, I'T service management, cus-
tomer relationship management, enterprise resource plan-
ning, business intelligence, project management,
collaboration, human resource management, manufacturing,
enterprise application integration, and Enterprise forms
automation.

Enterprise Software Systems can integrate internal and
external management iformation across an entire organi-
zation. Enterprise Software Systems may be used to auto-
mate activities between these different resources within an
integrated software application. One purpose may be to
tacilitate the tlow of information between business functions
across boundaries of an organization, and to manage the
connections between outside stakeholders and internal
resources.

BRIEF SUMMARY

In one embodiment, a method of creating multi-parent
relationships from single-parent data may be presented. The
method may include receiving a data set that includes a
plurality of objects organized in a hierarchy. The method
may also include parsing the data set to locate at least two
objects 1n the plurality of objects. Each of the at least two
objects may be associated with an identifier. The method
may additionally include creating a data record to represent
information associated with the at least two objects. The data
record may be associated with a plurality of parent data
records.

In some embodiments, the method may also include
ascertaining that the plurality of objects includes a first
object, a second object that 1s associated with the identifier
and 1s a child of the first object according to the hierarchy,
a third object, and a fourth object that 1s associated with the
identifier and 1s a child of the third object according to the
hierarchy. The method may additionally include ascertain-
ing, based on the identifier, that the second object and the
fourth object represent the same information. The method
may further include creating a second data record from the
second object. The method may also include creating a first
data record from the first object where the first data record
may reference the second data record as a child record, and
creating a third data record from the third object where the
third data record may reference the second data record as a

child record.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the method may also include
discarding the fourth object without requiring a correspond-
ing fourth data record to be created. Information represented
by the second object may be different than information
represented by the fourth object. Information represented by
the fourth object may be empty. The hierarchy may comprise
a single-parent hierarchy. The data record may be part of a
plurality of data records created from the plurality of objects,
and the plurality of data records may be arranged 1n a
multi-parent hierarchy. The data set may comprise an XML
format. The identifier may comprise a value associated with
an XML element. The data record may be part of a plurality
of data records created from the plurality of objects, and
cach of the plurality of data records may comprise an entry
in one or more relational databases. The data set may be
received by an application that 1s a part of a suite of
Enterprise Software Suite (ESS) applications, the data set
may be sent from a client system that 1s part of the ESS, and
the ESS may comprise a financial application, a human
resource application, and an access manager. The data
record may be referenced by a foreign key in each of the
plurality of parent data records. The data set may include
information related to an organization, contact information,
account information, and/or an address.

In another embodiment, a computer-readable memory
may be presented. Then computer-readable memory may
have stored thereon a sequence of instructions which, when
executed by one or more processors, causes the one or more
processors to create multi-parent relationships from single-
parent data. The instructions may cause the processor(s) to
receive a data set that includes a plurality of objects orga-
nized in a hierarchy. The nstructions may also cause the
processor(s) to parse the data set to locate at least two
objects 1n the plurality of objects. Each of the at least two
objects may be associated with an identifier. The instructions
may additionally cause the processor(s) to create a data
record to represent information associated with the at least
two objects. The data record may be associated with a
plurality of parent data records.

In yet another embodiment, a system may be presented.
The system may include one or more processors and a
memory communicatively coupled with and readable by the
one or more processors. The memory may have stored
therein a sequence of mstructions which, when executed by
the one or more processors, cause the one or more proces-
sors to create multi-parent relationships from single-parent
data. The 1structions may cause the processor(s) to receive
a data set that includes a plurality of objects organized 1n a
hierarchy. The mstructions may also cause the processor(s)
to parse the data set to locate at least two objects in the
plurality of objects. Each of the at least two objects may be
associated with an 1dentifier. The instructions may addition-
ally cause the processor(s) to create a data record to repre-
sent information associated with the at least two objects. The

data record may be associated with a plurality of parent data
records.

BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of
the present invention may be realized by reference to the
remaining portions ol the specification and the drawings,
wherein like reference numerals are used throughout the
several drawings to refer to similar components. In some
instances, a sub-label 1s associated with a reference numeral
to denote one of multiple similar components. When refer-

US 10,176,206 B2

3

ence 1s made to a reference numeral without specification to
an existing sub-label, it 1s 1mtended to refer to all such

multiple similar components.

FIG. 1 1llustrates a block diagram of components of an
exemplary operating environment in which various embodi-
ments of the present invention may be implemented.

FIG. 2 illustrates a block diagram of an exemplary com-
puter system 1n which embodiments of the present invention
may be implemented.

FIG. 3 illustrates a block diagram of a system for trans-
forming data hierarchies, according to one embodiment.

FIGS. 4A-4B illustrate representations of single-parent
hierarchies, according to one embodiment.

FIG. 5 illustrates the operation of a data conversion
engine, according to one embodiment.

FIG. 6 illustrates an interface for receiving hierarchical
data, according to one embodiment.

FI1G. 7 1llustrates an exemplary single-parent data repre-
sentation, according to one embodiment.

FIG. 8 illustrates a single-parent data representation
including identifiers, according to one embodiment.

FIG. 9 illustrates a transformed multi-parent set of data
records, according to one embodiment.

FIG. 10 illustrates a flowchart of a method of creating
multi-parent relationships from single-parent hierarchies,
according to one embodiment.

FIG. 11 illustrates a flowchart of another method of
creating multi-parent relationships from single-parent hier-
archies, according to one embodiment.

FIG. 12 illustrates a block diagram of a system for
transforming data hierarchies, according to one embodi-
ment.

DETAILED DESCRIPTION

In the following description, for the purposes ol expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of various embodiments
of the present invention. It will be apparent, however, to one
skilled 1n the art that embodiments of the present invention
may be practiced without some of these specific details. In
other 1nstances, well-known structures and devices are
shown 1n block diagram form.

The ensuing description provides exemplary embodi-
ments only, and 1s not itended to limit the scope, applica-
bility, or configuration of the disclosure. Rather, the ensuing
description of the exemplary embodiments will provide
those skilled in the art with an enabling description for
implementing an exemplary embodiment. It should be
understood that various changes may be made 1n the func-
tion and arrangement of elements without departing from the
spirit and scope of the invention as set forth 1n the appended
claims.

Specific details are given 1n the following description to
provide a thorough understanding of the embodiments.
However, 1t will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these
specific details. For example, circuits, systems, networks,
processes, and other components may be shown as compo-
nents 1 block diagram form in order not to obscure the
embodiments in unnecessary detail. In other instances, well-
known circuits, processes, algorithms, structures, and tech-
niques may be shown without unnecessary detail 1n order to
avoid obscuring the embodiments.

Also, 1t 1s noted that individual embodiments may be
described as a process which 1s depicted as a tflowchart, a
flow diagram, a data flow diagram, a structure diagram, or

10

15

20

25

30

35

40

45

50

55

60

65

4

a block diagram. Although a flowchart may describe the
operations as a sequential process, many of the operations
can be performed 1n parallel or concurrently. In addition, the
order of the operations may be re-arranged. A process 1s
terminated when 1ts operations are completed, but could
have additional steps not included 1n a figure. A process may
correspond to a method, a function, a procedure, a subrou-
tine, a subprogram, etc. When a process corresponds to a
function, 1ts termination can correspond to a return of the
function to the calling function or the main function.

The term “machine-readable medium” includes, but 1s not
limited to portable or fixed storage devices, optical storage
devices, wireless channels and wvarious other mediums
capable of storing, containing or carrying instruction(s)
and/or data. A code segment or machine-executable instruc-
tions may represent a procedure, a function, a subprogram,
a program, a routine, a subroutine, a module, a soltware
package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be
coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc., may be passed, forwarded, or trans-
mitted via any suitable means including memory sharing,
message passing, token passing, network transmission, etc.

Furthermore, embodiments may be implemented by hard-
ware, software, firmware, middleware, microcode, hardware
description languages, or any combination therecof. When
implemented in software, firmware, middleware or micro-
code, the program code or code segments to perform the
necessary tasks may be stored mn a machine readable
medium. A processor(s) may perform the necessary tasks.

Described herein are embodiments for processing data
sets with different formats. In some embodiments, an 1nput
data set may be provided in a format that does not support
multi-parent hierarchies. However, the data set may be better
represented using a multi-parent hierarchy than a single-
parent hierarchy. For example, an XML formatted file only
supports a single-parent hierarchy of objects. In other words,
it 1s not possible to embed a single object 1n multiple parent
objects 1n the XML file. The single-parent hierarchy data
sets are often received by a server, parsed, and then stored
as information in a format that does support multi-parent
hierarchies, such as a relational database. Prior to this
disclosure, an XML file received by a server from a client
system was simply parsed by the receiving server. Any
object found in the XML was automatically created as a data
record and stored i a relational database. This led to
duplication of data, as well as prolonged processing time.

The embodiments described herein can automatically or
manually 1nsert an 1dentifier into the single-parent hierarchy
for objects representing the same and/or similar data that
should result 1n a single data record in a multi-parent
hierarchy. A data conversion engine can then parse the
received data set, identily objects associated the i1dentifier,
and create fewer data records as a result. The resulting data
records may have multiple parents 1n the new hierarchy.

According to some embodiments, many benefits may be
achieved. First, data duplication may be reduced, and pay-
load s1ze may consequently become smaller. Second, multi-
parent hierarchies can be represented in data sets that
normally would not allow for such. For example, prior to
this disclosure, a client device would need to make multiple
web service calls 1n order to create a multi-parent hierarchy.
The first call would create one parent, such as a contact. The
second call would create a child object along with the second
parent, such as an account (second parent) and an account

US 10,176,206 B2

S

contact (chuld of both parents). The embodiments discussed
herein allow the client to create a multi-parent child i1n a
single call. For example, the contact, account, and account
contact could all be part of the single call.

Each of the embodiments disclosed herein may be imple-
mented 1n a computer system. FIG. 1 1s a block diagram
illustrating components of an exemplary operating environ-
ment 1n which various embodiments of the present invention
may be implemented. The system 100 can include one or
more user computers 105, 110, which may be used to operate
a client, whether a dedicated application, web browser, etc.
The user computers 105, 110 can be general purpose per-
sonal computers (including, merely by way of example,
personal computers and/or laptop computers running vari-
ous versions of Microsoit Corp.’s Windows and/or Apple
Corp.’s Macintosh operating systems) and/or workstation
computers running any of a variety of commercially-avail-
able UNIX or UNIX-like operating systems (including with-
out limitation, the variety of GNU/Linux operating systems).
These user computers 105, 110 may also have any of a
variety of applications, including one or more development
systems, database client and/or server applications, and web
browser applications. Alternatively, the user computers 103,
110 may be any other electronic device, such as a thin-client
computer, Internet-enabled mobile telephone, and/or per-
sonal digital assistant, capable of communicating via a
network (e.g., the network 115 described below) and/or
displaying and navigating web pages or other types of
clectronic documents. Although the exemplary system 100
1s shown with two user computers, any number of user
computers may be supported.

In some embodiments, the system 100 may also include
a network 115. The network may be any type ol network
familiar to those skilled in the art that can support data
communications using any of a variety of commercially-
available protocols, including without limitation TCP/IP,
SNA, IPX, AppleTalk, and the like. Merely by way of
example, the network 115 may be a local area network
(“LAN”), such as an FEthernet network, a Token-Ring net-
work and/or the like; a wide-area network; a virtual network,
including without limitation a virtual private network
(“VPN”); the Internet; an intranet; an extranet; a public
switched telephone network (“PSTN”); an infra-red net-
work; a wireless network (e.g., a network operating under
any of the IEEE 802.11 suite of protocols, the Bluetooth
protocol known 1n the art, and/or any other wireless proto-
col); and/or any combination of these and/or other networks
such as GSM, GPRS, EDGE, UMTS, 3G, 2.5 G, CDMA,
CDMA2000, WCDMA, EVDO efc.

The system may also include one or more server com-
puters 120, 125, 130 which can be general purpose com-
puters and/or specialized server computers (1ncluding,
merely by way of example, PC servers, UNIX servers,
mid-range servers, mainiframe computers rack-mounted
servers, etc.). One or more of the servers (e.g., 130) may be
dedicated to running applications, such as a business appli-
cation, a web server, application server, etc. Such servers
may be used to process requests from user computers 105,
110. The applications can also include any number of
applications for controlling access to resources of the servers
120, 125, 130.

The web server can be running an operating system
including any of those discussed above, as well as any
commercially-available server operating systems. The web
server can also run any of a variety of server applications
and/or mid-tier applications, including HITP servers, FTP
servers, CGl servers, database servers, Java servers, busi-

10

15

20

25

30

35

40

45

50

55

60

65

6

ness applications, and the like. The server(s) also may be one
or more computers which can be capable of executing
programs or scripts in response to the user computers 105,
110. As one example, a server may execute one or more web
applications. The web application may be implemented as
one or more scripts or programs written 1n any programming
language, such as Java™, C, C# or C++, and/or any scripting
language, such as Perl, Python, or TCL, as well as combi-
nations of any programming/scripting languages. The server
(s) may also include database servers, including without
limitation those commercially available from Oracle®,
Microsoft®, Sybase®, IBM® and the like, which can pro-
cess requests from database clients running on a user com-
puter 105, 110.

In some embodiments, an application server may create
web pages dynamically for displaying on an end-user (cli-
ent) system. The web pages created by the web application
server may be forwarded to a user computer 105 via a web
server. Similarly, the web server can receive web page
requests and/or mput data from a user computer and can
forward the web page requests and/or mput data to an
application and/or a database server. Those skilled in the art
will recognize that the functions described with respect to
various types of servers may be performed by a single server
and/or a plurality of specialized servers, depending on
implementation-specific needs and parameters.

The system 100 may also include one or more databases
135. The database(s) 135 may reside in a variety of loca-
tions. By way of example, a database 135 may reside on a
storage medium local to (and/or resident 1n) one or more of
the computers 105, 110, 115, 125, 130. Alternatively, 1t may
be remote from any or all of the computers 105, 110, 115,
125, 130, and/or in communication (e.g., via the network
120) with one or more of these. In a particular set of
embodiments, the database 1335 may reside 1n a storage-area
network (“SAN”) familiar to those skilled 1n the art. Simi-
larly, any necessary files for performing the functions attrib-

uted to the computers 105, 110, 115, 125, 130 may be stored

locally on the respective computer and/or remotely, as
appropriate. In one set of embodiments, the database 135

may be a relational database, such as Oracle 10g, that 1s
adapted to store, update, and retrieve data in response to
SQL-formatted commands.

FIG. 2 1llustrates an exemplary computer system 200, 1n
which various embodiments of the present invention may be
implemented. The system 200 may be used to implement
any of the computer systems described above. The computer
system 200 1s shown comprising hardware elements that
may be electrically coupled via a bus 2355. The hardware
clements may include one or more central processing units
(CPUs) 205, one or more input devices 210 (e.g., a mouse,
a keyboard, etc.), and one or more output devices 215 (e.g.,
a display device, a printer, etc.). The computer system 200
may also include one or more storage device 220. By way
of example, storage device(s) 220 may be disk drives,
optical storage devices, solid-state storage device such as a
random access memory (“RAM”) and/or a read-only
memory (“ROM”), which can be programmable, flash-
updateable and/or the like.

The computer system 200 may additionally include a
computer-readable storage media reader 2254, a communi-
cations system 230 (e.g., a modem, a network card (wireless
or wired), an infra-red communication device, etc.), and
working memory 240, which may include RAM and ROM

devices as described above. In some embodiments, the

US 10,176,206 B2

7

computer system 200 may also include a processing accel-
eration unit 2335, which can include a DSP, a special-purpose
processor and/or the like.

The computer-readable storage media reader 225a can
turther be connected to a computer-readable storage medium
225b, together (and, optionally, 1n combination with storage
device(s) 220) comprehensively representing remote, local,
fixed, and/or removable storage devices plus storage media
for temporarily and/or more permanently containing com-
puter-readable information. The communications system
230 may permit data to be exchanged with the network 220
and/or any other computer described above with respect to
the system 200.

The computer system 200 may also comprise soitware
clements, shown as being currently located within a working
memory 240, including an operating system 245 and/or
other code 250, such as an application program (which may
be a client application, web browser, mid-tier application,
RDBMS, etc.). It should be appreciated that alternate
embodiments of a computer system 200 may have numerous
variations from that described above. For example, custom-
1zed hardware might also be used and/or particular elements
might be mmplemented in hardware, software (including
portable software, such as applets), or both. Further, con-
nection to other computing devices such as network mmput/
output devices may be employed. Software of computer
system 200 may include code 250 for implementing embodi-
ments of the present invention as described herein.

Each of the methods described herein may be imple-
mented by a computer system, such as computer system 200
in FIG. 2. Each step of these methods may be executed
automatically by the computer system, and/or may be pro-
vided with 1nputs/outputs involving a user. For example, a
user may provide inputs for each step 1n a method, and each
of these mputs may be in response to a specific output
requesting such an input, wherein the output 1s generated by
the computer system. Each input may be received in
response to a corresponding requesting output. Furthermore,
inputs may be received from a user, from another computer
system as a data stream, retrieved from a memory location,
retrieved over a network, requested from a web service,
and/or the like. Likewise, outputs may be provided to a user,
to another computer system as a data stream, saved 1n a
memory location, sent over a network, provided to a web
service, and/or the like. In short, each step of the methods
described herein may be performed by a computer system,
and may imvolve any number of inputs, outputs, and/or
requests to and from the computer system which may or may
not mvolve a user. Therefore, 1t will be understood 1n light
of this disclosure, that each step and each method described
herein may be altered to include an input and output to and
from a user, or may be done automatically by a computer
system. Furthermore, some embodiments of each of the
methods described herein may be implemented as a set of
instructions stored on a tangible, non-transitory storage
medium to form a tangible software product.

FIG. 3 1llustrates a block diagram of a system 300 for
transforming data hierarchies, according to one embodi-
ment. Generally, the system 300 may include two computer
systems. Merely by way of example, a first computer system
may comprise an Enterprise Software System 310. The
Enterprise Software System 310 may include numerous
subsystems, such as a server 302 and a web service interface
304. The web service interface 304 may be provided to
supply data as well as receive data from other computer
systems. For example, a data set 306 may be provided to the
web service interface 304 and/or provided to another com-

10

15

20

25

30

35

40

45

50

55

60

65

8

puter system. In other embodiments, the Enterprise Software
System 310 may operate without the web service interface
304. The data set 306 provided to the web service interface
304 may be provided to the server 302 for storage and/or
data processing.

The second computer system may comprise a client
device 308. The client device 308 may include a personal
computer, a laptop computer, a server, a router, a gateway,
a notebook computer, a tablet computer, a smart phone, a
personal data assistant, a thin client, a workstation, and/or
any other type of computer system. In one embodiment, the
client device 308 may be part of a separate Enterprise
Software System. In another embodiment (not shown) the
client device 308 may be a computer system that 1s part of
the Enterprise Software System 310 of which the first
computer system 1s also a part.

The first computer system and the second computer
system, e.g. the server 302 and the client device 308, may
communicate with each other through a wired or wireless
connection, such as a local area network, a wide area
network, the Internet, and/or the like. In one embodiment,
the data set 306 may be formatted according to specifica-
tions provided by the web service interface 304.

In some embodiments, the client device 308 can provide
a data set 306 to the web service interface 304 that is
hierarchical 1n nature. Sometimes, the data set 306 may
comprise a single-parent hierarchy. FIGS. 4A-4B 1illustrate
representations of single-parent hierarchies, according to
one embodiment. Note that these examples are merely
exemplary, and are provided simply to enable one having
skill in the art to recognize what 1s meant by a “single-parent
hierarchy.”

FIG. 4A 1llustrates a nested hierarchy 400a of data where
chuld objects are encapsulated within the parent objects. For
example, object 402 may be referred to as a base, root, or
super parent object because each of the remaining objects
descends from object 402. Specifically, object 404 and
object 408 may be first-generation children of object 402.
Object 406 may be a child of object 404, while object 410
and object 405 may be children of object 408. Note that each
object can have at most one parent. In these types of data
structures, 1t may not be possible to define an object as
having multiple parents. For example, the nested hierarchy
4002 may represent a hierarchy created by a schema, such
as an XML schema document. Schemas are often created
textually or graphically, and are not typically allowed to
create multi-parent hierarchies based on syntax rules.

FIG. 4B 1illustrates a tree structure hierarchy 4005 that
may also be defined as a single-parent hierarchy. Each of the
objects 414, 416, 418, 420, 422, and 424 are arranged 1n a
hierarchy similar to the objects previously discussed in
relation to FIG. 4A. For example, object 414 1s the only
parent of object 416, which in turn 1s the only parent of
object 418. In this case, the tree structure hierarchy 4005
may have rules enforced by syntax or code structure that
allow only a single parent for each object.

These different representations of single-parent hierar-
chies have been discussed because they are often used to
format and represent data sets that are provided between
computer systems. Turning back briefly to FIG. 3, the client
device 308 can provide a data set 306 to the web service
interface 304 that 1s formatted using an XML document,
using an XML schema, using a tree structure, and/or any
other type of single-parent hierarchy. However, as will be
illustrated below, data may be duplicated within the data set
306 in different nested levels of the single-parent hierarchy.
When the data set 306 is received by the server 302, 1t may

US 10,176,206 B2

9

be desirable for the duplicated data to be represented with a
single data record. Therefore, embodiments discussed herein
provide a means for defining, detecting, processing, and
storing multi-parent data that 1s transmitted 1n the form of a
single-parent hierarchy.

FIG. 5 illustrates the operation of a data conversion
engine 514, according to one embodiment. The data con-
version engine 514 may be implemented using any combi-
nation of hardware and/or software, along with any of the
computer system components described above. The data
conversion engine 514 may operate as a part of a web
service interface, a server, and/or any other subsystem of a
computer system receiving a data set.

In this embodiment, the data provided to the data con-
version engine 1s 1 a single-parent format. For example,
object 502 1s the only parent of object 504 and object 508.
Object 504 1s the only parent of object 306. Object 508 1s the
only parent of object 510 and object 512. This single-parent
hierarchy may be enforced by a data specification provided
by a web service intertace.

In this particular example, object 506 and object 510 may
represent the same and/or similar data. However, in the
single-parent hierarchy, the data encapsulated within object
506 and object 510 1s duplicated within the single-parent
hierarchy. In order to signily that the information repre-
sented by object 506 and object 510 1s the same and/or
similar, an 1dentifier 530 may be included as a part of object
506 and object 510. In some embodiments, 1dentifier 530
need not be an existing database foreign key in table 520,
such as C1 and/or C2. Instead, identifier 530 may be a
non-persistent, in-memory value having a life that 1s extin-
guished after the web service request 1s processed. This
represents an upgrade over existing technologies that use
database foreign key values. The 1dentifier 530 may be any
piece ol information that can be identified by the data
conversion engine 514. For example, the identifier 530 may
include a flag, a data field, and attribute, a characteristic, a
name, a label, metadata, a data format, a data value, an
encryption key, a signature, and/or the like.

When receiving the single-parent hierarchy, the data con-
version engine 514 can parse the various object definitions
and create a data record for each data object. Data records
may be mmplemented by entries in a database. Relational
databases may represent a data hierarchy using foreign keys.
A foreign key 1s a value within a database table entry that
refers to another entry 1n in a different table. The database
table entry that refers to the other entry may be considered
the parent of the other entry.

In the example of FIG. 5, three tables within a relational
database have been created. Note that the three tables
illustrated by FIG. 5 include multiple foreign keys within
some of the table entries. This 1s merely exemplary, and
other representations may readily be used. For example,
instead of using multiple foreign keys in a single entry,
intersection tables could also be used to represent a multi-
parent hierarchy in a database. Table 316 includes data
records representing objects of type “A”. Table 518 includes
data records representing objects of type “B”. Table 520
includes data records representing objects of type “C”. The
data record representing “Object 07 includes two foreign
keys (B1 and B2) that reference data records representing,
“Object 1”7 and “Object 3” 1n a table 518. The data record

representing “Object 1”7 includes a foreign key (C1) that
references a data record representing “Object 27 1n table
520. Similarly, the data record representing “Object 37 1n

10

15

20

25

30

35

40

45

50

55

60

65

10

table 518 includes two foreign keys (C1 and C2) that
reference data records representing “Object 27 and “Object

5 1n table 520.

Note that there 1s no data record corresponding directly to
object 510 (“Object 47) 1n the original single-parent hierar-
chy. While parsing the single-parent hierarchy, the data
conversion engine 314 can recognize the identifier 330. The
data conversion engine 514 can then associate each of the
objects that include the identifier 530, and thereby can

ascertain that each of these objects represents the same
and/or similar data.

Some embodiments allow for objects associated with the
identifier 330 to be otherwise empty. Other embodiments
allow for objects associated with the identifier 530 to include
conflicting data definitions. Therefore, in some embodi-
ments the data conversion engine 314 may use the data
definition found in the first object that includes the 1dentifier
530. Other objects that include the identifier 530 may have
any existing data definition replaced by the first found
definition. In another embodiment, 11 multiple objects asso-
ciated with the identifier 530 include conflicting data defi-
nitions, then the data of each identified object may be
concatenated or otherwise combined together.

For example, object 506 may represent an address for a
person otherwise defined by a parent object. Object 5310 may
represent the same address. However, object 506 may omit
a city designation, and object 510 may omit a ZIP code. In
one embodiment, because both object 506 and object 510
include the identifier 530, the address definitions may be
combined together such that the resulting data record
includes both a city and a ZIP code. In another embodiment,
the first data definition found (object 506) may be used
exclusively, such that the resulting data record includes a
ZIP code without a city. In another embodiment, an error
message could be provided to the computer system provid-
ing the single-parent hierarchy informing a user or process
that the data associated with the identifier 530 1s not con-
sistent throughout the hierarchy. In yet another embodiment,
a voting scheme may be used to determine which of many
contlicting objects associated with the identifier 530 1is
correct. For example, 1f there are four objects associated
with the 1dentifier 530, and three of the objects have similar
data definitions, the remaining conflicting data definition
may be discarded and replaced with the data definition from
the other three agreeing objects.

After a single data definition 1s determined for all of the
objects associated with the identifier 530, a single data
record may be created to represent multiple objects. In the
example of FIG. 5, the data definition of object 506 can be
used to create a data record for “Object 2 1n table 520. Both
“Object 17 and “Object 3 1n table 518 reference “Object 27
in table 520. Therefore, both “Object 17 and “Object 3” may
be referred to as parents of “Object 2”. Consequently, the
data conversion engine 514 has taken single-parent data and
transformed 1t into multi-parent data using the identifier 530.

There are a number of different ways that the data
conversion engine 514 can transform single-parent data into
multi-parent data. In one embodiment, the data conversion
engine 514 can create an in-memory object representing the
information encapsulated within object 506 and object 510.
The mm-memory object need only persist while the single-
parent hierarchy is being analyzed. The in-memory object
can then be turned into a data record, and the in-memory
object can be discarded. Therefore, the 1n-memory object
need not persist between data postings to a web service
interface.

US 10,176,206 B2

11

What follows 1s a particular example of object definitions
in both a single-parent and a multi-parent environment. This
particular example uses a data entry interface to provide a

single-parent hierarchy of data to a web service interface.

After receiving the single-parent hierarchy, a data conver-

sion engine may create data records i a multi-parent
hierarchy. This particular example also uses an XML format
to represent data objects. Therefore, an XML “element” may
be referred to interchangeably as an “object” for purposes of
this example. The XML format may be converted to entries
in a relational database tables after being received by the
web service mterface. Therelore, a database table entry may
be referred to interchangeably as a “data record” for pur-
poses of this example. It will be understood that the formats,
data structures, and operations described 1n the example
below are not meant to be limiting. Many other formats may
be used depending on the particular embodiment, operating,
environment, and/or application.

Using the example of a web service interface, a client
system may provide a data entry interface by which data
may be entered and posted to a web service. FIG. 6 illus-
trates an 1nterface 600 for receiving hierarchical data,
according to one embodiment. In this particular example, the
interface 600 can be used to register an organization with a
web service and provide contact information as well as
account information to the web service.

First, a user or representative of the organization may
provide organization information 602 using intertace 600. In
one data field, a name for the organization may be entered,
along with an address for the organmization. A particular
contact may be designated to represent the organization.
Therefore, a user may also enter information for a contact
person 604 using interface 600. Consequently, the user may
provide a contact name as well the contact address.

Here, the address for the contact person may be the same
as the address of the organization. The user may be given the
opportunity to enter in the address manually, or may be
provided with a drop down menu or other means of selecting,
a previously entered address. In this embodiment, a check-
box 610 1s provided to indicate that the contact person
address 1s the same as the orgamization address. Therelore,
the interface 600 may provide a means by which a user can
indicate that data should be duplicated within the data input.
When organized as a single-parent hierarchy for delivery to
the web service, duplicated data will often be parsed by the
data conversion engine previously described to form multi-
parent data records.

Continuing with this example, the user may enter account
information to be associated with the organization using
interface 600. In this case, the account number, an account
name, and an account contact may be received. Again, a
checkbox 612 i1s provided to indicate that the account
contact 1s the same as the organization contact. In one
embodiment, all or some of the child data of the organization
contact can then be imported into an object representing the
account mformation. Thus, both the contact name (*Alex
Lifeson™) and the organization address (123 Peach St,
Cupertino, Calif. 94606”) may be duplicated within the
object representing the account information.

A button 614 or other mput may be provided that allows
the user to submit all of the input information as a single data
packet to the web service. The mterface 600 can take all of
the information and indications provided by the user and
create a single-parent hierarchy representation of the data. In
this particular example, a single-parent hierarchy may be
represented using an XML structure. Note that in other

10

15

20

25

30

35

40

45

50

55

60

65

12

embodiments, different structures, syntaxes, languages, and/
or formats may be used to represent a single-parent hierar-
chy.

FIG. 7 illustrates an exemplary single-parent data repre-
sentation, according to one embodiment. This particular
single-parent data representation 1s provided in the form of
an XML data file 700. The XML elements contained therein
may be derived from the information provided in interface
600 of FIG. 6. Theretfore, the contact information for “Alex
Liteson™ 1s provided 1n two separate locations. Similarly, the
address of the orgamization 1s provided in three separate
places, namely as a child of the organization, as a child of
the contact, and as a grandchild of the account.

In one embodiment, the iterface 600 of FIG. 6 may
extract the data from each of the data entry fields of the
interface 600 and package the information 1n a data set using
XML syntax. In one embodiment, the interface 600 may
intelligently recognize duplicate data. This may be done by
comparing each of the data fields, or alternatively may be
accomplished using user provided indications, such as the
check boxes 610, 612 provided by the interface 600 that
indicate duplicate data.

After recogmzing duplicate data, the interface 600 may
insert an imdicator into each of the duplicate XML elements
indicating that they represent the same and/or similar data.
FIG. 8 1llustrates a single-parent data representation includ-
ing 1dentifiers, according to one embodiment. In this
example, an XML file 800 includes at least two difl

erent
types of duplicate data. Therefore, the interface 600 may
isert at least two different types of indicators. For example,
a “<LocationKey>" indicator may be used to denote an
address or location, while a “<ContactKey>"" indicator may
be used to denote a person or entity. Note that these
indicators are merely exemplary, and any XML eclement
could be used.

The indicators may be given a value that can be used to
denote the same and/or similar data for each type. For
example, “<LocationKey>"" indicators 802, 804 may be used
to 1ndicate an address element representing the same physi-
cal location, e.g. the organization address. Similarly, “<Con-
tactKey>" 1ndicators may be used to indicate a contact
clement representing the same person, ¢.g. the organization
contact and the account contact.

In one embodiment, the information provided to the
interface 600 may be included within each element desig-
nated by an indicator. In another embodiment, the informa-
tion provided to a representative one of the XML elements
may be recorded, while the remaining XML elements that
include the same indicator may be left empty. This may
provide for a smaller data set, that can reduce transmission
time through a network, as well as processing time at a
server. For example only the first definition of the addresses
and contacts 1n the XML file of FIG. 8 that are associated
with their respective 1dentifiers may need to include defini-
tion information. For example, Only the first address ele-
ment includes street, city, state, and zip code elements, and
only the first contact element includes a name and address
clement. The address/contact elements that follow these
initial definitions can be left empty aside from the identifier.

FIG. 9 illustrates a transtformed multi-parent set of data
records, according to one embodiment. After the XML file
of FIG. 8 1s received by a web service interface, a server may
parse and process the XML file to create database table
entries therefrom. In this example, the name and phone
number of the “ACME Corp.” can be included 1n a table
entry for an organization table 902. As a part of this table

US 10,176,206 B2

13

entry, foreign keys may be used to point to child data records
in other database tables for the address, contact, and account
information.

Similarly, a contact record for “Alex Lifeson” may be
added to a contact table 906, and an account name and
number may be added to an account table 908. Note that
both the data record in the contact table 906 and the data
record 1n the account table 908 include a foreign key
pointing to other data records. The arrows 1in FI1G. 9 are used
to 1llustrate the multi-parent representation of the data stored
within the various database tables. For example, the entry in
the contact table 906 1s a child record of both the organi-
zation and the account. Similarly, the entry in the address
table 904 1s a child record of both the contact and the
organization.

In one embodiment, a data conversion engine may operate
on the recerving server to parse the XML file format and
create database table entries. The data conversion engine
may be configured to recognize a specific type of XML
clement that can be used as an 1dentifier. For example, the
data conversion engine may recognize the “<ContactKey>"
clement as an indicator for a contact. In one embodiment,
cach database table may be associated with a unique XML
clement that may be used as an 1ndicator for duplicate data
to be stored within that table.

It 1s worth noting what would happen to the data repre-
sentation 1n the database without using indicators. If the
XML file in FIG. 7 were simply parsed and each element
were stored 1n a database table, the address table 904 would
include three distinct entries, each of which would have the
represent the same or similar information. Similarly, the
contacts table 906 would include two entries for “Alex
Liteson”. The foreign key in the organization table 902
pointing to an address would be different than the foreign
key 1n the contact table 906 pointing to an address. There-
fore, the single-parent representation of data found in the
XML file would be translated 1nto a single-parent represen-
tation of data in the database tables. In large databases that
accept data entry from multiple sources, duplicated data may
result 1n a loss of storage space and data dependencies that
are not easily resolved.

FIG. 10 illustrates a flowchart 1000 of a method of
creating multi-parent relationships from single-parent hier-
archies, according to one embodiment. The method may
include receiving a data set that includes a plurality of
objects organized 1n a hierarchy (1002). The data set may be
received by a first computer system from a second computer
system. The first computer system may comprise a server
and/or a web service interface. The second computer system
may comprise a client system. In one embodiment, the
hierarchy may be a single-parent hierarchy. In one embodi-
ment, the hierarchy may be capable of supporting multi-
parent hierarchies, yet the data 1s organized 1s a single-parent
hierarchy comprising duplicate data. The data set may be
represented by an XML-formatted file.

The method may also include parsing the data set to locate
at least two objects 1n the plurality of objects (1004). Each
of the least two objects can be associated with an 1dentifier.
A data conversion engine can begin scanning an input
file/stream that includes the data set until i1t finds what can
be 1dentified as an i1dentifier. At that point, the data conver-
s10n engine can continue scanning the mput file/stream until
it discovers at least one more object associated with the same
identifier. In one embodiment, the data conversion engine
can scan the entire input file/stream to 1dentily every object
associated with the i1dentifier. It will be understood that the
data set can include different types of 1dentifiers that can be

5

10

15

20

25

30

35

40

45

50

55

60

65

14

used to group different classes of objects. In one embodi-
ment, a same 1dentifier tag may be used with diflerent values
to group different objects. For example, the XML tag
<LocationKey> may be associated with two ditferent values,
such as “LOCO001” and “LOCO002”, which can be interpreted
as different i1dentifiers.

The method may additionally include creating a data
record to represent information associated with the at least
two objects (1006). The information associated with the at
least two objects may comprise a composite set of informa-
tion extracted from one or more of the at least two objects.
All of the information may come from one object, and may
thus exclude any information represented by any of the other
objects. Alternatively, the information may represent an
intersection of information represented by the individual
objects or, the information may represent a union of infor-
mation represented by the individual objects.

The data record may have multiple parent data records.
The multiple parent data records may be associated with
parent objects of each of the at least two objects. Like the
information represented by the data record, the multiple
parent data records may comprise a union, an intersection, or
any other type of combination of parent objects associated
with the at least two objects.

FIG. 11 illustrates a flowchart 1100 of another method of
creating multi-parent relationships from single-parent hier-
archies, according to one embodiment. The method may
include receirving a data set that includes a plurality of
objects orgamized 1n a hierarchy (1102). The data set may be
received by a first computer system from a second computer
system. The {irst computer system may comprise a server
and/or a web service mterface. The second computer system
may comprise a client system. In one embodiment, the
hierarchy may be a single-parent hierarchy. In one embodi-
ment, the hierarchy may be capable of supporting multi-
parent hierarchies, yet the data 1s organized 1s a single-parent
hierarchy comprising duplicate data.

The data set may include a first object and the second
object. The second object may be associated with an 1den-
tifier and may also be the child of the first object according
to the hierarchy. The data set may also include a third object
and a fourth object. The fourth object may also be associated
with the identifier, and the fourth object may be a child of the
third object according to the hierarchy. In one embodiment,
the fourth object need not include a data definition. The
fourth object may be empty except for the i1dentifier. The
fourth object may also include a data definition that is
different from the second object. The fourth object may also
include a data definition that 1s the same as the second
object. In some embodiments, the data set may represent a
payload being transmitted between a client device and a web
service interface. In some embodiments, the data set may be
organized according to an XML format, and may comprise
an XML file.

In one embodiment, the identifier may comprise an XML
clement. The 1dentifier may comprise an attribute/value pair,
such as an XML element and an enclosed value. The
identifier may also comprise an attribute. In another embodi-
ment, metadata associated with the data set may include the
identifier associations.

The method may also include ascertaiming, based on the
identifier, that the second object and the fourth object
represent the same information (not shown). Ascertaiming,
that these objects represent the same information may be
accomplished by matching the data instances that have a
common identifier. Note that the second object and the
fourth object can represent the same information, yet still

US 10,176,206 B2

15

include different data definitions. In the example used above,
an address associated with the second object may exclude a
city, while an address associated with the fourth object may
exclude a ZIP code. In another example, both addresses
could be completely diflerent. In this case, the data conver-
sion engine can select one of the two objects (addresses) to
use for both objects 1n a corresponding data record.

The method may further include creating a second data
record for the second data object (1104). In one embodi-
ment, the second data record may comprise an entry n a
table 1n a relational database. The relational database may
include references to other tables, entries, and/or databases.
The second data record may be based on information
associated with the second object 1n the hierarchy.

The method may additionally include creating a first data
record from the first object (1106). In one embodiment, the
first data record may reference the second data record as a
chuld record. This reference may be implemented using a
foreign key 1n a table 1n a relational database that references
another table, entry, and/or database.

Additionally, the method may include creating a third data
record from the third object (1108). In one embodiment, the
third data record may also reference the second data record
as a child record. In some embodiments, the fourth object 1n
the hierarchy need not have a corresponding data record
created. Instead, the third data record may reference the
second data record as a child because both the second object
and the fourth object 1n were associated with the i1dentifier.
In some embodiments, the identifier may be associated with
an mm-memory object that need not persist between hierar-
chical data sets that are received. In some embodiments, the
data conversion engine may prevent a fourth data record
from being created from the fourth object.

It should be appreciated that the specific steps illustrated
in FI1G. 11 provide particular methods of converting data sets
according to various embodiments of the present invention.
Other sequences of steps may also be performed according
to alternative embodiments. For example, alternative
embodiments of the present invention may perform the steps
outlined above 1n a different order. Moreover, the individual
steps illustrated 1n FIG. 11 may include multiple sub-steps
that may be performed 1n various sequences as appropriate
to the individual step. Furthermore, additional steps may be
added or removed depending on the particular applications.
One of ordinary skill in the art would recognize many
variations, modifications, and alternatives.

Each of the methods, systems, and/or products disclosed
herein may be implemented 1n a general purpose computer
system, such as computer system 200 in FIG. 2. Alterna-
tively, each of the methods, systems, and/or products dis-
closed herein may also be implemented using dedicated
hardware and/or software. In one embodiment, both the first
computer system and the second computer system that
receive and send data sets may each be implemented using,
dedicated hardware comprised of digital and analog elec-
tronic circuits that are known 1n the art. FIG. 12 illustrates
a block diagram 1200 of a system {for transforming data
hierarchies, according to one embodiment. Each of the
modules depicted in FIG. 12 may be implemented using
physical hardware that may or may not include general
purpose processors. An exhaustive list of the transistor,
diodes, memory elements, and/or other digital.analog circuit
clements that could be used to implement these functions
would be well known to one having skill in the art.

A client device 1202 may include an input port 1208 that
1s configured to receive an mput from a user or from another
computer process. The input port 1208 may be implemented

10

15

20

25

30

35

40

45

50

55

60

65

16

using a wireless interface or a mechanical connection to a
network. The client device 1202 may include an input
processor 1206 that 1s configured to process an mput from a
user. The mput processor 1206 may be incremented using
digital circuitry and may cause the display device to present
a user interface through which mmput prompts can be pro-
vided.

The client device 1202 may also include a data packaging
engine 1212 that i1s configured to receive inputs from the
input processor 1206 and package them into a single-parent
hierarchy that may include duplicate data. In one embodi-
ment, the data packaging engine 1212 may automatically
parse the input data and replace and/or augment duplicate
data with an identifier signifying multi-parent relationships
that are not implemented in the single-parent hierarchy. The
data packaging engine 1212 can provide a data set 1214 to
a network interface 1210. The network interface 1210 may
be connected to a network via a wireless or wired connec-
tion.

At another endpoint of the network, a server 1204 may
also be equipped with a second network interface 1216 and
communicatively coupled to the network interface 1210 of
the client device 1202. Through the second network inter-
face 1216, the data set 1214 may be received and sent to a
web service mterface 1218. The web service interface may
be configured to present a standard interface for interacting
with client devices. The web service interface may specily
the format of the data set 1214. The web service interface
1218 can send the data set 1214 to a data conversion engine
1222. The data conversion engine 1222 can parse the data set
using a microprocessor, microcontroller, and/or the like.

A temporary memory 1220 may be used to store inter-
mediate data, such as information associated with an 1den-
tifier, referred to elsewhere herein as an 1n-memory object.
The temporary memory 1220 may be implemented using
any hardware device such as a RAM, a ROM, a flash
memory, an EEPROM, and/or any other physical memory
device. The data conversion engine 1222 can create 1ndi-
vidual data records for objects found in the data set 1214 and
can send the data records to a data storage database 1224 that
1s configured to store the types of mmformation embodied by
the data set 1214.

It will be understood that this hardware implementation
illustrated by FIG. 12 1s merely exemplary. Other types of
hardware devices can be used to implement a specialized
data processing system as described 1n this disclosure.

In one embodiment, the various modules and systems 1n
FIG. 12 may reside on separate computer systems. Alterna-
tively, multiple modules may be combined on the same or
similar computer systems. In addition, some modules may
be combined together into a single module performing the
functions of both individual modules. Similarly, a single
module may be split into multiple modules. It will be
understood 1n light of this disclosure that any arrangement of
the modules, as well as any implementation 1n both software
and hardware, may be used by various embodiments.

In the foregoing description, for the purposes of illustra-
tion, methods were described 1n a particular order. It should
be appreciated that 1n alternate embodiments, the methods
may be performed in a diflerent order than that described. It
should also be appreciated that the methods described above
may be performed by hardware components or may be
embodied in sequences ol machine-executable instructions,
which may be used to cause a machine, such as a general-
purpose or special-purpose processor or logic circuits pro-
grammed with the istructions to perform the methods.
These machine-executable 1nstructions may be stored on one

US 10,176,206 B2

17

or more machine readable mediums, such as CD-ROMs or
other type of optical disks, floppy diskettes, ROMs, RAMs,
EPROMs, EEPROMs, magnetic or optical cards, flash
memory, or other types of machine-readable mediums suit-
able for storing electronic instructions. Alternatively, the
methods may be performed by a combination of hardware
and software.

What 1s claimed 1s:

1. A non-transitory computer-readable memory compris-
ing 1instructions which, when executed by one or more
processors, cause the one or more processors to perform
operations comprising;:

receiving, through a web services interface, a web service

request that describes multiple objects that are each
associated with a common object that 1s also described
in the web service request, wherein the web service
request describes an object hierarchy in which each
particular object of the multiple objects 1s a parent to
the common object;

in response 1o receiving the web service request through

the web services interface, determining that the com-
mon object 1s associated with the multiple objects 1n the
web service request; and

in response to determining that the common object 1s

associated with the multiple objects in the web service

request, creating, 1n a database that does not yet contain

any record representing the common object:

a single common record that represents the common
object, and

multiple records that represent the multiple objects and
that refer to the single common record.

2. The non-transitory computer-readable medium of claim
1, wherein:

the single common record and the multiple records are

created in the database 1n response to receipt, through
the web services interface, of only one web service
request.

3. The non-transitory computer-readable medium of claim
1, wherein creating the multiple records in the database
COmMprises:

creating, in the database, records that contain a foreign

key that refers to the single common record.

4. The non-transitory computer-readable medium of claim
1, wherein creating the multiple records in the database
comprises creating, in the database:

a first record 1n a first database table that contains objects

of a first object type; and

a second record 1n a second database table that contains

objects of a second object type that diflers from the first
object type.

5. The non-transitory computer-readable medium of claim
1, wherein determining that the common object 1s associated
with the multiple objects 1n the web service request com-
Prises:

storing, 1n memory separate from the database, an 1den-

tifier that 1s associated with the common object within
the web service request;

determining that a first object of the multiple objects

specifies a reference to the identifier within the web
service request; and

determining that a second object of the multiple objects

also specifies a reference to the identifier within the
web service request.

6. The non-transitory computer-readable medium of claim
5, wherein the operations further comprise:

in response to completing processing of the web service

request, extinguishing the i1dentifier from the memory.

10

15

20

25

30

35

40

45

50

55

60

65

18

7. The non-transitory computer-readable medium of claim
6, wherein creating, in the database, the single common
record that represents the common object comprises:
creating the single common record in the memory during,
a web service’s analysis of the web service request;
copying the single common record from the memory nto
the database at a conclusion of the analysis; and
discarding the single common record from the memory
prior to receipt of a subsequent web service request

through the web services interface.

8. The non-transitory computer-readable medium of claim

5, wherein the operations further comprise:

in response to locating, within the web service request, a
first-occurring definition of the common object associ-
ated with the identifier, storing, n the memory, an
association between the first-occurring definition and
the 1dentifier.

9. The non-transitory computer-readable medium of claim

8, wherein the operations further comprise:
in response to locating, within the web service request, an
instance of the identifier that lacks the definition,
accessing the association between the definition and the
identifier previously stored 1n the memory to determine
a definition for a web service request-specified object
that 1s associated with the i1dentifier.
10. The non-transitory computer-readable medium of
claim 8, wherein the operations further comprise:
in response to locating, within the web service request, an
instance of the identifier that 1s associated with a
subsequent definition that differs from the first-occur-
ring definition, accessing the association between the
first-occurring definition and the i1dentifier previously
stored 1n the memory to determine a definition for a
web service request-specified object that 1s associated
with the identifier.
11. The non-transitory computer-readable medium of
claim 8, wherein the operations further comprise:
in response to locating, within the web service request, an
instance of the identifier that 1s associated with a
subsequent definition that contains data that the first-
occurring definition lacks, revising the definition pre-
viously associated with the identifier in the memory by
adding the data to the definition associated with the
identifier in the memory.
12. The non-transitory computer-readable medium of
claim 8, wherein the operations further comprise:
in response to locating, within the web service request,
instances of the identifier that are associated with
different definitions, revising the definition previously
associated with the identifier in the memory to be a
definition associated with a majority of instances of the
identifier within the web service request.
13. The non-transitory computer-readable medium of
claim 5, wherein the operations further comprise:
locating, within a document, multiple duplicate instances
of data that represent the common object; and
for each particular instance of the multiple duplicate
instances, adding the identifier to the particular instance
within the document.
14. The non-transitory computer-readable medium of
claim 5, wherein the operations further comprise:
generating a document that defines the common object
only once, associates a definition of the common object
with the 1dentifier, and refers to the identifier without
reciting the defimition 1 each particular object of the
multiple objects.

US 10,176,206 B2

19

15. The non-transitory computer-readable medium of
claim 1, wherein the operations further comprise:
in response to locating, in the web service request, a first
istance of a first markup language tag that 1s associ-
ated with a first value, creating, in a first database table
that stores records corresponding to the first markup
language tag, a first common object record that is
associated with the first value; and
in response to locating, in the web service request, a
second 1nstance of the first markup language tag that 1s
associated with a second value that differs from the first
value, creating, in the first database table, a second
common object record that 1s associated with the sec-
ond value.
16. The non-transitory computer-readable medium of
claim 15, wherein the operations further comprise:
in response to locating, 1 the web service request, an
istance of a second markup language tag that differs
from the first markup language tag and is associated
with a particular value, creating, 1n a second database
table that stores records corresponding to the second
markup language tag, a particular common object
record that 1s associated with the particular value.
17. The non-transitory computer-readable medium of
claim 16, wherein:
the first markup language tag 1dentifies, in the web service
request, common objects that are of a location object
class; and
the second markup language tag identifies, in the web
service request, common objects that are of a contact
object class.
18. A method of receiving web service requests that
reference common objects, the method comprising:
receiving, through a web services interface, a web service
request that describes multiple objects that are each
associated with a common object that 1s also described
in the web service request, wherein the web service
request describes an object hierarchy in which each
particular object of the multiple objects 1s a parent to
the common object;
in response to receiving the web service request through
the web services interface, determining that the com-
mon object 1s associated with the multiple objects 1n the

web service request; and

10

15

20

25

30

35

40

20

in response to determining that the common object 1s
associated with the multiple objects in the web service
request, creating, in a database that does not yet contain
any record representing the common object:
a single common record that represents the common
object, and
multiple records that represent the multiple objects and
that refer to the single common record.
19. A system comprising;:
one or more processors; and
one or more memories comprising instructions which,
when executed by the one or more processors, cause the
one or more processors to perform operations compris-
ng:
receiving, through a web services interface, a web
service request that describes multiple objects that
are each associated with a common object that 1s also
described 1n the web service request, wherein the
web service request describes an object hierarchy 1n
which each particular object of the multiple objects
1s a parent to the common object;
in response to receiving the web service request
through the web services interface, determining that
the common object 1s associated with the multiple
objects 1n the web service request; and
in response to determining that the common object 1s
associated with the multiple objects 1n the web
service request, creating, 1n a database that does not
yet contain any record representing the common
object:
a single common record that represents the common
object, and
multiple records that represent the multiple objects
and that refer to the single common record.
20. The non-transitory computer-readable medium of
claim 1, wherein:
the web service request comprises a plurality of entries,

wherein at least two of the plurality of entries sepa-
rately describe the common object.

G ex x = e

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 10,176,206 B2 Page 1 of 1
APPLICATION NO. : 14/855960

DATED : January 8, 2019

INVENTOR(S) : Mehta et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Drawings

On sheet 11 of 12, in FIG. 11, under Reference Numeral 1102, Line 1, delete “receving” and insert
-- rece1ving --, therefor.

In the Specitication
In Column 9, Line 8, delete “in 1in” and nsert -- in --, theretor.

In Column 12, Line 56, delete “Only” and insert -- only --, therefor.

In Column 15, Line 62, delete “digital.analog’ and nsert -- digital/analog --, therefor.

Signed and Sealed this
Ninth Day of March, 2021

Drew Hirshfeld
Performing the Functions and Duties of the

Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

