12 United States Patent

Bowden et al.

US010176113B2

US 10,176,113 B2
Jan. 8, 2019

(10) Patent No.:
45) Date of Patent:

(54) SCALABLE INDEXING

(71) Applicant: HEWLETT PACKARD
ENTERPRISE DEVELOPMENT LP,
Houston, TX (US)
(72) Inventors: Paul Bowden, Berlin, MA (US);
Arthur J. Beaverson, Boxborough,
MA (US)
(73) Assignee: HEWLETT PACKARD
ENTERPRISE DEVELOPMENT LP,
Houston, TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 489 days.
(21) Appl. No.: 14/519,722
(22) Filed: Oct. 21, 2014
(65) Prior Publication Data
US 2015/0039907 Al Feb. 5, 2015
Related U.S. Application Data
(63) Continuation of application No. 12/823.,452, filed on
Jun. 25, 2010, now Pat. No. 8,880,544, which 1s a
(Continued)
(51) Int. CL
GO6F 17/30 (2006.01)
GO6F 12/1045 (2016.01)
(Continued)
(52) U.S. CL
CpPC GO6F 12/1054 (2013.01); GOoF 12/0246
(2013.01); GO6F 12/0864 (2013.01);
(Continued)
(58) Field of Classification Search

CPC GO6F 12/1054; GO6F 12/0246; GO6F

12/0864; GO6F 12/0875; GO6F 12/1408;
(Continued)

Update with Fiash Poge 11

({1) Updats Kay
Scavaging Gperatlon Process

17 (2) Lookup Function: 112
\ f{key)=LBI
T3

Bucket Translation Table =

f
(3) Transtation Function:
- 1200 #{LB)=Physical - 121
Bucket Locatlen (11) Mark Cache
{10) uUpdate index Trdnslation Entry(s) a3 Read Only—

Tabla with New Locotions for
All Bucketz Moved
(5) |dentify Valid

Buckets in Block

Bucket Valid

Table
o

|
H6a-.. (6) Read Torget Bucket
fraom Flash and All Valid

Logk Aside

Read \Ifﬁb

(7} Updeie Record Entry in Buckel and Write Al HHT
Buckets from Flosh Block to Coche os Nodifled Entryfs)

(3} Write Updated Targel Bucket H7
and Multlpie Mecdified Buckets

//‘u‘nlld Entries

(10) Updata Bucket)[

Buckets from Flash Block

13 ”4\ 1 I - 23
e TR, (B) Read from Cache—] Cache
o
Sc:jugapgm;ﬁh {6) Cache (Flosh Buckats)

(12:} Mork Flash Block from Coche to Flosh \ff‘g //-21{.'
21 / {All Buckets) os s— + — i
\\ .El’a: ,_22,./ Free {Trim) b L ,__._,-_,_II . 72{&
Flash Eroae .L_ :
Block TP |
Ezihxﬂush . -\..' T PRI PR 'J"—E

Bucket t

J

(56) References Cited

U.S. PATENT DOCUMENTS

10/2000 Suarez et al.
6/2002 Fleming et al.

(Continued)

0,128,346 A
0,412,080 Bl

FOREIGN PATENT DOCUMENTS

1297623 A 5/2001
1617113 Al 5/2005

(Continued)

CN
CN

OTHER PUBLICATIONS

Apr. 4, 2014 Office Action i1n corresponding JP Application 2012-
517764 (English translation and first page).

(Continued)

Primary Examiner — Tyler Torgrimson

(74) Attorney, Agent, or Firm — Hewlett Packard
Enterprise Patent Department

(57) ABSTRACT

Method and apparatus for constructing an index that scales
to a large number of records and provides a high transaction
rate. New data structures and methods are provided to ensure
that an indexing algorithm performs 1n a way that 1s natural
(eflicient) to the algorithm, while a non-uniform access
memory device sees 10 (1input/output) tratlic that 1s eflicient
for the memory device. One data structure, a translation
table, 1s created that maps logical buckets as viewed by the
indexing algorithm to physical buckets on the memory
device. This mapping i1s such that write performance to
non-uniform access SSD and flash devices 1s enhanced.
Another data structure, an associative cache 1s used to
collect buckets and write them out sequentially to the
memory device as large sequential writes. Methods are used
to populate the cache with buckets (of records) that are
required by the indexing algorithm. Additional buckets may
be read from the memory device to cache during a demand
read, or by a scavenging process, to facilitate the generation

of free erase blocks.

30 Claims, 16 Drawing Sheets

125
Dlsplocement Hoahing
index Algorithm

7/

N

126

Empty Erase
Block Fifa — 129

High Woter

----- <= " Mark

Fully Assoclative
Block Cache

130
¢110110] {0000000] 10000000] [0110110] [1311111} [0110110

Random Demand Read l

0110110 0110110

| 0110110

US 10,176,113 B2

Page 2
Related U.S. Application Data 2009/0106486 A1 4/2009 Kim et al.

_ _ _ o 2009/0198902 Al 8/2009 Khmelnitsky et al.
continuation-in-part of application No. 12/823,922, 2009/0271402 Al 10/2009 Srinivasan et al.
filed on Jun. 235, 2010, now Pat. No. 8,478,799. 2010/0115175 A9 5/2010 Zhuang et al.

2010/0121865 Al 5/2010 Vaud et al.

(60) Provisional application No. 61/269,623, filed on Jun. 2010/0131480 Al 5/2010 Schneider

26. 2000 2010/0274772 Al 10/2010 Samuels
’ ' 20;1/0179219 A 7/2011 Ma et al.

(51) Int. CL. 2013/0227195 Al 8/2013 Beaverson et al.
GO6F 12/02 (2006.01) FOREIGN PATENT DOCUMENTS
GO6l 12/0864 (2016.01)

GO6F 12/0875 (2016.01) CN 101369240 A 2/2009
GOool 12/14 (2006.01) JP 2004213263 A 7/2004

(52) US. Cl JP 2007305122 A 11/2007

CPC ... GOGF 12/0875 (2013.01): GOGF 12/1408 . 200964586 A 3/2009
""" (‘)" WO 2009007251 A2 1/2009

(2013.01); GOGF 17/30097 (2013.01); GO6F
17/30949 (2013.01); GO6F 17/30952
(2013.01); GO6F 2212/2542 (2013.01); GO6F
2212/402 (2013.01); GO6F 2212/452
(2013.01); GO6F 2212/502 (2013.01); GO6F
2212/6032 (2013.04); GO6F 2212/7211
(2013.01)

(58) Field of Classification Search
CPC GO6F 17/30097;, GO6F 17/30949; GO6F
17/30952; GO6F 2212/6032; GO6F
2212/2542; GO6F 2212/402; GO6F
2212/452; GO6F 2212/502; GO6F
221277211

See application file for complete search history.

L]

L]

(56) References Cited
U.S. PATENT DOCUMENTS

6,453,404 Bl 9/2002 Berezny1 et al.
6,912,645 B2 6/2005 Dorward et al.
7,062,490 B2 6/2006 Adya et al.
7,103,595 B2 9/2006 Anastasiadis et al.
7,139,781 B2 11/2006 Young
7,266,555 Bl 9/2007 Coates et al.
7,328,217 B2 2/2008 Borthakur et al.
7.454,592 B1 11/2008 Shah

7,509,473 B2 3/2009 Horn et al.
7,657,500 B2 2/2010 Shavit et al.
7,747,663 B2 6/2010 Atkin et al.
7,814,078 B1 10/2010 Forman
7,827,182 B1 11/2010 Panigrahy

7,870,122 B2 1/201L; Nath et al.
7,877,426 B2 1/2011 Grubbs et al.
8,028,106 B2 9/2011 Bondurant et al.

8,140,625 B2 3/2012 Dubnicki et al.
8,140,786 B2 3/2012 Bunte et al.
8,145,865 Bl 3/2012 Longinov et al.
8,195,636 B2 6/2012 Stager et al.
8,271,564 B2 9/2012 Dade
8,478,799 B2 7/2013 Beaverson et al.
8,560,503 B1 10/2013 McManis
8,583,657 B2 11/2013 Shukla
2002/0194209 A1 12/2002 Bolosky et al.
2004/0148306 Al 7/2004 Moulton et al.
2005/0108496 Al 5/2005 Elnozahy et al.
2005/0187898 Al 8/2005 Chazelle et al.
2006/0036898 Al 2/2006 Doering
2006/0265568 A1 11/2006 Burton
2006/0294163 Al 12/2006 Armangau et al.
2007/0094312 Al 4/2007 Sim-Tang
2007/0266059 A1 11/2007 Kitamura
2007/0277227 Al 11/2007 Brendel
2007/0300008 Al 11/2007 Rogers et al.
2008/0228691 Al 9/2008 Shavit et al.
2008/0270436 A1 10/2008 Fineberg
2009/0037456 Al 2/2009 Kirshenbaum
2009/0049335 Al 2/2009 Khatn et al.
2009/0067819 Al 3/2009 Tanaka et al.

OTHER PUBLICATTONS

Wu, Chin-Hsien, A Flash Translation Layer for Huge-Capacity

Flash Memory Storage Systems, Computer Systems and Applica-
tions, 2008, AICCSA 2008, IEEE/ACS International Conference

Apr. 4, 2008, p. 100-107.

Nov. 13, 2013 Oflice Action in corresponding CN 2010 80033622 4
(English translation).

Int’l. Search Report and Written Opinion dated Nov. 10, 2010 1n
related Int’l. Appln. No. PCT/US2010/039966.

Int’l. Search Report and Written Opinion dated Aug. 26, 2010 1n
related Int’l. Appln. No. PCT/US2010/040058.

Roh, H., et al. “An Efficient Hash Index Structure for Sold State
Disks,” Proceedings of 2008 Int’l Conf. on Information and Knowl-
edge Engineering IKE 2008, Las Vegas, NV pp. 256-261.

Gal E., et al. “Algorithms and Data Structurs for Flash Memories,”

ACM Computing Surveys, vol. 37, No. 2, Jun. 1, 2005, pp. 138-163,
XP-002453935.

Wu C., et al. (An Eflicient B-Tree Layer for Flash-Memory Storage
Systems, Real-Time and Embedded Computing Systems and Appli-

cations [Lecture Notes in Computer Science; LNCS], Springer—
Verlag, Berlin/Heidelberg, Apr. 8, 2004, pp. 409-430, XP019005407.

Quinlan, S. et al. “Vent1: a new approach to archival storage”
Proceedings of Fast, Conference on File and Storage Technologies,

Jan. 28, 2002, pp. 1-13, XP002385754.

Severance, et al., Distributed Linear Hashing and Parallel Projection
in Main Memory Databases, Proceedings of the 16th VLDB Con-
ference, Brisbane, Australia, 1990, retrieved on Sep. 16, 2014,
retrieved from the Internet <URL: http://waterfallmodelsucks.com/
dr-chuck/papers/1990/1990-vldb-16-charles-severance-main-menory-
databse.pdf>.

Dietztelbinger, et al. “Balanced allocation and dictionaries with
tightly packed constant size bins,” Theoretical Computer Science,
Amsterdam, NL, vol. 380, No. 1-2, May 16, 2007 (May 16, 2007),
pp. 47-68, XP022081106, ISSN: 3304-3975, DOI: 10.106/J.TCS.
2007.02.054.

USPTO PTAB Decision Denying Institution of Inter Partes Review
entered Mar. 22, 2017, Springpath, Inc. v. SimpliVity Corp., Case
IPR2016-01779, U.S. Pat. No. 8,478,799 B2.

USPTO PTAB Patent Owner’s Preliminary Response dated Dec. 27,
2016, Springpath, Inc. v. SimpliVity Corp., Case IPR2016-01779,
U.S. Pat. No. 8,478,799 B2 (Simpli1Vity Exhibits 2001-2009 listed
below).

Wikipedia: “Object Storage™ (available at https://en.wikipedia.org/
wiki/Object_storage) (last visited Dec. 6, 2016), SimpliVity Exhibit
2001, Springpath v. SimpliVity IPR2016-01779.

Webopedia: “Inode” (available at http://www.webopedia.com/TERM/
I/inode.html) (last visited Dec. 20, 2016), SimpliVity Exhibit 2002,
Springpath v. SimpliVity IPR2016-01779.

Presentation: “Object Storage technology,” Storage Networking
Industry Association, 2013 (available at http://www.snia.org/sites/
default/education/tutorials/2013/spring/file/BrentWelch_Object_
Storage_Technology.pdl) (last visited Dec. 22, 2016), SumpliVity
Exhibit 2003, Springpath v. SimpliVity IPR2016-01779.

US 10,176,113 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“Object Storage versus Block Storage: Understanding the Technol-
ogy Differences,” Aug. 14, 2014 (available at http://www.druva.
com/blog/object-storage-versus-block-storage-understanding-

technology-differences/) (last visited Dec. 22, 2016), SimpliVity
Exhibit 2004, Springpath v. SimpliVity IPR2016-01779.
“Understanding Object Storage and Block Storage use cases,” Jul.
20, 2015 (available at http://cloudacademy.com/blog/object-storage-
block-storage/) (last visited Dec. 22, 2016), SimpliVity Exhibit
2005, Springpath v. SimpliVity IPR2016-01779.

“OBFS: A File System for Object-based Storage Devices.” Feng, et
al., 2004, SimpliVity Exhibit 20006, Springpath v. SimpliVity IPR2016-
01779.

“QOasis: An active storage framework for object storage platform,”
Xie, et al., 2015, Simpl1Vity Exhibit 2007, Springpath v. SimpliVity
IPR2016-01779,

Wikipedia: “Namespace” (available at https://en.wikipedia.org/wiki/
Namespace) (last visited Dec. 6, 2016), SimpliVity Exhibit 2008,
Springpath v. SimpliVity IPR2016-01779.

Weopedia: “Namespace” (available at http://www.webopedia.com/
TERM/N/namespace.html) (last visited Dec. 20, 2016), SimpliVity
Exhibit 2009, Springpath v. SimpliVity IPR2016-01779.

USPTO PTAB Decision Denying Institution of Inter Partes Review
entered Mar. 22, 2017, Springpath, Inc. v. SimpliVity Corp., Case
IPR2016-01780, Patent 8,478,799 B2.

USPTO PTAB Patent Owner’s Preliminary Response dated Dec. 27,
2016, Springpath, Inc. v. SimpliVity Corp., Case IPR2016-01780,
U.S. Pat. No. 8,478,799 B2 (SimpliVity Exhibits 2001-2009 1den-
tical to IPR2016-01779 and previously submitted).

Petition for Inter Partes Review of U.S. Pat. No. 8,478,799 before
the USPTO Patent Trial and Appeal Board dated Sep. 14, 2016,
Case IPR2016-01779.

Declaration of Darrell D.E.Long, PhD. Regarding U.S. Pat. No.
8,478,799 dated Sep. 14, 2016, Case IPR2016-01779 (Springpath
Exhibit 1002).

LI, et al., Secure Untrusted Data Repository (SUNDR), OSDI "04:
6th Symposium on Operating Systems Design and Implementation,
pp. 122-136, USENIX Association (Springpath Exhibits 1003 &
1103).

Sandberg, et al., Design and Implementation of the Sun Network
Filesystem, Sun Microsystems, Mountain View, CA, (12 pp.)
(Springpath Exhibits 1004 & 1116).

US Patent and Trademark Oflice non-final Oflice Action dated Aug.
30, 2012 in U.S. Appl. No. 12/823,922 (Springpath Exhibits 1006
& 1106).

Response to USPTO non-final Office Action of Aug. 30, 2012 filed
Dec. 18, 2012 in U.S. Appl. No. 12/823,922 (Springpath Exhibits
1009 & 1109).

Quinlan, et al., Venti: a new approach to archival storage, Bell Labs,
Lucent Technologies, 1-13 pp (Springpath Exhibits 1008 & 1108).
US Patent and Trademark Oflice final Oflice Action dated Feb. 22,
2013 mn U.S. Appl. No. 12/823,922 (Springpath Exhibits 1010 &
1110).

Response to USPTO final Office Action of Feb. 22, 2013 filed May
8, 2013 m U.S. Appl. No. 12/823,922 (Springpath Exhibits 1012 &
1112).

Best, et al., How the Journaled File System handles the on-disk
layout, May 2000, IBM: developerWorks: Linux library/Open source
library Internet download Apr. 18, 2001; http://swgiwas001.sby.
ibm.com/developerworks/library/jfslayout/index 1.html (Springpath
Exhibits 1011 & 1111).

US Patent and Trademark Office Notice of Allowance dated May
29, 2013 mn U.S. Appl. No. 12/823,922 (Springpath Exhibits 1013
& 1113).

Petition for Inter Partes Review of U.S. Pat. No. 8,478,799 before
the USPTO Patent Trial and Appeal Board dated Sep. 14, 2016,
Case IPR2016-01780.

Declaration of Darrell D.E.Long, Ph.D. Regarding U.S. Pat. No.
8,478,799 dated Sep. 14, 2016, Case IPR2016-01780 (Springpath
Exhibit 1102).

IEEE The Open Group, 1003.1TM Standard for Information Tech-
nology—Portable Operating System Interface (POSIX (R)) System
Interfaces, Issue 6, IEEE Std 1003.1-2001, Approved Sep. 12, 2001
The Open Group (2 pp.) (Springpath Exhhibits 1014 & 1114).
IEEE The Open Group, 1003.1TM Standard for Information Tech-
nology—Portable Operating System Interface (POSIX (R)) Base
Definitions, Issue 6, IEEE Std 1003.1-2001, Approved Sep. 12,
2001 The Open Group (8 pp.) (Springpath Exhibits1015 & 1115).
Petition for Inter Partes Review of U.S. Pat. No. 8,478,799 filed
Aug. 11, 2017, case 9PR2017-0193:3, 92 pages, The citations from
P1R2017-01933 are submiuted herewith below.

Prosecution History of the U.S. Pat. No. 8,478,799, 576 pages.

U.S. Appl. No. 61/269,633, 32 pages.
Prashant Shenoy, “Declaration of Prashant Shenoy, PhD, Linder 37

C.F.R. § 1.68 in Support of Petition for Inter Partes Review of U.S.
Pat. No. 8,478,799”, dated Aug. 11, 2017, 196 pages.
“Curriculum Vitae of Dr. Prashant Shenoy”, 2017, 31 pages.
Athicha Muthitachamen, et al., “Ivy: A Read/Write Peer-to-Peer
File System.” Proceedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI ’02), Operating Sys-
tems Review, vol. 36, 1ssue SI (Winter 2002), 21 pages.

Frank Dabek, et al., “Wide-area cooperative storage with CFS,”
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), Operating Systems Review, vol. 35, No. 5
(Dec. 2001), pp. 1-19.

Nitin Agrawal, et al.., “Design Tradeoffs for SSD Performance,”
USENIX’08: 2008 USENIX Annual Technical Conference, Jun. 25,
2008, pp. 57-70.

Marshall Kirk McKusick, et al., “The Design and Implementation
of the FreeBSD Operating System”, FreeBSD version 5.2, CSCO-
1011, (2005), pp.1-43.

Josh Cates, “Robust and Eflicient Data Management for a Distrib-
uted Flash Table”, Jun. 2003, 64 pages.

Marice J. Bach, The Design of the UNIX Operating System (1986),
8 pages.

Prashant Shenouy, et al., “Symphony: An Integrated Multimedia
File System,” Proceedings of SPIE 3310, Multimedia Computing
and Networking 1998, pp. 124-138.

Garth Gibson, et al., “A Cost-Effective, High-Bandwidth Storage
Architecture,” Proceedings of the 8th Conference on Architectural
Support for Programming LLanguages and Operating Systems, 1998;
pp. 92-103.

Mike Mesnier, et al., “Object-Based Storage,” IEEE Communica-
tion Magazine, Aug. 2003, pp. 84-90.

R. Ruvest, “The MD35 Message-Digest Algorithm,” Request for
Comments 1321, Internet Engineering Task Force, CSCO-1017,
Apr. 1992, 21 pages.

Sean Quinlan, et al., “Venti: a new approach to archival storage,”
Proceedings of Fast 2002 Conference of File and Storage Tech-
nologies, Jan. 28-30, 2002, pp. 1-14.

Bruce Eckel, “C++ Inside & Out”, 1992, 6 pages.

Mendel Rosenblum, “The Design and Implementation of a Log
Logstructuredfile System”, Kluwer Academic Publishers, 1995, 3
pages.

Webster’S New World Computer Dictionary, 10th Ed. 2003, 3
pages.

Microsoit Computer Dictionary, 5th Ed., 2002, 7 pages.

“AMD Athlon Processor”, ADM Technical Brief, Publication #
22054, Rev. D, Issue date Dec. 1999, 10 pages.

Stevens, et al., “The first collision for full SHA-1,” international
Association for Cryptology Research 2017, pp. 570-596.

Andrew S. Tanenbaum, “Modern Operating Systems”, 2d Ed.,
2001, 7 pages.

Alan Freedman, “Computer Desktop Encyclopedia 9th Ed”, Osborne/
McGraw-Hill, 2001, 7 pages.

Sang-Won Lee, et al., “A Case for Hash Memory SSD 1n Enterprise
Database Applications,” Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, Jun. 9-12, 2008,
pp. 1075-1086.

Bruce Schneier, “Applied Cryptography, 2d Ed, Protocol, Algo-
rithms, and Source Code in C”, John Wiley & Sons, Inc., 1996, 4

pages.

US 10,176,113 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Martin Piacek, “Storage Exchange: A Global Platform for Trading
Distributed Storage Services,” Master of Engineering Science The-
sis, The University of Melbourne, Australia, Jul. 2006, 185 pages.
Ragib Hasan, et al., “A Survey of Peer-to-Peer Storage Techniques
for Distributed File Systems,” International Conference on Infor-
mation Technology: Coding and Computing, 2005, 9 pages.
“Frequently Asked Questions for FreeBSD 2.X, 3.X and 4.X”,
unknown date, 8 pages,. Archived at https://web.archive.org/web/
20020404064 240/http://www.ireebsd.org:80/doc/en_US.ISO8859-
1/books/faq/install.html.

“Preliminary Information, AMD Athion, Processor Module Data
Sheet”, AMD Athlon, Publication #21016, Rev. M, 1ssue Date:Jun.
2000, 74 pages.

AMD Athion™, “Processor Quick Reference FAQ”, Feb. 3. 2000,
12 pages.

“MARC Record Information for Operating Systems Review”—
Proceedings of the Fifth ACM Symposium on Operating Systems
Design and mmplementation (OSDI’02), available at the WRLC
online catalog, accessed Jul. 20. 2017, 3 pages.

“Bibliographic Record Information for Operating Systems Review”—
Proceedings of the Fifth ACM Symposium on Operating Systems
Design and Implementation (OSDI’02), Dec. 9-11, 2002, available
at the WRLC online catalog, accessed Jul. 20, 2017, 2 pages.
“MARC Record Information for Operating Systems Review”—
Proceedings of the 18th ACM Symposium on Operating Systems
Principies (SOSP’01), 2001, available at the online catalog of the
Library of Congress, accessed Jul. 31, 2017, 3 pages.
“Bibliographic Record information for Operating Systems Review’
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), 2001, available at the online catalog of the
Library of Congress, accessed Jul. 31, 2017, 3 pages.

“Operating Systems Review”—Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP’01), vol. 35, No. 5,
pp. 202-215, Oct. 21-24, 2001, obtained from a CD-ROM from
Auburn University, 11 pages.

“MARC Record Information for Operating Systems Review”—
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), Oct. 21-24, 2001, CD-ROM, available at the

Auburn University Library online catalog, accessed Jul. 28, 2017, 1
page.

“Bibliographic: Record information for Operating Systems Review’
Proceedings of the 18th ACM Symposium on Operating Systems
Prindpies (SOSP’01) CD-ROM, Oct. 21-24, 2001, available at the
Auburn University Library online catalog, accessed Jul. 28, 2017, 1
pages.

“Scan of CD-ROM and CD-ROM Case, Operating Systems Review”
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), Oct. 21-24, 2001, CD-ROM obtained from
the Auburn University Library, 1 page.

Byung-Gon Chun, at al., “Eflicient Replica Maintenance for Dis-
tributed Storage Systems,” USENIX Association, Proceedings of
NSDI ’06: 3rd Symposium on Networked Systems Design &
Implementation, 2006, pp. 45-58.

Dabek., F., et al., “Wide-area cooperative storage with CFS,”
Operating Systems Review—Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP’01), vol. 35, No. 35,
2001, pp. 202-215.

Ingrid Hsieh-Yee, “Declaration of Ingrid Hsieh-Yee, PhD, Under 37
C.F.R. § 1.68 in Support of Petition for Inter Partes Review of U.S.
Pat. No. 8,478,799”, dated Aug. 10, 2017, 77 pages.

Michele Nelson, “Declaration dated Aug. 9, 2017, of Michele
Nelson, Under 37 C.F.R. § 1.68”, dated Aug. 9, 2017, 92 pages.
David Bader, “Declaration of David Bader, Under 37 C.FR. §
1.68”, dated Aug. 10, 2017, 31 pages.

MARC Record Information, “The Design and Implementation of
the FreeBSD Operating System”, 2005, 2 pages, available at the
online catalog of the Library of Congress, accessed Aug. 3, 2017.

>

>

Bibliographic Record information, “The Design and Implementa-
tion of the FreeBSD Operating System”, 2005, 2 pages, available at

the online catalog of the Library of Congress, accessed Aug. 3,
2011.

Marshall Kirk McKusick, et al,, “The Design and Implementation
of the FreeBSD Operating System™, FreeBSD version 5.2, 2005, 32

pages, obtained from the George Mason University Library.
MARC Record information, “The Design and Implementation of
the FreeBSD Operating System™ 2005, 2 pages, available at the
online catalog of the George Mason University Library, accessed
Aug. 3, 2017.

Bibliographic Record information for “The Design and Implemen-
tation of the FreeESD Operating System”, 2005, 2 pages, available
at the online catalog of the George Mason University Library,

accessed Aug. 3, 2017.
IBM, AIX 5L Version 5.2 General Programming Concepts: Writing

and Debugging Programs, 2004 (“GPC”) (SPRO0000788-
SPR0O0001403).

IBM AIX 5L Version 5.2 System Management Concepts: Operating

System and Devices, 2004 (*SMC”) (SPR00001404-SPR0O0001593).
Petition for Inter Partes Review of U.S. Pat. No. 8,478,799 filed
Aug. 11, 2017, case IPR2017-01933, 92 pages.

Prosecution History of the U.S. Pat. No. 8,478,799.

U.S. Appl. No. 61/269,633.

Declaration of Dr. Prashant Shenoy Under 37 C.FR. § 1.68,
Curriculum Vitae of Dr. Prashant Shenoy.

Athictia Muthitacharoen, et al., “Ivy: A Read/Write Peer-to-Peer
File System.” Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI ’02), Operating Sys-
tems Review, vol. 36, 1ssue SI (Winter 2002), 21 pages.

Frank Dabek, et al., “Wide-area cooperative storage with CFS,”
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), Operating Systems Review, vol. 35, No. 5
(Dec. 2001).

Nitin Agrawal, et al.., “Design Tradeoils for SSD Performance,”
USENIX’08: 2008 USENIX Annual Technical Conference (Jun. 235,
2008).

Marshall Kirk McKusick, et al., The Design and Implementation of
the FreeBSD Operating System (2005).

“Robust and Efficient Data Management for a Distributed Hash
Table” by Josh Cates (**Cates”), 2003.

Marice J. Bach, The Design of the UNIX Operating System (1986)

(selected pages).

Prashant Shenoy, et al., “Symphony: An Integrated Multimedia File
System,” Proceedings of SPIE 3310, Multimedia Computing and
Networking 1998.

Garth Gibson, et al.,, “A Cost-Effective, High-Bandwidth Storage
Architecture,” Proceedings of the 8th Conference on Architectural
Support for Programming Languages and Operating Systems (1988).
Mike Mesnier, et al., “Object-Based Storage,” IEEE Communica-
tion Magazine (Aug. 2003).

R. Rivest, “The MD5 Message-Digest Algonthm,” Request for
Comments 1321, Internet Engineering Task Force (Apr. 1992).
Sean Quinlan, et al., “Venti: a new approach to archival storage,”
Proceedings of Fast 2002 Conference of File and Storage Tech-
nologies (2002).

Bruce Eckel, C++ Inside & Out (1992) (selected pages).

“Mendel Rosenblum, The Design and Implementation of a Log
Logstructuredfile System (1995) (selected pages).”

Webster’s New World Computer Dictionary, 10th Ed. (2003) (selected
pages).

Microsoit Computer Dictionary, 5th Ed. (2002) (selected pages).
AMD Athlon Processor Technical Brief, Rev. D (Dec. 1999).
Stevens, et al., “The first collision for full SHA-1,” Cryptology
ePrint Archive, Report 2017/190 (2017).

Andrew S. Tanenbaum, Modern Operating Systems, 2d Ed, (2001)
(selected pages).

Alan Freedman, Computer Desktop Encyclopedia, 9th Ed. (2001)
(selected pages).

Sang-Won Lee. et al., “A Case for Hash Memory SSD 1n Enterprise
Database Applications,” Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data (2008).

US 10,176,113 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Bruce Schneler, Applied Cryptography, 2d Ed. (1996) (selected

pages).
Martin Placek, “Storage Exchange: A Global Platform for Trading

Distributed Storage Services,” Master of Engineering Science The-
sis, The University of Melbourne (Jul. 2006).

Ragib Hasan, et al., “A Survey of Peer-to-Peer Storage Techniques
for Distributed File Systems,” International Conference on Infor-
mation Technology: Coding and Computing (2005).

Frequently Asked Questions for FreeBSD 2.X, 3. X and 4.X, archived
at http://web.archive.org/web/20020404064240/http://www.freebsd.
org:80/doc/en_US.ISO8859-1/books/fag/install.html.

AMD Athlon Processor Module Data Sheet, Rev. M (Jun. 2000).
AMD Athlon™ Processor Quick Reference FAQ (Feb. 3, 2000).

MARC Record Information for Operating Systems Review—
Proceedings of the Fifth ACM Symposium on Operating Systems
Design and Implementation (OSDI’02), available at the WRLC
online catalog, accessed Jul. 20, 2017.

Bibliographic Record Information for Operating Systems Review—
Proceedings of the Fifth ACM Symposium on Operating Systems
Design and mmplementation (OSDI’02), available at the WRLC
online catalog, accessed Jul. 20, 2017.

MARC Record Information for Operating Systems Review—
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSO’01), available at the online catalog of the Library
of Congress, accessed Jul. 31, 2017.

Bibliographic Record Information for Operating Systems Review—
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSO’01), available at the online catalog of the Library
of Congress, accessed Jul. 31, 2017.

Scans of Issue, Operating Systems Review—Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSO’01),
vol. 35, No. 5, pp. 202-215, obtained from a CD-ROM from Auburn
University.

MARC Record Information for Operating Systems Review—
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSO’01) CD-ROM, available at the Auburn University
Library online catalog, accessed Jul. 28, 2017.

Bibliographic Record information for Operating Systems Review—
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSO’01) CD-ROM, available at the Auburn University
Library online catalog, accessed Jul. 28. 2017.

Scan of CD-ROM and CD-ROM Case, Operating Systems Review—
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSO’01) CD-ROM obtained from the Auburn Univer-
sity Library.

Byung-Gon Chun, et al., “Eflicient Replica Maintenance for Dis-
tributed Storage Systems,” Proceedings of NSDI 06: 3rd Sympo-
sium on Networked Systems Design & Implementation (2006).
Scanned pages of Dabek, F., et al., 2001. “Wide-area cooperative
storage with CFS,” Operating Systems Review—Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSO’01),
vol. 35, No, 5, pp. 202-215, obtained from a CD-ROM from Auburn
University.

Declaration of Ingrid Hsieh-Yee, PhD Under 37 C.FR. § 1.68.
Declaration of Michele Nelson Under 37 C.F.R. § 1.68.
Declaration of David Bader Under 37 C.FR. § 1.68.

MARC Record information for the Design and Implementation of
the FreeBSD Operating System (2005), available at the online
catalog of the Library of Congress, accessed Aug. 3, 2017.
Bibliographic Record Information for the Design and Implementa-
tion of the FreeBSD Operating System (2005), available at the
online catalog of the Library of Congress, accessed Aug. 3, 2017.
Scanned pages of Marshall Kirk McKusick, et al., The Design and
Implementation of the FreeBSD Operating System (2005), obtained
from the George Mason University Library.

MARC Record Information for the Design and Implementation of
the FreeBSD Operating System (2005), available at the online
catalog of the George Mason University Library, accessed Aug. 3,
2017,

Bibliographic Record Information for the Design and Implementa-
tion of the FreeBSD Operating System (2005), available at the
online catalog of the George Mason University Library; accessed
Aug. 3, 2017.

Springpath Inc.’s Preliminary Invalidity Contentions, C.A. No.
4:15-cv-13345-TSH Document 101, filed Mar. 21, 2017 in the US
Disctrict Court for the District of Massachusetts and Exhibit Al,
listing references cited herein.

L1 et al., Secure Untrusted Data Repository (SUNDR), 2004
(“L1”)(SPRO0000113-PR0O000O0C0O128).

Sandberg et al., Design and implementation of the Sun network
filesystem, 1985 (“Sandberg”)(SPR0O0000129-SPR0O0000140).
Duinlan et al., Vent1: A New Approach to Archival Storage, 2002
(“Quinlan”)(SPR0O0000141-SPR0O0000154).

Best et al., JES Layout: How the Journaled File System Handles the
On-Disk Layout, 2000 (*Best”)(SPR0O0000155-SPR0O0000197).
Zhu et al, Avoiding the Disk Bottleneck in the Data Domain
Deduplication File System, 2008 (“Zhu”) (SPRO0000198-
SPR0O0000211).

Abd-El-Malek et al., Ursa Minor: Versatile Cluster-Based Storage,
2005 (“*Abd-El-Malek”)(SPR00000212-SPR00000225).
Bobbarjung et al., Improving Duplicate Elimination in Storage
Systems, 2006 (“*Bobbarjung”)(SPR0O0000226SPR00000248).
Cox et al., Pastiche: Making Backup Cheap and Easy, 2002
(“Cox”)(SPR0O0000249-SPR0O0000263).

Dabek et al., Wide-Area Cooperative Storage With CFS, 2001
(“Dabek’)(SPR0O0000264-SPR0O0000277).

Debnath et al., ChunkStash: Speeding up Inline Storage Deduplica-
tion Using Flash Memory, 2010 (*Debnath™) (SPR0O0000278-
SPR00000292).

Fu et al., Fast and Secure Distributed Read-Only File System, 2000
(“Fu 2000”)(SPR00000293-SPR0O0000308).

Fu et al., Fast and Secure Distributed Read-Only File System, 2002
(“Fu”)(SPRO0000309-SPR0O0000332).

Mesnier et al., Object-Based Storage, 2003 (“Mesnier”)(SPRO0000333-
SPR0O0000339).

Muthitacharoen et al., Ivy: A Read/Write Peer-to-Peer File System,

2002 (“*Muthitacharoen”)(SPR00000340-SPR0O0000353).

Rhea et al., Fast, Inexpensive Content-Addressed Storage in Foun-
dation, 2008 (*Rhea”)(SPRO0000354-SPRO0000367).

Richie et al., The UNIX Time-Sharing System, 1974
(“Richie”)(SPRO0000368-SPRO0C000378).

Levanoni et al., An On-the-Fly Reference-Counting Garbage Col-
lector for Java, 2001 (“Levanon1”)(SPR0O0000379- SPR00000445).
Boehm et al., Garbage Collection 1n an Uncooperative Environ-
ment, 1998 (“Boehm”)(SPR00000446-SPR00000462).

1003.1™ Standard for Information Technology—Portable Operat-
ing System Interface (POSIX®), System Interfaces, Issue 6, 2001
(“POSIX_S1_2001")SPR00000463-SPRO0000464).

Harel Paz, Efficient Memory Management for Servers, 2006
(“Paz”)(SPR0O0000465-SPR0O0000692).

Grembowski et al., Comparative Analysis of the Hardware Imple-
mentations of Hash Functions SHA-1 and SHA-512, 2002
(“Grembowski”)(SPR0O0000693-SPR0O0000707).

Chaves et al., Cost-Efticient SHA Hardware Accelerators, 2008
(“Chaves”)(SPR0O0000708-SPR0O0000717).

Hitz et al., File System Design for an NFS File Server Appliance,
1994 (“Hitz””)(SPRO0000718-SPR0O0000740).

Kawaguchi et al.,, A Flash-Memory Based File System, 1995
(“Kawaguchr”)(SPR0O0000741-SPR0O0000750).

You et al., Deep Store: An Archival Storage System Architecture,
2005 (*You”)(SPR0O0O000751-SPR0O0000762).

McKusick et al., A fast file system for UNIX, 1984
(“McKusick)}SPR0O0000763-SPR0O0000779).

The EMC Centera and TOWER Technology Advantage, 2002
(“Centera”)(SPR0O0000780-SPRO0000787).

Hutchinson et al., Logical vs. Physical File System Backup, 1999
(“Hutchinson”)(SPR00001594-1605).

Decision Denying Institution of Inter Partes Review, Case IPR2017-
01933, U.S. Pat. No. 8,478,799 B2, Mar. 16, 2018, pp. 1-18,
USPTO.

US 10,176,113 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

Defendant Springpath, Inc.’s Motion for Leave to File Supplemen-
tal Claim Construction Brief, Case 4:15-¢v-13345-TSH, Document
146, Oct. 17, 2017, pp. 1-5.

Defendant Springpath, Inc.’s Preliminary Claim Construction Brief
with Exhibits, Case 4:15-cv-13345-TSH, Document 129, Jul. 10,
2017, pp. 1-138.

Defendant Springpath, Inc.’s Reply Claim Construction Brief, Case
4:15-cv-13345-TSH, Document 133, Jul. 24, 2017, pp. 1-17.
Frank Dabek, “A Distributed Hash Table,” Sep. 2005, pp. 1-135,
Massachusetts Institute of Technology.

Hewlett Packard Enterprise Company’s Response to Springpath’s
Supplemental Claim Construction Brief, C.A. No. 4:15-cv-13345-
TSH, Oct. 30, 2017, pp. 1-5.

Joint Claim Construction arid Prehearing Statement, Case 4:15-cv-
13345-TSH, Document 136, Aug. 17, 2017, pp. 1-8.

Patent Owner’s Preliminary Response Pursuant to 37 CFR 42,107(a),
Case IPR2017-01933, U.S. Pat. No. 8,478,799, Dec. 21, 2017, pp.
1-47.

Petitioner’s Reply to Patent Owner’s Preliminary Response, Case
[PR2017-01933, U.S. Pat. No. 8,478,799, Feb. 28, 2018, pp. 1-17.
Simpl1Vity Corporation’s Markman Hearing Transcript, Case No.
15¢v13345-TSH, Aug. 16, 2017, pp. 1-119.

Simplivity Corporation’s Opening Claim Construction Brief, Case
4:15-cv-13345-TSH, Document 130, Jul. 10, 2017, pp. 1-21.
Simplivity Corporation’s Reply Claim Construction Brief, Case
4:15-cv-1334-TSH, Document 132, Jul. 24, 2017, pp. 1-23.
Usenix Association, “Proceedings of the First Symposmum on Networked
Systems Design and Implementation,” Mar. 2004, pp. 1-15, San
Francisco, CA, USA.

US 10,176,113 B2

Sheet 1 of 16

Jan. 8, 2019

U.S. Patent

\ ce
190Ny
Ysbi

Buib c._m>cum __

Gc

A0014

“_

8sDJ3 UysD|4

AN

¥ (wip) 8190107y, i

0} SMD}S
£ \\\Exo:m syopdn
|

| o¢
pisos001 oo

UHm poay
_~ 1z

syo0y | mmu.__._._z, 49014
S e A AN (02 yesut o1
8YoD) 0O} SAON
_— .
149
pesup ~ 8lopdn
07— < 51

uo1}p20 =(1g1)}
Uolloung uofpisubay

9l

1g=(Aax)
ruolyoung dnyoon

Gl

¥y

A3y 40} DID(

A9y MaN }Iosuj a}1)191bS 910pdn

vl

-

°lqD]
PHOA 8Xong

. 8l

9|qD) UOI}DI|SUDI] 19%oNng

N

Ll

A8y dnyooT

cl

g¢ 94

US 10,176,113 B2

90¢

SSa.ppy
}o)ong |po1sAyd ysoid
- (1AG) 21901 PIDA 1830Ng
&
~ soc —
E
e
7
&N
y—
—
g
o0
= £05" 2os o)y
= _ _
5101S 1Mong $S2.ppY SIoA (Aoy) X} =
papualx3 193ong |oo1sAyd yspi4 - ~ xopu| 3aong jooiboT
A.E.mv 2|qQD| UOIDISUD4] }9Mong
oo —

s24n3}onns 0ioQ

U.S. Patent

U.S. Patent Jan. 8, 2019 Sheet 3 of 16 US 10,176,113 B2

Data Structures

09
/ 5
Flash Bucket
Valid | Valid | .| Valid | Reverse BTT
Recordm FPointer

J10 ST

FIG. 2C

SLC NAND Flash Organization Example — Bucket,
Page, (Erase) Block, Device

315
NAND Flash Device | /

Erase Block 1

| . J16
| Page 1 4KBytes]

318 1KBytes 1KBytes | 347

\M *o¢ [Bucketg| |

l

| Page N 4KBytes

Page N

Erase Block M

[y

Page 1 4KBytes
1KBytes 1KBytes

[Buckemﬂl XX f BucketB]

w \NN

190Ny
- ysoi

US 10,176,113 B2

%2014

Uz Ew\
m / Qm.v/
3 oDy w07 _ysoly’ oy yaxong
N 54007 () yobup) poay (g)
&
= t buissed0.4
2) dnyoo (+)

4 4

o UuoIIR207 18xong
A
S o21sAyd=(1g71)}
o mw/ :uoljoung uofipisuns] ()
E 030Q £¥
- (p1029Y)

a}1e10s wimey (9)
| 4 4

87=(Aax);
uoyoung dnyoo (z)

3 4

U.S. Patent

,,,,, — W_ :@mntu Ysn| 4

4

21qD| UOIIDISUDI| }3%oNg

-

4

8S900.44
uonoisado dnyoon

US 10,176,113 B2

Ao p——
ysnj4 0} ayony wioyj
sianong payipoN aldij Ny

74 cc
. umxuﬂ
yso| 4

0014

ﬂ_ﬂ
(i)

8814 sD (s)jaxong
ysold oW (LL)

| \nm.m

ysoi4 wol 193ong

M 9sDI] YsSDy

.

Ic

1obip| ppay (S)

S9143U3 PIIDA

LC

\ 964

21901

1oxong 9bup) payopdn aium (8)
& .QN/ m
- A1yul psyipopy SO 3YoD)H 0} 8}JM PpuD
S 19)ong ojul Aiju3 pJodsy 1uesul (9)
\r | q6/4
3 o ey
— r . buisses0.44
— S}axong yso|d i
7 A 2307) oyond (G) pasu| ($)
| —9yony) wouy poay (/) _ —

ez \ﬁl /R 24
- AluQ ppay sb (s)Ayul _
m \mnooo 30N (0L) UOI1D207 18XoNg
. 08 I021sAYd=(187)}
®© :uoijoung uofjoijsunsl (¢)
= £/ _
-

1g71=(Aa%)}
2L

U.S. Patent

~:uofjoung dnyoo ANV_

74 e

¥4

yaxong 93opdn (6)

PRAOW si=xong IV
J0j SUOIIDOO0T MBN YiiM 2i1gD}
uofjpjsuolj xapu) eyopdn (6)

PIIOA 19ong

9|qD| UONID|SUDJ] }19MoNng

N

4

$S820.1d
uolypuadp yJesul

\NN

US 10,176,113 B2

8814 sD (shadong

93ong
Usol4
e — [wom
g6 -4 b Py — 9S04 yso|4
UsSD{4 0} ayon) wouy /
ww_ozm pallipo 8ldi}IN puo (wiay) \

(¥4

LC

2|qbL

axong }ebupj psiopdn 93

; mm/ 12%ong 3ebiol pajopdn a3 (8) 4SOL4 DN (11)
- A13u3 POIIPOW SO 54oD) 0} M pu b teE
o 19%ong ojul Aiu3j pioday 83181aq (9) ysol4 wo.y Jexong
M 956 /vomz }obuo| poay (g) \Qmm
= (s193ong yso(d)| wﬂww%mmw_ buissado.d S9LJUT PIIOA
72 5YoD9 | 91912q (v) 19)ong a1opdn (8)

ayon) wou poay (£) | _

ez N 5 PaAOW s3a3oNg Iy
a —AluQ poay sob (s¥u3 £6 10} SUOHDJ0T MBN UMm 8|qp]
= \mnuoo oW (OL) UoI13D207 19%oNg co_:GcE._. xepu| 93opdn (6)
P 00! Ip21sAyd=(1g1)} 066
»© :uoi3oung uonojsund] (g)
~ £6
-
187=(Aax%)}
76 :uondoungd dmyoon (Z)

U.S. Patent

Aay ays8leq (1) 6

PIIOA 18ond

a8{gDj] uolDisuUD.] 19Xong

i N

Ll

$S900.
uoiyosadp 8319|9Q

qic

\ cc
199ng
Usbld

US 10,176,113 B2

1
-
: . - . v, - - .
+
' - . r P T a7 oo, .
.
. . - - -
N Mobaon b - 1 F3 e
L e " iy bl ._.
47 - =
&L
[.o -
PR W e e Lt
[
il " Ly e T, X - - -

A901g

> - W N -
F
b - aad "t L) - -~ -t X
y = . nt M A *y
f

w—

.mm./ yso|4 0} mcor%o WOl
s}exong payipoN 8|dijiny puo

X ,J
(W) \\ 19

aspJg Yso|4

AN

. wm./ 193ong 3jebuo) uﬂcwa: a1m (8) mw.._o....“u _wov_.mw_w.«mm_mwm e
“ AJjuj payIpoly SD 3yop) 0} S}JIM PUuD | \ iahd w
S yong ojul Anu3 piodsy eyopdn (9) ysol4 woly jexong
M Qm.m//numm yebup] poay (g) \me £e
= (s1oxong ysol4) MEMM el buissado.d S81Jju3 P1DA S19DL
. ayoDN 409 (S) syopdn (v) }ong a3opdn (6) PIDA 19ong
_ —8YoDn) wWoly poay (/) | |
MN\ 9[/Nm. $C PRAON Siaxong IV
-~ AluQ poey so (s)Anu3j _ . 10} SUONRDOOT MaN ctﬁ S|qo]
m \wcuao }oW (0L) Uoi13p207 19¥ong corﬁcm# xapul 230pdn (6)
o 09 l2tshyd=(1g1) 065
‘ :uooung uolpisuol) (¢)
m £G _

1g71=(Aa%)}
:uopjoung dnjoo (z)

Aoy a1ppdn (1) 1o

cs

U.S. Patent

2i4D] UonNDISUDI] 1230nNg

N

£l

S§800.4
uolypaadp oyopdn

US 10,176,113 B2

)
* [— " | yedong
r qic {N 0\l m R sT.i W YsDid S~
L _) | _ - - - ,w | DRSNS | w ¥ooig
\ L . | — i . 9s0J3 yspiy
CH I.r J J: (wuy) 8014 ¢k /ENM AN
= 61t SR , so (S1Nong {Iv) ic
\& uhw\\ / UsDid 0} BYOIDD W04 ¥OoIE Ysoid oW (Z1)
A N s1a%ong PayipoN eidniny pup _ NOOig UsSDi{ Wod siaxdng
S it yovong 1ebuny pejopdn syum (6) B B AL it R
= | yosong 1860y posy (9) —pgyy
o (s)nu3 padipopy S0 ayon) 0} YOOI YsOyY iy SIENING W 12
= PIDA iy Q1M pup Jaxong ui Anu3 piosay ajopdn () e ocl /
O ! 9L~ posy SaL3u3 _PIIOA . _
M\ﬂu | Spisy 00T y ab song 81opdn (0L) aign] |
aNon X 15682014 8bDAD?
Ama v_mw..‘mﬂnw_mﬂumv aljod)) A@V % wuﬁmuj Q«vm #3018 Wi siaxong PIPA 39%0Nd
_+—ayon) woy ppay (g) oA Ajiuspi (G)
o7 ﬁ! /.m £ paroW SieNeNg IV
Auo posy so (s)iu3 L - gl 40} SUGCHIDOOT MSN UM 2{qD |
01/ \ ayoo) YW (11) UOIIDD0T 19MoNE mawm@mﬁ. xopuj @3opdn (01)
it 124 ipo1sAyd=(1g1)} DoZi
2.,, :uoioung uonoisuoiy ()
@0 £
= W‘ 2|QDi UONIDISUDI] 19Y%ong
.nJa ig1=Aan); | /
Zil ruoiyouny dmjoo (7)) /1
44 8502014 uonousdn HBuiboApog
@mﬁva: (1) T abog ysoi4 Upm 91opdn

U.S. Patent

US 10,176,113 B2

Sheet 9 of 16

Jan. 8, 2019

U.S. Patent

lotiotio] |

g4 9l

ot —

HON

wiiiit | {ouoiio] fooooooo] fooooooo] {otiorio]
A

et

J91DM YbIH

6zt —

asot Ayduay

8ayoDny) %o0ig
L - BANDIDOSSY A|Ing

O}4 ¥20i8

lotiotio] [oitoito] [0110110]

E

PDSY PUDWS(] WOPUD)Y

wiyyobly xapuj

74!

. Buiysoy jJuswsonidsi(

US 10,176,113 B2

922
[] uww\ -
& B T . ..) - _
" ~ozZ
= mw\ ew\ DIZ -
—
m 300|g 9sDJ3
O up uj} sppay
Z J81}13uspi Jee
umxvnﬂ _QU_UOJ ayonH e ;/ ST — { 883201} @@C@)OQW
- \Aﬂ paxapul A A __
m £C y G
< _ -
= .
o~
—

- - 2z

“uj poay syxoNg

Januepl 1aMong 021607

U.S. Patent

US 10,176,113 B2

96

Sheet 11 of 16

Jan. 8, 2019

¢ (74

D10 boy

ayoD)

U.S. Patent

G6 6

§890044 ©DbusADOG

\uw
3901 P!IPA
yoxoNg

s}aMong
IpoIsAygd

U.S. Patent Jan. 8, 2019 Sheet 12 of 16 US 10,176,113 B2

- 201
Dictionary of Records. Records

Can be Inserted, Deleted,
lL.ooked Up and Modified.

204
/

Interface is Lookup,
Delete, insert,
203 Modify a record

Indexing Algorithm. Implements
the Dictionary. Multipie Algorithms
Could be Used. Cuckoo Hashing

Would be One Exaomple.

index Persistence Layer. Indexing 205
Algorithms View of How Keys Are
Stored. A Logical View. Assumes
Uniform Access with Respect to
Size, Alignment and Timing.
Mutable Storage.

206
//

o I — - Logical Bucket
Operations

| Flash Adaptation Layer. Adapts the 207 (Read/Write a Bucket).

View and 10 Usage Profile Desired
by the Indexing Algorithm, to the

View Naturally Desired by the 208
Physical Media (FLASH in this //
example). Physical Bucket Operations

(Random Read, Aggregated
Writes, Trim Commands).
At this Level We're Modeling

R e - Non—uniform Access
Device Management. Tracks ond of Buckets.

Coordinates Resources on the 2089
210

Physical Device
Physical Device Operations.
Random Reads, Large

Pruiinirirreg,

Ph}’SiCGl Device (FLASH)‘ Characterized Block Sequentiql Writes,
by its Non—Uniform Read, Write ond Trim Commands.
iImmutability with Respect to Size,
Alignment and Timing. Examples 211
Include Raw FLASH, an SSD, or FLASH
with o "Flash File System” on it. \
202

200 /

FIG. 9

U.S. Patent Jan. 8, 2019 Sheet 13 of 16 US 10,176,113 B2

140 Record Format

™\

Fingerprint| # Refs | PBA | Flags | Misc

141 142 143~ 144 145

FIG. 10

150 Buckets

™\

T T 2 3 % B ® X
BL'_“—JLB—'—'_;LS_—JBL———J
0 1 2 S

FIG. 12

160 Bucket Format
\
161° 162 163

FIG. 13

U.S. Patent Jan. 8, 2019 Sheet 14 of 16 US 10,176,113 B2

Displacement Hashing (Cuckoo Hashing)

M M0

P 2 S

FIG. T1A

FIG. 11C

Ho (R) Hy(R)
R 1 2

FIG. 11D

Q Moves

FIG. T1E

vi Ol

US 10,176,113 B2

(g9 z °6°9) diyp HSVY14 I001sAyd

G91-
diyp uo aiQg | diyo uo aiQ

=
Yo - R—— \A — .)
f .
‘ Qmmh\ cmmh\
Yo 4
3
7

(8M +9) »o0l1g esp.i3 eoe | (8) $9) do0I|g asDI]
= a %N\IW
—
- |
5
=
. (8)) 960d | eee | (@) ¥) 9604

891
$9l —

(aM +) 19ong

691

U.S. Patent

U.S. Patent Jan. 8, 2019 Sheet 16 of 16 US 10,176,113 B2

Device Management

170
D D D sos D Pages (Buckets)/
0O 1

171
{ 0 Page Allocation Map~—

Indicates Which
Pages are Valid

172
O 1 0 eee] Pending Trim Map —

(Pages to be Trimmed
but not Done So Yet).

15A

176
Frase Block —
Descriptor
frase Block — 7~ e 5
Descriptor Table # Erased
| ' Indexed # Partial Writes _
-T"by Erase , - 179
Block Index ~ # Partial Reads
- 180
Full Reads
- I 181
Full Writes
@ 182
| # Errors

FIG. 158

US 10,176,113 B2

1
SCALABLE INDEXING

FIELD OF THE INVENTION

The present invention relates to methods and apparatus
tor the construction of an index that scales to a large number
of records and provides a high transaction rate.

BACKGROUND

Some modern file systems use objects to store file data
and other internal file system structures (“metadata™). A file
1s broken up into many small objects, perhaps as small as 4

KB (2712 bytes). For a file system that spans 64 TB (2746

bytes), for example, this results in over 2°(46-12)=2"34, or
roughly 16 billion objects to keep track of.

In this context an object 1s a sequence of binary data and
has an object name, often a GUID (globally umique ID), or
a cryptographic hash of the content, although other naming
conventions are possible as long as each unique object has
a unique name. Object names are usually fixed length binary
strings 1ntended for use by programs, as opposed to people.
Object sizes are arbitrary, but in practice are typically
powers of 2 and range from 512 bytes (2°9) up to 1 MB
(2°20). Objects in this context should not be confused with
objects as used 1 programming languages such as Java and
C++.

An 1ndex (sometimes referred to as a dictionary or cata-
log) of all the objects 1s needed by the file system. Each
record 1n the index may contain the object name, length,
location and other miscellaneous information. The index
may have as its primary key the object name, the object’s
location, or possibly both. A record 1s on the order of a few
tens of bytes, 32 bytes being one example.

Operations on this index include adding an entry, looking
up an entry, making modifications to the entry, and deleting,
an entry. These are all typical operations performed on any
index.

Because these file systems work with objects, for the file
system to obtain acceptable performance levels, an indexing
solution has two challenges not easily met:

1) The number of entries in the mdex can be very large.
In the example listed above, 11 each index entry 1s 32
(275) bytes, then the index takes 2 (5434)=2"39, or 512
GB of memory. This does not fit cost eflectively 1n
current memory technologies.

2) The operations against the index are large. A commer-
cially viable storage system may need to perform at,
say, 256 MB/sec (228 bytes/second). At 4 KB object
sizes, that 1s 2°(28-12)=2"16, or 64 thousand operations
per second. Given that file systems typically generate
and reference other data (objects) internally, the index
operation rate can easily exceed 100 thousand opera-
tions/second. As a point of comparison, a current state
of the art disk can do at best 400 operations per second.

Achieving the necessary performance and capacity levels
1s not practical using DRAM memory technology, or disk
technology, alone. DRAM memory 1s fast enough, but not
dense enough. Disks have the density, but not the perfor-
mance. Scaling either (DRAM memory or disks) to reach the
desired characteristics 1s too expensive.

Object names are often uniform 1n both their distribution
and access patterns, so typical caching schemes, which
depend on spatial and temporal locality, have limited eflect.
Thus, the indexing problem 1s difficult 1n both size, and 1n
operation rates.

5

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention,
there 1s provided a method of accessing an index stored in
a non-uniform access memory by a uniform access indexing
process, the method comprising:
maintaining a translation table to map a logical bucket
identifier generated by the indexing process to a physical
bucket location of the memory to access each record data
entry 1n the idex;
collecting 1n cache a plurality of the record data entries, to
be written to the index, prior to a subsequent sequential write
of the collection of entries to at least one physical bucket
location of the memory.

In one embodiment, the method includes:
writing the collection of record data entries from the cache
to a bucket location of the memory as a sequential write;
updating the translation table with the bucket location for the
record data entries of the collection.

In one embodiment, the method includes:
reading one or more sequential record data entries from the
memory to the cache;
designating as iree the physical locations 1n memory from
which the one or more entries were read.

In one embodiment, the method includes:
rendering a plurality of sequential physical bucket locations
in the memory as a free block by reading any valid entries
in the block to the cache and designating as free the physical
locations 1n memory from which such entries were read.

In one embodiment:
the indexing process generates random access requests to the
index based on uniformly distributed and unique index keys.

In one embodiment:
the keys comprise cryptographic hash digests.

In one embodiment:
the 1ndexing process comprises a displacement hashing
process.

In one embodiment:
the displacement hashing comprises a cuckoo hashing pro-
CEeSS.

In one embodiment:
the memory comprises one or more of flash, phase-change,
and solid state disk memory devices.

In one embodiment:
the memory 1s limited by one or more of random write
access time, random read-modify-write access time, sequen-
tial write, alignment restrictions, erase time, erase block
boundaries and wear.

In one embodiment:

a size of the physical bucket comprises a mimmum write

s1ze of the memory.
In one embodiment:
the size of the physical bucket comprises a page or partial
page.
In one embodiment:
the memory has an erase block comprising a plurality of
pages.
In one embodiment the method includes:
maintaining a bucket valid table for tracking which bucket
locations 1n the memory are valid.
In one embodiment:
a bucket 1n memory comprises a set ol one or more record
data entries and a self-index 1nto the bucket translation table.
In one embodiment:
the record data entries in the bucket are not ordered.

US 10,176,113 B2

3

In one embodiment the method includes:
designating as read only in cache the record data entries
written sequentially to the memory.

In one embodiment:
the bucket translation table 1s stored in persistent memory.

In one embodiment, the method includes:
tracking the number of free buckets in an erase block and
implementing a process to generate a free erase block when
a threshold of free buckets 1s met.

In one embodiment:

the indexing process performs indexing operations based on
requests that records be inserted, deleted, looked up and/or
modified.

In one embodiment:
the indexing process presents logical bucket operations for
reading and writing to physical buckets which store the
records of the index.

In one embodiment:
the physical bucket operations include random reads and
sequential writes.

In one embodiment:
the physical bucket operations further include trim com-
mands.

In one embodiment:
the memory comprises a physical device layer characterized
by non-uniform read and write access and immutability with
respect to size, alignment and timing.

In one embodiment:
the record data entry comprises fields for a key, a reference
count and a physical block address.

In one embodiment:
the key comprises a cryptographic hash digest of data;
the physical block address field contains a pointer to the
physical block address of the data stored on a storage device.

In one embodiment:
the logical bucket locations are generated by a plurality of
hash functions.

In one embodiment:
the memory comprises a flash memory device which
includes a plurality of erase blocks, each erase block com-
prises a plurality of pages, and each page comprises a
plurality of buckets.

In accordance with another embodiment of the invention,
there 1s provided a computer program product comprising,
program code means which, when executed by a processor,
performs the steps of the foregoing method.

In accordance with another embodiment of the invention,
there 1s provided a

computer-readable medium containing executable pro-
gram 1nstructions for a method of accessing an index stored
in a non-uniform access memory by a uniform access
indexing process, the method comprising:
maintaining a translation table to map a logical bucket
identifier generated by the indexing process to a physical
bucket location of the memory to access each record data
entry 1n the index;
collecting 1n cache a plurality of the record data entries, to
be written to the index, prior to a subsequent sequential write
of the collection of entries to at least one physical bucket
location of the memory.

In accordance with another embodiment of the invention,
there 1s provided a system comprising:
physical processor and memory devices including a com-
puter-readable medium containing executable program
instructions for a method of accessing an index stored 1n a
non-uniform access memory by a uniform access indexing,
process, the method comprising;

10

15

20

25

30

35

40

45

50

55

60

65

4

maintaining a translation table to map a logical bucket
identifier generated by the indexing process to a physical
bucket location of the memory to access each record data
entry 1n the index;
collecting 1n cache a plurality of the record data entries, to
be written to the index, prior to a subsequent sequential write
of the collection of entries to at least one physical bucket
location of the memory.

In one embodiment:
the memory that stores the index comprises a physical
device layer characterized by non-uniform read and write
access and immutability with respect to size, alignment and
timing.

In one embodiment:
the memory that stores the index comprises one or more of
flash, phase-change and solid state disk memory devices.

In one embodiment:
the memory that stores the index comprises a tlash memory
device which includes a plurality of erase blocks, each erase
block comprises a plurality of pages, and each page com-
prises a plurality of buckets.

In accordance with another embodiment of the invention,
there 1s provided a

method of accessing an index stored in a non-uniform
access memory by a uniform access indexing process, the
method comprising:
providing to a translation table, which maps a logical bucket
identifier to a physical bucket location of the memory for
cach record data entry in the index, logical bucket identifiers
generated by the mdexing process;
accessing physical bucket locations mapped to the logical
bucket identifiers;
collecting 1n a cache record data entries to be written to the
index;
subsequently writing sequentially a collection of the record
data entries from the cache to the index in at least one new
physical bucket location of the memory; and
updating the translation table to associate the at least one
new physical bucket location with a logical bucket 1dentifier.

In accordance with another embodiment of the invention,
there 1s provided a computer system comprising:
a non-uniform access memory in which 1s stored an index
comprising record data entries in physical bucket locations
of the memory;
a translation table to map a logical bucket 1dentifier gener-
ated by a uniform access indexing process to a physical
bucket location of the memory for each of the record data
entries;
a cache for collected record data entries to be written to an
index;
means for accessing physical bucket locations of the
memory mapped to logical bucket identifiers supplied to the
translation table by the indexing process;
means for writing sequentially a collection of the record data
entries from the cache to the index at least one physical
bucket location of the memory; and
means for updating the translation table to associate the at

least one physical bucket location with a logical bucket
identifier.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will be more fully understood by reference
to the detailed description, 1n conjunction with the following
figures:

US 10,176,113 B2

S

FIG. 1 1s a schematic block diagram illustrating various
indexing operations performed in accordance with one
embodiment of the present invention;

FIGS. 2A through 2D illustrate various embodiments of
data structures which may be used 1n the present invention;

FIG. 3 1s a schematic block diagram 1llustrating a lookup
operation according to one embodiment of the invention;

FIG. 4 1s a schematic block diagram 1llustrating an insert
operation according to one embodiment of the invention;

FIG. 3 1s a schematic block diagram of a delete operation
according to one embodiment of the invention;

FIG. 6 1s a schematic block diagram of an update opera-
tion according to one embodiment of the ivention;

FIGS. 7A and 7B are schematic block diagrams 1llustrat-
ing a random read process for generating free erase blocks
according to one embodiment of the invention;

FIGS. 8A and 8B are schematic block diagrams 1llustrat-
ing another method of generating free erase blocks accord-
Ing to a scavenging process;

FIG. 9 1s a schematic block diagram 1llustrating a six layer
view or stack for illustrating an implementation of the
present mvention;

FIG. 10 1s a schematic diagram of a record entry as used
in one embodiment of the invention;

FIGS. 11A-11E 1illustrate schematically an implementa-
tion of cuckoo hashing according to one embodiment of the
imnvention;

FIG. 12 1s a schematic illustration of multiple buckets,
cach bucket holding multiple records according to one
embodiment of the invention;

FI1G. 13 1s a schematic diagram of the contents of a bucket
according to one embodiment of the invention;

FIG. 14 1s a schematic block diagram illustrating one
example of a physical tlash chip having multiple dies, erase
blocks, pages, and buckets according to one embodiment of
the invention; and

FIGS. 15A-15B 1llustrate certain components of a device
management layer according to one embodiment of the
invention.

DETAILED DESCRIPTION

A. Overview

According to one or more embodiments of the invention,
specialized memory technology and algorithms are used to
build indices that simultaneously have large numbers of
records and transaction requirements. One embodiment uti-
lizes a displacement hashing indexing algorithm, {for
example cuckoo hashing. The invention enables use of
non-uniform access memory technologies such as flash,
phase-change and solid state disk (SSD) memory devices.

In various embodiments of the invention, new data struc-
tures and methods are provided to insure that an indexing
algorithm performs 1n a way that 1s natural (eflicient) to the
algorithm, while the memory device sees 10 (input/output)
patterns that are eflicient for the memory device.

One data structure, an indirection table, 1s created that
maps logical buckets as viewed by the indexing algorithm to
physical buckets on the memory device. This mapping 1s
such that write performance to non-uniform access memory
devices 1s enhanced.

Another data structure, an associative cache, 1s used to
collect buckets and write them out sequentially to the
memory device, as part of the cache’s eviction and write-
back policies.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Methods are used to populate the cache with buckets (of
records) that are required by the indexing algorithm. Addi-
tional buckets may be read from the memory device to cache
during a demand read, or by a scavenging process.

Use of the cache, in conjunction with the indirection table,
allows large sequential writes to the memory device.

While flash technology has the fundamental capabaility of
achieving the needed capacity and IO rates for the indexing
problem, flash access characteristics are non-uniform. This
non-uniformity 1s significant enough that normal indexing
algorithms work poorly, if at all, with a flash memory
device.

The non-uniform access tlash memory that 1s used 1n the
present invention 1s an electrically-erasable programmable
read-only memory (EEPROM) that must be read, written to
and erased 1n large block sizes of hundreds to thousands of
bits, 1.e., no. byte level random access. Physically, flash 1s a
non-volatile memory form that stores information 1 an
array of memory cells made from floating-gate transistors.
There are two types of flash memory devices, NAND flash
and NOR flash. NAND flash provides higher density and
large capacity at lower cost, with faster erase, sequential
write and sequential read speeds, than NOR flash. As used
in this application and in the present invention, “tlash”
memory 1s meant to cover NAND flash memory and not
NOR memory. NAND includes both single-level cell (SLC)
devices, wherein each cell stores only one bit of information,
and newer multi-level cell (MLC) devices, which can store
more than one bit per cell. While NAND flash provides fast
access times, 1t 1s not as fast as volatile DRAM memory used
as main memory in PCs. A flash memory device may or may
not include a flash file system. Flash file systems are
typically used with embedded flash memories that do not
have a built-in controller to perform wear leveling and error
correction.

A typical NAND flash chip may store several GB of
content. Unlike memory attached to a computer, the memory
on the flash chip must be accessed 1n certain sizes and on
certain boundaries. Furthermore, once a section of memory
has been written, an erase operation must be performed
before those memory locations can be written to again. Also,
locations wear out, so insuring that all locations get a similar
number of writes turther complicates the usage. Read times,
write times, and erase times can vary significantly (from
micro seconds to milliseconds). Thus the timing, wear
leveling and alignment restrictions make the practical use of
flash diflicult at best.

A flash memory device may contain one or more die
(s1licon waters). Each die, for the most part, can be accessed
independently.

A die 1s composed of thousands of erase blocks. An erase
block 1s typically 128-512 KB 1n size. When data needs to
be cleared, 1t must be cleared on erase block boundaries.

Another limitation of NAND flash 1s that data can only be
written sequentially. Furthermore, the set up time for a write
1s long, approximately 10x that of a read.

Data 1s read on page granularity. A page may range from
1 KB to 4 KB depending on the particular flash chip.
Associated with each page are a few bytes that can be used
for error correcting code (ECC) checksum.

Data 1s written on page granularity. Once written, the page
may not be written again until 1ts erase block (contaiming the
page) 1s erased. An erase block may contain several dozen
to over 100 pages.

One exception to the above read and write page granu-
larity are sub-page writes, or partial page programming.

US 10,176,113 B2

7

Depending on the technology, pages may be partially written
up to 4 times before an erasure 1s required.

Since pages in a NAND flash block may be written
sequentially and only once between block erase operations,
subsequent writes require a write to a different page, typi-
cally located 1n a different flash block. The 1ssue of block
erases 15 handled by creating a pool of writeable flash
blocks, a function of the flash file system.

Erasing an erasure block 1s the most expensive operation
time-wise, as 1t can take several milliseconds. For devices
that are heavily used (traflic-wise), the speed at which erase
blocks can be generated (1.e. how fast free erase blocks can
be made available) 1s often a limiting factor in flash design.

Many SSD (Solid State Disks) use flash technology. The
firmware 1n the SSD handles the aforementioned access
issues 1n a layer called the Flash Translation Layer (F'TL). In
doing so, however, the firmware makes assumptions about
how the SSD will be used (e.g., mostly reads, mostly writes,
size and alignment of reads and writes), and as a result of
these assumptions, the SSD’s performance characteristics
are olten sub-optimal for indexing algorithms.

Many indexing algorithms that one finds 1n the literature
and 1n practice are based on a uniform memory access
model, 1.e. all memory 1s equally accessible time-wise for
both reads and writes, and there are not any {first order
restrictions on access size or alignment.

If one considers an 1indexing solution, operations such as
insert, delete, lookup and modify typically require more and
varted amounts of time, and reads and writes of blocks,
typically small blocks (4 KB or so), less time. The blocks
appear to be random, 1.¢., any block may be read, and any
other block may be written. With some algorithms, there are
random read-modify-write 10 profiles, 1.e. a random block 1s
read, and then written back to the same location with slightly
modified data.

This random 10 that an indexing algorithm needs to
operate efliciently, 1s not what tlash 1s intended to provide.
While flash can handle random reads well, random writes
are difficult, as are read-modify-writes. The reason for this
1s that one cannot over-write something that has already
been written, one has to erase 1t first. To further complicate
the situation, erasing takes time, and must happen on large
boundaries (typical 64 KB).

When an erase block 1s erased, any valid data in that block
needs to be moved elsewhere. 1T the algorithm writes ran-
dom 4 KB blocks across the flash device, a naive imple-
mentation would result in blocks being erased all the time.
As erase times are slow, the performance would sufler
significantly.

In accordance with the invention, to allow writes to the
flash to be sequential, while still preserving the logical
random access that the indexing algorithm expects, a trans-
lation or indirection table 1s created. This table maps logical
buckets (of records) as needed by the indexing algorithm to
physical buckets (e.g., pages) of the flash device.

As the indexing algorithm reads in buckets (e.g., pages of
data from flash), in order to modily the bucket contents
(insert, update or delete operations), the buckets are moved
to a cache. The corresponding buckets on the flash device
can now be marked as not valid (Iree). In the case of an SSD,
this can take the form of a TRIM command.

According to further embodiments of the invention, meth-
ods are provided to generate free erase blocks. At any given
time, an erase block may have a combination of valid and
invalid data. To free up an erase block, all valid data must
be moved ofl that block. There are two mechanisms that can
be used to accomplish this. One 1s to use the random reads

5

10

15

20

25

30

35

40

45

50

55

60

65

8

generated by the mdexing algorithm to read more (than 1s
required by the indexing algorithm) so as to free up an erase
block. As the indexing algorithm tends to generate random
reads, over time all erase blocks are eventually read and
harvested for empty pages. For example, if the erase block
containing the read has some free pages, and some valid
pages, then the algorithm may choose to read in the entire
erase block and place all valid pages into the cache. This has
the eflect of freemng up that erase block for a subsequent
crase and then write.

Alternatively, e.g., if the aforementioned random read
process 1s not fast enough, a separate scavenging process
(e.g., thread) can be used to read erase blocks, and place the
valid pages into the cache for coalescing into another erase

block.

As the cache fills up, entries must be written out. A set of
cache entries 1s collected that will be sequentially written to
a contiguous set of partial pages (if partial page writes are
allowed by the flash device), multiple pages, and/or one or
more erase blocks. As cache entries are written to the flash

device, the indirection table 1s updated, so that the indexing

algorithm still sees the entries as being at a fixed logical
address.

B. Indexing Operations

Various embodiments of the invention will now be
described utilizing the accompanying FIGS. 1-6 to 1llustrate
various indexing operations performed 1n accordance with
the present invention. FIGS. 7-8 illustrate two methods of
generating free erase blocks for eflicient utilization of the
storage medium (e.g., flash memory). These embodiments
are meant to be 1llustrative and not limiting.

FIG. 1 1s an overview of several indexing operations that
utilize a bucket translation table 17 and cache 23 according
to one embodiment of the invention. At the top of FIG. 1,
three mndex operations 12-14 are shown as alternative imputs
to a lookup function 15 and a translation function 16. A first
index operation 12 1s “lookup key” for returning satellite
data from (a record entry) for the key. A second index
operation 13 1s “update satellite data for key” for updating
(modifving) the record entry for the key. A third index
operation 14 1s “insert new key” for inserting a new record
entry. Another index operation, delete, 1s not shown in FIG.
1 but described below 1n regard to FIG. 5.

All three index operations first perform a lookup function
15, wherein some function of the key f(key) 1s used to
generate an index identifier, here a logical bucket identifier
(LBI) that supports (e.g., speeds up) a hash table lookup. The
logical bucket identifier (LBI) 1s mput to a translation
function 16 wherein some function of the logical bucket
identifier 1{{LLBI) generates a physical bucket location 1n the
flash memory. The translation function 1s implemented by a
bucket translation table 17, which 1s a map of the logical
bucket 1dentifier (as provided by the indexing algorithm) to
a target flash memory location (physical bucket location 1n
flash). A dictionary (1index) stored in flash memory 26 may
comprise records that map a lookup key (e.g., object name)
to satellite data (e.g., location pointer to the object stored on
disk). The flash memory 26 (see FIG. 1) includes a plurality
of flash erase blocks 21 (e.g., 21a, 21b, 21¢) each erase block
containing plural flash briskets 22 (e.g., 22a, 225, 22¢, 22d).

Next, depending upon which of the three indexing opera-
tions 1s being performed (lookup, update or insert) one or
more of the steps shown on the bottom half of FIG. 1 are
performed.

US 10,176,113 B2

9

For a lookup operation 18, the bucket entry identified by
the translation function 1s read 30 from the target bucket 22

in flash memory, with a cache lookaside (e.g., if the target
bucket 1s stored 1n cache, 1t may be read from cache 23 rather
than from flash memory 26).

For an update operation 19, the bucket entry identified by
the translation function (the original bucket entry) 1s read 30
from a target bucket 22 in erase block 21a of tlash memory
(or cache), the bucket 1s updated and moved 32 to cache, and
in a subsequent write 24 a plurality of cache bucket entries
are read sequentially to a contiguous set of partial pages,
multiple pages and/or erase blocks (e.g. a new erase block
215) 1n flash memory. The process updates 33 the status of
all the moved buckets in flash to not valid data (e.g., free or
available for a trim operation).

For an insert operation 20, a target bucket 1s again read
from flash and a modified bucket entry 1s moved 34 to cache,
again for a subsequent sequential write 24 to a new location
in flash memory.

FIG. 1 shows schematically a cache 23 for collecting a
plurality of bucket entries, prior to performing a sequential
write 24 of the collection of cache bucket entries to con-
tiguous tlash memory buckets. In one embodiment, a scav-
enging operation 25 1s used for creating free erase blocks;
the process includes storing any valid buckets (from the
erase block) 1n cache during the scavenging process and
reallocating the flash erase block as free.

Following a discussion of the new data structures illus-
trated 1n FIG. 2, the mdexing operations referenced in FIG.

1 will be more specifically described with respect to the tlow
diagrams of FIGS. 3-6.

C. Data Structures

FI1G. 2 1llustrates various embodiments of data structures
useiul in the present invention. Such data structures are
meant to be 1llustrative and not limiting.

FI1G. 2a 1llustrates one embodiment of a bucket translation
table (BTT) 300 for translating a logical bucket index
(generated by the indexing algorithm) to a physical flash
bucket address. A BTT table entry 1s shown having three
fields: valid 301; tlash physical bucket address 302; and
extended bucket state 303. The bucket address granularity 1s
the minimum write size of the flash device, namely either a
partial page write (e.g., for SLC NAND) or a page write
(e.g., for MLC NAND). The BTT 1s 1:1 mapping of logical
to physical bucket entries. The table enables reorgamzation
of the flash bucket assignments for higher random perfor-
mance (random reads and random writes by the indexing
algorithm). Additional state information may be added to the
BTT 1n the third field to enable algorithm acceleration.

FIG. 26 shows one embodiment of a bucket valid table
(BV'T) 3035. This table tracks which physical buckets in flash
are valid 1n order to manage the scavenging of buckets into
blocks for trimming. As one example, a field 306 labeled
valid may be a compact bit array (1 bit/bucket). The size of
the BV'T 1s the total number of flash bucket entries, only a
subset of which are 1n use by the BTT.

FI1G. 2¢ 1llustrates one embodiment of flash bucket 309
having multiple records 310, 311, 312 . . . included 1n the
bucket, along with a reverse BT'T pointer 313 (a self-index
into the bucket translation table 17). Thus, each bucket
contains a set of one or more records and a reverse pointer
for updating the BTT when flash buckets (e.g., pages) are
inserted, moved or deleted. Each element of the bucket
(record or pointer) may have redundant content added, such
as additional ECC baits, to improve the individual reliability

10

15

20

25

30

35

40

45

50

55

60

65

10

of the data structures and significantly increase the useful
life of the storage devices. For example, an optional

sequence number field may be added to flash bucket 309 for
performing data consistency checking during power {fail
events; other optimization tlags may be provided as well.

Because the record size 1s small relative to the bucket size,
this provides an opportunity (optional) to implement addi-
tional error recovery information on an individual record
basis. This optional feature would improve the overall
reliability of the solution by increasing the number of bit
errors and faults which may be corrected and thus increase
the effective operating lifetime of the underlying storage
technology.

FIG. 2d shows one example of a SLC NAND flash device
315 containing multiple erase blocks 316 (1 to M). Each
erase block includes multiple pages 317 (1 to N). In this
example, each page 1s 4 KB and each page includes multiple
buckets 318 (1 to B), each bucket being 1 KB. In this
example, the device supports partial page writes.

A bucket represents a minimum write size of the flash
device. Typically, a bucket would be a page. If partial page
writes are allowed, then one or more buckets per flash page
may be provided, such as a four partial page SLC NAND
device supporting four buckets per page.

Multiple tlash pages are provided per erase block. There
are multiple erase blocks per flash devices, and each block
1s 1individually erased.

The typical flash subsystem consists of multiple flash
devices. NAND flash devices are written sequentially once
per page (or partial page) within a given block between erase
operations, with multiple blocks available for writing and
reading simultaneously.

D. Process Flow Charts

FIG. 3 illustrates one embodiment of a lookup operation
process for verilying the presence of a key and returming
associated satellite data. In step one 41, a lookup key 1s input
to a lookup function. In step two 42, the lookup function
f(key) generates a logical bucket identifier that supports
(e.g., speeds up) a hash table lookup. The logical bucket
identifier 1s mput to a translation function, which i step
three 43 1s mapped to a flash memory (physical bucket)
location, via the bucket translation table (BTT) 17. In step
four 44, the target bucket 1n flash memory 1s read 45a from
flash memory, unless the bucket 1s stored 1n cache, in which
case 1t can be read 435 from cache 23. In step six 46, the
satellite (record) data for the key 1s returned to the indexing
algorithm.

FIG. 4 shows one embodiment of an insert operation
process. A first step 71 inputs a key to the lookup function.
In step two 72, the lookup function f(key) generates an
index, here a logical bucket identifier. In step three 73, the
bucket i1dentifier 1s mput to a translation function which
maps the bucket identifier to a flash memory physical bucket
location where the 1nsert should occur, utilizing the bucket
translation table (BTT) 17. In step four 74, the insert process
receives the target bucket location from the translation
function. In step five, the insert process reads the target
bucket 22 from an erase block 21a of flash memory 73a, or
from cache 73b. In step six 76, the 1nsert process mserts the
record entry into the target bucket and writes the modified
bucket to cache. In step seven 77, multiple bucket entries
(including the modified target bucket) are read from cache
73 by the insert process. In step eight 78, the insert process
writes the modified target bucket and other buckets read
from cache to new locations (pages 1n erase block 215) 1n

US 10,176,113 B2

11

flash 26. In step nine, the insert process updates the bucket
translation table 17 with the new locations for all buckets
moved from cache to flash 79a, and also updates the bucket
valid entries 1n BV'T 795 for all buckets moved. In step ten
80, the isert process marks the moved cache entries read
only (available). In step eleven 81, the insert process marks
the original flash buckets (now moved to a new erase block)
as Iree.

FIG. 5 illustrates one embodiment of a delete operation
process. In a first step 91, a key 1s provided to a lookup
function. In step two 92, the lookup function f(key) gener-
ates an 1ndex, here a logical bucket 1dentifier. In step three
93, the bucket 1dentifier 1s provided to the translation func-
tion, which utilizes the bucket translation table 17 to map the
bucket 1dentifier to a physical flash memory bucket location.
In step four 94, the delete process receives the flash memory
location. In step five, the target bucket 1s read from flash 95a
or from cache 95b. In step six 96, the process deletes the
original record entry in the bucket and writes the modified
bucket (with the deleted entry) to cache 23. In step seven 97,
a group (collection) of buckets are read from cache. In step
cight 98, the updated target bucket and other buckets read
from cache 23 are written sequentially to a contiguous set of
free pages 1n tlash. In step nine, the delete process updates
the bucket translation table with the new locations 1n flash
for all moved buckets 994, and updates their valid status 1n
the BVT 99b6. In step ten 100, the delete process marks the
cache entries as read only. In step eleven 101, the delete
process marks the original flash buckets now moved to a
new location in flash as free.

FI1G. 6 1llustrates one embodiment of an update operation
process for moditying a record in an index stored in flash
memory. In a first step 51, a key 1s provided as input to a

lookup function. In step two 52, the lookup function i(key)
generates an index, here a logical bucket identifier. The
bucket 1dentifier 1s mput to a translation function. In step
three 53, the translation function maps the bucket 1dentifier
to a physical bucket in flash memory where the update
should occur, utilizing the bucket translation table 17, and
the process proceeds to step four 54, update processing. In
step five 535, the target bucket 1s read from flash 554 or from
cache 55b. In step six 56, aiter updating the entry, the
updated bucket 1s written to cache 23. In step seven 57, a
group of buckets are read from the cache 23 and 1n a step
cight 58, written sequentially from cache to a new location
in flash memory 26. In step nine 39, the update process
updates the bucket translation table 17 with the new loca-
tions for all buckets moved 59a, and updates their valid
status 1n the BVT 595b. In step ten 60, the update process
marks the moved entries as read only in cache 23 (and thus
available to be written over). Finally, 1n step eleven 61, the
update process marks the original flash buckets, now moved
to a new location, as free (available).

FIG. 7A illustrates one embodiment of a process for
generating {ree erasure blocks, where a demand read (gen-
erated by an upstream indexing operation such as a lookup,
insert or modily) reads additional buckets 1n the same erase
block (as the target bucket). In FIG. 7A, the process 1s
illustrated with an update request. In step one 111, a key 1s
provided to a lookup function. In step two 112, the lookup
tunction f(key) generates an index i1dentifier, here a logical
bucket identifier. In step three 113, the bucket identifier 1s
mapped to a physical target bucket location 1n flash. In step
tour 114, the update and scavenge process receives the target
flash memory location. In step five 115, the process 1denti-
fies all valid buckets 1n the same erase block as the target
bucket. In step six, 1164, the update process reads the target

5

10

15

20

25

30

35

40

45

50

55

60

65

12

bucket and all identified valid buckets from the flash block
containing the target bucket (alternatively read from cache,
step 116b). In step seven 117, the process updates the record
entry 1n the target bucket and writes all valid buckets from
the flash block to cache 23. In step eight 118, the update
process reads a group of blocks from cache. In step nine 119,
the update process writes the updated target bucket and other
buckets read from cache 23 to flash 26. In step ten 120, the
update process updates the bucket translation table 17 with
the new locations for all buckets moved (written from cache
to new erasure block 215 in flash) 120a, and updates the
bucket entries 1n the BVT 1205, In step eleven 121, the
update process marks the now stale cache entries as read
only. In step twelve 122, the update process marks the
original flash block (all buckets in the target block) as iree.

FIG. 7B 1illustrates a particular embodiment of the random
read process just described for generating free erase blocks.

In this embodiment, a displacement hashing indexing
algorithm 1235 generates logical buckets 126. The logical
bucket size as viewed by the indexing algorithm, 1s tied to
the flash erase block size so as to render compatible the
indexing algorithm and flash memory. These buckets will be
randomly read as a result of index reads and updates.

A bucket translation (indirection) table 127 translates a
logical bucket index into a physical flash device bucket
location. This indirection table enables the indexing algo-
rithm to work randomly, for reads, writes and updates, and
yet have large sequential writes performed at the flash device
level. Preferably, the indirection table 1s stored in persistent
memory, but it can be rebuilt as necessary i stored in
volatile memory.

The output of the indirection table, namely the physical
device bucket location, 1s provided as iput to a fully
assoclative bucket cache 128. In this embodiment, if, the
contents of an empty erase block fifo 129 1s below a high
water mark), then the entire erase block (containing the
target 4 KB bucket) 1s read.

The erase blocks host logical buckets, a typical configu-
ration being one erase block holding 16 of the 4 KB logical
buckets. The physical device 1s configured for a load, e.g.,
90%, meaning that 90% of the buckets are 1n use. Caching,
and victimization (eviction) are used to pack (concentrate)
logical buckets 1n the flash memory so that most of the 10%
of the remaining buckets are concentrated 1n free erase
blocks.

The cache victimization (eviction process) takes 16 buck-
ets, collected 1n cache, and writes out the 16 buckets from
cache to a free erase block 130. Because the erase blocks are
touched randomly by the random read operations, the read
operations can be used to generate free erase blocks. Use of
a cryptographic hash function for generating the logical
bucket identifiers, will increase the random nature of the
read operations and thus improve the random read genera-
tion of free erase blocks.

FIGS. 8A and 8B illustrate an alternative scavenging
process Ior generating free erase blocks. This scavenging
process 1s not a part of any indexing operation. Rather, it 1s
implemented as part of a lower level device management
layer. In this process, a group (some or all) of the physical
buckets 1n a tlash erase block are read directly from flash and
the bucket valid table 27 1s used to determine which buckets
in the erase block are valid.

As 1llustrated 1n FIG. 8A, 1n step one 220, a scavenging
process 25 reads a complete erase block 21a. In step two
222, the scavenging process uses the bucket valid table 27
to 1dentity all buckets of those read that are valid. In step
three 224, for each valid bucket, the logical bucket identifier

US 10,176,113 B2

13

1s extracted from the bucket. In step four 226, the valid
buckets are stored 1n cache 23, each indexed by its logical
bucket 1dentifier.

FIG. 8B shows an example where 1n step one, the scav-
enging process 25 reads buckets [94, 97] inclusive. In step
two, the process determines that buckets at 95 and 96 are
valid. The valid buckets are shown 1n the bucket valid table
designated by a “1”, and the non-valid buckets by a “0”. In
step three, the logical bucket identifiers for buckets 95 and
96, namely tags 23 and 49 respectively, are extracted from
the buckets. In step four, the two tags, and their respective
buckets 95 and 96 are iserted into cache using their
respective tags 23, 49 as the index.

E. Stack Level View and Implementation

Another more specific example of the invention will now
be described with respect to FIGS. 9-16.

FIG. 9 shows a six layer view or stack 200 for 1llustrating
an implementation of the present invention in which a flash
adaptation layer 207 adapts an 10 usage profile view desired
by an mndexing algorithm 203, which 1s a very diflerent view
than desired by the physical flash memory device 211. At the
top level 201, a dictionary (1index) of records 1s provided, for
which certain indexing operations 204 (lookup, delete, insert
and modily a record) are required. An indexing algorithm
layer 203 implements the dictionary with one or more
indexing algorithms, e.g., a cuckoo displacement hashing
algorithm being one example. The indexing algorithm has a
view of how the keys to the index will be stored by an index
persistence layer 205. The indexing view 1s a logical view,
specilying logical address locations. The wview {further
assumes that there will be uniform access to the index with
respect to size, alignment and timing, and that the index 1s
stored on mutable (stable) storage.

The index persistence layer 205 will present logical
bucket operations 206 for reading and writing, to physical
buckets which store the records of the index. These logical
bucket operations 206 are presented to a flash adaptation
layer 207, which as previously described, translates the
logical buckets (of the indexing process) to physical bucket
locations on the flash storage device. The flash adaption
layer thus adapts the view and 10 usage profile desired by
the indexing algorithm above, to the very diflerent view
desired by the physical storage device (flash memory 211)
below. Here the physical bucket operations 208 include
random reads and aggregated (block sequential) writes,
which constitute a non-umiform model of bucket access. The
physical bucket operations in this example may further
include trim commands.

The physical bucket operations are implemented by a
device management layer 209 which tracks and coordinates
the resources on the physical flash device. These physical
device operations 210 here include random reads, large
sequential writes, and trim commands.

The physical device layer 211 1s characterized by its
non-uniform read and write and immutability with respect to
size, alignment and timing. Examples of such physical
devices include raw flash, phase-change, an SSD, and/or
flash with a flash file system residing on the device.

The present 1nvention enables additional optional
enhancements below the device management layer such as:

The model of bucket trimming (fine page trimming) and

tracking buckets within a page enables better Erase
Block management 11 incorporated directly into a flash
file system of an SSD or equivalent storage device.

10

15

20

25

30

35

40

45

50

55

60

65

14

The mapping of buckets onto flash pages 1s an abstraction.
Buckets could map to partial-pages for SLC NAND to
increase the lifetime of those devices by minimizing the
amount of data written to the flash for each change.
Buckets can also map onto multiple flash pages 1t this
was beneficial to the overall system performance.

FIG. 10 shows one example of an index record. The

record 140 1s 32 bytes 1n total, including a first 20 byte field
141 for storing a fingerprint (key). A fingerprint 1s preferably
a cryptographic hash digest of the data content, e.g.,
an SHA-1 hash algorithm. For ease of illustration, rather
than typing the {fingerprint i1n hex digits such as
“AB923435E203 . . . 7 an individual fingerprint will be
designated in FIGS. 11-14 by a single capital letter such as
P, Q, R, S, T. These capital letters will also act as a proxy for
the entire record, again to simplity for purposes of illustra-
tion. The fields of the record also include a two byte
reference count field 142, a five byte physical block address
ficld 143, a one byte flags field 144, and a four byte
miscellaneous field 145. The PBA field 143 contains a

pointer to the physical block address of the data stored on
disk, for the designated fingerprint 141. The reference count
tracks the number of references to the data stored on disk.
In accordance with one embodiment of the invention, the
fingerprint 141 from the index record 1s used as an input key
to the lookup function f(key) previously described (FI1G. 1),
In this example, the function f(key) comprises a set of four
hash tunctions H,, H,, H,, and H, Generally, one can use
any set of two or more hash functions. The hash function H_
maps the fingerprint to a range [0, N-1] inclusive, wherein
N 1s the size of the hash table. Given that 1n this example the
fingerprints themselves are hashes, one can extract BitFields
to generate the following family of four hash values:
H,(x)=x<0:31>mod N
H, (x)=x<t032:63>mod N
H,(x)=x<t064:95>mod N
H,(x)=x<096:127>mod N
The BitField width extracted 1s greater than or equal to
log, (N). Any combination of disjointed bits can be used,
subject to the log, (N) constraint. As 1llustrated 1n FIG. 10,

only the fingerprint 1n the first field 141 1s hashed, to form
the key. The remaining content (fields 142-145) of the record
140 comprise a value or payload.

FIG. 11 1llustrates one example of a displacement hashing
indexing algorithm known as cuckoo hashing. For ease of
illustration, only two functions are used. FIG. 11 A shows a
2x3 grid 1n which fingerprint P generates hash values 2 and
5 from the functions H,(x) and H, (x), respectively, while the
fingerprint () generates hash values 1 and 3 from these same
functions. The cuckoo hashing algorithm will select from
among the two alternative hash values for placing P and
in one of the seven slots labeled 0-6 (FIG. 11B). P can go 1n
one of two locations, 2 or 35, and Q can go in one of two
locations, 1 or 3. The algorithm puts Q 1n the lowest empty
slot 1 and P 1n slot 2, as shown 1n FIG. 11C. While 1n this
example the record container 1s referred to as a slot holding
one record, 1t should be understood that the invention 1s not
so limited; indexing algorithms also view a bucket, holding
multiple records, as a container. Here a single record slot 1s
used to simplify the explanation.

Now, another fingerprint R 1s provided which generates
hash values of 1 and 2 from the same hash functions (see
table 1n FIG. 11D). The hashing algorithm will place R in the
left location, namely slot 1, displacing the current entry Q
(FIG. 11E). Q will now be moved to the other optional

US 10,176,113 B2

15

location specified by H,(Q), namely location 3. The algo-
rithm will keep displacing records until each record lands in
an empty slot.

In this example, to accomplish the “insert R operation,
the indexing algorithm generates the following read and

write requests:
read 1 (gets Q)

read 2 (gets P)

write 1 (write R)

read 3 (validity check)

write 3 (Q)

The first two reads are used to validate that R 1s not
already present in the index. The validity check (read 3)
determines whether slot number 3 1s empty; 1f so, then Q can
be written to slot 3 and the algorithm 1s done as no entry was
rewritten 1n slot 3. If slot 3 were not empty, then the current
entry 1n slot 3 would need to be moved to another slot. The
contents of slot 3 are known 11 we have a Bitmap; otherwise,
we need to read the entry in slot 3 to determine its status.
Each entry contains a valid bit indicating i that entry is
valid. Valid means 1t 1s 1n use (and the current occupant of
the location has to be displaced). Not valid means the
location 1s empty, and the record being processed can be
written there. The contents of the valid bits can also be
stored 1n a separate Bitmap, at the expense of some memory.

The cuckoo hashing algorithm 1s recursive, 1n that 1t keeps
writing over entries, displacing the previous content, until it
lands on an empty entry. In practice, this process rarely
exceeds one displacement.

The mndexing algorithm has both bucket and individual
record operations. The indexing algorithm 1s described
above (1in FIG. 11) as placing one record in one container
(slot), but it 1s understood by the indexing algorithm that the
records may also be aggregated into buckets, 1.e., buckets
contaiming multiple records. Thus, the above example 1is
nonlimiting and meant to illustrate generally record opera-
tions.

As previously described, because the reading and writing
of 1individual records 1s not eflicient to flash memory, the
individual records are aggregated into buckets. FIG. 12
illustrates four such buckets 150, each containing two or
more records, 1.e., bucket B, with record locations 0 and 1,
B, with record locations 2 and 3, B, with record locations 4
and 5, and B, with record locations 6 and x. The bucket size
1s a function of (and preferably 1s equal to) the minimum
write size dictated by the flash device, 1.e., either full page
write or partial page write. A typical bucket size may be 4
KB. No specific ordering of records 1s required within the
bucket—the entire bucket i1s searched for a valid record
during the lookup operation, so that the record could be
inserted at any point within the bucket. When displacing,
according to the cuckoo hashing algorithm, an entry in the
bucket can be displaced at random. The indexing algorithm
thus writes logical buckets 1n what appear to be random
locations, one at a time, that are eventually aggregated by the
flash adaptation layer into larger physically contiguous
(sequential) writes to the flash device.

FIG. 13 illustrates one example of a bucket entry 160. A
4 KB bucket size 1s based on the underlying device mini-
mum write size, here a 4 KB page. The 4 KB bucket includes
a 4 byte first field 161 that specifies the number of records
in the bucket entry. A 4 byte tag field 162 specifies the
logical bucket i1dentifier. This identifier (tag) 1s a logical
address, not a physical one. The translation table maps the
algorithm bucket address (ABA) to a flash bucket address
FBA. The cache operates as a virtual cache (1n CPU termi-
nology), with each cache line (entry) identified by a tag, an

5

10

15

20

25

30

35

40

45

50

55

60

65

16

ABA 1n this case. As the algorithm requests records all 1t
knows 1n going through the cache 1s that the ABA requested
1s cached; where 1t 1s mapped to (the FBA) 1s at the bottom
end of the cache (e.g., see the reverse pointer 313 to the BTT,
in FIG. 2C). The bucket includes field 163 for holding a
plurality of records R, R;, R, . . ., each record being 32
bytes 1n size. In this example, a 4 KB bucket will hold:
(4096—-4-4)/32 records, 1.e., approximately 127 records per
bucket.

FIG. 14 1s a schematic diagram of a flash memory device
164 1llustrating the relative sizes of a bucket, page and erase
block 1n one embodiment. The physical flash device 1s a chip
(package) 165 that 1s 2 GB 1n size. On the chip, there are two
die (silicon waters) 166a, 1666. On each die, there may be
2"14 erase blocks, each erase block 167 typically being 64
KB. Apage 168 1s the minimum size that can be written, here
4 KB, and determines the size of the bucket 169, also 4 KB,
as used higher up 1n the stack (see FIG. 9).

FIG. 15 illustrates select components according to one
embodiment of a device management layer (209 in FIG. 9)
for tracking and coordinating the resources on the physical
flash device. FIG. 15A shows (at the top) a plurality of pages
(buckets) 170, followed by a page allocation map 171
indicating which pages are valid (1 1s valid, 0 1s not valid).
Below this 1s a pending trim map 172, of pages to be
trimmed 1n the future, but not yet done so. The page
allocation and pending trim maps can be used 1n various
embodiments of the invention as previously described, for
determining whether a bucket holds valid data (see the
bucket valid table 27 illustrated in FIG. 1).

FIG. 15B illustrates one example of an erase block
descriptor table 1735, indexed by erase block index. Each
erase block descriptor entry 176 includes a plurality of
fields, including number erased 177, number of partial
writes 178, number of partial reads 179, number of full reads
180, number of full writes 181, and number of errors 182.
This information can be used 1n generating free erase blocks
as previously described in various embodiments of the
invention.

F. Further Embodiments

The present invention may be used to implement an index
for a file system, such as that disclosed in copending and
commonly owned U.S. Ser. No. 12/823,922, filed 25 Jun.
2010, enftitled File System, by A. J. Beaverson and P.
Bowden, filed on the same date as the present application
and claiming priority to U.S. Provisional No. 61/269,633
filed 26 Jun. 2009. Prionty 1s claimed herein to both appli-
cations and the complete disclosures of each are hereby
incorporated by reference in their entirety.

Embodiments of the mvention can be implemented 1n
digital electronic circuitry, or in computer hardware, firm-
ware, software, or in combinations thereof. Embodiments of
the mnvention can be implemented as a computer program
product, 1.e., a computer program tangibly embodied 1n a
computer-readable medium, e.g., in a machine readable
storage device, for execution by, or to control the operation
of, data processing apparatus, €.g., a programmable proces-
sor, a computer, or multiple computers. A computer program
can be written 1 any form of programming language,
including compiled or interpreted languages, and 1t can be
deployed 1n any form, including as a standalone program or
as a module, component, subroutine, or other unit suitable
for use 1 a computing environment. A computer program
can be deployed to be executed on one computer or on

US 10,176,113 B2

17

multiple computers at one site or distributed across multiple
sites and 1nterconnected by a communications network.

Method steps of embodiments of the mmvention can be
performed by one or more programmable processors execut-
ing a computer program to perform functions of the inven-
tion by operating on mput data and generating output.
Method steps can also be performed by, and apparatus of the
invention can be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or
an ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive mstructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for executing nstructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transier data to, or both, one
or more mass storage devices for storing data, e.g., mag-
netic, magneto optical disks, or optical disks. Information
carriers suitable for embodying computer program instruc-
tions and data include all forms of non volatile memory,
including by way of example semiconductor memory
devices, e.g., EPROM, EFEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or remov-
able disks; magneto optical disks; and CD ROM and DVD-
ROM disks. The processor and the memory can be supple-
mented by, or incorporated in special purpose logic circuitry.

It 1s to be understood that the foregoing description 1s
intended to illustrate and not to limit the scope of the
invention.

The 1nvention claimed 1s:

1. A method of adapting a uniform access indexing
process with a non-uniform access memory, the method
comprising;

storing a dictionary of mdex records in the non-uniform

access memory, each mndex record comprising fields for
an 1ndex key, a reference count and a physical block
address, the index keys being uniformly distributed and
unique;

maintaining a bucket translation table for mapping logical

bucket 1dentifiers to physical bucket locations of the
memory including generating a logical bucket identifier
by displacement hashing an index key, and the table
comprising a mapping ol the logical bucket identifier to
a physical bucket location of the memory where the
associated index record 1s stored;

collecting in cache a plurality of bucket entries, wherein

cach bucket entry comprises a set of index records
having the same logical bucket identifier;

writing the collection of entries from the cache to con-

tiguous physical bucket locations of the memory as a
sequential write; and

updating the bucket translation table with the physical

bucket locations for the bucket entries of the collection
written from the cache to the memory.

2. The method of claim 1 wherein the index key comprises
a cryptographic hash digest of data; and

the physical block address field contains a pointer to a

physical block address of the data stored on a storage
device.

3. The method of claim 1 wherein the method includes
designating as read only in cache the index records written
sequentially to the memory.

10

15

20

25

30

35

40

45

50

55

60

65

18

4. The method of claim 1 wherein the generating a logical
bucket 1dentifier by displacement hashing includes utilizing
a plurality of hash functions.

5. The method of claim 1 wherein the memory comprises
a flash memory device which includes a plurality of erase
blocks, each erase block comprising a plurality of pages, and
cach page comprising a plurality of buckets.

6. The method of claim 5, including:

performing a scavenging process to generate free erase

blocks by reading erase blocks to the cache.

7. The method of claim 1, including:

reading one or more sequential index records from the

memory to the cache; and

designating as free physical bucket locations 1n memory

from which the one or more 1ndex records were read.

8. The method of claim 1, including:

rendering a plurality of sequential physical bucket loca-

tions of the memory as a free block by reading any
valid index records i the block to the cache and
designating as iree physical bucket locations of the
memory from which the valid index records were read.
9. The method of claim 1, including:
generating a plurality of logical bucket identifiers for the
index key, wherein the displacement hashing function
selects from among the plurality of generated logical
bucket 1dentifiers.

10. The method of claim 1, wherein:

the memory comprises one or more of flash, phase-

change, and solid state disk memory devices.

11. The method of claim 1, wherein:

the memory 1s limited by one or more of random write

access time, random read-modily-write access time,
sequential write, alignment restrictions, erase time,
erase block boundarnies and wear.

12. The method of claim 1, wherein:

the bucket size 1s a function of the minimum write size of

the memory based on a page or partial page.

13. The method of claim 1, wherein:

the memory has an erase block comprising a plurality of

pages.

14. The method of claim 13, including:

tracking the number of free physical bucket locations 1n

an erase block and implementing a process to generate
a Iree erase block when a threshold of free bucket
locations 1s met.

15. The method of claim 13, including:

generating free erase blocks by reading additional buckets

to the cache in response to random read operations.

16. The method of claim 1 including:

maintaining a bucket valid table for tracking which physi-

cal bucket locations of the memory are valid.

17. The method of claim 1, wherein:

cach physical bucket location of the memory comprises

with the set of index records a self-index 1nto the bucket
translation table.

18. The method of claim 1, wherein:

the index records of the bucket are not ordered.

19. The method of claim 1, wherein:

the bucket translation table 1s stored 1n persistent memory.

20. The method of claim 1, wherein:

the indexing process performs imndexing operations based

on requests that index records be inserted, deleted,
looked up and/or modified.

21. The method of claim 1, wherein:

the indexing process presents logical bucket operations

for reading and writing to physical bucket locations
which store the index records.

US 10,176,113 B2

19

22. A non-transitory computer readable medium storing
instructions executable by a processor, the non-transitory
machine readable medium comprising instructions to:

store a dictionary of index records in the non-uniform

access memory, each index record comprising fields for
an 1ndex key, a reference count and a physical block
address, the index keys being uniformly distributed and
unique;

maintain a bucket translation table for mapping logical

bucket 1dentifiers to physical bucket locations of the
memory, wherein a logical bucket identifier being gen-
crated by displacement hashing an index key, and the
table comprising a mapping of the logical bucket
identifier to a physical bucket location of the memory
where the associated 1ndex record 1s stored;

collect 1n cache a plurality of bucket entries, wherein each

bucket entry comprises a set of mndex records having
the same logical bucket identifier;

write the collection of entries from the cache to contigu-

ous physical bucket locations of the memory as a
sequential write; and

update the bucket translation table with the physical

bucket locations for the bucket entries of the collection
written from the cache to the memory.

23. The non-transitory computer readable medium of
claim 22 further comprising instructions to:

read one or more sequential index records from the

memory to the cache; and

designating as free physical bucket locations in memory

from which the one or more 1index records were read.

24. The non-transitory computer readable medium of
claim 22 further comprising instructions to:

render a plurality of sequential physical bucket locations

of the memory as a free block by reading any valid
index records 1n the block to the cache and designating
as Iree physical bucket locations of the memory from
which the valid index records were read.

25. The non-transitory computer readable medium of
claim 22 further comprising instructions to:

generate Iree erase blocks by reading additional buckets

to the cache 1n response to random read operations,
wherein each erase block comprises a plurality of
pages.

26. The non-transitory computer readable medium of
claim 22,

wherein the memory comprises a flash memory device

which includes a plurality of erase blocks, each erase

10

15

20

25

30

35

40

45

20

block comprising a plurality of pages, and each page
comprising a plurality of buckets, and
the non-transitory computer readable medium further
comprising instructions to perform a scavenging pro-
cess to generate free erase blocks by reading erase
blocks to the cache.
27. A computer system comprising:
a non-uniform access memory containing a dictionary of
index records stored in physical bucket locations of the
memory, each index record comprising fields for an
index key, a reference count and a physical block
address, the index keys being uniformly distributed and
unique;
a processor; and
non-transitory machine readable medium storing instruc-
tions that, when executed, cause the processor to:
maintain a bucket translation table to map a logical
bucket 1dentifier, generated by displacement hashing
an 1dex key of the dictionary, to a physical bucket
location of the memory where an index record asso-
ciated with the index key 1s stored;

collect bucket entries in a cache, each bucket entry
comprising a set ol index records having the same
logical bucket identifier to be written to the memory;

write sequentially a collection of the bucket entries
from the cache to contiguous physical bucket loca-
tions of the memory; and

update the bucket translation table with the physical
bucket locations for the bucket entries of the collec-
tion.

28. The system of claim 27 wherein:

the memory that stores the index comprises a physical

device layer characterized by non-uniform read and
write access and immutability with respect to size,
alignment and timing.

29. The system of claim 27 wherein:

the memory that stores the index comprises one or more
of flash, phase-change and solid state disk memory
devices.

30. The system of claim 27 wherein:

the memory that stores the index comprises a flash
memory device which includes a plurality of erase
blocks, each erase block comprises a plurality of pages,
and each page comprises a plurality of buckets.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

