12 United States Patent
Miyoshi

US010176112B2

US 10,176,112 B2
Jan. 8, 2019

(10) Patent No.:
45) Date of Patent:

(54) INFORMATION PROCESSING DEVICE,
METHOD, AND NON-TRANSITORY
COMPUTER-READABLE RECORDING
MEDIUM STORING INFORMATION
PROCESSING PROGRAM FOR LOADING
CODE INTO RECONFIGURABLE
INTEGRATED CIRCUIT

Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

(71)

(72) Inventor: Takashi Miyoshi, Ohta (JP)

(73)

(%)

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 55 days.

Notice:

(21) 15/453,131

(22)

Appl. No.:

Filed: Mar. 8, 2017

Prior Publication Data

US 2017/0351617 Al Dec. 7, 2017

(65)

(30) Foreign Application Priority Data

Jun. 3, 2016 (IP) 2016-112044

(51) Int. CL
GOGF 12/1027
GOGF 3/06
GOGF 12/1009
GOGF 15/78
GOGF 9/445

(2016.01
(2006.01
(2016.01
(2006.01
(2018.01

(Continued)

L N e

(52) U.S. CL

CPC GO6F 12/1027 (2013.01); GO6F 3/0604
(2013.01); GO6F 3/0659 (2013.01); GO6F

3/0673 (2013.01); GO6F 9/44521 (2013.01);

GO6F 9/5005 (2013.01); GO6F 9/54
(2013.01); GOGF 12/1009 (2013.01):

(Continued)

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,542,077 A * 7/1996 Johnson GO6F 11/1417
713/300
7,873,830 B2* 1/2011 Fayad GOO6F 21/72
380/277
(Continued)
FOREIGN PATENT DOCUMENTS
JP 2006-215592 8/2006
JP 2013-45219 3/2013

Primary Examiner — Sean D Rossiter

Assistant Examiner — Charles] Choi
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

An 1nformation processing device, includes: a reconfigu-
rable integrated circuit that, by being loaded with code
expressing a configuration of a circuit, functions as the
circuit; a memory that stores information indicating that the
code 1s loaded 1nto the reconfigurable integrated circuit, and
resource information indicating an unused region in which
circuit generation 1s available inside the reconfigurable
integrated circuit; and a processor that searches a translation
lookaside bufler (TLB) in which a virtual address associated
with the code 1s associated with a physical address of the
memory, determines, when the virtual address hits in the
TLB, that the code 1s loaded, and generates, when the virtual
address does not hit 1n the TLB, the circuit expressed by the
code 1 the unused region indicated by the resource infor-

mation.

18 Claims, 7 Drawing Sheets

o1
INFORMATION PROCESSING DEVICE
s A3 A3
PROCESSING UNIT FPGA#1 FPGA#?
APPLICATION L.l 112| [conmroL |39 CONTROL |77
UNIT UNIT UNIT
|- 113 133-1-1 1313-2-1
OS UNIT Ragion#! 1 Region#l 1
EXCEPTION | | | 1t4
PROCESSING 133-1-2 133-2-2
UNiT Region#2 [T Region#2 [~
RESGURCE |- 115
MARNAGER
116 133-1-n| 133-2-n
TLE =1 Region#n [T~ Region#n ™1
! o
MEMORY FLASH MEMORY
FPGA RESOURCE | | 122 HSER Ll 142
TABLE APPLICATION
MAPPING TABLE - 123 as - 143
| 124 RESCRIRCE MANAGEMENT [| 144
PAGE TABLE - APRICATION
c&d&#l . 1'45'1
Code#z |t 19972
CodesM |- 145-M

US 10,176,112 B2

Page 2
(51) Int. CL
GO6F 9/50 (2006.01)
GO6F 9/54 (2006.01)
(52) U.S. CL

CPC .. GO6F 15/7867 (2013.01); GOGF 2212/1021
(2013.01); GO6F 2212/684 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0143365 Al* 6/2006 Kikuchi GO6F 3/0614
711/103
2010/0070708 Al* 3/2010 Maruyama GOO6F 12/1027
711/118
2012/0042036 ALl* 2/2012 Lauoocevvvvnnennnnn, GOO6F 8/61
709/217

* cited by examiner

U.S. Patent Jan. 8, 2019 Sheet 1 of 7 US 10,176,112 B2

101
INFORMATION PROCESSING DEVICE
st 1311 1312
PROCESSING UNIT FPGA# FPGA#2
132-1 :
APPLICATION || 112| | CONTROL CONTROL |27
_ UNIT UNIT UNIT

113

133-1-1 138-2-1
Region#1] Region# 1 l’““““
114
133-1-2 133-2-2
Region#2 l Region#2 }“‘“‘”
l RESQURCE l L 115 . .
MANAGER : :
i} ‘16 133-1-n 133-2-n
’F_ TLB - Region#n I Region#n } e

OS5 UNIT

EXCEPTION
PROCESSING
UNIT

121 141
MEMORY FLASH MEMORY
FPGA RESOURCE | | 122 | USER 142
TABLE APPLICATION
F&APPING TABLE |~ 1% s 143
R . 124 RESOURCE MANAGEMENT | _ | 144
Code#1 |~ 1%L
Code#? et 14072
Code#M —pr 180-1

US 10,176,112 B2

Sheet 2 of 7

Jan. 8, 2019

U.S. Patent

4t

¢ 9l

U.S. Patent Jan. 8, 2019 Sheet 3 of 7 US 10,176,112 B2

FIG. 3

123

US 10,176,112 B2

Sheet 4 of 7

Jan. 8, 2019

U.S. Patent

VOdd

HATYNYI
AJUN053Y

LTIdINOD
NOLLONNMA Y9 d4
T 0SS
E— NOLLONAE YO
055 T=30TIVA NUNLTY
N
I 055
(D00S00O00TXO
=§SIUAAY TYOISAH)
o AHONE (0rQ0c0=Ss33aay
Z0SS Hi il VWG O
10sS” | YOIHD ¥4I
LINN ONISSIIOH (LINA SNISSZO0HA)
NOLLENE AHOW A a1l JING NOLLY O ddY

US 10,176,112 B2

Sheet 5 of 7

Jan. 8, 2019

U.S. Patent

113 TdIWCGD

NOLIONN ¥dd

T

| nNoLDONAd w9

gL 135 S B
(1 71v) w

TIgVL 39vd 43S -
zguoifoy 343 1RO e
T#Y9d4 . S1SS | p1ec
0} Z#3p00 31RIM e ——eo L
2i{{P] 02005} WK
(z=Q1) NOIDTY
3384 103130 C1CS

aige) Budden WOY: /r
¢ =l LLNaDO)

EIE (PPBY "IN [

/% NOLLAAOXT

(000E00X0=5STUACY

LN NCLIVOT IddV

TWNLYIA)
2185 eI gL GNTWIO U
1158 YOIHD ¥Odd
IOV YA LINA ONISSID0U (LINN ONISSII08d)
Y9 dd ANOSIH NOLLEDG AHOWIN a1l

US 10,176,112 B2

Sheet 6 of 7

Jan. 8, 2019

U.S. Patent

ONISSIDOU
JAVYALA0S
ANNLLNOD
(0 TV) 31991 39vd L3S / AL
ZAT
o [{12] S0
WOYA NOIDIY
3344 ON 103130
ey Buidden WO £Ca3
7=1RqUNKBPYY | /M//
123134 -
{ PID2UD B0IN053 ke _
[gﬁﬁwﬂ@%
. NOILdIOX3 _
CCh5 SSIU g1l <. ANVIWWOD O
12557 | SD3IHD VO
|
UIDYNYIA LINA ONISSIO04 {LINM ONISSAD0Yd)
Vodd Y0053 NOTL AT AdOH AN a1l LN NOLLYO AV

US 10,176,112 B2

AU HLV I

LIN IIA3A
JATIA WIIGAN e AT LOdNT AHOWIW
ONIQHODIY [] _ __
= N =N

_—— ETn

. A TIOUINOD
AYOW I

FINJOKW

OLYIS [TT 4 g1L G1

Sheet 7 of 7

=1(8)8

Jan. 8, 2019

2-41
1-£1
sp~ 3HOWD e

v .y -

L Dl

U.S. Patent

US 10,176,112 B2

1

INFORMATION PROCESSING DEVICE,
METHOD, AND NON-TRANSITORY
COMPUTER-READABLE RECORDING
MEDIUM STORING INFORMATION
PROCESSING PROGRAM FOR LOADING
CODE INTO RECONFIGURABLLE
INTEGRATED CIRCUIT

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2016-

112044, filed on Jun. 3, 2016, the entire contents of which
are 1ncorporated herein by reference.

FIELD

The embodiment discussed herein 1s related to an infor-
mation processing device, an information processing
method, and a non-transitory computer-readable recording
medium storing an information processing program.

BACKGROUND

As an acceleration of computing, there 1s provided a
hybrid package of a central processing unit (CPU) and a
field-programmable gate array (FPGA).

Related art 1s disclosed in Japanese Laid-open Patent
Publication No. 2006-215592 and Japanese Laid-open Pat-
ent Publication No. 2013-45219.

SUMMARY

According to an aspect of the embodiments, An informa-
tion processing device, includes: a reconfigurable integrated
circuit that, by being loaded with code expressing a con-
figuration of a circuit, functions as the circuit; a memory that
stores mformation indicating that the code 1s loaded into the
reconfigurable integrated circuit, and resource information
indicating an unused region 1in which circuit generation 1s
available inside the reconfigurable integrated circuit; and a
processor that searches a translation lookaside bufler (TLB)
in which a virtual address associated with the code 1is
associated with a physical address of the memory, deter-
mines, when the virtual address hits 1n the TLB, that the
code 1s loaded, and generates, when the virtual address does
not hit in the TLB, the circuit expressed by the code in the
unused region indicated by the resource information.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FI1G. 1 1llustrates an example of an information processing
device;

FIG. 2 illustrates an example of an FPGA resource table;

FIG. 3 illustrates an example of a mapping table;

FI1G. 4 illustrates an example of a sequence diagram when
code has already been loaded into an FPGA;

FI1G. 5 illustrates an example of a sequence diagram when

code 1s loaded 1into an FPGA:;

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1llustrates an example of a sequence diagram when
code 1s not loaded into an FPGA; and

FIG. 7 1llustrates an example of hardware of an informa-
tion processing device (computer).

DESCRIPTION OF EMBODIMENT

For example, 1n a hybnd package of a CPU and an FPGA,

the CPU and the FPGA are coupled by a memory-coherent
bus, and the CPU and the FPGA share memory.

For example, there 1s provided an FPGA 1n which mul-
tiple regions are prepared in advance, and individual regions
may be reprogrammed.

For example, the FPGA 1s programmed dynamically
while an application 1s being executed.

For example, a coprocessor performs a check of whether
or not a certain function 1s programmed into the FPGA. By
having a processor check a result register in which the check
result 1s stored, 1t 1s determined whether or not a certain
function 1s executable by the FPGA. For example, since the

register 15 checked when determining whether or not the
certain function 1s executable by the FPGA, a checking of
the register when performing a fine-grained process may
become an overhead.

For example, whether or not code 1s loaded 1nto a recon-
figurable 1ntegrated circuit may be determined quickly.

FIG. 1 illustrates an example of an information processing
device.

The information processing device 101 1s provided with a
processing unit 111, memory 121, FPGAs 131-i (where 1=1
to 2), and flash memory 141. The information processing
device 101 may be a computer, such as a personal computer
(PC) or a server, for example.

The processing unit 111 1s a processing device that
controls the information processing device 101 overall. The
processing unit 111 executes various processes by loading a
user application 142 and an operating system (OS) 143 nto
the memory 121. The processing unit 111 1s provided with
an application unit 112, an OS unit 113, a resource manager
115, and a translation lookaside bufler (TLB) 116. The
processing unit 111 1s a CPU, for example.

The application unit 112 loads the user application 142
from the flash memory 141 into the memory 121, and
executes the user application 142. In the case of wanting to
perform a certain process using a certain circuit generated by
loading certain code 145-% into the FPGA 131-i, the appli-
cation unit 112 checks whether the certain code 145-% 1s
loaded into the FPGA 131-i. The application unit 112 reads
out a value stored 1n a virtual address associated with the
certain code 145-%£, and according to the read-out value,
determines whether or not the certain code 145-% 1s loaded
into the FPGA 131-i. For example, the application unit 112
determines whether or not the FPGA 131-; 1s usable (for
example, whether or not hardware processing using the
FPGA 131-i 1s available). For example, 11 a value of 1 1s read
out from the virtual address associated with the certain code

145-%, the application unit 112 determines that the certain
code 145-% 1s loaded 1nto the FPGA 131-i (for example, the

FPGA 131-i 1s usable). If a value of 0 1s read out from the
virtual address associated with the certain code 145-%, the
application unit 112 determines that the certain code 145-%
1s not loaded into the FPGA 131-i ({or example, the FPGA
131-i 1s not usable).

The OS unit 113 loads the OS 143 from the flash memory
141 1nto the memory 121, and executes the OS 143. The OS

unmit 113 manages a page table 124.

US 10,176,112 B2

3

The OS unait 1s provided with an exception processing unit
114. The exception processing unit 114 conducts an excep-
tion process when a mishit of the TLB occurs. The exception
processing unit 114 calls the resource manager 115 when a
mishit of the TLB occurs.

The resource manager 115 loads a resource management
application 144 from the flash memory 141 into the memory
121, and executes the resource management application 144.
The resource manager 115 references an FPGA resource
table 122, and depending on the condition of the FPGA
131-i, writes the code 145-% into the FPGA 131-i. For
example, the resource manager 115 transmits an instruction
and the code 145-k to the FPGA 131-i, and a control unit
132-i of the FPGA 131-i loads the received code 145-% into
a region 133-i-j. For example, the control unit 132-; con-
figures a circuit indicated by the received code 145-% 1n the
region 133-i-j. The resource manager 115 sets the FPGA
resource table 122 and a mapping table 123.

The TLB 116 1s a cache that stores information associat-
ing a virtual address with a physical address of the memory
121. Part of the information of the page table 124 1s stored
in the TLB 116. Searches 1n the TLB 116 are executed 1n
hardware.

The memory 121 1s a storage device that temporarily
stores programs and data used by the information processing
device 101. The memory 121 1s dynamic random access
memory (DRAM) or the like, for example. The memory 121
stores the FPGA resource table 122, the mapping table 123,
and the page table 124.

The FPGA resource table 122 15 a table describing states
such as the usage conditions of the FPGA 131-i.

The mapping table 123 1s a table describing the corre-
spondence relationship between the code 145-% and a virtual
address. The mapping table 123 1s set by the resource
manager 115, and 1s correspondingly updated if the code
145-£1s stored in the flash memory 141 or removed from the
flash memory 141. Each virtual address associated with each
code 145-&£ may be set by the resource manager 115 so
values do not overlap.

The page table 124 1s a table describing correspondence
relationships between virtual addresses and physical
addresses of the memory 121. The page table 124 1s used by
a paging-style virtual memory system in the OS 143. In the
page table 124 are described correspondence relationships
between the virtual addresses 1n a region obtamned by
partitioning virtual address space into a region of a certain
s1ze, called a “page”, and physical addresses of the memory
121. The number of the page table 124 1s an example, and
1s not limited thereto.

The FPGA 131-i 1s provided with a control unit 132-; and
a region 133-i-j (where j=1 to n). The FPGA 131-i 1s an
example of a reconfigurable integrated circuat.

The control unit 132-i recerves an 1nstruction and the code
145-% trom the processing unit 111, and writes (loads) the
received code 145-k into the region 133-i-j. For example, the
control unit 132-; configures a circuit indicated by the
received code 145-% 1n the region 133-i-/. The above process
may also be called configuration.

The region 133-i-j 1s a preset region 1 which the circuit
indicated by the code 145-% 1s configured. The control unit
132-i 1s able to rewrite the region 133-i-/ individually. The

region 133-i-j may also be designated the region #.
The number of the FPGA 131-i and the number of the

region 133-i-j are an example, and 1s not limited thereto.
The flash memory 141 1s a non-volatile semiconductor

storage device that stores programs and data used by the

information processing device 101. The flash memory 141

10

15

20

25

30

35

40

45

50

55

60

65

4

stores the user application 142, the OS 143, the resource
management application 144, and the code 145-4£ (where
k=1 to M).

The user application 142 1s a program that executes a
process demanded by the user.

The OS 143 1s a program that controls the information
processing device 101, sets the page table 124, performs an
exception process, and the like.

The resource management application 144 i1s a program
that performs management operations such as writing the
code 145-k into the FPGA 131-i, and updating the FPGA
resource table 122.

The code 145-k1s information that indicates a circuit to be
configured 1n the region 133-i-j of the FPGA 131-i. Here-
inafter, the code 145-k may also be designated Code#k.

FIG. 2 illustrates an example of an FPGA resource table.
The FPGA resource table 122 describes the following fields
in association with each other: 1D, FPGANumber, Region-
Number, InUse, CodeNumber, and ProcessID.

ID 1s a serial number assigned to the region 133-i-;.
FPGANumber 1s a number identifying the FPGA 131-i.
RegionNumber 1s a number 1dentifying the region 133-i-;.

InUse 1indicates whether or not the region 133-i-j 1s 1n use,
such as whether or not the code 145-% 1s loaded into the
region 133-i-j, for example. “Yes” indicates that the region
133-i-j 1s in use, while “No” indicates that the region 133-i-j
1s not 1n use. For example, when InUse 1s “No”, a circuit 1s
generated by loading the code 145-% 1nto the corresponding
region 133-i-j, and executed, such as hardware processing,
for example.

CodeNumber indicates the code 145-f loaded into the
region 133-i-j. For example, the CodeNumber k may indi-
cate the code 145-%.

ProcessID indicates the ID (1dentifier) of a process being
used by the OS 143 that 1s using a circuit generated by the
code 145-% loaded into the region 133-i-/.

The resource manager 115 sets InUse to “No” when the
process 1ndicated by ProcessID included in the FPGA
resource table 122 1s not currently running. The resource
manager 115 removes from the TLB 116 the physical
address corresponding to the virtual address that corre-
sponds to the CodeNumber for the process corresponding to
the ProcessID that 1s not currently running.

FIG. 3 illustrates an example of a mapping table. The
mapping table 123 includes fields describing a CodeNumber
and an address 1n association with each other.

CodeNumber 1s a number identifying the code 1435-%. For
example, the CodeNumber k indicates the code 145-%.
Address indicates a virtual address.

FIG. 4 1llustrates an example of a sequence diagram when
code has already been loaded into an FPGA. FIG. 4 1llus-
trates a case i which the user application 142 executes a
certain process using Code#1 . A value of 1 1s stored 1n the
physical address 0x1000008000 of the memory 121 corre-
sponding to the virtual address 0x001000 corresponding to
Code#1.

The application unit 112 1ssues a load (LD) command to
read out information from the virtual address corresponding
to Code#l (operation S501). As illustrated 1n FIG. 3, the
virtual address corresponding to Code#1 1s 0x001000.

The processing unit 111 searches the TLB 116 based on
the virtual address 1ssued by the application unit 112 (opera-
tion S502). For example, suppose that the physical address
0x1000008000 corresponding to the wvirtual address
0x001000 1s obtained as a search result (ITLB hit). At the
physical address Ox1000008000 of the memory 121, a value

of 1 1s stored, and the processing unit 111 returns to the

US 10,176,112 B2

S

application umit 112 the mformation (1) read out from the
memory 121 (operation S503).

The application unit 112 receives 1 as the return value,
and thus determines that the FPGA 131-i 1s usable (operation
S504). The application unit 112 calls the FPGA function

corresponding to Code#1 (operation S504). For example, the
application unit 112 executes the circuit generated in the
FPGA 131-i by Code#1. For example, the application unit
112 instructs the FPGA 131-i that includes that circuit

generated by Code#1 to execute the circuit.

The FPGA 131-i executes the circuit generated by
Code#f1, and alter execution terminates, transmits the execu-
tion result of the circuit generated by Code#1 to the appli-
cation unit 112 (operation S503).

FIG. § illustrates an example of a sequence diagram when
code 1s loaded 1into an FPGA. FIG. 5 illustrates a case 1n
which the user application 142 executes a certain process
using Code#2.

The application unit 112 1ssues a load (LD) command to
read out information from the virtual address corresponding,
to Code#1 (operation S511). As 1illustrated in FIG. 3, the
virtual address corresponding to Code#2 1s 0x003000.

The processing unit 111 searches the TLB 116 based on
the virtual address 1ssued by the application unit 112 (opera-
tion S512). For example, suppose that the physical address
corresponding to the virtual address 0x003000 1s not stored
in the TLB (TLB miss). The processing unit 111 produces an
interrupt, and calls the exception processing unit 114 (opera-
tion S512). The exception processing umt 114 calls the
resource manager 115 (operation S513).

The resource manager 115 references the mapping table
123, and detects the CodeNumber 2 corresponding to the
virtual address 0x003000 (operation S514). The resource
manager 115 references the FPGA resource table 122, and
searches for an unused region (operation S514). For

example, as an unused region, the region corresponding to
the ID of 2 (FPGANumber=1, RegionNumber=2), such as

the region 133-1-2 of the FPGA 131-1, for example, may be
detected. For example, 11 there are multiple unused regions,
the region with the smallest ID from among the unused
regions may be detected. The resource manager 115 trans-
mits Code#2 to the FPGA 131-1, and instructs the FPGA
131-1 to write (load) Code#2 1nto the region 133-1-2 (opera-
tion S514).

The control unit 132-1 of the FPGA 131-1 writes (loads)
Code#2 imto the region 133-1-2 (operation S5135). As a
result, the circuit expressed by Code#2 1s generated 1n the
region 133-1-2. When loading finishes, the control umit
132-1 notifies the resource manager 115 that the load 1s
complete (operation S515).

The resource manager 115 sets the page that includes the
virtual address Ox003000 and the corresponding physical
address 1n the page table 124, and writes a value of 1 at the
physical address of the memory 121 corresponding to the
virtual address of the page that includes the virtual address
0x003000. The resource manager 115 returns a value of 1 to
the application unit 112 (operation S516). The resource
manager 115 registers the physical address corresponding to
the virtual address 0x003000 1n the TLB 116 (operation
S5516).

The application unit 112 receives 1 as the return value,
and thus determines that the FPGA 131-i 1s usable (operation
S517). The application unit 112 calls the FPGA function
corresponding to Code#2 (operation S517). For example the
application unit 112 executes the circuit generated in the
FPGA 131-i by Code#2. For example, the application unit

10

15

20

25

30

35

40

45

50

55

60

65

6

112 instructs the FPGA 131-i that includes that circuit
generated by Code#2 to execute the circuit.

The FPGA 131-i executes the circuit generated by
Code#f2, and alter execution terminates, transmits the execu-
tion result of the circuit generated by Code#2 to the appli-
cation unit 112 (operation S518).

FIG. 6 illustrates an example of a sequence diagram when
code 1s not loaded into an FPGA. FIG. 6 1llustrates a case 1n
which the user application 142 executes a certain process
using Code#2.

The application unit 112 1ssues a load (LD) command to
read out information from the virtual address corresponding
to Code#2 (operation S521). As illustrated 1n FIG. 3, the
virtual address corresponding to Code#2 1s 0x003000.

The processing unit 111 searches the TLB 116 based on
the virtual address 1ssued by the application unit 112 (opera-
tion S522). For example, suppose that the physical address
corresponding to the virtual address 0x003000 1s not stored
in the TLB (TLB miss). The processing unit 111 produces an
interrupt, and calls the exception processing unit 114 (opera-
tion S522). The exception processing unit 114 calls the
resource manager 115 (operation S3523).

The resource manager 1135 references the mapping table
123, and detects the CodeNumber 2 corresponding to the
virtual address 0x003000 (operation S524). The resource
manager 115 references the FPGA resource table 122, and
searches for an unused region (operation S524). For
example, an unused region may not be detected. The
resource manager 115 sets the virtual address of the page
that includes the virtual address 0x003000 and the corre-
sponding physical address in the page table 124, and writes
a value of O at the physical address of the memory 121
corresponding to the page that includes the virtual address
0x003000 (operation S524).

The application umt 112 receives 0 as the return value,
and thus determines that the FPGA 131-i 1s unusable. The
application unit 112 executes the certain process by software
processing, without using hardware processing by the FPGA
131-i. For example, the application unit 112 1itself executes,
in software, processing similar to the processing executed by
the circuit generated by Code#2 (hardware processing). For
this reason, a processing result similar to the case of using
the circuit generated by Code#2 1s obtained, but since the
processing 1s performed in soitware, the processing may
take more time compared to the case of using the circuit
generated by Code#2.

According to the above information processing device,
the determination result of whether the FPGA 1s usable 1s
linked with the result of the TLB search. Since the TLB
search 1s conducted for each LD command 1n normal access,
the overhead for a hit may be reduced.

According to the above information processing device,
the overhead for checking whether or not the FPGA 1s usable
may be reduced.

FPGA resources are shared by multiple user applications.
In this case, if a resource wait occurs, software processing by
the CPU (processing unit) may be faster than hardware
processing using the FPGA 1n some cases.

According to the above information processing device,
depending on the utilization of the FPGA, 1t 1s determined
whether to use hardware processing by the FPGA or soft-
ware processing by the CPU.

FIG. 7 1llustrates an example of hardware of an informa-
tion processing device (computer). The information process-
ing device 101 1illustrated 1n FIG. 1 may be realized by the
information processing device (computer) 1 as 1llustrated 1n
FIG. 7, for example.

US 10,176,112 B2

7

The information processing device 1 1s provided with a
CPU 2, memory 3, an input device 4, an output device 5,
flash memory 6, a recording medium drive unit 7, and an
FPGA 8-i. These components are interconnected by a bus.

The CPU 2 1s a central processing unit that controls the
information processing device 1 overall. The CPU 2 1s
provided with a core 11, a cache 12, a memory controller 13,
and an I/O hub 14. The core 11 1s a computational device
that performs various processes. The core 11 operates as the
application unit 112, the OS unit 113, and the resource
manager 113.

The memory 3 1s memory such as read-only memory
(ROM) or random access memory (RAM) that temporarily
stores programs or data stored in the flash memory 6 (or a
portable recording medium 10) when executing a program.
The CPU 2 executes the various processes discussed above
by executing a program using the memory 3. The memory
3 may correspond to the memory 121.

In this case, the program code 1tself that 1s read out from
the portable recording medium 10 or the like may realize the
above functions.

The mput device 4 1s used to input instructions and
information from the user or operator, acquire data used by
the information processing device 1, and the like. The input
device 4 may be a device such as a keyboard, a mouse, a
touch panel, a camera, or a sensor, for example.

The output device 5 1s a device which outputs queries to
the user or operator and processing results, and which
operates under control by the CPU 2. The output device 5
may be a device such as a display or a printer, for example.

The flash memory 6 1s a storage device that stores
programs and data. The information processing device 1
saves the above programs and data in the flash memory 6,
and when appropnate, loads such programs and data into the
memory 3 for use. The tflash memory 6 corresponds to the
flash memory 141. The tlash memory 6 may be a device suc
as a magnetic disk device, an optical disk device, or a tape
device, for example.

The recording medium drive unit 7 drives the portable
recording medium 10 to access content recorded thereon.
For the portable recording medium, an arbitrary computer-
readable recording medium may be used, such as a memory
card, a flexible disk, a Compact Disc-Read-Only Memory
(CD-ROM), an optical disc, or a magneto-optical disc. The
user stores the above programs and data on the portable
recording medium 10, and when appropnate, loads such
programs and data into the memory 3 for use.

The FPGA 8-i 1s a reconfigurable integrated circuit. The
FPGA 8-i may correspond to the FPGA 131-i. The FPGA 8-1
1s provided with a static module 16 and a region 17-j. The
static module 16 may correspond to the control unit 132-1.
The region 17-j may correspond to the region 133-i-j. The
FPGA 8-2 may also have a configuration similar to the
FPGA 8-1.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the invention and the concepts contributed by
the inventor to furthering the art, and are to be construed as
being without lmmitation to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although the
embodiment of the present invention has been described 1n

detail, 1t should be understood that the various changes,
substitutions, and alterations could be made hereto without

departing from the spirit and scope of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

8

What 1s claimed 1s:

1. An information processing device, comprising:

a reconfigurable integrated circuit that, by being loaded
with code expressing a configuration of a circuit, func-
tions as the circuit;

a memory that stores first information indicating that the
code 1s loaded 1nto the reconfigurable integrated circuat,
and resource information indicating an unused region
in which circuit generation i1s available inside the
reconflgurable integrated circuit; and

a processor that searches a translation lookaside builer
(TLB) that 1s included in a cache memory and associ-
ates a virtual address, which 1s associated with the
code, with a physical address of the memory 1n which
second information indicating that the code 1s loaded
into the reconfigurable integrated circuit 1s stored,
determines, when the physical address associated with
the virtual address exists in the TLB, that the code 1s
loaded, and generates, when the physical address asso-
ciated with the virtual address does not exist in the
TLB, the circuit expressed by the code 1n the unused
region indicated by the resource information.

2. The mformation processing device according to claim

1, wherein when generating the circuit 1in the unused region,
the processor sets the physical address of the memory
corresponding to the virtual address 1n the TLB, and writes
the second information at the physical address of the
memory corresponding to the virtual address.

3. The information processing device according to claim

2, wherein when generating the circuit 1n the unused region,
the processor acquires the second information, and executes
the circuit.

4. The mformation processing device according to claim

1, wherein when the physical address associated with the
virtual address does not exist in the TLB, if the unused
region does not exist 1 the reconfigurable integrated circuit,
the processor executes, by a software, a process that pro-
vides a same function as a function which 1s provided by the
circuit.

5. The mformation processing device according to claim

1, wherein when the physical address associated with the
virtual address does not exist in the TLB, i1if the unused
region exists i the reconfigurable integrated circuit, the
processor loads the code into the unused region in the
reconfigurable integrated circuit and registers the physical
address 1n the TLB.

6. The mnformation processing device according to claim

1, wherein the first information indicates a code number
which 1dentifies the code and the second information indi-
cates a specific value which indicates that the code 1s loaded
into the reconfigurable integrated circuit.

7. An mformation processing method, comprising:

1ssuing, by a processor coupled to a memory that stores
first information indicating that a code 1s loaded into a
reconfigurable integrated circuit, and resource informa-
tion 1indicating an unused region 1 which circuit gen-
eration 1s available inside the reconfigurable mtegrated
circuit, a command to load information from a virtual
address associated with the code expressing a configu-
ration of a circuit in the reconfigurable integrated
circuit;

searching, based on the code, a translation lookaside
bufler (TLB) that 1s included in a cache memory and
associates the virtual address, which 1s associated with
the code, with a physical address of the memory in
which second mformation indicating that the code 1s
loaded into the reconfigurable integrated circuit 1is
stored:

US 10,176,112 B2

9

determining, when the physical address associated with
the virtual address exists in the TLB, that the code 1s
loaded 1nto the reconfigurable integrated circuit; and

generating, when the physical address associated with the
virtual address does not exist in the TLB, the circuit
expressed by the code in the unused region, indicated
by the resource information, 1n which circuit generation
1s available inside the reconfigurable integrated circuat.

8. The information processing method according to claim

7, Turther comprising:
setting, when generating the circuit 1n the unused region,

the physical address of the memory corresponding to
the virtual address 1n the TLLB; and

writing the second information at the physical address of

the memory corresponding to the virtual address.

9. The information processing method according to claim
8, further comprising acquiring, when generating the circuit
in the unused region, the second information, and executes
the circuit.

10. The information processing method according to
claam 7, further comprising executing, when the physical
address associated with the virtual address does not hit in the
TLB and the unused region does not exist 1n the reconfigu-
rable integrated circuit, by a software, a process that pro-
vides a same function as a function which 1s provided by the
circuit.

11. The information processing method according to
claim 7, further comprising:

loading when the physical address associated with the

virtual address does not exist in the TLB, 1f the unused
region exists 1n the reconfigurable integrated circuit,
the code into the unused region 1n the reconfigurable
integrated circuit; and

registering the physical address 1n the TLB.

12. The mformation processing method according to
claim 7, wherein the first information indicates a code
number which identifies the code and the second iniforma-
tion 1ndicates a specific value which indicates that the code
1s loaded into the reconfigurable integrated circuit.

13. A non-transitory computer-readable recording
medium storing an information processing program which
causes a computer to perform a process, the process coms-
prising:

1ssuing, by a processor coupled to a memory that stores

first information indicating that a code 1s loaded 1nto a
reconfigurable integrated circuit, and resource informa-
tion 1indicating an unused region 1 which circuit gen-
cration 1s available inside the reconfigurable integrated
circuit, a command to load information from a virtual

10

15

20

25

30

35

40

45

10

address associated with the code expressing a configu-
ration of a circuit in the reconfigurable integrated
circuit;

searching, based on the code, a translation lookaside

bufler (TLB) that 1s included in a cache memory and
associates the virtual address, which 1s associated with
the code, with a physical address of the memory in
which second information indicating that the code 1is
loaded into the reconfigurable integrated circuit is
stored:

determining, when the physical address associated with

the virtual address exists in the TLB, that the code 1s
loaded 1nto the reconfigurable integrated circuit; and
generating, when the physical address associated with the
virtual address does not exist in the TLB, the circuit
expressed by the code in the unused region, indicated
by the resource information, 1n which circuit generation
1s available 1nside the reconfigurable integrated circuait.

14. The non-transitory computer-readable recording
medium according to claim 13, further comprising:

setting, when generating the circuit 1n the unused region,

the physical address of the memory corresponding to
the virtual address 1n the TLLB; and

writing the second information at the physical address of

the memory corresponding to the virtual address.

15. The non-transitory computer-readable recording
medium according to claim 14, further comprising acquir-
ing, when generating the circuit 1 the unused region, the
second 1nformation, and executes the circuait.

16. The non-transitory computer-readable recording
medium according to claim 13, further comprising execut-
ing, when the physical address associated with the virtual
address does not exist in the TLB and the unused region does
not exist in the reconfigurable integrated circuit, by a soft-
ware, a process that provides a same function as a function
which 1s provided by the circuit.

17. The non-transitory computer-readable recording
medium according to claim 13, further comprising:

loading when the physical address associated with the

virtual address does not exist in the TLB, 1f the unused
region exists 1 the reconfigurable integrated circuit,
the code ito the unused region 1n the reconfigurable
integrated circuit; and

registering the physical address 1n the TLB.

18. The non-transitory computer-readable recording
medium according to claim 13, wherein the first information
indicates a code number which identifies the code and the
second information indicates a specific value which 1ndi-
cates that the code 1s loaded into the reconfigurable inte-
grated circuit.

	Front Page
	Drawings
	Specification
	Claims

