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(57) ABSTRACT

A system for predicting variability of travel time for a trip at
a particular time may utilize a machine learning model
including latent variables that are associated with the trip.
The machine learning model may be trained from historical
trip data that 1s based on location-based measurements
reported from mobile devices. Once trained, the machine
learning model may be utilized for predicting variability of
travel time. A process may include receiving an origin, a
destination, and a start time associated with a trip, obtaining
candidate routes that run from the origin to the destination,
and predicting, based at least 1n part on the machine learning
model, a probability distribution of travel time for individual
ones of the candidate routes. One or more routes may be
recommended based on the predicted probability distribu-
tion, and a measure of travel time for the recommended
route(s) may be provided.
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PREDICTING AND UTILIZING
VARIABILITY OF TRAVEL TIMES IN
MAPPING SERVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 62/102,077 filed Jan. 11,
2015, entitled “PREDICTING AND UTILIZING VARI-
ABILITY OF TRAVEL TIMES IN MAPPING SER-
VICES”, which 1s hereby incorporated in 1its entirety by
reference.

BACKGROUND

Computer-driven mapping services aid users in locating,
points of interest (e.g., particular buildings, addresses, and
the like), among other things. Many mapping services also
provide route planning applications that can suggest a fastest
or most desirable route from an origin to a destination, and
sometimes even provide a predicted travel time (e.g., driving
time, walking time, etc.) for those routes. These predicted
travel times typically represent an average (mean) travel
time that can be obtained from historical trip data.

While the average travel time provides a fairly accurate
prediction of travel time, 1t 1s not perfectly accurate for
predicting the actual travel time. In other words, the average
travel time 1s never going to give perfectly accurate results
all of the time. At least for vehicular travel, this may be due
in part to the considerable variability in driving time caused
by differences in driver habits/behavior, unknown timing of
traflic signals, and unobserved tratlic, road, and/or weather
conditions, to name only a few factors that contribute to
driving time variability. Using the average travel time as a
prediction of travel time does not account for the variability
in travel time, which, in turn, negatively aflects user expe-
rience. For instance, if the predicted travel time 1s underes-
timated, the user may be late, while 11 the predicted travel
time 1s overestimated, the user may leave earlier than
necessary, or may look to a third party mapping service in
hopes of finding a route with a lower predicted travel time.
Accordingly, a mapping service that suggests a route with a
low average driving time, but high variability in drniving
time, 1s likely to result 1n poor user experience due to the
inaccuracy of the travel time predictions.

SUMMARY

Described herein are techniques and systems for predict-
ing variability of travel time for a trip that begins at an
origin, at a start time, and ends at a destination. Initially, one
can think of travel time for a particular route as being a
quantity that has variability (1.e., future travel time on a
given route 1s a random variable) due to various uncertain-
ties. A machine learning model may be trained from histori-
cal trip data and used to predict the variability in (probability
distribution of) travel time—a random variable—along a
grven route from the origin to the destination, at a particular
time. In particular, the machine learning model approach
solves what 1s referred to herein as the “dependence prob-
lem” through the use of latent vanables (or “random
cllects™) that are associated with the trip, thereby modeling
the mterdependence of sequential segments that constitute
the trip.

The “dependence problem” refers to the observation that
driving times on different segments (hereinafter “segments™
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2

may be used interchangeably with “links™) that collectively
constitute a route are closely related to one another. For
example, 1I a person drives a vehicle faster than usual on the
first segment of the route, then you would expect that person
to drive the vehicle faster than usual on the other segments
in the route as well. Likewise, the level of congestion that a
driver experiences on the first segment of the trip 1s closely
related to the level of congestion that the driver experiences
on the second segment, the third segment, and so on. Thus,
the dependence problem represents that the travel times
along individual segments of a route are correlated, even
after accounting for time of day and other explanatory
factors.

The techniques and systems disclosed herein use machine
learning methods to model the interdependence of travel
times on route segments within the trip itself, as opposed to
modeling interdependence across all of the segments 1n a
particular network of segments, such as an enftire road
network. A method described 1n “Hofleitner, A., Herring, R.,
Abbeel, P., and Bayen, A., Learning the dynamics of arterial
traflic from probe data using a dynamic Bayesian network.
[EEE Tramnsactions on Intelligent Transportation Systems,
pp. 1679-1693, 2012a,” takes the latter approach to predict
variability 1 driving time; namely they consider latent
variables that represent the level of traflic congestion on
cach road segment 1n an entire road map. The Hofleitner
system 1s computationally intensive when implemented for
predictions 1 highly interconnected road networks with
complex trathc dynamics, leaving such an approach suitable
for only small road networks.

The techmiques and systems disclosed herein use a
machine learning model that includes latent variables that
are associated with a given trip, thereby 1gnoring the remain-
der of segments in a network that are not part of the trip 1n
question. Because the latent variables are associated with the
trip 1nstead of the entire road map, the systems disclosed
herein are more computationally eflicient than systems, such
as the Hofleitner system noted above, that model depen-
dence across all of the segments i an entire road network.

Moreover, by modeling the segment interdependence
within the trip, accurate predictions of travel time variability
can be made for large networks of highly interconnected
segments and complex traflic dynamics (e.g., commercial-
scale road maps). The techniques and systems disclosed
herein provide a comprehensive solution to the above-
mentioned dependence problem that results 1n higher accu-
racy driving time variability predictions to further improve
user experience.

Furthermore, by using latent variables associated with the
trip 1nstead of the road network, entities (e.g., vehicles)
traveling on the same links at the same time are not required
to have the same values of the latent variables. This 1s not the
case for the method of Hofleitner, noted above. Because the
latent variables capture (among other things) the level of
congestion experienced by the vehicle, the machine learning
model described herein reflects the reality that vehicles
traveling in different lanes on the same segment/link can
experience different levels of congestion, aflecting their
individual travel times. This occurs, for example, when
vehicles line up to take a particular exit or turn, or when
high-occupancy vehicle (HOV) lanes are available.

A machine learning model 1including latent variables that
are associated with a trip may be traimned from historical trip
data, as reported by location-based measurements from
mobile devices. Once trained, the model may be utilized for
predicting travel time variability.
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In some embodiments, a computer-implemented method
of predicting variability of travel time for a trip includes
recelving an origin, a destination, and a start time associated
with a trip, obtaining candidate routes that run from the
origin to the destination, and predicting, based at least 1n part
on a machine learning model that includes latent variables
that are associated with the trip, a probability distribution of
travel time for individual ones of the candidate routes.

The predicted variability of travel time for the trip may
then be incorporated into mapping service output. For
instance, mapping service output may recommend one or
more routes from the candidate routes that satisty, or mini-
mize, a criterion (e.g., a specified percentile of the travel
time) based at least in part on the probability distribution.
Mapping service output may further provide a measure of
travel time for the recommended one or more routes that 1s
based on the predicted probability distribution; for example,
reporting a specified percentile of the travel time. By taking
variability of travel time 1nto account, routes may be sug-
gested that are typically more desirable to users than those
obtained by minimizing average driving time. Furthermore,
the systems and techniques disclosed herein can improve the
user experience by, for example, decreasing the chance of
the user being late and/or leaving too early. In certain
instances, high accuracy predictions of travel time variabil-
ity can be quite valuable, such as 1n coordinating arrival of
emergency vehicles that could dramatically improve sur-
vival rates for critical patients (e.g., cardiac patients).

This Summary 1s provided to introduce a selection of
concepts 1n a simplified form that 1s further described below
in the Detailed Description. This Summary 1s not intended to
identify key features or essential features of the claimed
subject matter, nor 1s 1t intended to be used to limit the scope
of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description 1s described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number 1dentifies the figure 1n which the refer-
ence number first appears. The same reference numbers 1n
different figures indicates similar or 1dentical 1tems.

FIG. 1 1s a schematic diagram of an example architecture
of a computer-driven mapping system having a machine
learning model that includes latent varnables (“random
cllects™) that are trip-dependent.

FIG. 2 1s a schematic diagram of a system for predicting
variability of travel time.

FIG. 3 1s a screen rendering of an example graphical user
interface for providing mapping service output on a display
based on travel time vanability prediction.

FIG. 4 1s a flow diagram of an example process of
building a machine learning model that can be implemented
to predict a probability distribution of travel time for a trip
at a specified time.

FIG. 5 1s a flow diagram of an example process of
predicting a probability distribution of travel time for a trip.

DETAILED DESCRIPTION

Described herein are techniques and systems for predict-
ing variability of travel time for a trip. Although examples
are predominantly discussed in terms of vehicular travel,
and specifically driving times for traveling in an automobile
(e.g., a car), 1t 1s to be appreciated that the techniques and
systems disclosed herein may be applied to any form of
travel that can be tracked in some way, such as non-
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4

vehicular travel (e.g., walking or running tracked via mobile
or wearable computing devices), or any form of vehicular
travel including, without limitation, public transit (e.g.,
buses, trains, etc.), air travel, marine or water travel, and so
on. Furthermore, the techniques and systems disclosed
herein may be suitable for implementation within any type
of mapping service that involves computer-driven route
planning, including, without limitation, consumer mapping
services, commercial mapping services (e.g., mapping ser-
vices for taxi’s, public transit, etc.), emergency fleet man-
agement, vehicle tleet decision support systems (e.g., fleet
scheduling software), and so on.

Example System

FIG. 1 1s a schematic diagram of an example architecture
100 of a computer-driven mapping system, the architecture
100 including a machine learning model 102 that includes
latent variables 104 (or “random eflects 104””) that are
associated with a trip, which allow for solving the afore-
mentioned “dependence problem™ to provide high accuracy
predictions of travel time variability. The machine learming
model 102 may be trained from historical trip data 106 in
order to make such predictions of travel time variability,
where the variability predictions may take the form of a
probability distribution of travel time. It 1s to be appreciated
that the architecture 100 1s merely one example of a suitable
computer-driven mapping system, and the techniques
described herein are not limited to performance using the
system 100 of FIG. 1.

The system 100 may include a computing device 108
(“‘client device 108”") that 1s associated with a user 110. The
computing device 108 may be implemented as any type of
computing device including, but not limited to, a mobile
phone (e.g., a smart phone), a tablet computer, a portable
digital assistant (PDA), an electronic book (e-book) reader,
a portable game player, a portable media player, a game
console, a set-top box (STB), a smart television (1V), a
personal computer, a laptop computer, vehicle computer
(e.g., navigation unit), and so forth. The user 110 may further
be associated with a vehicle 112 that he uses for transpor-
tation from one location to another. It 1s to be appreciated
that the computing device 108, although shown 1n FIG. 1 as
being separate from the vehicle 112, may be integrated in the
vehicle 112 1tself as part of an 1n-vehicle computer, such as
a navigation system.

I1 the user 110 desires to travel in his vehicle 112 from an
origin 114 to a destination 116, the user 110 may utilize the
computing device 108 1n order to find the destination 116 on
a map and/or plan a route to get from the origin 114 to the
destination 116. FIG. 1 1illustrates how, 1n some instances,
there may be a plurality of candidate routes from the origin
114 to the destination 116, such as route 118 A and route
118B. Accordingly, the computing device 108 may include
one or more processors 120 and one or more forms of
computer-readable memory 122 that store a mapping appli-
cation 124 having a prediction component 126, among other
possible modules or programs stored 1in the memory 122.
The processor(s) 120 may be configured to execute instruc-
tions, applications, engines, or programs stored in the
memory 122. In some embodiments, the processor(s) 120
may 1nclude hardware processors that include, without limi-
tation, a hardware central processing unit (CPU), a field
programmable gate array (FPGA), a complex programmable
logic device (CPLD), an application specific integrated
circuit (ASIC), a system-on-chip (SoC), or a combination
thereof.

The computing device 108 may also include additional
data storage devices, such as removable storage and/or
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non-removable storage. Computer-readable media may
include, at least, two types of computer-readable media,
namely computer storage media and communication media.
The memory 122, removable storage, and/or non-removable
storage are all examples of computer storage media. Com-
puter storage media may include volatile and non-volatile,
removable, and non-removable media implemented 1n any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data. Computer storage media includes,
but 1s not limited to, random access memory (RAM),
read-only memory (ROM), erasable programmable read-
only memory (EEPROM), flash memory or other memory
technology, compact disc read-only memory (CD-ROM),
DVD, or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage
devices, or any other non-transmission medium that may be
used to store the desired information and which may be
accessed by the computing device 108. Any such computer
storage media may be part of computing device 108. In
general, computer storage media may include computer-
executable 1nstructions that, when executed by the
processor(s) 120, perform various functions and/or opera-
tions described herein.

In contrast, communication media embody computer-
readable instructions, data structures, program modules, or
other data 1n a modulated data signal, such as a carrier wave,
or other transmission mechanism. As defined herein, com-
puter storage media does not include communication media.

The computing device 108 may also include one or more
input devices for interfacing with the computing device 108.
Such mput devices may include, without limitation, a micro-
phone(s), a pointing device (e.g., a mouse, joystick, etc.),
physical buttons, a remote control, a camera(s), a touch
screen display, and/or any other suitable input device. For
example, the user 110 may provide touch 1nput to the touch
screen display of the computing device 108 to specily the
destination 116 for use by the mapping application 124 to
plan a route(s) 118.

The mapping application 124 may utilize the information
specified by the user 110 (e.g., a destination 116, start time
for a trip, preferences, etc.) and any other contextual infor-
mation, such as the time of day, weather conditions, traflic
information, and so on, to plan routes and to predict travel
time variability for those routes using the prediction com-
ponent 126 that 1s configured to access the machine learming
model 102 for making such predictions. Particularly, the
computing device 108 may include one or more communi-
cation connections that allow the computing device 108 to
communicate with (transmit/recerve data to/from) one or
more remote computing resources 128 (e.g., one or more
servers) via a network 130. The network 126 may represent
any one or combination of multiple different types of wired
and/or wireless networks, such as cable networks, the Inter-
net, local area networks, mobile telephone networks, wide
area networks, or a combination of such networks.

With access to the machine learning model 102 over the
network 130, the prediction component 126 can leverage the
machine learning model 102 to make travel time variability
predictions for candidate routes 118 running from the origin
114 to the destination 116 to complete a trip at a specified
time (e.g., a current time, or a future start time for the trip
that 1s specified by the user 110). One or more recommended
routes 118 may be output to the user 110 via one or more
output devices of the computing device 108, such as, with-
out limitation, a display, speakers, a printer, and so on. For
example, a display of the computing device 108 may provide
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a visual output of the recommended route(s) 118 on a map
as part of the mapping application 124. In addition, a
measure of driving time may be output by the mapping
application 124. This measure of driving time may include,
without limitation, a predicted drniving time, a range of
driving times, a percentile of driving time, and so on. The
form of the output on the display may be text-based,
graphical, or any other suitable manner of providing output
on the display.

Turning to the remote computing resource(s) 128, the
teatures of building the machine learning model 102, train-
ing (and updating/re-training) the machine learning model
102, and testing the machine learning model 102 will be
discussed in further detail. In general, the remote computing
resource(s) 128 that maintains the historical trip data 106
and the machine learning model 102 1s shown as including
one or more processors 132 and one or more forms of
computer-readable memory 132, which can include any of
the specified forms described above with reference to the
processor(s) 120 and the computer-readable memory 122 of
the computing device 108.

The memory 134 may include map data 136 comprising,
any suitable information regarding the geography, geo-
graphical features and/or territorial borders of an area, such
as a city. Geographical features 1n the map data 136 may
include road networks comprising major roads (e.g., high-
ways, urban expressways, and the like). A road network
database may categorize roads mto different levels (e.g.,
level 0—highways, level 1—expressways, level 2—arterial
roads) depending on the nature and primary use of the road.
Other geographical features similar to roads, such as trails,
paths (e.g., bike paths), and the like, may be stored as a
network of segments and categorized similarly to road
networks. In this sense, the map data 136 may be described
herein as including data pertaining to routes within a net-
work of segments, where multiple segments may constitute
a particular route between two points of interest. Moreover,
a road may comprise multiple segments or a single segment.
FIG. 1 shows that the route 118A includes three segments
“A, B, and C.,” and that the route 118A includes three
segments “D, E, and F.” The junctions between any two
segments may represent intersections or decision points
where the user 110 can choose one of multiple possible
directions to proceed from that junction point.

The memory 134 may further include the aforementioned
historical trip data 106 (or “mobility data 106). The his-
torical trip data 106 may be collected 1n a variety of ways,
but 1n general may be collected from devices of users, such
as the user 110, that are actually traveling about a region.
This can be accomplished by collecting data reported from
any suitable type of mobile computing device (e.g., a mobile
phone, navigation unit of a vehicle, etc.). In some embodi-
ments, the computing device 108 of FIG. 1 may comprise
one of these mobile computing devices that reports location-
based measurements and data over the network 130 as the
computing device 108 (carried by the user 110) moves about
a region. In some embodiments, these location-based mea-
surements may include global positioning system (GPS)
data obtained from a GPS receiver of a mobile device (e.g.,
a mobile phone, navigation unit, etc.), and this GPS data
may include a coordinate location (e.g., latitude and longi-
tude coordinate), a speed of the mobile device, a heading,
and/or a time stamp of when the location-based measure-
ment was taken. The location-based measurements are not
limited to GPS data, however, as other types of data may be
used to obtain information as to location, and/or speed,
and/or time associated with a mobile device or user, and
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sources other than mobile computing devices may be uti-
lized 1n addition, or alternatively, to the collection of data
from mobile devices. For example, cellular tower data
(“pings”), wireless network or access point data (e.g., WikF1
devices), roadway instrumentation (e.g., sensors, cameras,
etc.), or any other similar location collecting/emitting
devices can be employed in connection with obtaining
location-based measurements that are useful in derniving
information about travel time for a particular entity. It 1s to
be appreciated that mobile devices reporting location-based
measurements do not have to be executing a mapping
application (such as the mapping application 124) 1n order to
report location-based measurements, as mobile devices may
periodically report (in real-time or in batch) sequences of
location-based measurements associated with the mobile
device, so long as the mobile device 1s powered. Further-
more, any data that tracks user location may be anonymized
to obscure or hide the i1dentity of the user. Any identifying
information included 1n the data may require user consent to
obtaining that data.

Travel times (a duration measurement), and possibly other
statistics, associated with the mobile devices can then be
determined based upon the location-based measurements.
The location-based measurements may be reported rela-
tively frequently to give a detailed picture of travel times for
any particular route within the map data 136. In some
embodiments, the travel time of a mobile device on each
segment of a route 1n the map data 136 1s observed or
estimated from the data collected from the mobile device.
Collecting such data from a large number of mobile devices
can create a large database of historical trip data 106.
Moreover, a single segment 1n the map data 136 may be
associated with multiple diflerent driving times for different
mobile devices and/or the same or different devices depend-
ing on the time of day, or the day of week that the mobile
device traversed the segment. For example, commuters 1n
urban areas readily recognize that a driving time of a road
segment on a weekday during rush hour can be drastically
different than a driving time of the same road segment at
midnight (or during a weekend).

The historical trip data 106 can further include driving
time for intersections, where time associated with an inter-
section may drastically differ given varying contexts. Pur-
suant to one example, turning leit at an intersection near a
shopping center during Christmas shopping season at noon
can take a significantly greater amount of time when com-
pared to turming left at the same ntersection at midnight on
a Tuesday. In some embodiments, the historical trip data 106
may Iurther include additional contextual data, such as
weather conditions, event data (e.g., a proiessional football
game), and similar contextual data that can be used to
identily patterns in driving time and make correlations with
the additional contextual data.

Building the Machine Learning Model

The machine learning model 102 of FIG. 1 can be built
using machine learming techmiques in order to determine
how to predict travel time vanability (1.e., probability dis-
tributions of travel time) accurately from the previously
observed historical trip data 106. Machine learning, as used
herein, may pertain to artificial intelligence concerned with
development of techniques that allow computers to “learn™
predictive or explanatory models from sets of observations.
The machine learming model 102 of FIG. 1 may be any
suitable type of machine learning model based on supervised
machine learning, semi-supervised machine learning, or
unsupervised machine learming. In some embodiments, any
suitable machine learning method(s) may be utilized for
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optimizing prediction of variability of travel time, such as a
graphical or probabilistic model, neural network, support
vector machine, random {forest, decision tree, or other
machine learning algorithm. Any suitable learning method
may be utilized, such as maximum likelihood estimation,
maximum a posteriori estimation, or method of moments, or
nonparametric estimation. Any suitable computational
method may be utilized, such as Expectation Maximization
(EM), Expectation Conditional Maximization (ECM),
Variational Bayes, or Monte Carlo methods.

The machine learning model 102 represents a predictive
model of travel time variability that captures both the
probability distribution of travel time (e.g., driving time) on
the mdividual road segments in the map (variability at the
segment level or link level), as well as the probability
distribution of travel time on the entire route associated with
a trip (vanabaility at the trip level). The probability distribu-
tion 1s captured by the model 102 1n terms of some unknown
quantities that will be estimated from the historical trip data
106. The model 102 also captures the relationship of the
travel times on different road segments. In particular, the
model 102 includes terms (referred to herein as “latent
variables” or “random eflects” 104) capturing the relation-
ship (probabilistic dependence) of travel times on the dif-
ferent road segments of a particular trip, which appropnately
solves the “dependence problem.”

The machine learning model 102 1s also designed to
account for the fact that some sources of variability afiect the
entire trip (such as the dniver’s habits/behavior, vehicle
characteristics, etc.), while other sources of variability are
localized (e.g., a delay due to a train crossing, construction,
etc.). Accordingly, the latent vaniables 104 included in the
machine learning model 102 represent unmeasured or unob-
served (hidden) quantities or conditions that are associated
with a trip and that aflect travel time variability along the
trip. The trip-associated latent variables 104 can take a
variety ol forms, including, but not limited to: (1) a single
continuous-valued “trip effect” that captures the extent to
which a particular trip 1s faster or slower than usual on all the
road segments that make up the route 118; (1) “autoregres-
sive” ellects that capture the fact that the travel speed tends
to be similar for road segments that are close to each other
in the route 118; and (111) latent categorical variables cap-
turing for example the level of congestion on links, the
dependence of which may be modeled across links. The
probability distribution of travel time on individual road
segments, and the probabilistic dependence of those driving
times, can depend on the time of day, the day of the week,
observed trathic conditions, weather conditions, and other
factors, 1n ways that are specified 1n the model 102.

To model travel time vanability, the historical travel data
106 may be leveraged for the estimation of the route taken
in each trip 1€I, meaming the sequence R, of links (or
segments) traversed (so that R, ; 1s an element of the set J of
network links for each k&{1, . . ., IR,I}, the distance d, ,
traversed for each link R, (so that d, ; 1s equal to the length
of link R, , for all except the first and last link of the trip),
and the travel time T,, on each link R,,. Obtaining this
estimate 1s called “map-matching.”

Having obtained the values T, ;, the model of T, ; can be
represented as the product of several factors, as shown in
Equation (1):

d 1
—iel. keil, ... IR Y
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In Equation (1), E, and S,; are positive-valued latent
variables 104 (or “random eflects 104”") associated with the
trlp and the trip-link pair, respectively. The latent variable E,
1s the previously mentioned “trip eflect” capturing the fact
that the trip 1 may have, say, 10% faster speeds than average
on every link in the trip. This could occur for example due
to driver habits/behaviors, vehicle characteristics, and the
like. The latent variable E, can take on any positive value.
For example, for every trip 1, there 1s a tendency of a driver
to drive faster than usual or slower than usual on all of the
road segments that make up a route 118. This unobserved
quantity can be estimated 1n each of the historical trips 1n the
historical trip data 106. For instance, 1f a particular past trip
was observed 1n the historical trip data 106 from the origin
114 to the destination 116 at a particular time, based on the
travel time of the trip, the trip effect E, can be estimated, and
it may be determined that the user drove 3% faster than usual
on all of the segments of the trip. This unobserved quantity
can then be estimated 1n a stmilar fashion for other historical
trips 1n the historical trip data 106. In predicting variability
of travel time for future trips, the trip eflect E, 1s considered
a source of uncertainty, and the prediction component 126
integrates over this unknown quantity to predict variability
of travel time for the route 118. Because this trip effect E, can
take any wvalue, 1t has a distribution (see Equation (2),
below).

The latent variable S, ; represents the travel speed on the
link betore accounting for the trip effect E,. The model of
Equation (1) decomposes variability 1in travel time on route
R, into two types: link-level Varlablhty captured by S, ,, and
trlp -level vanability captured by E.. E, can modeled 1n
various ways, such as a log-t distribution, gamma distribu-
tion, or nonparametric specification. One example of how E,
can be modeled is as follows for unknown variance T°:

log(£;)~N(0,:°) (2)

The latent variable S, ; captures local variability, due for
example to local traflic conditions or construction on link
R,z S,z may be modeled as a function of an unobserved
discrete congestion state Q,, €11, . . ., Q } affecting the
traversal of link R;; in trip 1. This congestion state Q,
depends on the trip and 1s one example of the categorical
latent variables described above, capturing the fact that
travel speed tends to be similar for road segments that are
close to each other in the route. In this manner, Q, , can be
different for two trips traversing the same link R, ; at the
same time. Conditional on Q, ,, S, ; may be modeled with a
lognormal distribution, as follows:

log(Si ) | @ik ~ N(#Rj-pk iy ‘T%%I-Fkgfgk) (3)

In Equation (3), p,, and o, for jEJ are unknown
parameters associated with travel speed on link 7 under
conditions q&{1, ..., Q }.

Let b(1,k)EB be the time bin of the week (e.g., Monday
morning rush hour) at which trip 1 begins traversing link R, ;.
Time bins may be defined in any suitable manner. For

example, the set of time bins may include: (1) AM Rush
Hour—weekdays 7-9 AM; (11) PM Rush Hour—weekdays

3-6 PM; (i11) Nighttime—Sunday-Thursday nights 7 PM-6
AM, Friday night 8 PM-9 AM, and Saturday night 9 PM-9
AM; (1v) Weekday Daytime—remaiming times during week-
days; and (v) Weekend Daytime—remaining times during
weekends. A Markov model for congestion states Q, , can be
used as follows:
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Pr(Qi1 = ) = Pk, si.)(@) )

PriQix = ql Qik-1 = q) = Pr; by (@ )

keil, ... IRk g. gedl, ... , Q)

pj:b(o) 1s an unknown probability vector for the initial
congestion state for trips starting on link j during time bin
b&EB, and p; ,, 1s the transition matrix for the congestion state
on link j conditional on the congestion state 1n the previous
link of the trip, during time bin b. This model captures the
fact that the tendency of the link to be congested follows a
weekly cycle, with a higher congestion probability during
weekday rush hours, for example. It also provides a second
way to capture dependence of driving time across links (in
addition to the trip effect). This specification for Q, , yields
a (nonstandard) Gaussian mixture model tfor log(sS, ;):

log(Si i) Qig-1 =g ~ Z PR; . b0 (G Q’)N(#m,qa C"i‘:'i,k )

ge)

kel ... . |R|.

This mixture model 1s nonstandard both because S, ; 1s not
directly observed, and because of the Markov model on the
congestion states Q, ;. In order to have statistical 1dentifi-
ability, and to enforce the interpretation of the mixture
components q as increasing levels of congestion, a restric-
’[IO? W, .. =<l can be placed for each jEJ and q€1{2, .
¢

The statistical model represented by Equations (1)-(4) 1s
flexible enough to capture a wide range of behaviors.
However, not all network links j&J will have suflicient data
(in terms of number of link traversals 1, k with R, ;=) to
accurately estimate the link-specific parameters p, o°,

Jq?
p;. . and D, For links j that have very little data, a single

set of parameters within each road category c¢(j)&C can be
used, the road category comprising the combination of road
class (e.g., “highway”, “arterial”’, or “street”) and speed
limit. For each j let n=l{i€LkE{1, . . ., IR,1}:j=R, .}| be the
number of traversals of link 1. Defining a minimum number
m of traversals, for links with n=m, Equation (5) may be
specified as follows:

)

_ 2_ 2 (0)_
Hig He().g:0%q ~Ocrg Libo Pe(polbip " —Pe(),b

for g&{1, . .. ,5'-;1 },bEB,jEJ H;<m (5)

Here, p. . GZW,, pjﬂc(ﬂ), and p, . for c€C are parameters

associated with the road category c.

The machine learning model 102 incorporates both trip-
level variability (e.g., driver effects), and link-level variabil-
ity due, for example, to construction or speed differences
between lanes. Combined with the assumption that vehicles
stay at constant speed while traversing a link (or follow a
specific speed profile across the link), 1t provides a realistic
model for the location of the vehicle at all times during the
trip. For this reason, the machine learning model 102 can be
used to give enroute predictions of the remaining travel time
of the route while traversing that route. The machine leamn-
ing model 102 also captures the eflect of weekly cycles,
speed limit, and road class, which are believed to be strongly
associated with driving speed.

Although particular examples of trip-associated latent
variables 104 are provided herein, 1t 1s to be appreciated that
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the machine learning model 102 can incorporate additional
latent variables 104 to those described herein. In general,
any suitable type of latent variable 104 associated with the
trip that models dependence of driving time across the
segments/links of the trip may be utilized 1n the model 102
without changing the basic characteristics of the system.
Training the Machine Learning Model

After building the machine learning model 102, a model
training component 138 may use the historical trip data 106
to train the machine learning model 102 to make accurate
predictions of travel time variability. In particular, unknown
quantities specilying the probability distribution of travel
time on individual road segments, the probabilistic depen-
dence of those driving times to each other, and the etl

ect of
additional factors like time of day, are learned from the
historical trip data 106. In some embodiments, the model
training component 138 trains the machine learning model
102 for every geographic region of interest, such as particu-
lar municipalities or even continents. In this sense, the
machine learning model 102 may be region-specific. For
cach such region, a subset of the historical trip data 106,
typically a set of the most recently collected data, 1s not used
in the learning process and is instead reserved for use 1n
evaluating the quality of the predictions.

The training/learning process may be done 1n a variety of
ways. One suitable approach that 1s computationally efli-
cient 1s based on maximum a posteriori (MAP) estimation.
For a parametric machine learning model 102, this may
involve obtaining approximate MAP estimates of the param-
cters. An Expectation Conditional Maximization (ECM)
approach may be used for obtaining MAP estimates during
training ECM 1s closely related to Expectation Maximiza-
tion (EM), but allows for closed-form updates 1n situations
where the parameter vector can be partitioned 1nto subvec-
tors, each of which would have a closed form EM update it
the remaining parameters were known.

For notational simplicity, the use of common parameters
in Equation (5) can be dropped; the extension to handle these
1s straightforward. Now consider the observed data to con-
sist of the transformed values {log S, }iciren. ... &
where log S, =log d, ,—~log T, , 1s the log average speed
during link traversal 1, k. To estimate the unknown quantities
of interest 6= ({“;; q° ,qz Viesastn.0 !{pj, (D)!pjb jeaber {log 2 }IEI:
1°), the maximum a posteriori (MAP) estimator may be used
under the (nonintegrable) pI‘lOI’ distribution
T O 5t iDis sDss }s)x 1 that is uniform on the
support of the parameter space. Such uniform priors on
unbounded parameter spaces are commonly used 1n situa-
tions where there 1s little or no prior information regarding,
the parameter values. Obtaining the MAP estimator under
this uniform prior also corresponds to maximizing the
product of the density of the observed data, times the density
of the following random eflects 104 over O:

f({ng Sf?k}f?k|6)f({lﬂg Ef}fEr|TE) (6)

The congestion states &', , do not appear in the parameter
vector 0, or in the Expression (6); the congestion states &, ,
may be viewed as missing data (in the terminology of EM),
and the expression f({log gi: «}:410) 1s an integral over these
missing data. For this reason, it 1s nontrivial to maximize the
objective of Expression (6), motivating the use of ECM.

Although EM and ECM are commonly applied to obtain
a (local) maximizer of the likelihood function, they can also
be used to obtain a (local) maximizer of the posterior
density. For EM, this may be done by maximizing the
expectation of the complete-data log-likelihood plus the log

prior density in each iteration, mstead of just the complete-
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data log-likelihood. For ECM, this operation may be done
for each parameter sub-vector, conditional on the remaining
parameters.

ECM may be applied by partitioning the parameter vector
into the three sub-vectors 6,=({y, .,0;.°.p;, (D),,pj!b} b)) 027
({log E,} ), and 6.,=1°. First the update equations for El
conditional on 0;_=(0,,0;) may be derived. Using the
terminology of EM, the missing data in the model repre-
sented by Equations (1)-(4) are

Qikticrien, . IR

and the complete data log-likelihood 1s:

logf ({Qi 1‘33353}55]?&5“? (7)

2, 2.1

e ge()

IR ‘9):

(0; 1=d] 1‘3%(;’5?;{' b, 1)(@'))] +

>0 2 Mo ma0s=ao8 PR b0 )] +

iel kel2,. IR 1) q,520

B lﬂgolﬁf,k ik B
g)

ied kell,. LIR; 1}

(lﬂggi,k —logki — Hr; .01 )2 |

QD'E

err.k

In Expression (7), only the final term depends on {log
E.! . so the remaining terms can be ignored during the
update of 0,. Additionally, because Expression (6) 1s maxi-

mized, the relevant terms from the log of the random eflect
density for {log E.} _, may be added in to yield:

-
(lmg S:k — log E; — — KR 1.0, k) (8)

QD'R

(log E;)*
272

Z_

i=f

2

eT kel .. il Lik

IR} L

The expectation of Expression (8) may be taken with
respect to the distribution

f({Q;,;{ }EEI,kE{l, IR i {l‘jg §f=k}fef,ke{1, IR éi

of the missing data conditional on the observed data and the
current parameter estimates 6. Since Expression (8) is a sum
over terms that involve at most one of the &', , values, this
expectation 1s a function of only

gﬁ)}rﬁ(q) = Pr(QLE q i {1‘3’3 Sfﬁ}fef,ke{l, IR é)

for each €1 and k&{1, . . ., IR,/}. Since a Markov model
may be used (see - Jquation (4)) for the {Q, ;},¢1.k(q) can be
calculated for each 1 and k using the forward-backward

algorithm for hidden Markov models.

Since an update of 0, conditional on EI[_Z]:é[_Z] 1S per-
tormed, 0, can be treated as an unknown parameter and 6, _,,
as known. Focusing on particular terms in Expression (8)
yields the following:
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_(h:-g E;)(Qlﬂg S‘Lk — log Ef) . R
E 552 {l‘jg S"':J}ief,ke{l,... IRV d
Rk Lk
. 0 ]
(log E;)(Qlﬂg S;y —log E;) di i (q)
2 Z : ar
a1 Rikd
. (lmg E:)( ﬁﬁhk Q:‘,k) | § @ ~
2 {log S }EEI,RE{I,... R T
Rik-Cik |
b h i
Qf’i,k(@}')#ﬁf e
_(IDg E;) é D
| g=1 T Rig

Expression (8), for each
., wWhere

To maximize the expectation of
1<1, the following can be maximized over log E

a;. ZQ @1&(@) and
g=1 0'2

i

log ErY? 1 ZRE{I,. Ry ok .
S P P
(hjg E) Z ['ﬂ:klﬂg gi,k _dzk]

This yields the updated estimate:

A FLEW ZkE{

- IR |}( a; log Sy — diy)
Of L

l/Tz +ZkE ", ...

JIR; |} ik

case Where the ET > are equal for all j and

log B is appr0x1mately the average across
keq 1, , IR I} of the difference between log S, and its
expectation under the model, which 1s a reasonable estima-
tor for the trip eflect latent variable 104. The computation of
log ﬁl”ew can be done 1n parallel across 1€1, after calculating
¢, 2(q) 1n parallel across 1 and k.

In the special
g, for example, .

The update 01 0, conditional on 0,_,, 1s a nonstandard EM
update of the parameters of a Gaussian mixture model for
cach 12J . To denive this, note that all of the terms 1n the
Expression (7) are functions of 0, and so are relevant for this
update. First, the expectations of these terms can be taken,
keeping 1 mind that since an update of 0, conditional on
0,_ l]:é[_ 17 18 performed, 0, can be treated as an unknown
parameter and 6._,, as a known constant. Also defining

%}g(f?a q) = PF(Q}:;;_I =g, Q?,E =4 ‘ {lﬂggf’k}ie.’,ke{l, IR é)

for each i1€I and k€{2, . . ., IR,I} (another quantity that can
be calculated using the forward-backward algorithm), the
following may be obtained:
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IR} 9]

P, 1(@)1‘3%(;’?& bl 1)(@))
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The first term above 1s the only one that involves the
P 5(0)(q) Thus, 1n order to obtain the update expression for

;s ©)(q), the following may be maximized:
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That 1s, the above expression yields the average of the
allocation probabilities ¢, ,(q) for all trips 1 that traverse link
1 first, during time bin b. Analogously, the update for

pj,b(ehq) IS:

~ FHEW

ij(qﬂ'QJ_

2,

\

Standard calculations for
show that the updates for , A and o, qz are:

ik R; =, bl jO=bk>i

Y

l,Z{r.',ﬁc (‘T}a ‘?)

/ \

2,

ki R; g =, blij)=bj>i

b

Pii-1(q) |

A

EM 1n Gaussian mixture models



US 10,175,054 B2

15

e R =) pii(g)log Six —log E)

Zf,k; R; x=J dix(g)

AR EW
Higq

. A 2
i n, oy Ois(@llo8 Sisc—log Ei = 1)

Zf}k; R; 1 =J ®i 1 (g)

A 2 HEW
S

Similarly, the update for 6,=t conditional on 6[_3]26[_3]
1S:

A2 HEW
>

1 A2
= mZ(lﬂg EI-) :

1=y

Traiming the machine learning model 102, as described
herein, can facilitate the identification of patterns, trends,
and so on, within the historical trip data 106 in order to
estimate the latent variables 104, among other variables 1n
the model 102.

In some embodiments, the model traiming component 138
may update or re-train the machine learning model 102 with
newly recetved historical trip data 106. The updating may be
performed periodically (e.g., once a day, once a week, etc.),
or the updating may occur upon a trigger, such as a user-
initiated 1nstruction, or upon recerving a threshold amount of
new historical trip data 106 since the last training or update
occurred, and the like.

Referring again to FI1G. 1, the computer-readable memory
134 may further include a model tester 140 that 1s configured
to test or check the model 102 after 1t has been fully specified
and trained to make sure the system 1s working as desired.
For example, the machine learming model 102 may be
trained 1n a particular context such that 1t doesn’t work very
well for predicting travel time variability 1n a new and
different context. Testing of the model 102 may be accom-
plished by applying the trained machine learning model 102
to a portion of the historical trip data 106 (called the ““test
data) to perform prediction of travel time varnability for
individual trips in the test data. That 1s, a portion of the
historical trip data 106 may be used to train the model 102,
while a remainder or another portion of the historical trip
data 106 (called the test data) may be reserved (1.e., not used
for training the model 102) for testing the model 102, and for
cach trip 1n the test data, the predicted probability distribu-
tion of travel time may be obtamned from the machine
learning model 102. This prediction may be compared to the
observed travel time for the trip, and the quality of the
predictions 1s evaluated based on the comparison of the
prediction to the actual observed travel time. In this manner,
the accuracy of the model 102 in predicting variability in
travel time may be evaluated, and based on the results of the
testing, steps may be taken to improve the performance of
the machine learming model 102. This may involve re-
building or modifying the model 102 1itself, or by re-training
the model 102 with updated historical trip data 106.

The model tester 140 may measure accuracy or quality of
the machine learning model 102 for predicting variability in
travel time 1n various ways. For example, a set of numerical
measures and/or graphical summaries may be generated by
the model tester 140 for assessing the performance of the
machine learning model 102. The numerical measures and/
or graphical summaries may include, without limitation, an
average diflerence between a predicted average driving time
and the observed driving time of the trip, numerical mea-

10

15

20

25

30

35

40

45

50

55

60

65

16

sures of the quality of a predictive interval for driving time
obtained using the probability distribution, or numerical and
graphical measures of the quality of the predictive probabil-
ity distribution, and so on. At least one type of numerical
measure for evaluating performance of the machine learning
model 102 1n predicting travel time variability 1s a measure
of accuracy of a 95% interval prediction of travel time as
obtained from the model 102. An interval prediction may be
obtained by taking lower and upper bounds of the 1nterval to
be different quantiles of the predicted travel time distribution
(for example, the 95% interval can be obtained as the 0.25
and 0.975 quantiles, or the 0 and 0.95 quantiles). Another
type ol numerical measure 1s a measure of accuracy of a
point (“best” single) prediction of travel time as obtained
from the model. To obtain a point prediction, a geometric
mean of the predicted travel time distribution may be used,
as approximated by Monte Carlo. Alternatively, the median
of the predicted travel time distribution, or the arithmetic
mean of the predicted travel time distribution may be used
to obtain a point prediction.

The model tester 140 may test the model 102 periodically
(e.g., weekly, monthly, etc.) to check that the predictions are
still accurate for a given region. In other embodiments,
testing of the model 102 may occur upon a trigger, such as
a user-mitiated instruction, or upon receiving a threshold
amount ol new historical trip data 106 since the last training
or update occurred, and the like.

Prediction

In FIG. 1, the prediction component 126 of a mapping
application 124, when executing on the computing device
108, may utilize the trained machine learming model 102 1n
connection with predicting a probability distribution of
travel time for imndividual routes 118 corresponding to a trip
from an origin 114 to a destination 116 at a specified time.
The prediction of the probability distribution of travel time
may represent an inference from a set of observations. The
set of observations may include information obtained via
user iput to the computing device 108, such as a recerved
destination, and perhaps a specified future start time asso-
ciated with a trip. Other observations may be obtained from
sensors of the computing device 108 and/or remote
resources over the network 130, such as a current time (time
of day and date), a current position or location of the
computing device 108, and other contextual data, such as
weather conditions, traffic conditions, and the like, which
may be obtained from remote resources over the network
130. The prediction 1s probabilistic 1n that it computes, for
a random variable of travel time, a probability distribution
for the random variable. In some embodiments, the prob-
ability distribution that 1s calculated by the prediction com-
ponent 126 includes the variance, the interquartile range,
and/or predictive intervals.

When training the model 102, the time bin b(1,k) 1s known
for every 1 and k. However, when doing prediction, only the
time b(1,1) associated with the first link R, , i the trip 1s
known. When doing prediction, the time t(1,k) at which the
trip 1 begins traversing each link R, ; can be estimated, and

then b(1,k) can be estimated to be the time bin into which
t(i,k) falls. To estimate t(i,k) for each k&{2, . . ., IR,|}, the
known start time t(1,1) of the trip may be used, plus the
predicted average (geometric mean) time required to tra-
verse the route up to link R, ;:

(i, k) = 1(i, 1) + Geometric Mean Z T .| kef2 ... . IR.
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This quantity 1s not available 1n closed form. We estimate
it using Monte Carlo.

It 1s to be appreciated that, although FIG. 1 shows the
specific implementation of the computing device 108 1n
communication with the remote computing resource(s) 128
via a network 130, the architecture 100 1s not so limited. For
example, the network 130 may be omitted, 1n some embodi-
ments, and the various components and devices of FIG. 1
may be implemented as a single, integrated device, without
a network 130 per se, such as a high performance computing
system usable as a client computing device to maintain the
model 102 and also perform predictions of travel time
variability. The prediction component 126 may be resident
on the remote computing resource(s) 128 in what may
amount to more ol a thin-client implementation of the
system.

FIG. 2 1s a schematic diagram of a system 200 for
predicting vanability of travel time and outputting route
recommendations and/or measures of driving time based on
the variability prediction. The system 200 may be imple-
mented as part ol a mapping service that includes a mapping,
application configured to execute on the computing device
108 of FIG. 1. The system 200 may include the prediction
component 126 and the machine learming model 102 that
includes the latent variables 104 (or “random effects 104”
associated with a trip. In the scenario of FIG. 2, the machine
learning model 102 has been trained by the model training
component 138 of FIG. 1.

The system 200 may include an input component 202 that
1s configured to recerve mput in the form of at least an origin
114, a destination 116, and a start time (e.g., a current time
or Tuture time) associated with a trip. Some of the mput may
be recerved via user mput at the computing device 108, such
as the user 110 mputting the destination 116 when executing
the mapping application 124. Other input may be obtained
by the computing device 108 wvia sensors on-board the
computing device 108 or via the network 130 from remote
resources. In some embodiments, the mput may include
additional contextual data, such as weather conditions, trat-
fic conditions, road conditions, etc.

The system 200 may further include a route generator 204
that 1s configured to obtain a set of candidate routes 118 that
run from the origin 114 to the destination 116. In some
embodiments, the candidate routes 118 that are obtained by
the route generator 204 may be based on average driving
time associated with the individual candidate routes 118.
Data on the average driving time for individual routes 118
may be obtained from the machine learning model 102, or
from other sources. In some embodiments, the candidate
routes 118 that are obtained by the route generator 204 may
be based on other data, such as the start time (which may
include both the time of day and the day of the week (e.g.,
the date)), the existence (and possibly amount of) toll booths
that are located along the individual routes 118, and other
similar data associated with the routes.

A set of candidate routes 118 generated by the route
generator 204 can be relatively large. For example, the set of
candidate routes 118 may be on the order of several hun-
dreds of routes 118 or more. Despite the potentially large
number of candidate routes 118 obtained by the route
generator 204, 1t 1s relatively eflicient, computationally, to
obtain a large set of candidate routes 118 using a metric such
as average driving time associated with the individual routes
118.

Given the set of candidate routes 118 from the route
generator 204, the prediction component 126 may predict,
based at least in part on the machine learning model 102 that
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includes the latent variables 104 associated with the trip, a
probability distribution 206 of travel time for individual
ones ol the candidate routes 118. FIG. 2 1illustrates an
example probability distribution 206 in the form of a normal
(or Gaussian) distribution, although the probability distri-
bution 206 determined by the prediction component 126 1s
not so limited. In particular, the probability distribution
implied by the model described herein may be used.

FIG. 2 also 1llustrates that the probability distribution 206
may 1nclude percentiles 208 of travel time. For example, the
predicted probability distribution 206 for a given route 118 A
may specify that the 70” percentile of travel time (e.g.,
driving time) for route 118A 1s 12 minutes. The predicted
probability distribution 206 for a different route 118B may
specify the 707 percentile of travel time for route 118B as 10
minutes. It 1s to be appreciated that a wealth of information
usetul to route planning applications may be gleaned from
the probability distribution 206 1n addition to percentiles
208. Furthermore, due to the latent variables 104 that are
associated with the trip, 1n that they capture the relationship
between travel times on individual roads segments of a
candidate route 118 for the trip, the prediction of travel time
variability (the probability distribution 206) made by the
prediction component 126 will provide a high accuracy
prediction that can 1mprove customer experience with
respect to mapping services and applications 124. In this
manner, the probability distribution predictions may be used
for route recommendation and travel time reporting 1in
mapping service output.

Accordingly, the system 200 may further include a ranker
210 that 1s configured to rank the candidate routes 118
obtained by the route generator 204 according to a criterion
that 1s based at least in part on the travel time vanability
prediction (i.e., the probability distribution 206 of travel
time) for individual ones of the candidate routes 118. That 1s,
the criterion may be used to evaluate, rank, and select routes
from among the set of candidate routes 118. For example,
the candidate routes 118 can be ranked according to a
specified percentile of travel time, such as the 70th or 80th
percentile of travel time. The choice of percentile 208
controls how conservative the route selection. For example,
in particularly risk-averse applications such as fleets of
refrigerated trucks or concrete delivery, a higher percentile
can be used. Another possible ranking criterion 1s the
probability that a vehicle will arrive at the destination 116
before a specified time. If route selection 1s based on
minimizing the criterion, the ranking may go from lowest to
highest values of a percentile 208 of travel time, for
example, the lowest value among all the routes 118 in the
candidate set being ranked the highest. The route or routes
118 with the best ranking (for example, lowest value of the
70” percentile of driving time, or highest probability of
arriving within 30 minutes) may be recommended by an
output component 212 to a user 110.

In some embodiments, route ranking and selection may be
based on additional criteria, such as minimizing the pre-
dicted average driving time, minimizing another route cri-
terion that incorporates predicted average driving time along
with other measures of route desirability, such as whether
the route has tolls, and so on.

In some embodiments, the criterion for route ranking and
selection may be based on a user specification of his risk
tolerance. For instance, the mapping application 124 may
provide a user interface with an interactive tool allowing the
user 110 to control how conservative of a prediction they
desire, and/or how conservative of a prediction they desire
in the route selection. For example, the user interface can




US 10,175,054 B2

19

have a sliding bar where the user 110 shifts the bar to specily
how much worse or better 1t 1s for them to arrive late by 10
minutes than to arrive early by 10 minutes. In other
examples, the mteractive tool may provide multiple choice
options or similar selection mechanisms to allow the user
110 to specily a level of nisk-aversion (or risk-tolerance).
The mapping application 124 (via the ranker 210) can
translate this measure into a percentile 208 used for the route
selection criterion and/or the reported travel time criterion.
That 1s, the criterion for route selection and travel time
reporting may be adjusted pursuant to the risk-tolerance
specified by the user 110. In this manner, the output com-
ponent 212, 1f providing a single measure/value of travel
time as output, may provide the 807 percentile of travel time
as output to a more risk-averse person (meaning that the
risk-averse user would only be late 20% of the time 11 they
relied on that prediction), while providing the 60” percentile
of travel time to a more risk-tolerant person (meaning that
the risk-tolerant user would be late 40% of the time if they
relied on that prediction). Route recommendation may oper-
ate 1n a similar fashion to recommend routes based on the
level of risk the user 110 1s willing to take on.

The output component 212 may provide any suitable type
of output that 1s based at least in part on the predicted
probability distribution 206. For example, one or more
routes 118 may be recommended to the user 110 that satisiy
or minimize the criterion. For each recommended route 118,
the output may turther include some measure of travel time
for the respective route 118 that can be based on the
predicted probability distribution 206 of travel time. For
example, the measure of travel time may include a single
predicted travel time (e.g., a specific percentile 208 of travel
time) that summarizes the vanability in travel time. In some
embodiments, the output component 212 may reveal to the
user 110 via an output component of the computing device
108 the actual percentile of travel time that 1t 1s providing.
In other embodiments, the output component 212 may give
a simpler graphical or numerical display of the same con-
cept.

In addition, or alternatively, to providing a single pre-
dicted travel time to the user 110, the output component 212
may provide a measure of the vanability of travel time on
the recommended routes. One approach 1s to provide the
user with a lower bound and upper bound on (a range of) the
likely travel time (for example, “the driving time 1s predicted
to be between 45 and 55 minutes™). These lower and upper
bounds can be obtained from the predicted distribution 206
using a variety of interval estimation methods. In some
embodiments, an interval that contains 95% (or 90%, or
99%, etc.) of the predicted travel time distribution 206 by
using the 2.5 and 97.5 percentiles of that distribution 206
may be obtained. Again, how conservative these lower and
upper bounds are can be controlled by using an interval with
a higher or lower probability; a 99% interval 1s correct (the
actual drniving time falls between the lower and upper
bounds) about 99% of the time, and a 90% 1nterval 1s correct
about 90% of the time.

Another approach to illustrate to the user 110 the vari-
ability of travel time on a recommended route 118 1s to
provide a visual (e.g., graphical) display such as a histo-
gram, a graphical representation on a clock, and the like.
FIG. 3 1s a screen rendering of an example graphical user
intertace (GUI) 300 for providing mapping service output on
a display, such as a display of the computing device 108,
based on travel time variability prediction. In the example of
FIG. 3, the user 110 may have specified at least a destination
116 of a trip between an origin 114 and the destination. The
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recommended route 118 may be output to the user as a route
118, among a plurality of candidate routes 118, that mini-
mizes the 807 percentile of driving time along the route,
which 1s determined from the prediction of the probability
distribution of driving time for each of the candidate routes
118.

In addition to the recommended route 118, the GUI 300
may provide a measure of travel time 302 that 1s based on
the predicted probability distribution 206 of travel time for
the route 118. The measure of travel time 302 shown 1n FIG.
3 includes a range of likely travel times (e.g., 17 to 20
minutes of driving time). FIG. 3 also shows an example of
providing an indication 304 to the user that the predicted
travel time 302 1s based on a vanability prediction. In this
example, the indication 304 1s an explanation to the user 110
that the “driving time range includes 95% of the predicted
travel time distribution 206 for the recommended route 118.
The GUI 300 may further include a visual representation
306 of the measure of predicted travel time 302. For
example, the visual representation 306 may comprise a
graphical representation of a clock showing the range of
arrival time when the user 110 can expect to arrive at the
destination 116.

The GUI 300 also shows an interactive tool 308 that may
provide the user 110 with the ability to adjust his risk
tolerance to tune the output of the driving time prediction
302. For example, the interactive tool 308 provides the user
110 the ability to slhide a bar toward the right to “Risk-
Averse” 11 he would like a more conservative travel time
estimate, or toward the left to “Risk-Tolerant” if he 1s fine
with a more liberal travel time estimate.

Example Processes

FIGS. 4 and 5 illustrate example processes that may be
carried out to perform the techniques described herein. The
processes are illustrated as a collection of blocks 1n a logical
flow graph, which represent a sequence of operations that
can be implemented 1n hardware, software, or a combination
thereof. In the context of software, the blocks represent
computer-executable instructions stored on one or more
computer-readable storage media that, when executed by
one or more processors, perform the recited operations.
Generally, computer-executable instructions include rou-
tines, programs, objects, components, data structures, and
the like that perform particular functions or i1mplement
particular abstract data types. The order in which the opera-
tions are described 1s not intended to be construed as a
limitation, and any number of the described blocks can be
combined 1n any order and/or 1n parallel to implement the
processes. Moreover, 1n some embodiments, one or more
blocks of the processes may be omitted entirely.

FIG. 4 1s a flow diagram of an example process 400 of
building and training a machine learning model 102 that can
be implemented to predict a probability distribution 206 of
travel time for a trip at a specified time. For convenience, the
process 400 1s described with reference to the architecture
100 of FIG. 1 and the system 200 of FIG. 2.

At 402, a computing device, such as the remote comput-
ing resource(s) 128, may receive historical trip data 106 (or
mobility data 106). The historical trip data 106 may come
from any suitable source, such as a third party data aggre-
gator that sells or leases data to an entity maintaining and
operating the remote computing resource(s) 128. The his-
torical trip data 106 may originate from mobile devices, or
other location-aware devices, report that location-based
measurements including at least location data and time data.
For example, the historical trip data 106 may include travel
time information, or information from which travel time can
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be derived. For instance, GPS data from mobile phones
typically includes a location, heading, speed, and a time
stamp which may be useful 1n deriving travel time on a route
when periodic measurements are reported.

At 404, a machine learning model 102 may be specified
that includes latent variables 104 associated with a trip. For
instance, the latent variables 104 included in the machine
learning model 102 may include, without limitation, a “trip
cllect” that captures the extent to which a particular trip 1s
faster or slower than usual on all the road segments that
make up the route 118, “autoregressive” ellects that capture
the fact that the travel speed tends to be similar for road
segments that are close to each other in the route 118, and/or
latent categorical variables capturing for example the level
of congestion on links, the dependence of which may be
modeled across links.

At 406, the model training component 138 may train the
machine learning model 102 using the historical trip data
106. For a parametric model, training may include estimat-
ing parameters of the model, including the latent variables
104 included 1n the model.

FIG. 5 1s a flow diagram of an example process 500 of
predicting a probability distribution 206 of travel time for a
trip. For convemence, the process 300 1s described with
reference to the architecture 100 of FIG. 1 and the system
200 of FIG. 2.

At 502, the mput component 202 may receive at least an
origin 114, a destination 116, and a start time associated with
a trip. In some embodiments, other trip details, such as
contextual data (e.g., weather conditions, traflic conditions,
etc.) may be recerved at 502.

At 504, the route generator 204 may obtain candidate
routes 118 that run from the origin 114 to the destination 116.
The candidate route selection by the route generator 204
may be based in part on the average travel time associated
with the individual candidate routes, which may be obtained
from the model 102.

At 506, the prediction component 126 may predict, based

at least 1 part on a machine learning model 102 that
includes random eflects 104 that are associated with the trip,
a probability distribution 206 of travel time for individual
ones of the candidate routes 118. The use of random eflects
104 associated with the trip solves the “dependence prob-
lem” by capturing the relationship of the travel times on
different road segments of the trip.
In some embodiments, the machine learning model 102
can be used to update the travel time prediction enroute. For
example, as a user 110 1s traveling on the route 118, the
prediction component 126 may treat the current location of
the user 110 as an origin for a newly predicted travel time
variability. That 1s, based on the current position of the user
110 on the route 118, the remainder of the route 118 may be
treated as though 1t 1s a route 1n and of itself 1n making a
real-time, updated prediction of travel time variability. In
some embodiments, past traveled segments may be evalu-
ated to determine travel times, speed, or other useful infor-
mation associated with those past traveled segments, and
then update the prediction based on the evaluation of past
traveled segments of the trip.

At 508, output component 212 (perhaps with the use of
the ranker 210) recommends one or more routes 118 from
the candidate routes 118 that satisfy or minimize a criterion
based at least in part on the probability distribution 206
predicted at 506. For instance, the route(s) 118 that minimize
the 80” percentile of travel time may be selected for rec-
ommendation at 508.
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At 510, the output component 212 may provide a measure
of travel time for the recommended route(s) 118. In at least
some 1nstances, this may include a measure that indicates the
use of the probability distribution 206. For instance, the
measure may provide an estimation of the travel time that 1s
based on the 807 percentile of driving time, and possibly an
indication that it is the 80” percentile of driving time.

The environment and individual elements described
herein may of course include many other logical, program-
matic, and physical components, of which those shown in
the accompanying figures are merely examples that are
related to the discussion herein.

The various techniques described herein are assumed 1n
the given examples to be implemented 1n the general context
of computer-executable instructions or software, such as
program modules, that are stored in computer-readable
storage and executed by the processor(s) of one or more
computers or other devices such as those 1illustrated in the
figures. Generally, program modules include routines, pro-
grams, objects, components, data structures, etc., and define
operating logic for performing particular tasks or implement
particular abstract data types.

Other architectures may be used to implement the
described functionality, and are intended to be within the
scope ol this disclosure. Furthermore, although specific
distributions of responsibilities are defined above for pur-
poses of discussion, the various functions and responsibili-
ties might be distributed and divided in different ways,
depending on circumstances.

Similarly, software may be stored and distributed in
various ways and using diflerent means, and the particular
soltware storage and execution configurations described
above may be varied 1n many different ways. Thus, software
implementing the techniques described above may be dis-
tributed on various types of computer-readable media, not

limited to the forms of memory that are specifically

described.

EXAMPLE ONE

A system for predicting variability of travel time for a trip
and utilizing the predicted variability for route planning, the
system comprising: one or more processors; and memory
storing 1nstructions that are executable by the one or more
processors, the memory including: an mput component to
receive an origin, a destination, and a start time associated
with the trip; a route generator to obtain candidate routes that
run from the origin to the destination; a prediction compo-
nent to predict, based at least 1n part on a machine learning
model that includes latent variables that are associated with
the trip, a probability distribution of travel time for indi-
vidual ones of the candidate routes; and an output compo-
nent to: recommend one or more routes from the candidate
routes based at least in part on a criterion that 1s based at
least 1n part on the probability distribution; and provide a
measure of travel time for individual ones of the recom-
mended one or more routes.

EXAMPLE TWO

The system of Example One, further comprising a ranker
to, prior to the output component recommending the one or
more routes, rank the candidate routes according to routes
that minimize the criterion.

EXAMPLE THREE

The system of any of the previous examples, alone or 1n
combination, wherein the criterion comprises at least one of
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a percentile of travel time, or a probability that arrival at the
destination will occur before a specified time.

EXAMPLE FOUR

The system of any of the previous examples, alone or in
combination, wherein the latent variables included in the
machine learning model comprise unobserved quantities
capturing a probabilistic dependence of travel times on
different segments of the trip.

EXAMPL.

L1l

FIV.

L1l

The system of any of the previous examples, alone or in
combination, wherein the latent variables include at least
one of: a latent variable that captures trip-level variability of
travel time as an extent to which a particular trip is faster or
slower than usual on all segments that make up a route for
the trip; a latent vanable that captures segment-level vari-
ability of travel time as a tendency for travel speeds to be
similar for segments of a route for the trip that are close to
cach other in the route; or a latent variable capturing a level
ol congestion on segments.

EXAMPLE SIX

The system of any of the previous examples, alone or in
combination, wherein the measure of travel time comprises
a range of travel times.

EXAMPLE SEVEN

The system of any of the previous examples, alone or in
combination, wherein the range of travel times 1s depicted 1n
a graphical representation on a display of the system.

EXAMPLE EIGHT

The system of any of the previous examples, alone or in
combination, further comprising a user interface to provide
an 1nteractive virtual tool for adjusting a level of risk
aversion for a user that, upon adjustment of the level of risk,
causes adjustment of the criterion.

EXAMPLE NIN.

(L]

A computer-implemented method comprising: receiving
an origin, a destination, and a start time associated with a
trip; obtaining candidate routes that run from the origin to
the destination; predicting, based at least in part on a
machine learning model that includes random efiects that are

associated with the trip, a probability distribution of travel
time for individual ones of the candidate routes; recom-
mending one or more routes from the candidate routes based
at least 1n part on a criterion that 1s based at least in part on
the probability distribution; and providing a measure of
travel time for individual ones of the recommended one or
more routes.

EXAMPLE TEN

The method of Example Nine, wheremn the criterion
comprises at least one of a percentile of travel time, or a
probability that arrival at the destination will occur betfore a
specified time.

EXAMPL.

ELEVEN

(Ll

The computer-implemented method of any of the previ-
ous examples, alone or in combination, wherein the latent
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variables included 1n the machine learning model comprise
unobserved quantities capturing a probabilistic dependence
of travel times on different segments of the trip.

EXAMPLE TWELV.

(L]

The computer-implemented method of any of the previ-
ous examples, alone or in combination, wherein the latent

variables include at least one of: a latent variable that
captures trip-level variability of travel time as an extent to
which a particular trip 1s faster or slower than usual on all
segments that make up a route for the trip; a latent variable
that captures segment-level variability of travel time as a
tendency for travel speeds to be similar for segments of a
route for the trip that are close to each other 1n the route; or
a latent variable capturing a level of congestion on segments.

EXAMPLE THIRT

T

T 1
#IN
A _7F

The computer-implemented method of any of the previ-
ous examples, alone or in combination, wherein the measure
of travel time comprises a range of travel times.

EXAMPLE FOURT

L]

T 1
#IN
A _7F

The computer-implemented method of any of the previ-
ous examples, alone or in combination, further comprising:
providing, via a user mterface, an interactive virtual tool for
adjusting a level of risk aversion for a user; receiving an
adjustment of the level of risk via the interactive virtual tool;
and adjusting the criterion up or down based on the adjust-
ment.

EXAMPLE FIFTEEN

A computer-implemented method of training a machine
learning model to be used for predicting a probability
distribution of travel time for a trip, the method comprising:
receiving historical trip data that 1s based at least in part on
location-based measurements reported from mobile devices,
individual ones of the location-based measurements includ-
ing at least location data and time data; and training a
machine learning model using the historical trip data, the
machine learning model including latent variables that are
associated with the trip from an origin to a destination.

EXAMPLE SIXTEEN

The computer-implemented method of Example Fifteen,
further comprising testing a performance of the machine
learning model 1n predicting the probability distribution of
travel time by applying the machine learning model to a
portion of the historical trip data that was not used to train
the machine learning model.

EXAMPLE SEVENT.

T

T 1
<N
a4 7

The computer-implemented method of any of the previ-
ous examples, alone or 1n combination, wherein the perfor-
mance of the machine learning model 1s measured by at least
one of: a measure of accuracy of a 95% interval prediction
of travel time; or a measure of accuracy of a point prediction
of travel time.

EXAMPLE EIGHTEEN

The computer-implemented method of any of the previ-
ous examples, alone or in combination, periodically re-
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training the machine learning model with newly received
historical trip data since the training.

EXAMPLE NINETEEN

The computer-implemented method of any of the previ-
ous examples, alone or in combination, wherein the re-
training occurs upon receipt of a threshold amount of the
newly received historical trip data.

EXAMPLE TWENTY

The computer-implemented method of any of the previ-
ous examples, alone or in combination, wherein the latent
variables included 1n the machine learning model comprise
unobserved quantities capturing a probabailistic dependence
of travel times on different segments of the trip.

EXAMPL.

L1l

TWENTY-ONE

A system for predicting variability of travel time for a trip
and utilizing the predicted variability for route planning, the
system comprising: means for executing computer-execut-
able instructions (e.g., processors, including, for example,
hardware processors such as central processing units
(CPUs), system on chip (SoC), etc.); and a means for storing
computer-executable instructions (e.g., memory, computer
readable storage media such as RAM, ROM, EEPROM,
flash memory, etc.), the means for storing including: means
for receiving input in the form of an origin, a destination,
and a start time associated with the trip; means for gener-
ating candidate routes that run from the origin to the
destination; means for predicting, based at least in part on a
machine learning model that includes latent variables that
are associated with the trip, a probability distribution of
travel time for individual ones of the candidate routes; and
means for providing output 1n the form of: recommending
one or more routes from the candidate routes based at least
in part on a criterion that 1s based at least 1n part on the
probability distribution; and providing a measure of travel
time for individual ones of the recommended one or more
routes.

EXAMPLE TWENTY-TWO

The system of Example Twenty-One, further comprising
means for providing an interactive virtual tool for adjusting,
a level of risk aversion for a user that, upon adjustment of
the level of risk, causes adjustment of the criterion.

CONCLUSION

In closing, although the various embodiments have been
described 1 language specific to structural features and/or
methodological acts, it 1s to be understood that the subject
matter defined in the appended representations 1s not nec-
essarily limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as
example forms of implementing the claimed subject matter.

What 1s claimed 1s:

1. A system for predicting variability of travel time for a
trip and utilizing the predicted variability for route planning,
the system comprising:
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a display;
one or more processors; and
memory storing instructions that when executed by the
one or more processors, cause the one or more proces-
sors to perform a method comprising:
receiving an origin, a destination, and a start time
associated with the trip;

receiving candidate routes that run from the origin to
the destination, each candidate route comprising a
plurality of individual route segments;
generating, using a machine learning model, a vanability
in a measure of travel time for each candidate route,
wherein the machine learning model:
captures a variability 1n a travel time of each individual
route segment within the candidate route;

captures a variability 1n a travel time of the candidate
route; and

captures 1terdependencies of travel times on sequen-
tial individual route segments within the candidate
route, the mterdependencies comprising one or more
latent variables that capture relationships of the
travel times on the individual route segments;

selecting at least one route from the candidate routes
based on a criterion that 1s based at least 1n part on
cach vanability 1n the measure of travel time; and

causing, on the display, a presentation of a user interface

configured to:

graphically display the selected at least one route; and

graphically display a measure of travel time for the
selected at least one route.

2. The system of claim 1, the method further comprising
prior to graphically displaying the selected at least one route,
ranking the candidate routes according to routes that mini-
mize the criterion.

3. The system of claim 1, wherein the criterion comprises
at least one of a percentile of travel time or a probability that
arrival at the destination will occur before a specified time.

4. The system of claim 1, wherein the one or more latent
variables included in the machine learning model comprise
one or more latent variables that capture unobserved quan-
tities capturing for each candidate route a probabilistic
dependence of a first travel time of a first segment of the
candidate route on a second travel time of a second segment
of the candidate route.

5. The system of claim 1, wherein the one or more latent
variables include at least one of:

a latent variable that captures trip-level vanability of

travel time as an extent to which travel speed 1s faster
or slower than usual on all segments that make up a
candidate route of the candidate routes for the trip;

a latent variable that captures segment-level variability of
travel time as a tendency for travel speeds to be similar
for segments of the candidate route that are close to
each other 1n the candidate route; or

a latent variable capturing a level of congestion on the
segments that make up the candidate route.

6. The system of claim 1, wherein the measure of travel

time comprises a range of travel times.

7. The system of claim 1, the user interface being further
configured to provide an interactive virtual tool for adjusting
a level of rnisk aversion for a user that, upon adjustment of
the level of nisk, causes adjustment of the criterion.

8. A computer-implemented method comprising:

recerving an origin, a destination, and a start time asso-
ciated with a trip;

obtaining candidate routes that run from the origin to the
destination;
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predicting, based at least in part on a machine learning
model, a variability 1n a measure of travel time for each
candidate route, wherein the machine learning model:
captures a variability in a travel time of each individual

route segment within the candidate route;
captures a variability 1n a travel time of the candidate
route;
captures 1terdependencies of travel times on sequen-
tial individual route segments within the candidate
route, the interdependencies comprising one or more
latent variables that capture relationships of the
travel times on the mndividual route segments; and
captures an effect of contextual data on a travel time of
the candidate route, the contextual data comprising
one or more of a time of a day, a day of a week,
weather information, or traflic information;
providing a recommendation of one or more routes from
the candidate routes based at least in part on the
variabilities in the measure of travel times; and
providing a measure of travel time for the recommended
one or more routes.

9. The computer-implemented method of claim 8,
wherein providing the recommendation of one or more
routes from the candidate routes based at least 1n part on the
variabilities in the measure of travel times comprises pro-
viding the recommendation of one or more routes from the
candidate routes based at least 1n part on a criterion that 1s
based at least 1n part on the vanabilities 1n the measure of
travel times, the criterion comprising at least one of a
percentile of travel time or a probability that arrival at the
destination will occur before a specified time.

10. The computer-implemented method of claim 8,
wherein the one or more latent variables comprise latent
variables that capture unobserved quantities capturing, for
cach candidate route of the candidate routes, a probabilistic
dependence of a first travel time of a first segment of the
candidate route on a second travel time of a second segment
of the candidate route.

11. The computer-implemented method of claim 8,
wherein the one or more latent variables comprise at least
one of:

a latent variable that captures trip-level variability of

travel time as an extent to which travel speed 1s faster
or slower than usual on all segments that make up a
candidate route for the trip;

a latent variable that captures segment-level variability of
travel time as a tendency for travel speeds to be similar
for segments of the candidate route that are close to
each other 1n the candidate route; or

a ellect latent variable capturing a level of congestion on
the segments that make up the candidate route.

12. The computer-implemented method of claim 8,
wherein the variability 1n the measure of travel time com-
prises a range of travel times having an upper bound travel
time and a lower bound travel time.

13. The computer-implemented method of claim 9, fur-
ther comprising;:

providing, via a user interface, an interactive virtual tool
for adjusting a level of risk aversion for a user;

receiving an adjustment of the level of risk aversion via
the interactive virtual tool; and
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adjusting the criterion up or down based on the adjust-

ment.

14. A computer-implemented method of tramning a
machine learning model to be used for predicting a prob-
ability distribution of travel time for a trip, the method
comprising;

recerving historical trip data that 1s based at least 1n part

on location-based measurements reported from mobile
devices, individual ones of the location-based measure-

ments including at least location data and time data;
and

training, using the historical trip data, a machine learning

model to generate probability distributions of travel
times for one or more candidate routes, wherein the
training of the machine learning model comprises:
capturing a variability 1n a travel time of each indi-
vidual route segment within the candidate route;
capturing a variability in a travel time of the candidate
route;
capturing 1nterdependencies of travel times on sequen-
tial individual route segments within the candidate
route, the mterdependencies comprising one or more
latent variables that capture relationships of the
travel times on the individual route segments; and
capturing an eflect of contextual data on a travel time
of the candidate route, the contextual data compris-
ing one or more of a time of a day, a day of a week,
weather information, or tratlic information.

15. The computer-implemented method of claim 14, fur-
ther comprising testing a performance of the machine learn-
ing model 1n predicting the probability distribution of travel
time by applying the machine learning model to a portion of
the historical trip data that was not used to train the machine
learning model.

16. The computer-implemented method of claim 185,
wherein the performance of the machine learning model 1s
measured by at least one of:

a measure of accuracy of a 95% interval prediction of

travel time; or

a measure of accuracy of a point prediction of travel time.

17. The computer-implemented method of claim 14, fur-
ther comprising periodically retraining the machine learning
model with newly received historical trip data since the
training.

18. The computer-implemented method of claim 17,
wherein the retraining occurs upon receipt of a threshold
amount of the newly received historical trip data.

19. The computer-implemented method of claim 14,
wherein the one or more latent variables comprise one or
more latent varniables that capture unobserved quantities
capturing, for each candidate route that runs from the origin
to the destination, a probabilistic dependence of a first travel
time of a first segment of the candidate route on a second
travel time of a second segment of the candidate route.

20. The computer-implemented method of claim 8,
wherein the user mterface 1s further configured to provide an
interactive virtual tool for adjusting a level of risk aversion
for a user that, upon adjustment of the level of risk, causes
adjustment of the criterion.
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