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(57) ABSTRACT

Data characterizing a system 1s recerved at an electronic
processor. For example, parking event data from parking
sensors of a parking facility 1s recerved. The electronic
processor constructs a current state for the system (e.g.
parking occupancy state of the parking facility) at a current
time from the received data. State probabilities at a future
time are computed (e.g. occupancy state probabilities are
computed for the parking facility) using a continuous-time
Markov chain model modified by multiplying the time 1mnput
to the model by a random vanable and scaling the state
probabilities by an expectation of the random variable. In
parking occupancy forecasting, parking guidance informa-
tion 1s generated based at least on the computed occupancy
state probabilities, and 1s transmitted to an electronic device
other than the electronic processor (e.g. a parking recom-
mendation transmitted to a vehicle navigation device, or a

control signal transmitted to a “lot full” sign).
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1
FORECASTING WITH MATRIX POWERS

BACKGROUND

The following relates to the parking occupancy forecast-
ing and gudance arts, and more generally to system state
forecasting over short time horizons e.g. on the order of 1-20
minutes 1n some tasks, and to related arts.

In a common task, parking occupancy forecasting 1s
desirably performed on a short time horizon of, for example,
2-10 minutes. As other illustrative tasks, 1t may be desired to
forecast the number of jobs at a particular stage of a process
in a print shop, or the number of people waiting 1n an
emergency medical facility on a time scale over which 1t 1s
possible to redeploy resources. Frequently, continuous time
(semi-)Markov models are applied for such purposes. In
these approaches, predictions are given by computing matrix
exponentials. However, real-world systems are often more
variable than such models predict. For instance, in parking,
occupancy lorecasting, there may be variation in parking
demand from day-to-day, and/or parking sensor observa-
tions may be subject to variable delays.

BRIEF DESCRIPTION

In some embodiments disclosed herein, a parking guid-
ance device comprises an electronic processor and a non-
transitory storage medium operatively connected with the
clectronic processor and storing instructions readable and
executable by the electronic processor to perform a parking
guidance method. The parking guidance method suitably
includes: receiving, at the electronic processor, parking
event data acquired by parking sensors of a parking facility;
constructing a current occupancy state 1 for the parking
facility at a time t from the recerved parking event data
wherein the current occupancy state estimates a fraction of
parking spaces of the parking facility occupied at the time t;
computing occupancy state probabilities for the parking
facility at a future time t+s using the matrix quantity
5 (E)-expm(QEs) where expm( . . . ) denotes the matrix
exponential, Q is a generator matrix, and € 1s a random
variable; generating parking guidance information based at
least on the computed occupancy state probabilities; and
transmitting the parking guidance information to an elec-
tronic device other than the electronic processor.

In some embodiments disclosed herein, a non-transitory
storage medium stores instructions readable and executable
by an electronic processor to perform a forecasting method
comprising: receiving, at the electronic processor, data char-
acterizing a system; constructing a current state 1 of the
system at a time t from the received data; constructing a
current state 1 of the system at a time t from the received
data; computing probabilities p,; ot the state of the system at
a tuture time t+s where p,; 1s the probability that the system
1s 1n state j at the future time t+s and p,; 1s computed to have
a value given by p, = () [expm(Qgs)],, where expm( . . . )
denotes the matrix exponential, QQ is a generator matrix, < 1s
a random variable having a non-negative probability density
function, and [expm(QEs)],; denotes element (i,j) of the
matrix quantity E (&)-expm(QE&s); and generating a forecast
state of the system at the future time t+s based on the
computed probabilities pi.

In some embodiments disclosed herein, a parking guid-
ance method 1s disclosed. Parking event data acquired by
parking sensors ol a parking facility 1s received at an
clectronic processor. The electronic processor reads and
executes 1nstructions stored on a non-transitory storage
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medium to perform operations including: constructing a
current occupancy state 1 for the parking facility at a time t
from the received parking event data wherein the current
occupancy state estimates the fraction of occupied parking
spaces ol the parking facility at the time t; computing
occupancy state probabilities for the parking facility at a
future time t+s using a continuous-time Markov chain model
modified by multiplying the time s input to the model by a
random variable £ and scaling the occupancy state prob-
abilities by an expectation of the random variable €; and
generating parking guidance information based at least on
the computed occupancy state probabilities. The parking
guidance information is transmitted to an electronic device
other than the electronic processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 diagrammatically illustrates a parking guidance
system.

FIG. 2 diagrammatically illustrates a traiming process
performed by the parking guidance forecasting server to
learn parameters of a parking occupancy forecasting pro-
CEesS.

FIG. 3 diagrammatically illustrates a parking facility
recommendation process performed by the parking guidance
forecasting server to provide a parking facility recommen-
dation to a Global Positioning System (GPS) enabled navi-
gation device.

FIG. 4 diagrammatic illustrates a process performed by
the parking guidance forecasting server to activate or deac-
tivate a “Lot full” sign of a parking facility based on parking
occupancy forecast by the parking guidance forecasting
server for the parking facility.

DETAILED DESCRIPTION

In some embodiments disclosed herein, forecasting 1s
performed using a likelihood function based on matrix
powers to forecast a process that 1s more variable than
suggested by a Markov model. This provides a simple and
natural formula which captures extra variability.

[lustrative embodiments described herein are directed to
parking occupancy lforecasting for a parking facility, such as
an open parking lot, an enclosed parking garage, a streetside
parking block, or so forth, and to higher level tasks lever-
aging such occupancy forecasting such as providing parking
facility recommendations to a vehicle navigator device,
operating a “Lot full” sign of a parking facility, or so forth.
These are merely illustrative tasks, and 1t will be appreciated
that the system state forecasting techniques disclosed herein
may be applied to diverse applications, e.g. other tasks
benefiting from accurate parking occupancy forecasts, or
tasks employing forecasting of the future state of some other
type of system, such as the number of queued print jobs at
a print shop, or forecasting the waiting list for an Emergency
Medical Department, or so forth.

With reference to FIG. 1, the illustrative parking occu-
pancy task endeavors to forecast parking occupancy of a
number ol parking spaces, namely 52 parking spaces in
illustrative FIG. 1 designated by respective reference num-
bers 1-52, of a parking facility 60. The illustrative parking
facility 60 1s a parking lot or parking garage that further
includes drive lanes 62, 64, 66 and an entrance 70 and an exit
72 by which a vehicle accesses a parking space. A “Lot Full”
s1gn 76 1s dispose proximate to the entrance 70 to inform the
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driver of a vehicle contemplating parking at the parking
tacility 60 as to whether a parking space 1s likely to be
available.

To provide parking event data for use i parking occu-
pancy forecasting, at least a portion of the parking spaces are
monitored by parking sensors S. In the i1llustrative example,
only even-spaced parking spaces are monitored by respec-
tive parking sensors S—this approach reduces the cost of
installing and maintaining the parking sensors S. In the
illustrative example with even-numbered parking spaces
monitored by the parking sensors S 1t follows that one-half
ol the parking spaces are monitored; in other embodiments,
a greater or lesser fraction of parking spaces may be moni-
tored. In general, monitoring one-half or fewer fo the
parking spaces 1s likely to provide substantial sensor cost
savings. The parking sensors S may monitor actual occu-
pancy of a parking space, e¢.g. outputting “1” 11 the space 1s
occupied or “0” 1f unoccupied. An example of such a
parking sensor 1s a weight-based parking sensor that i1s
activated by the weight of a vehicle occupying the parking
space. Alternatively, the parking sensors S may monitor
parking arrival and departure events, for example using
motion detection sensors. It will be appreciated that in
considering these two examples, the weight-based occu-
pancy sensors are likely to be more accurate but much costly
to install and dithicult to retrofit to an existing parking
tacility (since doing so entails installing the weight sensors
underneath the concrete or other lot surface). By contrast,
motion detection sensors are likely to be less expensive to
install and are amenable to retrofit installation; however,
they are more likely to produce erroneous sensor data, e.g.
due to detection of spurious motion due to passing vehicles
Or persons.

In a typical setup, a sensors reader 78 i1s operatively
connected to recerve parking event data (e.g. occupancy data
from weight-based occupancy sensors, or arrival or depar-
ture events from motion detection sensors) from the parking,
sensors. The sensors reader 78 may be wired to the sensors
S, or may be in wireless communication via a local WiF1 or
other wireless data communication network. In the interest
ol data collection efliciency, the sensors reader 78 1s typi-
cally disposed on the premises of, or closely proximate to,
the parking facility 60. Nonetheless, depending upon the
communication pathway and the processing capacity of the
sensors reader 78, there may be time delays and potentially
errors mtroduced by this data gathering process.

The parking event data acquired by the parking sensors S
and the sensors reader 78 are communicated to a parking
guidance forecasting server 80. Depending upon the task to
be performed, this server 80 may be located locally at the
parking facility 60, or may be remotely located. For
example, 11 the only task to be performed by the parking
guidance forecasting server 80 1s to operate the “Lot full”
sign 76, then local placement may be appropriate (indeed, 1n
such an embodiment 1t may be practical to integrate the
sensors reader with the forecasting server as a single com-
ponent). On the other hand, 1f the parking guidance fore-
casting server 80 has a wider scope of application, such as
generating parking occupancy data for analysis at a city
parking department, providing parking recommendations
for motorists, or so forth, then a remote placement may be
more appropriate, as the parking guidance forecasting server
80 in such embodiments 1s likely to provide forecasting for
a number ol different parking facilities. For example, to
provide parking recommendations the parking guidance
forecasting server 80 beneficially forecasts parking occu-
pancies for a number of different parking facilities (includ-
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4

ing the illustrative parking facility 60) in order to recom-
mend the parking facility with lowest forecast occupancy.

The parking guidance forecasting server 80 i1s configured
to provide a forecast of the parking occupancy of the parking
facility 60 at some time 1n the future, typically on the order
of one to twenty minutes inclusive 1n the future, and 1n some
embodiments 2-10 minutes into the future. Such a time
frame 1s usetul, for example, 1 operating the “Lot full” sign
76, since 1t 1s desirable to predict when the lot will be full
a few minutes into the future so as to turn the “Lot full” 76
on a few minutes before the parking facility 60 1s actually
tull 1n order to provide the last vehicles entering the facility
time to park. Likewise, such a time frame 1s useful in the
case of providing a parking recommendation to a vehicle
navigation device since the request for a parking recom-
mendation 1s preferably made a few minutes before the
vehicle 1s actually at the parking facility (e.g. perhaps 1ssued
as the vehicle 1s approaching the freeway exit ramp into
downtown). Put more precisely, in some 1llustrative embodi-
ments 1t 1s desired that at a time t the parking guidance
forecasting server 80 determines a parking occupancy fore-
cast for a time t+s where s denotes a time horizon 82. In
some embodiments, s 1s 1 the range [1 min, 20 min]
inclusive, though a larger or smaller value of s 1s also
contemplated depending upon the application.

The parking guidance forecasting server 80 1s suitably
implemented as a computer (e.g. a server computer) or other
clectronic processing device including a microprocessor or
other electronic processor, and a non-transitory storage
medium which stores instructions readable and executable
by the computer or other electronic processor to perform an
embodiment of the disclosed parking guidance forecasting
method. The non-transitory storage medium may, for
example, comprise one or more of: an internal hard disk
drive of a computer, an external hard drive or a network-
accessible hard drive or RAID or other magnetic storage
medium; or may be a solid state drive (SSD) of a computer
or some other electronic storage medium; or may be an
optical disk or other optical storage medium; or may be
some combination of the foregoing; or so forth. The parking
guidance forecasting server 80 1s in communication with the
sensors reader 78 to receive parking event data acquired by
the parking sensors S of the parking facility 60. For example,
the communication pathway from the sensors reader 78 to
the parking guidance forecasting server 80 may include one
or more of a wired and/or wireless local area network
(LAN), the Internet, various combinations thereof, or so
forth.

The parking guidance forecasting server 80 is also 1n
operative communication with an electronic device (other
than the parking guidance forecasting server 80 1itsell) that
receives parking guidance information from the parking
guidance forecasting server 80. By way of illustration, the
parking guidance forecasting server 80 may be in wired or
wireless communication with the “Lot full” sign 76 to turn
that sign on or oil based on whether the forecast parking
occupancy indicates the parking facility 60 1s likely to be tull
at the future time t+s. In another example, the parking
guidance forecasting server 80 may be 1n wireless commu-
nication with a vehicle navigation device 84 of a vehicle 86
in order to provide a parking recommendation to the navi-
gation device 84. The navigation device 84 may, for
example, be a cellular telephone (“cellphone”), tablet com-
puter, dashboard-mounted navigation unit of the vehicle 86,
or so forth. The navigation device 84 i1s 1n wireless com-
munication with the parking guidance forecasting server 80
via a suitable communication link such as a cellular tele-
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phone (e.g. 4G) link. The navigation device 84 includes
locating hardware for locating the navigation device 84
(and, by extension, the vehicle 86) 1n the city or other locale.
In the illustrative embodiment, the locating hardware com-
prises a Global Positioning System (GPS) receiver 88;
additionally or alternatively, the locating hardware may
comprise a WikF1 radio accessing a WiF1 location service, a
4G or other cellular radio leveraging a cellular location
service based on cell tower signal strengths, and/or so forth.
The navigation device 84 includes an electronic processor
(e.g. microprocessor or microcontroller) that runs a naviga-
tion program (“app”) 90 that reads the GPS receiver 88 or
other locating hardware to determine a current location of
the navigation device 84 (and hence of the vehicle 86).
Typically, the navigator app 90 accesses a regional map of
the city or other locale either stored 1n flash memory, a solid
state drive (SSD), or other local storage of the navigation
device 84 or downloaded via the cellular connection, and
displays the relevant portion of the map with the current
GPS location indicated, possibly also along with a recom-
mended route or other relevant navigation imnformation.

The navigator app 90 also performs a parking recommen-
dation query process 92 that queries the parking guidance
forecasting server 80 to obtain a parking recommendation.
This query may be variously triggered, e.g. by a verbal
command picked up by a microphone of the navigation
device 84, or automatically triggered when the GPS location
comes within a threshold distance to (or estimated time of
arrival at) a destination. The query may be transmitted by 4G
or other cellular link, and preferably includes transmission
of the current GPS location so that the server 80 can
determine one or more nearby parking facilities (which may
or may not include or consist of the illustrative parking
tacility 60) with a forecast parking occupancy at the future
time t+s that 1s low enough that the vehicle 1s deemed likely
to find an open (1.e. available) parking space. The server 80
then transmits parking guidance suitably comprising an
identification of the one or more recommended parking
tacilities back to the navigation device 84, again suitably via
the 4G or other cellular connection, and the navigation app
90 provides these recommendations to the driver (e.g. by
plotting them on the displayed map, and/or adjusting the
navigation route to terminate at a selected one of the
recommended parking facilities, and/or so forth).

In general, the parking guidance forecasting server 80
forecasts the parking occupancy of the parking facility 80 at
the future time t+s as follows. Based on the current parking,
event data received from the sensors S and sensors reader
78, a current occupancy state (denoted herein without loss of
generality as current state 1) 1s constructed for the parking
tacility at the time t. The current occupancy state 1 estimates
the fraction of occupied parking spaces of the parking
facility 60 at time t. Occupancy state probabilities are
computed for the parking facility 60 at future time t+s using
a continuous-time Markov chain model with a generator
matrix Q(0) 96 (where 0 1s a parameter vector learned on
training data) modified by multiplying the time s input to the
model by a random variable € 98 and scaling the occupancy
state probabilities by an expectation of the random variable
£ 98. Parking guidance information is then generated based
at least on the computed occupancy state probabilities, e.g.
if the parking states run from 0-n where n 1s the number of
parking spaces (so the state n means the lot 1s completely full
while the state 0 means the lot 1s completely empty) then the
parking guidance may be computed as the most probable
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state and, 11 this most probable state 1s within some threshold
ol n then the parking facility 60 1s deemed to be likely to be
tull at time t+s.

In the following, embodiments of the disclosed forecast-
ing approach are described, both generally and with specific
application to the 1llustrative parking occupancy forecasting
task.

The general forecasting task can be formulated as follows.
We suppose a system which has state X(t) at time t where
X(t) 1s drawn from a state space of size n. If the state at time
t 1s X(t)=1 then the state at time t+s 1s X(t+s)=] with
probability p,(s). In the classic continuous-time Markov
chain model for such a system, one can write p,(s)=expm
(Qs) for some matrix QER " called the generator matrix,
where expm(-) denotes the matrix exponential. One problem
with such a model 1s that the number of transitions of
real-world systems over a time interval [t, t+s) 15 usually
more variable than such a continuous-time Markov model
would predict. IT this problem 1s not addressed, forecasts
will be more precise than 1s justifiable and as a consequence,
resource allocation and guidance will be suboptimal as the
uncertainty mvolved will be underestimated.

A simple formulation of the forecasting task applied to
parking occupancy forecasting 1s as follows. One has n
sensors S 1 n parking spaces (where as a non-limiting
example, n=52 for the parking facility 60 shown in illustra-
tive FIG. 1). These sensors S accurately observe the state
X(M)EZ ., (so there are n+1 states) which represents the
number of vehicles parked at time t. To forecast whether a
parking space will be available at future time t+s, the
parking guidance system computes the probability P (X
(t+s)<nl X (t)=x) that a space 1s available at time t+s which 1s
when a driver 1s predicted to arnive.

In a more realistic parking guidance setting, one has m<n
sensors S 1n n parking spaces which sense parking events
consisting of arrivals and departures. For instance, in 1llus-
trative FIG. 1 there are 26 sensors S but there are 52 parking
spaces. Such a reduced number of sensors can be used to
optimise a trade-ofl between the value of sensor data and the
cost of sensing. Furthermore, 1n the 1llustrative formulation
which follows, the occupancy of the parking spaces 1s not
directly sensed. Rather, there 1s a variable delay between
cach event and 1ts reception by the forecasting system. This
delay typically includes: (1) the time for the sensors to detect
signals corresponding to each event and to send them to the
network; (1) the time for the network to transmit these
signals; (111) the time for any remote signal processing; and
(1v) the time for other networks to transmit the processed
signals and store them in buflers before they are used by the
forecasting system. In some analyses of some existing
parking sensor systems, it has been found that roughly 80%
of delays are between 40 seconds and 120 seconds, but the
top 10% of delays have a heavy-tailed distribution, fre-
quently mvolving delays of over 1 hour. Also the appropriate
horizon s 82 over which we should forecast 1s uncertain,
since the exact time at which a driver using a parking
navigation system will arrive 1s unknown due for instance to
variations 1n traflic flow.

Additionally, the sensors S do not always 1dentily arrivals
or departures, but rather sometimes send signals correspond-
ing to “unknown’ events as the signals were too ambiguous
to classily as arrivals, departures or background noise.
Furthermore, sensors sometimes stop working and fail to
send any signals for a long period. For instance if there are
usually 4 events per day at a sensor and we have waited over
a day since the last event, then we may make an inference
that the sensor has stopped working. Finally, sensors may
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sometimes detect that a parking space 1s vacant when 1t 1s 1n
fact occupied and vice versa. In analyses of some existing
parking sensor systems, the false-positive rate was around
5% and the false-negative rate was around 10%. This can
make 1t hard to tell 1T a block face (or other parking facility)
1s full. For instance, a full block face with n=7 stalls would
only be detected as full with probability 0.9'=~0.478.

Some 1llustrative examples of disclosed {forecasting
approaches employing a continuous-time Markov chain
model with generator matrix Q(0) 96 (where 0 1s a parameter
vector learned on training data) modified by multiplying the
time s input to the model by random variable & 98 and
scaling the occupancy state probabilities by the expectation
of the random variable € 98 are next described. Suppose
X(t)E[n] 1s a continuous-time Markov chain with generator
QER™. Then P (X(t+s)=IX(t)=1)=[expm(Qs)],, where
for A €R ™" the matrix exponential is

k!
k=0

expm(A) :=

This Markov chain model 1s modified as disclosed herein by
modeling a variable delay, an uncertain horizon or a variable
number of events over the horizon. This 1s done by replacing,
time s by a random variable Es and setting:

P X(t+s)=1x(0=)=E (&)-expm(QEs) (1)

where E (&) denotes the expectation of the random variable
. This term mainly contributes to the variance, and adds an
additional degree of freedom to decouple variance and
average.

In one illustrative embodiment, the random variable & 98
1s a umt-mean gamma-distributed random variable with
variance v, that 1s to say:

(2)

Said another way, the probability density function of the
random variable & 1s the aforementioned unit-mean gamma-
distribution. For this formulation of the random variable &,
Equation (1) has the following closed form 1n terms of the
matrix power function:

S (&) expm(QEs)=(I-vs Q)™ (3)

This can be derived by considering the moment-generating
function of gamma-distributed random variables.

In another illustrative embodiment, rather than assuming
a single gamma random variable, a more general model 1s a
mixture ol n_, gamma random variables with unit mean so
that:

g:gamma(mean=1,variance=v)

(4)

g lk:gamma(mean=yi,, variance=v;)
where:

LW, ) (4a)

ir

f: multinomual(w,w-. .

under the constraint that:

il i (4b)
1 :Z:JW; :Zl:w;,ug,wf EU,.IU,R 330, Vi > ()

For this formulation of the random variable &, Equation (1)
has the following closed form in terms of the matrix power

function:
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s (5)
E(£) - expm(Q&s) = Z Wi (I = Vi ptysQ)

k=1

This representation adds substantial tlexibility to the model.
For instance, 1n parking data we see a heavy-tailed delay
(recall that 1n the mentioned parking sensors system analysis
roughly 80% of delays were between 40 seconds and 120
seconds, but the top 10% of delays had a heavy-tailed
distribution frequently involving delays of over 1 hour). This
heavy-tailed distribution can be captured as a mixture of a
low variance and a high variance gamma random variables.

In the following illustrative examples, the random vari-
able € 98 is assumed to have a probability distribution
function which 1s a single gamma distribution, that 1s, the
example of Equations (2) and (3) above.

With reference to FIG. 2, sensor training data 100 1s used
to train the model parameters 102. In the illustrative embodi-
ment employing the random variable € having a single
gamma distribution as 1ts probability density function, the
trained model parameters include the matrix parameters 0O
and the gamma variance parameter v. In other embodiments
employing a different random variable, the approprate
parameters of the probability density function of the
employed random variable are suitably trained; e.g., if the
mixture of of n,, gamma random variables with unit mean of
Equation (4) 1s used then the training 1s performed to train
the means p,, variances v,, and weights w, fork=1,...,n_
subject to the constraint of Equation (4b). The training
process of FIG. 2 may, for example, be performed by the
forecasting server 80 (see FIG. 1). To perform the training,
the training sensor data 100 are converted in an operation
104 to tramning observations (X(t),X(t+s)). This 1s straight-
forward since the X(t) and X(t+s) are simply the number of
occupied parking spaces measured by the sensors S at times
t and t+s, respectively, 1n the training sensor data 100. In an
operation 106, these observations (X(t),X(t+s)) are then used
to train the model parameters 102. Some non-limiting llus-
trative examples of ways to perform the training operation
106 are described next.

(Given observations of ((X(t,)=1,. X(t,+5)=1,): k=1,2, . . .,
n_) and a parameterized model Q(0) for the generator matrix
96 for parameter vector & R "7 one might learn parameters
(0; v) using any of a wide range of conventional methods
such as maximum likelihood and maximum a posterior:
probability (MAP) estimation as well as generalised expec-
tation maximisation (GEM) methods for mixture models.
For instance, MAP estimation would start with a regulari-
sation function R(0, v) (such as a log prior) and proceed by
applying any gradient or Hessian-based optimization
method to:

(6)

maximize M0, v) :=

nQ
{Z lﬂg([(f — VSQ(Q))_%]_ | ]} + R(6, v) with respect to & and v
k=1 kI

In order to estimate parameters 0, v as per Equation (6), the
cilicient and stable computation of the derivatives of the
matrix power function 1s suitably done as follows. In general
the derivative of a matrix functions f: R "—=R "™ at A&
R ™ 1n direction EER ™ 1s known as the Frechet deriva-
tive Lp(A,E). This 1s a function such that:

JA+E)-J(4)-L (4, E)=o(|lE]))

(7)
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for all A, BFER ™" and 1f L#(A,E) exists then it 1s unique.
Thus we may write:

(8)

df(A+1E)
dt ]r:i}

Lf(A, E)= (

For the subject model, 1t may be noted that:

(I—vQ)_” "=expm(—(1/v)log m(I-vQ)) (9)

Thus a stable and eflicient computation of the derivatives
proceeds by applying two functions expm_frechet _pade and
log m_{rechet_pade. See Al-Mohy et al., “Computing the
Frechet derivative of the matrix exponential, with an appli-
cation to condition number estimation”, SIAM Journal on
Matrix Analysis and Applications, 30 (4): 1639-1657
(2009); Al-Mohy et al., “Computing the Frechet derivative
of the matrix logarithm and estimating the condition num-
ber”, SIAM Journal on Scientific Computing 35 (4): C394-
C410 (2013).

Having discussed the general formulation, application to
the task of parking occupancy forecasting 1s next described.
Again, the single gamma probability density function for-
mulation of the random variable € as per Equations (2) and
(3) 1s again used. Let Z(t)&Z , ., be the occupancy of a set
of n stalls at time t. We wish to predict Z(t,)|Z(t ) for current
time t_ and prediction time t,>t . Let the midpoint of this
interval be t_: =(t_+t,)/2.

In a simple model of parking, over interval [t _, t, ] vehicles
attempt arrive at rate A(t,,) =R | and each vehicle departs at
rate Wt ) €ER .. A more general model might allow for
time-varying rates over [t , t, ], but then we would not
typically have a matrix-exponential solution to the basic
continuous-time Markov chain and as we are aiming at
short-term prediction, 1t seems reasonble to assume that the
rates are constant over a short time interval. Let us fix a
particular t_ and write A=A(t, ) and pu=uf(t, ).

The generator matrix QER V**"+1 (where element Q,,
corresponds to 1=Z(t")+1 and 1=7(t)+1 and t™ 1s the time just
after t) for this continuous-time Markov chain 1s given by
Q:=AA+uB. In terms of the Kronecker delta we have

[A],:=0,_, ,~0, ;and [B],:=1(0, ,_, -0, ;). For instance, for n=4
we have:
-1 0 0 0 0O (10a)
1 -1 0O 0 0O
A L= 0 1 —1 0 0
0 0 1 -1 0
0 0 0 1 0
and
01 0 0 0 ] (10b)
0 -1 2 0 0
B=0 1 =2 13 0
0 0O 0 -3 4
00 0 0 -4

Thus applying Equation (3) yields:
P (Z(2,)=11 201, )= = [ U-v(t=1,) (hd+uB)) ], (11)

With reference to FIG. 3, a parking facility recommen-
dation process 1s described, which 1s suitably performed by
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the parking guidance forecasting server 80 (see FIG. 1) to
provide a parking facility recommendation to the GPS
enabled navigation device 84. In an operation 110, a parking
guidance request 1s received at the server 80 from the
navigation device 84, for example via a 4G or other cellular
link. This request preferably includes the current GPS posi-
tion of the navigation device 84 (and hence of the vehicle
86) so as to enable the server 80 to recommend a nearby (or
even closest) parking facility forecast to have available
parking spaces. In an operation 112, the current parking
occupancy states at current time t are read from the sensors
of parking facilities in the vicinity. This may entail deriving
the current occupancy states from the sensor data 1n the case
of motion sensors that detect arrivals/departures. For rec-
ommending a parking facility, 1t will be appreciated that the
server 80 performs parking occupancy forecasting for the
illustrative parking facility 60 (see FI1G. 1) but also for other
parking facilities 1n the vicinity in order to recommend the
best parking option. In an operation 114 the parking occu-
pancy states at time t+s are forecast, e.g. using Equation (11)
to estimate the probabilities of the various possible parking
states and selecting the most probable state (or some aggre-
gation of the probabilities, e.g. the average of the three most
probable states or so forth). This again 1s done for each
parking facility in the vicimty. In an operation 116 the
closest parking facility to current GPS position of the
navigation device 84 (and hence vehicle 86) with an accept-
able forecast occupancy state 1s located. This entails 1den-
tifying all parking facilities with an acceptable forecast
parking occupancy (e.g. forecast to have available parking
spaces at time t+s with some minimum probability) and then
referencing an electronic map using conventional GPS navi-
gation processing to assess which parking facility (or facili-
ties) with acceptable parking forecast are closest to the GPS
position. In an operation 118, the parking facility recom-
mendation (or, optionally, two or more such facility recom-
mendations to provide the driver with options) 1s sent to the
navigation device 84, e.g. via the 4G or other cellular link.
At the navigation device 84, this information 1s presented to
the driver 1 any suitable manner, e.g. by updating the
navigation destination to the recommended parking facility,
and/or by displaying a marker at the recommended parking
facility (or facilities, if two or more facility recommenda-
tions are provided), and/or so forth.

With reference to FIG. 4, a process 1s described which 1s
suitably performed by the parking guidance forecasting
server 80 to activate or deactivate the “Lot full” sign 76 of
the parking facility 60 based on parking occupancy forecast
by the parking guidance forecasting server 80 for the park-
ing facility 60. The sensor data receipt operation 112 1is
performed as described with reference to FIG. 3 1n order to
estimate the current parking occupancy state of the parking
facility 60 at current time t, and the operation 114 1is
performed as described with reference to FIG. 3 to forecast
the parking occupancy state of the parking facility 60 at
future time t+s. Unlike the parking facility recommendation
task of FIG. 3, for the “lot full” sign control task of FIG. 4
the operations 112, 114 are suitably performed only for the
parking facility 60 with which the “lot full” sign 76 1s
associated. In a decision operation 120, 1t 1s determined
whether the parking occupancy state forecast for future time
t+s 1s within a threshold of being full. In some embodiments,
the operation 120 i1s satisfied only 1f the forecast parking
occupancy 1s exactly full, that 1s, 1f there are n parking
spaces and the forecast parking occupancy is exactly equal
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to n. In other embodiments, the operation 120 1s satisfied 1
the forecast parking occupancy is close to full, e.g. if there
are n parking spaces and the forecast parking occupancy 1is
greater than or equal to a threshold (n—A) where A 1s some
number of parking spaces providing a cushion. (For
example, 1n the case of the parking facility 60 of FIG. 1,
n=352 and A=3 may be a suitable cushion, so that the
operation 120 concludes the parking facility 60 will likely be
tull at future time t+s 11 the forecast occupancy 1s greater
than or equal to (n—-A)=(52-3)=49 occupied parking spaces.
Such a cushion may be useful to accommodate a finite
sensor error rate or other measurement uncertainties. (A
similar “cushion” approach may be used to assess when a
parking facility will have available spaces at time t+s in the
operation 116 of FIG. 3). If the operation 120 concludes the
parking facility 60 will likely be tull at the future time t+s
then 1n an operation 122 the “lot tull” sign 76 1s activated
(encompassing keeping it activated if already activated);
whereas, 1f the operation 120 concludes the parking facility
60 will likely not be full at the future time t+s then in an
operation 124 the “lot full” sign 76 1s deactivated (encom-
passing keeping 1t deactivated 11 already deactivated).

The 1llustrative embodiments are directed to forecasting
parking occupancy of a parking facility. More generally, the
disclosed forecasting entails computing probabilities p,; of
the state of a system at a future time t+s, where p,; 1s the
probability that the system 1s in state  at the future time t+s
and p,; is computed to have a value given by p, =E (§)-[expm
(Q&s)]i, where expm( . . . ) denotes the matrix exponential,
QQ 1s a generator matrix, 1s a random variable having a
non-negative probability density function, and [ex-
pm(Qgs)],, denotes element (i,j) of the matrix quant-
ity [ (&) expm(QEs). Such forecasting can be usefully
employed 1n diverse applications 1n which 1t may be antici-
pated that the transitions over the time interval [t, t+s) may
exhibit greater variability than that predicted by a conven-
tional continuous-time Markov model. For example, the
disclosed forecasting approaches may find application 1n
other forecasting tasks such as forecasting the number of
queued print jobs at a print shop, or forecasting the waiting
list for an Emergency Medical Department, or so forth.

It will be appreciated that various of the above-disclosed
and other features and functions, or alternatives thereof, may
be desirably combined into many other different systems or
applications. Also that various presently unforeseen or unan-
ticipated alternatives, modifications, variations or improve-
ments therein may be subsequently made by those skilled in
the art which are also intended to be encompassed by the
tollowing claims.

The 1nvention claimed 1s:
1. A parking guidance device comprising:
an electronic processor; and
a non-transitory storage medium operatively connected
with the electronic processor and storing instructions
readable and executable by the electronic processor to
perform a parking guidance method including:
receiving, at the electronic processor, parking event
data acquired by parking sensors of a parking facil-
1ty
constructing a current occupancy state 1 for the parking
facility at a time t from the received parking event
data wherein the current occupancy state estimates a
fraction of parking spaces of the parking facility
occupied at the time f;
computing occupancy state probabilities for the park-
ing facility at a future time t+s using the matrix
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quantity E (&)-expm(QEs) where expmy( . . . ) denotes
the matrix exponential, Q 1s a generator matrix,
and € 1s a random variable;

generating parking guidance information based at least
on the computed occupancy state probabilities; and
transmitting the parking guidance information to an
clectronic device other than the electronic processor.
2. The parking guidance device of claim 1 wherein the
computing of the occupancy state probabilities includes
computing the occupancy state probability p,; of an occu-

pancy state 7 at the future time t+s as:

i (8) [expm(QEs)];;

where [expm(Qgs)],; denotes element (i,j) of the matrix
quantity [E (&)-expm(QCEs).
3. The parking guidance device of claim 1 wherein the
computing of the occupancy state probabilities includes:
computing the matrix quantity E (&)-expm(QEs) as:

n (E)'eXPm(QES)Z(I—wQ)_1“’

where I 1s an i1dentity matrix, and the probability density
function of the random variable € is a gamma distribution
with unity mean and variance v.
4. The parking guidance device of claim 1 wherein the
computing of the occupancy state probabilities includes:
computing the matrix quantity E (&)-expm(QEs) as:

Hm

_ L
E(&) - expm(Q&s) = Z Wi (I = Vi ppsQ) ™

k=1

where the probability density function of the random vari-
able £ is a mixture of n, gamma distributions where the k™
gamma distribution has mean yu, and vanance v, and has
weight w, 1n the mixture of n, gamma distributions, and
wherein the weights satisty the normalization constraint:

i
Z Wi = l.
n=1

5. The parking guidance device of claim 1 wherein:

the parking guidance information comprises a parking
recommendation generated based at least on the com-
puted occupancy state probabilities for the parking
facility at the future time t+s; and

the transmitting comprises transmitting the parking rec-
ommendation to a Global Positioning System (GPS)
enabled navigation device.

6. The parking guidance device of claim 5 wherein the

parking guidance method further includes:

receiving, at the electronic processor, a location of the
GPS enabled navigation device wirelessly transmitted
by the GPS enabled navigation device;

wherein the generating of the parking recommendation 1s
further based on a distance between the GPS enabled
navigation device and the parking facility computed
from the received location of the GPS enabled naviga-
tion device.

7. The parking guidance device of claim 1 further com-

prising:

an electronic sign having a facility closed state indicating
the parking facility 1s full and a facility open state
indicating the parking facility 1s open;
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wherein the parking guidance information comprises a

control signal having one of:

(1) a value eflective to switch the electronic sign to the
facility closed state if the computed occupancy state
probabilities indicate the parking facility will be full
at the future time t+s, or

(1) a value eflective to switch the electronic sign to the
facility open state if the computed occupancy state
probabilities indicate the parking facility will not be
tull at the future time t+s.

8. The parking guidance device of claim 1 wherein s has
a value between one minute and twenty minutes inclusive.

9. The parking guidance device of claim 1 wherein the
parking event data received at the electronic processor
consist of vehicle arrival and departure events detected by
the parking sensors of the parking facility.

10. The parking guidance device of claim 1 further
comprising;

said parking sensors of the parking facility;

wherein the parking sensors are arranged to momnitor

one-half or fewer of the parking spaces of the parking

facility whereby at least one-half of the parking spaces
of the parking facility are not monitored by the parking

SeNsors.

11. A non-transitory storage medium storing instructions
readable and executable by an electronic processor to per-
form a forecasting method comprising:

receiving, at the electronic processor, data characterizing

a system;

constructing a current state 1 of the system at a time t from

the received data;

computing probabilities p,; of the state of the system at a

future time t+s where p,, 1s the probability that the

system 1s 1n state j at the future time t+s and p,; 1s
computed to have a value given by:

i (E) [expm(QEs)],;

where expm( . . . ) denotes the matrix exponential, Q 1s a
generator matrix, £ i1s a random variable having a non-
negative probability density function, and [expm(QgZs)],,
denotes element (i,j) of the matrix quantity E (€)-expm
(QGSs); and

generating a forecast state of the system at the future time

t+s based on the computed probabilities p, .

12. The non-transitory storage medium of claim 11
wherein the computing of the probabilities p,; includes
computing:

(&) [(FvsO) 'y

where I 1s an i1dentity matrix, and the probability density
function of the random variable € is a gamma distribution
with unity mean and variance v.

13. The non-transitory storage medium of claim 11
wherein the computing of the probabilities p,; includes
computing:

Pi~

Pii—

Hm

__1__
ZWRU — Vi (e SQ) Yk

| k=1 i

Pij = [E(é:) '

where the probability density function of the random vari-
able E is a mixture of n, gamma distributions where the k™
gamma distribution has mean |, and variance v, and has
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weight w, 1 the mixture of n, gamma distributions, and
wherein the weights satisty the normalization constraint:

14. The non-transitory storage medium of claim 11
wherein the forecasting method further comprises:

controlling a component of the system based on the

forecast state of the system at the future time t+s.

15. The non-transitory storage medium of claim 11
wherein:

the system 1s a parking facility and the state of the parking

facility 1s an occupancy state representing the fraction

ol occupied parking spaces of the parking facility; and
the receiving comprises receiving parking event data

acquired by parking sensors of the parking facility.

16. The non-transitory storage medium of claim 135
wherein the forecasting method further comprises:

generating a parking recommendation based at least on

the forecast occupancy state of the parking facility at
the future time t+s; and

transmitting the parking recommendation to a vehicle

navigation device.

17. The non-transitory storage medium of claim 16
wherein the forecasting method further includes:

receiving, at the electronic processor, a location of the

vehicle navigation device wirelessly transmitted by the
vehicle navigation device;

wherein the generating of the parking recommendation 1s

further based on the location of the vehicle navigation
device.

18. A parking guidance method comprising:

recerving, at an electronic processor, parking event data

acquired by parking sensors of a parking facility;

by the electronic processor reading and executing instruc-

tions stored on a non-transitory storage medium, per-

forming operations including:

constructing a current occupancy state 1 for the parking
facility at a time t from the received parking event
data wherein the current occupancy state estimates
the fraction of occupied parking spaces of the park-
ing facility at the time ft;

computing occupancy state probabilities for the park-
ing facility at a future time t+s using a continuous-
time Markov chain model modified by multiplying
the time s input to the model by a random variable &
and scaling the occupancy state probabilities by an
expectation of the random variable €; and

generating parking guidance information based at least
on the computed occupancy state probabilities; and

transmitting the parking guidance information to an elec-

tronic device other than the electronic processor.

19. The parking guidance method of claim 18 wherein the
random variable € has a probability density function com-
prising a gamma function or a mixture of gamma functions.

20. The parking guidance method of claim 18 wherein
receiving Comprises:

receiving parking event data acquired by the parking

sensors of the parking {facility wherein the parking
event data does not 1include any mnformation on at least
one-half of the parking spaces of the parking facility.

G ex x = e
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