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WEAKLY SUPERVISED PROBABILISTIC
ATLAS GENERATION THROUGH
MULTI-ATLAS LABEL FUSION

BACKGROUND OF THE INVENTION

Field of Invention

The present invention relates generally to the field of
image classification. More specifically, the present invention
1s related to weakly supervised probabilistic atlas generation
through multi-atlas label fusion.

Discussion of Related Art

Image classification 1s widely applied 1n medical image
analysis. It 1s often addressed by image feature extraction
and supervised learning. For applications such as disease
classification [see papers to Chen et al. enfitled, “An auto-
matic diagnostic system for ct liver image classification,”
IEEE Transactions on Biomedical Engineering, 1998; and
Coupe et al. entitled, “Simultaneous segmentation and grad-
ing ol anatomical structures for patient’s classification:
application to Alzheimer’s disease,” IEEE Transactions on
Biomedical Engineering, 1998] and body part recognition
[see paper to Yan et al. entitled, “Bodypart recognition using,
multi-stage deep learning,” Information Processing 1n Medi-
cal Imaging, 2015], where distinctive features are locally
distributed around certain anatomical regions, the key to
ellicient and accurate classification 1s the localization of the
region ol interest (ROI).

Manual ROI labeling 1s accurate but time consuming [see
paper to Coupe et al. entitled, “Simultaneous segmentation
and grading of anatomical structures for patient’s classifi-
cation: application to Alzheimer’s disease,” Neurolmage,
2012]. A multi-atlas approach 1s proposed for automatic
anatomical ROI detection and applying it to body part
classification [see papers to Park et al. entitled, “Automatic
cardiac view classification of echocardiogram,” IEEE 11%
International Conference on Computer Vision, 2007; Moradi
et al. enftitled, “Viewpoint recognmition in cardiac CT
images,” Springer, 2015; and Yan et al. entitled, “Bodypart
recognition using multi-stage deep learming,” Springer,
2013]. The present invention’s approach 1s motivated by the
following observations: 1) comparing to standard learning-
based 1mage classification that does not use registration
[e.g., see paper to Yan et al. entitled, “Bodypart recognition
using multi-stage deep learning,” Springer, 2013], registra-
tion-based multi-atlas label fusion 1s more eflective in
capturing subtle pattern variations for medical image clas-
sification [see paper to Coupe et al. entitled, “Simultaneous
segmentation and grading of anatomical structures for
patient’s classification: application to Alzheimer’s disease,”
Neurolmage, 2012]; and 2) distinctive anatomical ROIs
derived across 1images for the same class should be consis-
tent with each other, which can be naturally modeled
through registration for anatomy classification.

As background, learning-based patch selection [see
papers to Kim et al. entitled, “Unsupervised detection of
regions of 1interest using iterative link analysis,” Advances in
neural information processing systems, 2009; and Yan et al.,
“Bodypart recogmition using multi-stage deep learning,”
Information Processing in Medical Imaging, 20135] aims to
find distinctive/informative patches from a pool of local
patches pre-extracted from training images. For such meth-
ods, accurate ROI patch selection relies on the fact that
proper ROI patches are already included 1n the pre-selected
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2

patches. Hence, its accuracy 1s limited by the sampling
strategy for generating pre-extracted patches. Furthermore,

it 1s ineflicient for handling the situation where distinctive
patches may have large scale variations across classes. In
contrast, given a set of training 1images with class labels, our
method 1nfers voxel-wise estimation for each 1image show-
ing how distinctive each voxel 1s for categorizing the image,
from which accurate ROI segmentation can be easily
derived.

The present method 1s applied to classity 2D cardiac CT
images 1nto one of the 9 representative classes defined for
cardiac disease analysis. Shown 1s the state of the art body
part classification performance and that employing the class
specific ROIs derived from the present method substantially
improves classification performance.

Embodiments of the present mvention are an improve-

ment over prior art systems and methods.

SUMMARY OF THE INVENTION

In one embodiment, the present immvention provides a
method to detect an anatomical region of interest (ROI) from
training 1mages having class labels to help 1mage classifi-
cation performance, the method comprising: (a) receiving,
as mput, a plurality of images, each image in the plurality of
images having a class label 1=l<L. and a positive threshold
th between O and 1 for use with discriminative score maps;
(b) computing a discriminative score map for each 1image 1n
the plurality of 1mages using all remaining images as train-
ing 1images, where the discriminative score map for a given
image comprises a spatial varying discriminative score for
cach 1mage location within the given image; (¢) for each
class label 1, smoothing any of the discriminative score maps
produced for images with the label 1; and (d) producing a
region of interest mask for each image 1n the plurality of
images by thresholding 1ts discriminative score map by th
such that the produced mask has value 1 for pixels with
discriminative scores greater than th and O, otherwise.

In an extended embodiment, the step of computing a
discriminative score map for one target image 1 with label |
using a set of training images I,, . . . , I comprises: (a)
calculating a deformable transtformation between each train-
ing 1mage I, in the set of traiming 1mages I,, . . ., I and the
target 1image I based on an Advanced Normalization Tools
(ANTs) registration algorithm; (b) warping each training
image 1. 1n the set of traiming 1images I, ..., 1 to align with
the target image I using the deformable transiormation
produced in step 2(a), where resulting warped 1image for I,
1s F ; (c) for each location x 1n the target image I, calculating
a non-negative weight w.(x) for each warped training image
F. at location x by a joint label fusion algorithm using image
intensity mnformation in a neighborhood of x; and (d) cal-
culating the discriminative score map for the target image at
location x by summing the weights calculated 1n 2(c) for
training 1mages with class label 1 divided by the summed
weights for all training 1mages.

In another extended embodiment, the step of smoothing
discriminative score maps produced for images with label |
comprises: (a) recerving, as mput, images with class label 1,
I,, ..., 1, and their corresponding discriminative score
maps, Sy, . . ., S, and 1teration number IT; (b) for each
image 1. (1=1=n,) 1n 3(a), calculating deformable transior-
mation between each of remaining image I, (j=1) and I, using
Advanced Normalization Tools (ANTs) registration algo-
rithm; (¢) for each image I, (1=1=n,) 1n 3(a), warping each of
the remaining 1images to 1. using the respective deformable
transformation calculated 1n 3(b), resulting 1n warped 1mage
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tor 1. (j=1) 1s F;; (d) for each location x in I, calculating a
non-negative weight w (x) for each image F, (j=1) at location
X by a joint label fusion algorithm using image intensity
information 1n a neighborhood of x; (e) updating 1mage 1.”s
smoothed discriminative score at location x by

and (1) repeating 3(d) through 3(e) N times.

The present invention also discloses an article of manu-
facture having non-transitory computer readable storage
medium comprising computer readable program code
executable by a processor 1n a mobile device to implement
the methods described above.

In another embodiment, the present invention also pro-
vides a method to detect an anatomical region of interest
(ROI) from traiming images having class labels to help
image classification performance, the method comprising:
(a) recerving, as iput, a plurality of 1mages, each image 1n
the plurality of images having a class label 1=l<L and a
positive threshold th between 0 and 1 for use with discrimi-
native score maps; (b) computing a discriminative score map
for each 1image 1n the plurality of 1mages using all remaining
images as training images, where the discriminative score
map for a given 1image comprises a spatial varying discrimi-
native score for each image location within the given image,
wherein the step of computing a discriminative score map
for one target 1image I with label 1 using a set of training
images [,, . . ., I comprises: (1) calculating a deformable
transformation between each training image 1. 1n the set of
training 1images I,, . . ., I, and the target 1mage I based on
an Advanced Normalization Tools (ANTs) registration algo-
rithm; (11) warping each training image I, in the set of
training images I,, . . ., I to align with the target image I
using the deformable transformation produced in step (b)(1),
where the resulting warped 1mage for I, 1s F,; (111) for each
location x 1n the target image I, calculating a non-negative
weight w.(X) for each warped training 1image F, at location x
by a joint label fusion algorithm using image intensity
information in a neighborhood of x; and (1v) calculating the
discriminative score map for the target image at location x
by summing the weights calculated 1n (b)(i11) for traiming
images with class label 1 divided by the summed weights for
all tramning 1mages; (c) for each class label 1, smoothing
discriminative score maps produced for images with label 1,
wherein the step of smoothing discriminative score maps
produced for images with label 1 comprises: (1) receiving, as
input, images with class label 1, I, . . ., In;: and their
corresponding discriminative score maps, S, . .., S, , and
iteration number IT; (11) for each image I, (1=1=n,), calcu-
lating deformable transformation between each of the
remaining 1mage 1. (j=1) and I, using Advanced Normaliza-
tion Tools (ANTs) registration algorithm; (111) for each
image . (1=1=n,), warping each of the remaining image to I,
using the respective deformable transformation calculated in
(¢)(11), with the resulting warped 1mage for I, (j=1) 1s F; (111)
for each location x 1n I, calculating a non-negative weight
w,(X) for each image F, (j=1) at location x by a joint label
fusion algorithm using image intensity information 1n a
neighborhood of x; (iv) updating image 1.”s smoothed dis-
criminative score at location x by

10

15

20

25

30

35

40

45

50

55

60

65

i

D wi8;x)

J=1, j+#i

Si(x) = ”
2 wilx)

=L

and (v) repeating (c)(1v) through (¢)(v) N times; and (d)
producing a region of interest mask for each image in the
plurality of 1images by thresholding 1ts discriminative score
map by th such that the produced mask has value 1 for pixels
with discriminative scores greater than th and 0, otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure, 1n accordance with one or more
various examples, 1s described 1n detail with reference to the
following figures. The drawings are provided for purposes of
illustration only and merely depict examples of the disclo-
sure. These drawings are provided to facilitate the reader’s
understanding of the disclosure and should not be consid-
ered limiting of the breadth, scope, or applicability of the
disclosure. It should be noted that for clarity and ease of
illustration these drawings are not necessarily made to scale.

FIG. 1 illustrates semantic categories ol example axial
cardiac CT slices.

FIG. 2 shows estimated probability maps produced for
one 1image (1=6) i FIG. 1.

FIG. 3 further illustrates the steps involved in generating

an 1nitial estimate for each training image.
FIG. 4 further illustrates the method for iteratively refin-
ing probability maps for each class.

DESCRIPTION OF THE PREFERREI
EMBODIMENTS

While this mvention 1s illustrated and described in a
preferred embodiment, the invention may be produced in
many different configurations. There 1s depicted in the
drawings, and will herein be described 1n detail, a preferred
embodiment of the mvention, with the understanding that
the present disclosure is to be considered an exemplification
of the principles of the mvention and the associated func-
tional specifications for 1ts construction and 1s not intended
to limit the mnvention to the embodiment illustrated. Those
skilled 1n the art will envision many other possible variations
within the scope of the present invention.

Note that 1n this description, references to “one embodi-

ment” or “an embodiment” mean that the feature being
referred to 1s included 1n at least one embodiment of the
invention. Further, separate references to “one embodiment™
in this description do not necessarily refer to the same
embodiment; however, neither are such embodiments mutu-
ally exclusive, unless so stated and except as will be readily
apparent to those of ordinary skill in the art. Thus, the
present invention can include any variety of combinations
and/or mtegrations of the embodiments described herein.
2 Multi-Atlas ROI Detection for Anatomy Classification
2.1 Problem Definition

The mput 1s a labeled classification dataset I=
1T,,..., I }, wheren is the total number of class labels
and I,~={L', ..., I/} contains a set of images that is
assigned to class 1 and n,=| I,/. The assumption 1s that
images from different classes may share similar anatomical
features; however, each 1mage contains distinctive features
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that are common and unique for images from the same class.
The goal 1s to localize the distinctive regions within each
training 1mage.

A spatially varying label random variable 1s defined as
1 (x)&11, ., n} for each image I at each location X.
p(1(x)=)=p(IL,x) 1s the probability that I 1s from class 1
given the observed feature located at x. If I 1s from class 1,
then p(l11,x) reveals the distinctiveness of local features for
class 1. For simplified notation, let L., and L.,=1 denote and
{1(x)=1}, respectively.
2.2 Imitial Daistinctiveness Estimation

Anatomical features through local image patches are
represented and have p(l1Lx)=p(lII(N(x))) and p(L ~1)=IL p
(1,(x)=1II(N (x))), where N 1s a neighborhood surrounding x.

(Given a set of training 1images, multi-atlas label fusion 1s
applied to estimate p(11I(N(x))) for each training image, with
the remaining training images used as atlases. Let
A, ..., A"} be m atlases, warped to a target image I by
deformable registration. Image similanty-based locally

weighted voting estimates p(1lI(IN(x))) as follows:

moo (1)
pUTINGO) = > wipll| Af, %)
i=1

p(1lA . ,X) is the probability that atlas A, votes for class 1 at
x. If A/ is from class 1, p(1l1A 2, x)=1, or is set to O otherwise.
fw '} are spatially varying voting weights, which are com-
puted by joint label fusion [see paper to Wang et al. entitled,
“Multi-atlas segmentation with joint label fusion,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2013] 1n the experiments.

If I 1s from class 1, p(1l1,x) defines a voxel-wise distinctive
map for I. I p(ll11,x) 1s close to 1, then the anatomical feature
I(N(x)) 1s a distinct signature for 1 because the feature 1s only
dominant in training 1images {from class 1. On the other hand,
if p(111,x) 1s small, then the feature 1s not distinctive for 1 as
it 1s also common 1n other classes.

2.3 Jomnt Refinement: Accommodating Inter-Image Corre-
lations

The above voxel-wise distinctiveness estimation 1s pro-
duced for each training image independently. Hence, the
estimation produced using different images may be incon-
sistent with each other due to noise eflects. To address this
problem, a joint estimation technique was adopted to reduce
noise and ensure that the estimated distinctive regions
obtained from different images for the same class are con-
sistent with each other.

Let £, and £,=] denote {L,1, . . ., L,»} and
1L, . L k—l} respectively. In order to take correla-
tions between images Irom the same class mto consider-
ation, the estimation 1s made for all images jointly, 1.e.,
estimating P(Z£,=1). To this end, the pseudo-likelihood
approximation technique 1s applied [see paper to Besag
entitled, “Statistical analysis of non-lattice data,” J. R.
Statist. Soc. B, 1973] to estimate the joint probability for
cach class 1 by:

g (2)
pLe=0=| | plLy =t|{Ly =1}j #i)
1=1

Pseudo-likelihood estimation 1s an iterative process. The
initial probability maps for each image are produced using
(1), by taking training images from all classes as atlases. In
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the following iterations, the probability maps produced for
cach 1image 1s updated one at a time, based on the probabaility
maps produced for other training 1mages from the same class
at the current 1iteration, as follows:

1y, (3)
> wipdl 7 x)

J=1, j+i

p(L{E =/ {L,E =llj+i)=

[77" is the image warped from I/ to 1.’ through deformable
registration. p(11177%,x) is the probability that I,/ votes for 1
at x. Unlike (1), where binary votes are employed from each
atlas, p(1lI7 77" x) is derived from warping the probability
maps produced for I/ at the current iteration. Again, the
voting weights are computed using joint label fusion. The
iterative update process stops when the differences produced
by consecutive iterations are smaller than a preselected
threshold or the maximal iteration has been reached.

3 Application: ROI-Based Body Part Recognition

The method described above produces a distinctiveness
map for each training 1mage. In this section, how to use these
results for 1image classification 1s shown.

To classity a testing image I, the voxel-wise distinctive-
ness scores are propagated to the testing image from each
training 1mage through deformable registration. FEach
warped distinctiveness map provides a spatial prior on the
distinctive anatomical regions for the corresponding class.
The consensus distinctiveness map for each class 1s derived
by averaging all propagated maps from the respective class.
Then a threshold 1s applied to produce a ROI segmentation
from each consensus distinctiveness map. For simplicity,
equal size ROI segmentations were produced for different
classes 1n the experiments, but the voxel-wise distinctive-
ness maps allow one to efliciently derive varying size ROI
segmentations for different classes. ROI segmentations 1n
two 1mage classification schemes are applied: registration-
based multi-atlas classification and standard learning-based
classification without using registration.

3.1 Registration-Based Classification

Following [see paper to Coupe et al. entitled, “Simulta-
neous segmentation and grading anatomical structures for
patient’s classification: application to Alzheimer’s disease,”
Neurolmage, 2012], the voxel-wise label posterior p(111,x)
estimated by (1) using training 1mages from all classes for
image classification was applied. To reach an 1mage level
classification decision, these voxel-level label posteriors
were aggregated 1nto a single image-level score by averag-
ing the voxel-wise class posteriors over the ROI segmenta-
tion produced for each class as follows:

Zrotx=1p(i| 1, x) (4)

Y. ROIL(x)

plL| 1) ~

1s the binary ROI mask for 1. With aggregated scores,
classification 1s achueved by choosing the label with maxi-
mal scores, 1.e. argmax,p(llI).
3.2 Classification without Using Registration

For faster classification, ROI detection 1s applied in a
standard learning-based classification scheme that removes
the requirement for pairwise registrations between each
training 1mage and a testing image. For fast ROI propaga-
tion, one class specific template for each class using all
training 1mages irom the respective class was built. Each
training 1mage 1s only registered to its corresponding class
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template, from which the consensus class specific voxel-
wise distinctiveness map and ROI segmentation are obtained
within each template. Given a testing image, the ROI
segmentations are propagated by only registering each of the
class-specific templates to the testing 1image.

To apply learning-based classification, after propagating
class-specific ROIs to an image, an 1image patch 1s extracted
for each class from the 1mage, where the patch 1s a minimal
rectangle containing the respective ROI segmentation.
Image features calculated from each of the extracted patches
are concatenated into one feature vector, which 1s then fed
into a support vector machine (SVM) classifier for classifi-
cation.

For patch feature extraction, we tested four types of
features: histogram of gradients (HoG) [see paper to Dalal
entitled, “Histograms of oriented gradients for human detec-
tion,” IEEE Computer Society Conference on Computer
Vision and Pattern Recogmition, 2005], Local binary patterns
(LBP) [see paper to Ojala et al. entitled, “A comparative
study of texture measures with classification based on fea-
tured distributions,” Pattern Recognition, 1996], Haar fea-
tures and features generated by the VGG-M convolutional
neural network (CNN) [see paper to Chatfield et al. entitled,
“Return of the devil in the details: Delving deep into
convolutional nets,” arXiv, 2014], and pre-trained on the
ImageNet database were tested. For CNN {features, the
4096D fully-connected layer feature vector were extracted
from the network.

4 Experiments
4.1 Data Description

75 axially acquired cardiac CT scans were used in the
study. Representative 2D axial slices are selected from the
3D CT dataset and are categorized into nine semantic classes
to capture the most significant cardiac anatomy for disease
detection (as shown in FIG. 1). Since the CT scans were
acquired for characterizing different cardiac diseases, the
body part regions covered by different scans may vary.
Hence, not all nine body part classes are visible 1n all CT
scans. When a body part class 1s visible 1n one CT scan, a
representative slice 1s chosen by a clinician for that class to
create the annotated images. A total of 519 labeled 2D
images were generated. Histogram equalization was applied
to improve intensity contrast between tissues and resampled
the 2D images to have 5 mm~ resolution.

4.2 Experiment Setup

S-fold cross-validation was conducted. Recall that the
class specific ROI segmentation 1s produced by thresholding
the consensus distinctiveness priors propagated from train-
ing images. The size of ROI segmentation is a free parameter
in the experiment. To choose an optimal ROI segmentation
s1ze, a parameter search was applied using the training
images 1n a leave-one-out test with multi-atlas classification.
The parameter searching ranges from 1% of the image size
to 5% of the image size, with a 1% of the image size step.
The parameter producing the best classification performance
on the training 1images 1s applied for generating ROI seg-
mentation for testing images for both multi-atlas classifica-
tion and learning-based classification.

4.3 Implementation Details

Image-based registration was computed using the
Advanced Normalization Tools (ANTs)[see paper to Avants
et al. entitled, “Symmetric diffeomorphic image registration
with cross-correlation: evaluating automated labeling of
clderly and neurodegenerative brain,” Medical Image
Analysis, 2008] with the Mattes mutual information metric.
The joint label fusion software distributed from ANTs with
the default parameters was applied, except that the patch
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searching radius 1s set to O for a faster label fusion speed. To
improve the accuracy and speed of label fusion, atlas selec-
tion was applied based on global image similarity between
cach warped atlas 1image and the target 1image using normal-
1zed cross-correlation [see papers to Rohliing et al. entitled,
“Evaluation of atlas selection strategies for atlas-based
image segmentation with application to confocal micros-
copy i1mages ol bee brain,” Neurolmage, 2004; and to
Aljabar et al. entitled, “Multi-atlas based segmentation of
brain 1mages: Atlas selection and 1ts eflect on accuracy,”
Neurolmage, 2009] to estimate (1). To avoid the bias caused
by unbalanced class sizes, the top 10 most similar atlases
from each class are selected for label fusion. For joint
refinement, no atlas selection was applied. With the above
setting, each registration task can be computed within a few
seconds and each label fusion task can be computed within
30 seconds.

The iterative joint estimation process typically converges
within a few iterations. In one non-limiting example, the
maximal 1teration was set to five.

Evaluation Criterion

As per the disclosure 1n the paper to Yan et al. entitled,
“Bodypart recogmition using multi-stage deep learming”,
margin O accuracy and margin 1 accuracy are defined. In
margin 0 accuracy, a predicted label I' 1s considered to be
correct 1 and only 11 1t equals the ground truth label 1. In
margin 1 accuracy, a predicted label 1s considered to be
correct 1f and only 11 the predicted label 1s located within one
spatial neighbor of the ground truth.

4.4 Results

FIG. 1 illustrates semantic categories of example axial
cardiac CT slices. In this example, 9 classes are defined. One
example 1mage 1s given for each class. The map next to each
image 1s the output produced by the present invention, which
indicates how useful each 1mage sub-region 1s for classity-
ing the image. As one moves in superior-inferior direction,
these are (from upper leit to lower right 1n the 1mage): 1=1:
Thoracic inlet/supraclavicular region, 1=2: Lung apex/ster-
num, 1=3: Ornigin of great vessels/aortic arch, 1=4: Aortic
arch/pre-vascular space, 1=5: Ascending aorta/descending
aorta/ Aortopulmonary window, 1=6: Pulmonary trunk/origin
of right left pulmonary arteries, 1=7: Aortic valve/aortic root
origin ascending aorta, 1=8: axial four chamber view 1, 1=9:
axial two chamber view. Next to each image 1s the estimated
distinctiveness map by the present method. The anatomical
regions that are essential for defimng each class are properly
highlighted. ROI segmentations with size of 3% 1mage size
derived from the distinctive maps are shown in white
contours on raw images. Turquoise rectangles show the
corresponding ROI 1image patches.

FIG. 2 shows estimated probability maps produced for
one 1mage (I=6) in FIG. 1. First and second rows are 1nitial
and final estimations, respectively. The noise effect 1s clearly
visible 1n the nitial estimations and 1s greatly reduced after
jomt refinement. The semantic labels of this image are
pulmonary trunk/origin of right and left pulmonary arteries.
Probability map corresponding to 1=6, 1.e., the estimated
distinctiveness map, shows the highest intensity. It 1s also
noteworthy that the area of the anatomy corresponding to the
semantic labels for this class have the highest values of
probability within the 1=6 map.

FIG. 1 also shows distinctiveness maps, ROI segmenta-
tions/patches produced for the example 1images. Overall, the
produced distinctiveness maps accurately reflect the most
distinctive anatomical regions for each class. For instance,
the vessel region 1s highlighted for class 3, the origin of great
vessels. The aortic and pulmonary vessels are highlighted
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for classes 4, 5, and 6. The brightest region produced for addition, over the last few years convolution nets have
class 7 (aortic root) 1s around the aortic root region. The produced state-of-the-art results 1n several applications of
cardiac regions are highlighted in the two/four chamber medical 1mage analysis. Patch-based convolution net train-
view classes. ing 1s a common practice due to the limited number of
Classification Accuracy 5 medical images available for traimning compared to natural
Multi-atlas classification without using class specific ROI images. Therefore, wise distinctive patch selection 1s impor-
segmentation, 1.e., scores are averaged over the entire 1mage, tant and may help to improve the network training and
produced 84.8% margin O accuracy and 97.2% margin 1 prediction outcome.
accuracy. Using class specific ROIs for score aggregation In one embodiment, the present immvention provides a
improved the accuracy to 92.1% and 99.2%, respectively. 10 method to detect anatomical region of mterest (ROI) from
Table 1 summarizes learming-based classification results. training 1mages having class labels to help 1mage classifi-
When image features are extracted from global images, the cation performance, the method comprising: (a) receiving,
best margin O and margin 1 accuracy produced by using a as mput, a plurality of 1images, each 1image 1n the plurality of

single feature type are 64.7% and 90.8%, respectively. The images having a class label 1=l<L. and a positive threshold
results are improved to 81.9% and 96.3%, respectively, by 15 th between 0 and 1; (b) computing a discriminative score

using class-specific ROI patches. Note that since we applied map for each image in the plurality of images using all
a pre-trained CNN for feature extraction, the CNN {features remaining images as training images, where the discrimina-
performed competitively but worse than HoG features. tive score map for a given image comprises a spatial varying
These results clearly demonstrate that class specific ROIs discriminative score for each image location within the
derived by the present method accurately located distinctive 20 given image; (¢) for each class label 1, smoothing discrimi-
anatomical regions for the classification task. The results native score maps produced for images with label 1; and (d)
also demonstrate the power of registration-based classifica- producing a region of interest mask for each image in the
tion for anatomy recognition, which produced substantially plurality of 1images by thresholding 1ts discriminative score
better classification accuracy than classification without map by th such that the produced mask has value 1 for pixels
using registration. 25 with discriminative scores greater than th and 0, otherwise.

Overall, multi-atlas classification produced substantially In an extended embodiment, the step of computing a
better classification accuracy than learning-based multi-atlas discriminative score map for one target image 1 with label |
classification for anatomy recognition. using a set of training images I,, . . . , I comprises: (a)

TABLE 1

Margin O/Margin 1 accuracy produced by learning-
based classification with different features

Feature lype HoG LBP Haar CNN
Global 64.7%/90.4% 43.9%/77.1% 61.3%/89.4% 60.5%/90.8%
ROI patch 81.9%/96.3% 58.3%/86.2% 74.8%/90.3% 74.0%/94.4%

The ROI-based multi-atlas classification results also com- calculating deformable transformation between each train-
pare favorable to the state-of-the-art. Yan et al. [in their *” ing image I, in the set of training images I,, . . ., I and the
paper entitled, “Bodypart recognition using multi-stage deep target 1mage I based on an Advanced Normalization Tools
learning,” Springer, 2015] developed a deep learning (ANTs) registration algorithm; (b) warping each training
approach for body part recognition using body CT, where 11 image 1. 1n the set of traiming 1mages I, ..., 1 to align with

categories were created to cover the whole body, including 45 the target image I using the deformable transiormation
the head, trunk, and extremities. Using over 2000 training produced 1n (a), where resulting warped 1image for I, 1s F;; (¢)

images, Yan et al. produced 89.8% margin O accuracy and for each location x 1n the target image I, calculating a
99.1% margin 1 accuracy. Note that direct comparisons of non-negative weight w (x) for each warped training image F,
quantitative results across publications are not always fair at location x by a joint label fusion algorithm using image
due to the inconsistency 1n problem definition, the 1maging 5, intensity information in a neighborhood of x; and (d) cal-
protocol, and the patient population. However, the compari- culating the discriminative score map for the target image at
sons 1ndicate the highly competitive performance produced location x by summing the weights calculated i (¢) for
by the ROI detection and multi-atlas classification. training 1mages with class label 1 divided by the summed

A multi-atlas approach was proposed to generate distinc- weights for all training 1mages.
tive ROI for anatomy classification. Given tramning images 55  In another extended embodiment, the step of smoothing
with 1image-level class labels, the present method produces discriminative score maps produced for images with label |
voxel-wise estimations for each training image indicating comprises: (a) receiving, as put, images with class label 1,
spatial varying distinctiveness for categorizing the image. A I, ..., 1, and their corresponding discriminative score
tast approach was shown for deriving class-specific ROI maps, S, . . ., S, and iteration number IT; (b) for each
patches for new testing 1mages using the produced distinc- 60 mmage I, (1=1=n,), calculating deformable transformation
tiveness maps on training images. The derived class specific between each of remaining image I, (j=1) and I, using
ROIs substantially improved classification accuracy in car- Advanced Normalization Tools (ANTs) registration algo-
diac CT body part classification. rithm; (c) for each image I, (1=i=<n,), warping each of the

For simplicity, equal size ROI segmentations were remaining image to I, using the respective deformable trans-
applied for different classes 1n the experiments. However, 1t 65 formation calculated in 3(b), with resulting warped 1image
1s reasonable to expect that optimal class-specific ROI tor 1. (j=1) 1s F;; (d) for each location x 1n I, calculating a

segmentations may have varying sizes across classes. In non-negative weight w (x) for each image F, (j=1) at location
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X by a joint label fusion algorithm using image intensity
information 1n a neighborhood ot x; (e) updating image 1.’s
smoothed discriminative score at location x by

1

Z w; ()8 (%)

J=L

5 (x) =

i

2 wilx)

=L

and (1) repeating 3(d) through 3(e) N times.

The present invention also discloses an article of manu-
facture having non-transitory computer readable storage
medium comprising computer readable program code
executable by a processor 1n a mobile device to implement
the methods described above.

In another embodiment, the present invention also pro-
vides a method to detect anatomical region of iterest (ROI)
from training images having class labels to help image
classification performance, the method comprising: (a)
receiving, as iput, a plurality of 1mages, each image in the
plurality of images having a class label 1=l<L and a positive
threshold th between 0 and 1; (b) computing a discriminative
score map for each image 1n the plurality of images using all
remaining images as training images, where the discrimina-
tive score map for a given 1image comprises a spatial varying,
discriminative score for each image location within the
given 1image, wherein the step of computing a discriminative
score map for one target image I with label 1 using a set of
training 1mages I,, . . . , I comprises: (1) calculating
deformable transformation between each training 1image I, in
the set of training 1mages 1, ..., I and the target image I
based on an Advanced Normalization Tools (ANTs) regis-
tration algorithm; (11) warping each training image 1. 1n the
set of training 1mages I,, . . . , I to align with the target
image I using the deformable transformation produced in
step (b)(1), where resulting warped 1mage for I, 1s F; (i11) for
cach location x in the target image I, calculating a non-
negative weight w.(x) for each warped training image F, at
location x by a joint label fusion algorithm using image
intensity information in a neighborhood of x; and (1v)
calculating the discriminative score map for the target image
at location x by summing the weights calculated in (b)(i11)
for training 1images with class label 1 divided by the summed
weights for all tramning images; (¢) for each class label 1,
smoothing discriminative score maps produced for images
with label 1, wherein the step of smoothing discriminative
score maps produced for images with label 1 comprises: (1)
recelving, as input, images with class label 1, I,, . . ., L s and
their corresponding discriminative score maps, Sy, . .., S, ,
and iteration number IT; (11) for each image I, (1=i=n,),
calculating deformable transformation between each of
remaining 1mage I, (j=1) and I, using Advanced Normaliza-
tion Tools (ANTs) registration algorithm; (111) for each
image . (1=1=n,), warping each of the remaining image to I,
using the respective deformable transformation calculated in
(¢)(11), with resulting warped 1mage for I, (j=1) 1s F; (111) for
each location X 1n I, calculating a non-negative weight w(x)
tor each 1mage F, (j=1) at location x by a joint label fusion
algorithm using 1image intensity information in a neighbor-
hood of x; (1v) updating 1image 1.’s smoothed discriminative
score at location x by
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and (v) repeating (c)(1v) through (¢)(v) N times; and (d)
producing a region of interest mask for each image in the
plurality of 1images by thresholding 1ts discriminative score
map by th such that the produced mask has value 1 for pixels
with discriminative scores greater than th and 0, otherwise.

FIG. 3 further illustrates the steps involved in generating,
an 1nitial estimate for each training image. The step of
computing a discriminative score map for one target image
I with label 1 using a set of traiming images I,, . .., I
comprises: (a) calculating deformable transformation
between each training 1mage 1. 1n the set of training 1mages
I,, ..., L and the target image I based on an Advanced
Normalization Tools (ANTs) registration algorithm; (b)
warping each traiming 1mage I, in the set of training images
I,, ..., 1 to align with the target image I using the
deformable transformation produced in step (a), where
resulting warped 1mage for I, 1s F, (Note: steps (a) through
(b) described herein are collectively depicted as step 302);
(c) for each location x 1n the target image I, calculating a
non-negative weight w (x) for each warped training image F,
at location x by a joint label fusion algorithm using image
intensity information in a neighborhood of x (step 304); and
(d) calculating the discriminative score map for the target
image at location x by summing the weights calculated 1n (c)
for training 1mages with class label 1 divided by the summed
weights for all training 1mages (step 306).

FIG. 4 further illustrates the method for iteratively refin-
ing probability maps for each class. The step of smoothing
discriminative score maps produced for images with label |
comprises: (a) receiving, as put, images with class label 1,
I, ..oy L, and their corresponding discriminative score
maps, S, . .., S, and iteration number I'T (step 402); (b)
for each 1image I, (1=1=n,), calculating deformable transior-
mation between each of remaining image I, (j=1) and I, using
Advanced Normalization Tools (ANTs) registration algo-
rithm; (c) for each image I, (1=i=<n,), warping each of the
remaining 1mages to I. using the respective deformable
transformation calculated i1n (b), with resulting warped
image for I, (j=1) 1s F; (Note: steps (b) through (c¢) described
herein are collectively depicted as step 404); (d) for each
location x 1n I, calculating a non-negative weight w(x) for
each 1image I, (j=1) at location X by a joint label fusion
algorithm using 1mage intensity information in a neighbor-
hood of x (step 406); (e) updating 1mage I.’s smoothed
discriminative score at location x by
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(step 408); (1) repeating step (d) through step (e) N times.

The above-described features and applications can be
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these structions are executed by one or more
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processing unit(s) (e.g., one or more processors, cores of
processors, or other processing units), they cause the pro-
cessing unit(s) to perform the actions indicated in the
instructions. Embodiments within the scope of the present
disclosure may also include tangible and/or non-transitory
computer-readable storage media for carrying or having
computer-executable instructions or data structures stored
thereon. Such non-transitory computer-readable storage
media can be any available media that can be accessed by a
general purpose or special purpose computer, including the
functional design of any special purpose processor. By way
of example, and not limitation, such non-transitory com-
puter-readable media can include flash memory, RAM.,
ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to carry or store
desired program code means in the form of computer-
executable 1nstructions, data structures, or processor chip
design. The computer readable media does not include
carrier waves and electronic signals passing wirelessly or
over wired connections.

Computer-executable instructions include, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of func-
tions. Computer-executable 1nstructions also 1nclude
program modules that are executed by computers 1n stand-
alone or network environments. Generally, program mod-
ules include routines, programs, components, data struc-
tures, objects, and the functions inherent 1n the design of
special-purpose processors, etc. that perform particular tasks
or implement particular abstract data types. Computer-ex-
ecutable instructions, associated data structures, and pro-
gram modules represent examples of the program code
means for executing steps of the methods disclosed herein.
The particular sequence of such executable instructions or
associated data structures represents examples ol corre-
sponding acts for implementing the functions described 1n
such steps.

Some 1mplementations include electronic components,
for example microprocessors, storage and memory that store
computer program instructions in a machine-readable or
computer-readable medium (alternatively referred to as
computer-readable storage media, machine-readable media,
or machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety ol recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
minmi-SD cards, micro-SD cards, etc.), magnetic or solid state
hard drives, read-only and recordable Blu-Ray® discs, ultra
density optical discs, any other optical or magnetic media,
and floppy disks. The computer-readable media can store a
computer program that 1s executable by at least one pro-
cessing unit and includes sets of instructions for performing
various operations. Examples of computer programs or
computer code include machine code, for example 1s pro-
duced by a compiler, and files including higher-level code
that are executed by a computer, an electronic component, or
a miCroprocessor using an interpreter.

It 1s understood that any specific order or hierarchy of
steps 1n the processes disclosed 1s an illustration of example
approaches. Based upon design preferences, 1t 1s understood
that the specific order or hierarchy of steps in the processes
may be rearranged, or that all illustrated steps be performed.
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Some of the steps may be performed simultaneously. For
example, 1n certain circumstances, multitasking and parallel

processing may be advantageous. Moreover, the separation
of various system components illustrated above should not
be understood as requiring such separation, and 1t should be
understood that the described program components and
systems can generally be integrated together 1n a single
soltware product or packaged into multiple software prod-
ucts.

The various embodiments described above are provided
by way of illustration only and should not be construed to
limit the scope of the disclosure. Those skilled 1n the art will
readily recognize various modifications and changes that
may be made to the principles described herein without
following the example embodiments and applications 1llus-
trated and described herein, and without departing from the
spirit and scope of the disclosure.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any invention or of what may be
claimed, but rather as descriptions of features that may be
specific to particular embodiments of particular inventions.
Certain features that are described 1n this specification in the
context of separate embodiments can also be implemented 1n
combination 1n a single embodiment. Conversely, various
features that are described 1n the context of a single embodi-
ment can also be immplemented 1n multiple embodiments
separately or in any suitable subcombination. Moreover,
although features may be described above as acting 1n

certain combinations and even 1itially claimed as such, one
or more features from a claimed combination can 1n some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a sub combination.

Similarly, while operations are depicted 1n the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation 1n all embodi-
ments, and 1t should be understood that the described
program components and systems can generally be inte-
grated together 1n a single soitware product or packaged into
multiple software products.

As noted above, particular embodiments of the subject
matter have been described, but other embodiments are
within the scope of the following claims. For example, the
actions recited 1n the claims can be performed 1n a difierent
order and still achieve desirable results. As one example, the
processes depicted in the accompanying figures do not
necessarily require the particular order shown, or sequential
order, to achueve desirable results. In certain implementa-
tions, multitasking and parallel processing may be advanta-
geous.

CONCLUSION

A system and method has been shown in the above
embodiments for the effective implementation of a weakly
supervised probabilistic atlas generation through multi-atlas
label fusion. While various preferred embodiments have
been shown and described, it will be understood that there
1s no intent to limit the invention by such disclosure, but
rather, 1t 1s intended to cover all modifications falling within
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the spirit and scope of the invention, as defined in the
appended claims. For example, the present invention should
not be limited by software/program, computing environ-
ment, or specific computing hardware.

The invention claimed 1s:

1. A method to detect anatomical region of interest (ROI)
from training images having class labels to help image
classification performance, the method comprising:

(a) receiving, as 1mput, a plurality of images, each image

in the plurality of images having a class label 1<l<[. and
a positive threshold th between 0 and 1 for use with
discriminative score maps;

(b) computing a discriminative score map for each image
in the plurality of images using all remaining 1images as
training images, where the discriminative score map for
a given 1mage comprises a spatial varying discrimina-
tive score for each image location within the given
1mage;

(c) for each class label 1, smoothing any of the discrimi-
native score maps produced for images with the label 1;

(d) producing a region of interest mask for each image 1n
the plurality of images by thresholding 1ts discrimina-
tive score map by th such that the produced mask has
value 1 for pixels with discriminative scores greater
than th and 0, otherwise; and

(e) performing 1mage classification based on region of
interest masks 1dentified in (d).

2. The method of claim 1, wherein the step of computing,

a discriminative score map for one target image I with label
1 using a set of training images I,, . . ., I comprises:

(a) calculating a deformable transformation between each
training 1mage 1. in the set of training 1mages I,, . . .,
I and the target image I based on an Advanced Nor-
malization Tools (ANTs) registration algorithm;

(b) warping each training image I, in the set of training
images I,, . .., I to align with the target image I using
the deformable transformation produced in step 2(a),
where resulting warped 1mage for 1. 1s F;

(c) for each location x 1n the target image I, calculating a
non-negative weight w (x) for each warped training
image F, at location x by a joint label fusion algorithm
using 1image intensity information in a neighborhood of
x; and

(d) calculating the discriminative score map for the target
image at location x by summing the weights calculated
in 2(c) for traimng 1images with class label 1 divided by
the summed weights for all training 1mages.

3. The method of claim 1, wherein the step of smoothing
discriminative score maps produced for images with label |
COmprises:

(a) rece1ving, as input, images with class label 1, I,, K, L, ,

and their corresponding discriminative score maps, S,
K, S, and iteration number IT;

(b) for each image 1. (1=1=n,) in 3(a), calculating deform-
able transformation between each remaining image I,
(J=1) and I, using Advanced Normalization Tools
(ANTs) registration algorithm;

(c) for each 1mage I, (1=1=n,) in 3(a), warping each of the
remaining images to I, using the respective deformable
transformation calculated 1n 3(b), resulting in warped
image for I, (j=1) 1s F;

(d) for each location x in I, calculating a non-negative
weight w (x) for each image F, (j=1) at location x by a
joint label fusion algorithm using 1mage intensity infor-
mation in a neighborhood of x;

(e) updating image 1.’s smoothed discriminative score at
location x by
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(1) repeating 3(d) through 3(e) N times.

4. The method of claim 1, wherein the mput plurality of
images comprises a plurality of cardiac CT images.

5. The method of claim 1, wherein the method 1s used 1n
body part recognition.

6. The method of claim 1, wherein the method is used 1n
disease classification.

7. An article of manufacture having non-transitory com-
puter readable storage medium comprising computer read-
able program code executable by a processor 1n a mobile
device to implement a method to detect anatomical region of
interest (ROI) from training images having class labels to
help 1mage classification performance, the non-transitory
computer readable storage medium comprising:

(a) computer readable program code receiving, as input, a
plurality of images, each image in the plurality of
images having a class label 1=l<LL and a positive
threshold th between 0 and 1 for use with discrimina-
tive score maps;

(b) computer readable program code computing a dis-
criminative score map for each image in the plurality of
images using all remaining 1images as training images,
where the discriminative score map for a given 1mage
comprises a spatial varying discriminative score for
cach image location within the given image;

(c) computer readable program code, for each class label
1, smoothing discriminative score maps produced for
images with label 1;

(d) computer readable program code producing a region
of interest mask for each image in the plurality of
images by thresholding its discriminative score map by
th such that the produced mask has value 1 for pixels
with discriminative scores greater than th and O, oth-
erwise; and

(¢) computer readable program code performing image
classification based on region of interest masks i1denti-
fied 1n (d).

8. The article of manufacture of claim 7, wherein com-
puter readable program code computing a discriminative
score map for one target image I with label 1 using a set of
training 1mages I,, . . . , I further comprises:

(a) computer readable program code calculating deform-
able transformation between each training 1mage 1. 1n
the set of training 1mages I,, . .., I and the target image
I based on an Advanced Normalization Tools (ANTs)
registration algorithm;

(b) computer readable program code warping each train-
ing 1mage I, in the set of training 1images 1, . .., [ to
align with the target image I using the deformable
transformation produced i step 8(a), where resulting
warped 1mage for I, 1s F;

(c) computer readable program code, for each location x
in the target image I, calculating a non-negative weight
w.(X) for each warped training 1image F. at location x by
a joint label fusion algorithm using image intensity
information in a neighborhood of x; and

(d) computer readable program code calculating the dis-
criminative score map for the target image at location
X by summing the weights calculated n 8(c) for traiming
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images with class label 1 divided by the summed
weights for all training 1mages.

9. The article of manufacture of claim 7, wherein the step
of smoothing discriminative score maps produced {for
images with label 1 comprises:

(a) computer readable program code recerving, as nput,

images with class label 1, I,, K, I, and their corre-
sponding discriminative score maps, S,, K, S, and
iteration number IT:

(b) computer readable program code, for each image I,
(1=1=n,), calculating deformable transformation
between each of remaining 1mage I, (j=1) and I, using
Advanced Normalization Tools (ANTSs) registration
algorithm;

(c) computer readable program code, for each image I,
(1=1=n,), warping each of the remaining image to I,
using the respective deformable transformation calcu-
lated 1n 9(b), with resulting warped 1mage for I, (j=1) 1s

F.:

(d) i:omputer readable program code, for each location x
in I, calculating a non-negative weight w(x) for each
image F, (j=1) at location x by a joint label fusion
algorithm using 1image intensity information in a neigh-
borhood of x;

(e) computer readable program code updating image 1.’s
smoothed discriminative score at location x by
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(1) computer readable program code repeating 9(d)
through 9(¢) N times.

10. The article of manufacture of claim 7, wherein the
input plurality of images comprises a plurality of cardiac CT
1mages.

11. The article of manufacture of claim 7, wherein the
method 1s used 1n body part recognition.

12. The article of manufacture of claim 7, wherein the
method 1s used 1n disease classification.

13. A method to detect anatomical region of interest (ROI)
from training images having class labels to help image
classification performance, the method comprising:

(a) receiving, as mput, a plurality of images, each image

in the plurality of images having a class label 1<l<[. and
a positive threshold th between 0 and 1 for use with
discriminative score maps;

(b) computing a discriminative score map for each image
in the plurality of images using all remaining 1images as
training images, where the discriminative score map for
a given 1mage comprises a spatial varying discrimina-
tive score for each image location within the given
image, wherein the step of computing a discriminative
score map for one target image I with label 1 using a set
of training 1mages I,, . . ., I comprises:

1. calculating a deformable transformation between
cach training image I, 1n the set of training 1mages
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I,, ..., 1 and the target image I based on an
Advanced Normalization Tools (ANTs) registration
algorithm;

1. warping each training 1mage I, in the set of training
images I,, . . ., I to align with the target image I
using the deformable transformation produced in
step 13(b)(1), where the resulting warped 1image for
[.1s F;

111. for each location x 1n the target image I, calculating
a non-negative weight w (x) for each warped training
image F, at location x by a joint label fusion algo-
rithm using 1image intensity imnformation in a neigh-
borhood of x; and

1v. calculating the discriminative score map for the
target 1mage at location x by summing the weights
calculated 1n 13(b)(111) for training 1images with class
label 1 divided by the summed weights for all train-
Ing 1mages;

(¢) for each class label 1, smoothing discriminative score
maps produced for images with label 1, wherein the step
of smoothing discriminative score maps produced for
images with label 1 comprises:

1. rece1ving, as input, images with class label 1, 1,, K, I,
and their corresponding discriminative score maps,
Si, K, S,,, and iteration number IT;

11. for each image I, (1=i1=n,), calculating deformable
transformation between each of the remaining
images I, (j=1) and I, using Advanced Normalization
Tools (ANTs) registration algorithm;

111. for each mmage I, (1=i=n,), warping each of the
remaining 1mages to I, using the respective deform-
able transformation calculated 1n 13(c)(11), with the
resulting warped 1mage for I, (j=1) 1s F;

1v. for each location x 1n I,, calculating a non-negative
weight w (X) for each 1image F, (j=1) at location x by
a joint label fusion algorithm using 1mage intensity
information 1n a neighborhood of x;

v. updating image 1.’s smoothed discriminative score at

location x by
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vi. repeating 13(c)(1v) through 13(c)(v) N times;

(d) producing a region of interest mask for each 1image in
the plurality of images by thresholding its discrimina-
tive score map by th such that the produced mask has
value 1 for pixels with discriminative scores greater
than th and 0, otherwise; and

(¢) performing 1mage classification based on region of
interest masks i1dentified in (d).

14. The method of claim 13, wherein the input plurality of

images comprises a plurality of cardiac CT 1images.

15. The method of claim 13, wherein the method 1s used

in body part recognition.

16. The method of claim 13, wherein the method 1s used

in disease classification.
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