12 United States Patent

Dantressangle et al.

US010169437B2

US 10,169,437 B2
Jan. 1, 2019

(10) Patent No.:
45) Date of Patent:

(54) TRIPLESTORE REPLICATOR
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Inventors: Patrick Dantressangle, Hampshire
(GB); Charles D. Wolfson, Austin, TX
(US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 947 days.
(21) Appl. No.: 14/485,714
(22) Filed: Sep. 13, 2014
(65) Prior Publication Data
US 2015/0120643 Al Apr. 30, 2015
(30) Foreign Application Priority Data
Oct. 30, 2013 (GB) oo, 1319134.1
(51) Imnt. CL
Go6rl’ 7/00 (2006.01)
GO6F 17/00 (2006.01)
GO6F 17/30 (2006.01)
(52) U.S. CL
CPC .. GO6F 17/30575 (2013.01); GO6F 17/30289
(2013.01); GO6F 17/30563 (2013.01)
(58) Field of Classification Search

CPC GO6F 17/30563; GO6F 17/30569; GO6F

17/30575; GO6F 17/30581; GO6F

17/30595; GO6F 17/30604; GO6F

17/30289; GO6F 17/30917

................ 7077/602, 610, 791, 793, 795-796,

7077/802—-803
See application file for complete search history.

L) "1] "1]

Transformation System 10 \/\

(56) References Cited

U.S. PATENT DOCUMENTS

8,037,108 B1* 10/2011 Chang GO6F 17/303
707/803
8,412,720 B2 4/2013 Britton et al.
8,489,649 B2* 7/2013 Yalamanchi GO6F 17/30312
707/809
2002/0059566 Al* 5/2002 Delcambre GO6F 17/2264
717/146
2004/0210552 A1 10/2004 Friedman et al.
(Continued)

OTHER PUBLICATIONS

Sequeda et al. “Relational Database to RDF Mapping Patterns”

Department of Computer Science, The University of Texas at Austin
3rd Workshop on Ontology Patterns Nov. 2012.*

(Continued)

Primary Examiner — Jason G Liao
Assistant Examiner — Berhanu Mitiku

(74) Attorney, Agent, or Firm — Steven M. Greenberg,
Esq.; Shutts & Bowen LLP

(57) ABSTRACT

This 1nvention relates to a system, method and computer
program product for replicating triplestore data from generic
data records including: a plurality of triplestore mapping
operations; a record reader for listening for data events from
the generic data record and for matching each data event to
one or more triplestore mapping operations; a processor for
generating equivalent triples for each located data event by
applying the matched triplestore mapping operation; and a
data sink for receiving generated equivalent triples so that
the triplestore data 1s synchronized in real time with the
generic data records.

15 Claims, 4 Drawing Sheets

Transformation System 10 \/\

Transformation Engine 4 Memory 30

Central Processing

[Volatile Memory 32
Unit 22

RAM 36 CACHE 3%

e ——

Persistent Memory 34

Wl Mt
% R2RML Management
.
Mappings 8
7
Transformation
Data r;mrds Engine
Data — 4
Events
| Omcle_ :
Replication H
Events
S Triplestore
w : : Database
Modification g
Events /f\
SQL v
— CDC
E Triplestore
Database
MOQRep
Messages System (DB2;
“““ Oracle)
TN MO _/
_,/ Messages
Other MQ Queues
Data DataStage
Records Events DataStage RDF
N Stage

Bus 28 R2RML Mappings
Module 201
Network Device : +
Adapter Adapter Eﬂ]&sﬁﬂr;%%hnn Engine
24 26 oo
- 3 e -
Console Monitoring 8
o Input Devices 14 — 18
» Output Devices 16
'
Data Triplest
Data Network nplestore
REE; rds Events3 | 20 [Dﬂtﬂsbaﬂe

US 10,169,437 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0238610 Al 9/2011 Lee et al.
2012/0102022 Al 4/2012 Miranker et al.

OTHER PUBLICATIONS

Author Unknown; “Step 3: Converting Relational Data to RDF”;
[retrieved Jul. 5, 2013]; http://db.disi.unitn.eu/pages/

Rel2RDFTutorial2011/S3.pdf.

Konstantinou, Nikolaos, et al.; “Exposing Scholarly Information as
Linked Open DAta: RDFizing DSpace contents”; [retrieved Jul. 5,
2013]; http://www.cn.ntua.gr/~nkons/r2rml_parser-2013_post_peer-
review.pdf.

Ramanujam, Sunitha et al.; “Update-Enabled Triplification of Rela-
tional Data into Vutual RDF Stores”; International Journal of
Semantic Computing, vol. 4, No. 4; Dec. 2010, pp. 423-451.
Sequeda, Juan et al.; “Relational Database to RDF Mapping Pat-
terns”; 3rd Workshop on Ontology Patterns (WOP2012) at ISWC
2012; Nov. 2012; all pages.

Zhan, Yucheng M., “Updating RDF”, 21st Computer Science Semi-
nar, Apr. 2005, pp. SD2-T3-1 through SD2-T3-7.

* cited by examiner

U.S. Patent Jan. 1, 2019 Sheet 1 of 4 US 10,169,437 B2

Transformation System 10 \/\

{
MMetadata ! Console
| ana%emen’[a- R? WL Managemellt
Mappings S
7
l Transtormation

Data records

Engine
Data > 4

2
T > Events
Eﬂ : |
Replication
Events - ‘
Triplestore

DB2 Database

-—-*‘ Modification 5

| Events
SQL
Server

CDC

Triplestore

Database
MQRep |
...... Messages Sysf)egc(lggzﬁ

MQ

Messages _
! MQ Queues
DataStage _ |
 Events | DataStage RDF
Stage |

FIGURE 1A

U.S. Patent

Jan. 1, 2019

Sheet 2 of 4

Transformation System 10 \/\

US 10,169,437 B2

FIGURE 1B

Transformation Engine 4 Memory 30
Central Processing] | Volatile Memory 32
Unait 22 .
| RAM 36 CACHE 38
T o _ o . - *
Persistent Memory 34
Bus 2§ _____ R2RML Mappings |
- Module 201 |
Network Device Transtormation Engiﬁe o
Adapter Adapter o L ' |
24 26 Module 200 |
Console Monitoring 8
Input Devices 14 — 18
Output Devices 16
Data - Triplest
Data Network HpLESIOTe
Reczords ™ Events3 | 1 0 e Dataébase

U.S. Patent Jan. 1, 2019 Sheet 3 of 4 US 10,169,437 B2

Transtormation Engine Module 200

'RZR'ML Proces'éoi_‘ 206 Data

Neamaer o .] Sink
| o= ' 208
| R2RML Processor thread

SQL Processing Engine 210

FIGURE 2

U.S. Patent Jan. 1, 2019 Sheet 4 of 4

US 10,169,437 B2

Transformation Method 300

intibeblryvilaiinirbubinhirbinhb

l

C 302Smt D

i 304 Listen for data events

'

306 Match event to mapping

308 Generate equivalent triples

;

310 Push triples to data sink

l

312 Continue to
Listen

NO
314 End

Yes

FIGURE 3

US 10,169,437 B2

1
TRIPLESTORE REPLICATOR

BACKGROUND

Field of the Invention

This 1nvention relates to a method and apparatus for
replicating data record events 1n a triplestore database in
real-time. In particular this relates to a method and apparatus
for populating a resource description framework (RDF)
triplestore through a real-time mapping engine.

A triplestore 1s a purpose-built database for the storage
and retrieval of triples, a triple being a data entity composed
of subject-predicate-object, like “John 1s 217 or “John
knows Ted”. Much like a relational database, one stores
information in a triplestore and retrieves it via a query
language. Unlike a relational database, a triplestore 1s opti-
mized for the storage and retrieval of triples. In addition to
queries, triples can usually be imported/exported using
resource description framework (RDF) and other formats.

One way of replicating data as a triplestore 1s to use a
complex extract transform load (ETL) batch jobs on the data
to find, extract, transform and load the changes into a
triplestore.

Another approach 1s to monitor data and use broker flows
to transform the changes. It 1s possible to monitor data using
change data capture (CDC) techniques. Change data capture
(CDC) 15 a set of soltware design patterns used to determine
(and track) data that has changed so that action can be taken
using the changed data.

Relational database to resource descriptor framework
mapping language (R2RML) 1s a language for expressing,
customized mappings from relational databases to RDF
datasets. Such mappings provide the ability to view existing
relational data in the RDF data model, expressed in a
structure and target vocabulary of the mapping author’s
choice. R2ZRML mappings are themselves RDF graphs.

R2RML enables different types of mapping implementa-
tions.

D2RQ 15 a system for accessing relational databases as
virtual, read-only RDF graphs. It offers RDF based access to
the content of relational databases without having to repli-
cate i1t into an RDF store. Using D2RQ): a non-RDF database
can be queried; the content of a database as linked data over
the Web can be accessed; custom dumps of the database in
RDF formats for loading into an RDF store can be created;
and mformation 1n a non-RDF database can be accessed.

Current RZRML or D2RQ technologies, and the R2ZRML
standard definition (www.w3.0rg/2001/sw/rdb2rdi/test-
cases/) allows for reading data from relational database
system (RDBMS) to expose virtual triples. Neither of these
technologies pick up data events occurring at RDBMS
system level (for example: insert; update and delete) and
cannot be used to populate a RDF triple store in near
real-time.

BRIEF SUMMARY OF THE INVENTION

In a first aspect of the mnvention there 1s provided a system
for replicating triplestore data from a generic data record
comprising: a plurality of triplestore mapping operations; a
record reader for listeming for data events from the generic
data record and for matching each data event to one or more
triplestore mapping operations; a processor for generating,
equivalent triples for each located data event by applying the
matched triplestore mapping operation; and a data sink for

10

15

20

25

30

35

40

45

50

55

60

65

2

receiving generated equivalent triples so that the triplestore
data 1s synchronized 1n real time with the data record.

In a second aspect of the invention there 1s provided a
method of replicating a triplestore data from a generic data
record comprising: listening for data events from the generic
data record; matching each data event to a triplestore map-
ping operation; generating equivalent triples for each located
data event by applying the triplestore mapping operation;
and pushing equivalent triples into a triplestore data sink so
that the triplestore data 1s synchronized 1n real time with the
data record.

A real time solution 1s required when strict compliance
and verification 1s needed. For example, customers like
banks and government organizations have a need to query
triplestore databases for auditing to provide a real-time
picture of existing data records.

The embodiments push all changes from remote data
records 1nto a single triplestore 1n real-time. Semantic que-
ries can then be executed on this real-time representation of
all data assets. Real-time 1n this specification 1s soft-real
time, that 1s as fast as possible and as close as real time as
possible but not necessarily absolutely constrained. There-
fore 1t 1s not necessarily based on interruption with time/
resources constraints.

The embodiments have a quickeming effect on any pro-
cesses that rely on a triplestore database. The embodiments
operate at system level of a computer system and below an
overlying application level. The embodiments increase the
reliability of applications since real-time data 1s the most
up-to-date.

Similar queries using R2ZRML or D2RQ engines would
put extra load on a RDBMS. Furthermore security risks
would be mntroduced by allowing an extra RDF or RDF
query language (SPARQL) application to access the
RDBMS.

Advantageously the triplestore database comprises one
of: a triplestore data sink; or a triplestore database system.

A further replication sink 1s advantageous because of
pre-existing transformation capabilities, that 1s: ETL nor-
malization (for instance for IBM DataStage); message queue
fan out to multiple RDF stores (for instance for IBM MQ or
Java Message System); and multiple RDF save replicas.
IBM DataStage 1s an ETL system. IBM MQ 1s a messaging
system that uses queues to transier messages between con-
nected systems. IBM, DataStage and MQ are registered or
unregistered trademarks of International Business Machines
in the US and/or other countries. Java i1s a registered or
unregistered trademark of Oracle Corporation 1 the US
and/or other countries.

More advantageously, two or more triples are created for
cach data event according to user defined R2ZRMI mapping.

Still more advantageously, the data event 1s one or more
of: an insert event; a delete event; or an update event.

Yet more advantageously, triplestore data 1s 1njected nto
the triplestore storage using a known application program-
ming interface (API). For instance, one such triplestore API
1s the Apache Jena framework. Apache Jena 1s an open
source Java framework for building semantic Web and
linked data applications.

Preferably data events include events from one or more of
the 1following: database replication; data modification;
change data capture (CDC) events; events from platform
messaging systems; events from event load transfer (ELT)
systems; and events from structured query language (SQL)
replication.

More preferably the method 1s scaled for listening to
multiple data event sources simultaneously. The method

US 10,169,437 B2

3

uses fast or parallel processors. Data event sources can be
pushing thousands of events per second. One data record
change can generate multiple triples or triple changes (at
least one per {ile in the record plus types and others relevant
concepts defined by the R2ZRML mapping). Therefore the
R2RML transformations need to be nimble, for example,
pre-calculated as templates in memory, so that data from
before and after record images 1s transformed as efliciently
as possible mto the mappings. Mapping needs to be applied
in parallel as efliciently as possible, for example, by loading

the RDF model graph 1n memory and then persisting 1t all at
once.

In a third aspect of the invention there i1s provided a
computer program product for replicating information from
a relational database as a triplestore database, the computer
program product comprising a computer-readable storage
medium having computer-readable program code embodied
therewith and the computer-readable program code config-
ured to perform all the steps of the methods.

The computer program product comprises a series of
computer-readable instructions either fixed on a tangible
medium, such as a computer readable medium, for example,
optical disk, magnetic disk, solid-state drive or transmittable
to a computer system, using a modem or other interface
device, over either a tangible medium, including but not
limited to optical or analogue communications lines, or
intangibly using wireless techniques, including but not lim-
ited to microwave, infrared or other transmission techniques.
The series of computer readable mstructions embodies all or
part of the functionality previously described.

Those skilled 1n the art will appreciate that such computer
readable instructions can be written in a number of pro-
gramming languages for use with many computer architec-
tures or operating systems. Further, such instructions may be
stored using any memory technology, present or future,
including but not limited to, semiconductor, magnetic, or
optical, or transmitted using any communications technol-
ogy, present or future, including but not limited to optical,
infrared, or microwave. It 1s contemplated that such a
computer program product may be distributed as a remov-
able medium with accompanying printed or electronic docu-
mentation, for example, shrink-wrapped software, pre-
loaded with a computer system, for example, on a system
ROM or fixed disk, or distributed from a server or electronic
bulletin board over a network, for example, the Internet or
World Wide Web.

In a fourth aspect of the invention there i1s provided a
computer program stored on a computer readable medium
and loadable into the internal memory of a computer,
comprising software code portions, when said program 1s
run on a computer, for performing all the steps of the method
claims.

In a fifth aspect of the invention there 1s provided a data
carrier aspect of the preferred embodiment that comprises
functional computer data structures to, when loaded 1nto a
computer system and operated upon thereby, enable said
computer system to perform all the steps of the method
claiams. A suitable data-carrier could be a solid-state
memory, magnetic drive or optical disk. Channels for the
transmission of data may likewise comprise storage media
of all descriptions as well as signal-carrying media, such as
wired or wireless signal-carrying media.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now
be described, by way of example only, with reference to the
tollowing drawings in which:

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1A 1s a schematic deployment diagram of a trans-
formation system of the preferred embodiment;

FIG. 1B 1s a computer based deployment of the transior-
mation of the preferred embodiment;

FIG. 2 1s a component diagram of the preferred embodi-
ment:; and

FIG. 3 1s a flow diagram of a process of the preferred
embodiment.

(Ll

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

Referring to FIG. 1A, the deployment of a preferred
embodiment 1s shown. Transformation system 10 comprises:
data records 2; data events 3; transformation engine 4;
triplestore database 5; metadata management 6; R2RML
mappings 7 and console management 8.

Data records 2 are the source of the data events that are
intercepted by the preferred embodiment. Data records 2 are
designed for use by external systems but these external
systems are not part of the embodiments. Data records 2 can
comprise: Oracle databases; IBM DB2 databases; SQL
Servers; or any other data records including simple data
tables or extensible mark-up language (XML) data.

Data events 3 are intercepted and are piped to transior-
mation engine 4.

Transformation engine 4 1s for transforming the data
events 1nto triplestore data and 1s described in more detail
below.

Triplestore database 5 1s for receiving the transformed
data events from RDF message queues or ELT RDF stages
or any other type of record feed 1nto a triplestore database.

Metadata management 6 1s for creating triplestore trans-
formation mappings between data events that might occur
for data records 2 and equivalent triplestore data. These
mappings are stored in R2ZRML mappings 7.

R2RML mappings 7 are for storing the transformational
mappings between data events and triplestore data. The
transformation engine 4 fetches individual RZRML mapping
for use 1n the transformation.

Console management 8 i1s used by administrators to
operate and manage transformation engine 4.

Retferring to FIG. 1B, the deployment of a preferred
embodiment 1n a computer system 1s described. Transfor-
mation system 10 1s operational with numerous other gen-
eral purpose or special purpose computing system environ-
ments or configurations. Examples of well-known
computing processing systems, environments, and/or con-
figurations that may be suitable for use with transformation
system 10 include, but are not limited to, personal computer
systems, server computer systems, thin clients, thick clients,
hand-held or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud com-
puting environments that include any of the above systems
or devices.

Transformation system 10 may be described in the general
context of computer system-executable instructions, such as
program modules, being executed by a computer processor.
Generally, program modules may include routines, pro-
grams, objects, components, logic, and data structures that
perform particular tasks or implement particular abstract
data types. Transformation system 10 may be embodied 1n
distributed cloud computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed cloud

US 10,169,437 B2

S

computing environment, program modules may be located
in both local and remote computer system storage media
including memory storage devices.

Console management 8 includes one or more nput
devices 14 and output devices 16 directly attached to the
transformation engine 4. Transformation system 10 1s con-
nected to a network 20. Transformation system 10 commu-
nicates with a user 18 using mput devices 14 and output
devices 16. Input devices 14 include one or more of: a
keyboard, a scanner, a mouse, trackball or another pointing
device. Output devices 16 include one or more of a display
or a printer. Transformation system 10 communicates with
network devices (not shown) over network 20. Network 20
can be a local area network (LAN), a wide area network
(WAN), or the Internet.

Transtormation engine 4 1s based on a general purpose
computer and comprises: central processing unit (CPU) 22;
network adapter 24; device adapter 26; bus 28 and memory
30.

CPU 22 loads machine instructions from memory 30 and
performs machine operations 1n response to the instructions.
Such machine operations include: incrementing or decre-
menting a value in register (not shown); transferring a value
from memory 30 to a register or vice versa; branching to a
different location in memory 1f a condition 1s true or false
(also known as a conditional branch instruction); and adding
or subtracting the values 1n two different registers and
loading the result 1n another register. A typical CPU can
perform many different machine operations. A set of
machine instructions 1s a machine code program; the
machine code program 1s written in machine code language
which 1s a low level language. A computer program written
in a high level language needs to be compiled to a machine
code program before 1t can be run. Alternatively a machine
code program such as a virtual machine or an interpreter can
interpret a high level language 1n terms of machine opera-
tions.

Network adapter 24 1s connected to bus 28 and network
20 for enabling communication between the transformation
engine 4 and network devices.

Device adapter 26 1s connected to bus 28 and input
devices 14 and output devices 16 for enabling communica-
tion between transformation engine 4 and mnput devices 14
and output devices 16.

Bus 28 couples the main system components together
including memory 30 to CPU 22. Bus 28 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using
any ol a variety of bus architectures. By way of example,

and not limitation, such architectures include Industry Stan-
dard Architecture (ISA) bus, Micro Channel Architecture

(MCA) bus, Enhanced ISA (FISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral
Component Interconnects (PCI) bus.

Memory 30 includes computer system readable media in
the form of volatile memory 32 and non-volatile or persis-
tent memory 34. Examples of volatile memory 32 are
random access memory (RAM) 36 and cache memory 38.
Generally volatile memory 1s used because 1t 1s faster and
generally non-volatile memory 1s used because it will hold
the data for longer. Transformation system 10 may further
include other removable and/or non-removable, volatile
and/or non-volatile computer system storage media. By way
of example only, persistent memory 34 can be provided for
reading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically a magnetic hard

10

15

20

25

30

35

40

45

50

55

60

65

6

disk or solid-state drive). Although not shown, further
storage media may be provided including: an external port
for removable, non-volatile solid-state memory; and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a compact disk (CD),
digital video disk (DVD) or Blu-ray. In such instances, each
can be connected to bus 28 by one or more data media
interfaces. As will be further depicted and described below,
memory 30 may include at least one program product having
a set (for example, at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention

The set of program modules configured to carry out the
functions of the preferred embodiment comprises transior-
mation engine module 200 and R2ZRML mappings module
201. Further program modules that support the preferred
embodiment but are not shown include firmware, boot strap
program, operating system, and support applications. Each
of the operating system, support applications, other program
modules, and program data or some combination thereof,
may include an implementation of a networking environ-
ment.

Transformation system 10 communicates with at least one
network 20 (such as a local area network (LAN), a general
wide area network (WAN), and/or a public network like the
Internet) via network adapter 24. Network adapter 24 com-
municates with the other components of transformation
engine 4 via bus 28. It should be understood that although
not shown, other hardware and/or software components
could be used 1n conjunction with transformation system 10.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, redundant array of independent disks (RAID), tape
drives, and data archival storage systems.

Referring to FIG. 2, transformation engine module 200
comprises the following components: record reader 204;
R2RML processor 206; data sink 208; SQL (sequence query
language) processing engine 210; and transformation
method 300.

Record reader 204 i1s for reading the record data and
fetching one or more R2ZRML mapping files. Record reader
204 1s also for gathering metadata from the record data; this
information can be read from a configuration file, metadata
server or as extra annotations in previously mentioned
R2RML mapping file. Record reader 204 1s also for gath-
ering runtime parameters from the record data; for example:
multiple sections; concurrent threads; logging data; RDF
store connection parameters; metadata server connection
parameters; M(Q Broker connection and subscriptions; and
CDC connection parameters. The record data, mapping files,
metadata and parameters are passed onto R2ZRML processor
206.

R2RML processor 206 1s for operating on the record data,
mapping files, metadata and parameters to eflect a transior-
mation of the record data. R2ZRML processor 206 accepts the
following 1nputs: before and after images of database
records; the SQL operation types INSERT, DELETE,
UPDATE; and table definitions. This component manages
triple creation based on the RZRML mapping definitions. IT
the R2ZRML logical table definition 1n the R2ZRML file 1s a
simple expression with no SQL then the mapping into
multiple triples 1s done 1 memory directly. If the R2ZRML
logical table definition in the R2ZRML file uses SQL (using
a SELECT statement for instance) then R2RML processor
206 call SQL processing engine 210.

Data sink 208 1s a buflering triplestore for taking all the
triples generated by RZRML processor 206 and doing one or

US 10,169,437 B2

7

more of the following: 1) Using a SPARQL JENA API to
inject triples directly into the RDF store; 2) Using an ELT
stage to push triples in an RDF store; 3) Using a platform
messaging queue to push triples to publish and subscribe
listeners; or 4) Using CDC listeners to push the triples to
other replicated triple stores.

SQL processing engine 210, (for example an embedded
Apache Derby database) 1s used for the sole purpose of
processing the SQL statements by replacing the tables names

in the FROM clause (“FROM TABLE1”) with “VALUES
(‘field1’, ‘field2’, . . . ‘fieldN’) as TABLE]1 (fieldnamel,
ficldname?2, . . . ficldnameN)” clauses so that the SQL
processing engine can process triples without a real table
created on disk (for speed and agility purposes). Apache
Derby, a database subproject of the Apache code commu-
nity, 1s an open source relational database implemented
entirely 1n Java and available under the Apache License,
Version 2.0. Apache Derby 1s particularly useful if the
R2RML SQL statement specified use CASE statements or
any static reference data tables (for example currencies or
countries). Eventually, if the reference data set i1s large,
reference data tables can be loaded 1n the m-memory SQL
processing engine if they fit, or as usual SQL processing,
engine tables with persistence 1f more data 1s required and
this cannot all fit in memory.

Referring to FIG. 3, transformation method 300 com-
prises logical process steps 302 to 314.

Step 304 1s for listening for data events.

Step 306 1s for matching event data to mapping transior-
mations.

Step 308 1s for generating equivalent triples.

Step 310 1s for pushing triples to the data sink.

Step 312 1s for deciding to continue to listen for data
cvents at step 304 else step 314.

Step 314 1s the end of transformation method 300.

Further embodiments of the mnvention are now described.
It will be clear to one of ordinary skill in the art that all or
part of the logical process steps of the preferred embodiment
may be alternatively embodied 1mn a logic apparatus, or a
plurality of logic apparatus, comprising logic eclements
arranged to perform the logical process steps of the method
and that such logic elements may comprise hardware com-
ponents, firmware components or a combination thereof.

It will be equally clear to one of skill in the art that all or
part of the logic components of the preferred embodiment
may be alternatively embodied in logic apparatus compris-
ing logic elements to perform the steps of the method, and
that such logic elements may comprise components such as
logic gates 1n, for example a programmable logic array or
application-specific integrated circuit. Such a logic arrange-
ment may further be embodied 1n enabling elements for
temporarily or permanently establishing logic structures in
such an array or circuit using, for example, a virtual hard-
ware descriptor language, which may be stored and trans-
mitted using fixed or transmittable carrier media.

In a further alternative embodiment, the present invention
may be realized in the form of a computer implemented
method of deploying a service comprising steps of deploy-
ing computer program code operable to, when deployed into
a computer inirastructure and executed thereon, cause the
computer system to perform all the steps of the method.

It will be appreciated that the method and components of
the preferred embodiment may alternatively be embodied
tully or partially 1n a parallel computing system comprising
two or more processors for executing parallel software.

It will be clear to one skilled in the art that many
improvements and modifications can be made to the fore-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

going exemplary embodiment without departing from the
scope of the present invention.

What 1s claimed 1s:

1. A system for replicating triplestore data from generic
data records comprising:

a computing processor; and

a computer readable medium having program instructions
embodied therewith, the program instructions execut-
able by the computing processor to cause the comput-
ing processor to implement:

a plurality of triplestore mapping operations;

a record reader for listening for data events from the
generic data record and for matching each data event to
one or more triplestore mapping operations;

a processor for generating equivalent triples for each
located data event by applying the matched triplestore
mapping operation, the application of the triplestore
mapping operation comprising determiming 1f a map-
ping 1ncludes a structured query language (SQL)
expression and on condition that the mapping includes
a SQL expression, calling a SQL processing engine to
process the SQL expression but otherwise performing
the generation of the equivalent triples directly in
memory; and

a data sink for receiving generated equivalent triples so
that the triplestore data i1s synchronized in real time
with the generic data records.

2. The system of claim 1, wherein the triplestore database
comprises one of: a triplestore data sink; a triplestore
database system; storage queue; or an extract transform load
(E'TL) queue.

3. The system of claim 1, wherein two or more triples are
created for each data event according to relational database
to resource descriptor Iramework mapping language
(R2RML) mappings.

4. The system of claim 3, wherein the data event 1s one or
more of:

an insert event;

a delete event; or

an update event.

5. The system of claim 1, wherein triplestore data 1s
injected 1nto the triplestore storage using a known applica-
tion programming interface (API).

6. The system of claim 1, wherein data events include
events from one or more of the following:

database replication;

data modification;

change data capture (CDC) events;

events from platform message queues or virtual machine
queues;

events from extract transier load (E'TL) jobs;

events from structured query language (SQL) replication;
and

events from any streaming technology.

7. The system of claim 1, wherein the method 1s scaled for
listening to multiple data event sources simultaneously.

8. A method of replicating a triplestore data from generic
data records, implemented by a computing processor, com-
prising:

listening for data events from the generic data record;

matching each data event to a triplestore mapping opera-
tion;

generating equivalent triples for each located data event
by applying the triplestore mapping operation, the
application of the triplestore mapping operation com-
prising determining 1f a mapping includes a structured
query language (SQL) expression and on condition that

US 10,169,437 B2

9

the mapping includes a SQL expression, calling a SQL
processing engine to process the SQL expression but
otherwise performing the generation of the equivalent
triples directly 1n memory; and

pushing the generated equivalent triples 1nto a triplestore
data sink so that the triplestore data 1s synchronized 1n
real time with the generic data records.

9. The method of claim 8, wherein the triplestore database

comprises one of: a triplestore data sink; a triplestore
database system; storage queue; or an extract transform load
(ETL) queue.

10. The method of claim 8, wherein two or more triples
are created for each data event according to relational
database to resource descriptor framework mapping lan-
guage (R2ZRML) mappings.

11. The method of claim 10, wherein the data event 1s one
or more of:

an 1nsert event:;

a delete event; or

an update event.

12. The method of claim 8, wherein triplestore data 1s
injected into the triplestore storage using a known applica-
tion programming interface (API).

13. The method of claim 8, wherein data events include
events from one or more of the following:

database replication;

data modification;

change data capture (CDC) events;

events from platform message queues or virtual machine

queues;

5

10

15

20

25

10

events from extract transfer load (ETL) jobs;
events from structured query language (SQL) replication;
and
events from any streaming technology.
14. The method of claim 11, wherein the method 1s scaled
for listening to multiple data event sources simultaneously.
15. A computer program product for replicating a triple-
store data from a generic data record, the computer program
product comprising a computer readable storage medium
having program instructions embodied therewith, wherein
the computer readable storage medium i1s not a transitory
signal per se, the program instructions executable by a
processor to cause the processor to perform a method
comprising:
listening for data events from the generic data record;
matching each data event to a triplestore mapping opera-
tion;
generating equivalent triples for each located data event
by applying the triplestore mapping operation, the
application of the triplestore mapping operation com-
prising determining 1f a mapping includes a structured
query language (SQL) expression and on condition that
the mapping includes a SQL expression, calling a SQL
processing engine to process the SQL expression but
otherwise performing the generation of the equivalent
triples directly 1n memory; and
pushing the generated equivalent triples into a triplestore
data sink so that the triplestore data 1s synchronized 1n
real time with the generic data records.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

