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CLASSIFICATION METHOD AND
APPARATUS

FIELD

Embodiments described herein relate generally to a
method of, and apparatus for, classification 1 medical
imaging data.

BACKGROUND

Detection of subtly discriminated regions in volumetric
medical imaging may be challenging.

One example of detection of subtly discriminated regions
1s the detection of early ischemic signs in non-contrast
computed tomography (NCCT) for acute stroke. In such
detection, the main pathology or pathologies of interest may
comprise dense vessels (thrombus) and areas of 1schemia
and infarcts. In some circumstances, dense vessels may be
challenging to detect due to the proximity of bone. In some
circumstances, 1schemia and/or infarcts may be challenging
to detect due to the subtlety of intensity and texture changes.
Areas of 1schemia and/or infarcts in the brain may appear in
CT 1mages as areas of slightly lowered intensity. There may
be a loss of distinction between grey matter and white
matter.

Some examples of subtle stroke signs are listed as a) to ¢)
below:—

a) Low density 1in insular cortex due to acute infarct.

b) Loss of differentiation of basal ganglia. Lentiform nucleus
lost on right side.

¢) Loss of grey/white matter in acute right middle cerebral
artery (MCA) infarct.

d) Dense vessel (MCA).

¢) Old 1schemic change.

In some circumstances, 1t a naive classifier were to be
used to detect subtle stroke signs, 1t may be the case that
normal calcification of arteries could be confused with

abnormal dense vessel signs.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments are now described, by way of non-limiting
example, and are 1llustrated in the following figures, 1n
which:

FIG. 1 1s a schematic diagram of an apparatus according
to an embodiment;:

FIG. 2 1s a flowchart illustrating 1n overview a training
and detection method according to an embodiment;

FIG. 3 1s a schematic 1llustration of a data set comprising,
an abnormal region;

FIG. 4 1s a schematic 1llustration of a symmetrical region
of a data set;

FIG. 5 1s a flowchart illustrating in overview an atlas
alignment method according to an embodiment;

FIG. 6 1s a flowchart 1llustrating 1n overview a detector
training method according to an embodiment;

FIGS. 7a, 7b and 7¢ are schematic diagrams representa-
tive of 1imaging data folding along a midline;

FIG. 8 1s a schematic diagram representative of folded
data;
and

FIG. 9 1s a flowchart 1llustrating 1n overview a detection
method according to an embodiment.

DETAILED DESCRIPTION

Certain embodiments provide a medical image data pro-
cessing apparatus comprising processing circuitry config-
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ured to: receive a plurality of sets of medical imaging data;
and train a classifier for use in classification, wherein the
training of the classifier comprises, for each of the plurality
of sets of medical 1imaging data: selecting a first part and a
second part of the respective set of medical imaging data,
wherein the first part and the second part are representative
of different regions of the same subject; and training the
classifier for use 1n classification based on the first part of the
set of medical imaging data and the second part of the set of
medical imaging data.

Certain embodiments provide a medical image data pro-
cessing method comprising: receiving a plurality of sets of
medical 1imaging data; and traiming a classifier for use in
classification, wherein the training of the classifier com-
prises, for each of the plurality of sets of medical imaging
data: selecting a first part and a second part of the respective
set of medical imaging data, wherein the first part and the
second part are representative of different regions of the
same subject; and tramning the classifier for use 1n classifi-
cation based on the first part of the set of medical imaging
data and the second part of the set of medical imaging data.

An 1maging data processing apparatus 10 according to an
embodiment, which 1s configured to train a classifier for
detecting a pathology and to use the classifier to detect
pathology, 1s illustrated schematically in FIG. 1. In the
present embodiment, the classifier 1s trained to detect throm-
bus. In other embodiments, a classifier may be trained to
detect any suitable abnormality, for example 1schemia or any
other relevant pathology. In further embodiments, a classi-
fler may be trained for the analysis of images that are
indicative of function, for example tissue motion or liquid
flow.

The imaging data processing apparatus 10 comprises a
computing apparatus 12, in this case a personal computer
(PC) or workstation, which 1s connected to a CT scanner 14,
one or more display screens 16 and an input device or
devices 18, such as a computer keyboard, mouse or track-
ball.

The CT scanner 14 may be any CT scanner that 1s
configured to obtain volumetric 1maging data that is repre-
sentative of at least one anatomical structure of a patient or
other subject.

In the present embodiment, the anatomical structure 1s the
brain. In other embodiments, the anatomical structure may
be any anatomical structure that 1s substantially symmetri-
cal. A substantially symmetrical anatomical structure may be
an anatomical structure that, in a normal patient and 1n the
absence of pathology, may be expected to look similar to 1ts
mirror 1mage.

A substantially symmetrical anatomical structure may be
substantially symmetrical about a line of symmetry, which
may be a sagittal line of symmetry. Examples of substan-
tially symmetrical anatomical structures may include a
brain, a skull, a jaw, a vertebra, a spine, a pelvis, a bladder,
a ribcage. In some embodiments, the substantially symmetri-
cal anatomical structure may comprise a pair ol related
anatomical structures, for example a pair of eves, a pair of
ears, a pair of lungs, a pair of kidneys, a pair of joints, a pair
of limbs, a pair of hands, a pair of feet, a pair of shoulders.
If the related anatomical structures are moveable relative to
cach other (for example, the hands) a controlled acquisition
may be used in which the anatomical structures are posi-
tioned 1n a particular configuration. For example, the hands
ol a patient may be placed side by side before scanning.

In alternative embodiments, the CT scanner 14 may be
replaced or supplemented by a scanner configured to obtain
two-dimensional or three-dimensional 1imaging data 1n any
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other imaging modality, for example a CT scanner, cone-
beam CT scanner, MRI (magnetic resonance imaging) scan-
ner, X-ray scanner, ultrasound scanner, PET scanner (posi-
tron emission tomography) or SPECT (single photon
emission computed tomography) scanner. In one example,
the CT scanner 14 1s replaced by a scanner configured to
obtain two-dimensional planar radiographs.

In the present embodiment, volumetric imaging data sets
obtained by the CT scanner 14 are stored in memory 20 and
subsequently provided to computing apparatus 12. In an
alternative embodiment, volumetric imaging data sets are
supplied from a remote data store (not shown) which may
form part of a Picture Archiving and Communication Sys-
tem (PACS). The memory 20 or remote data store may
comprise any suitable form of memory storage.

Computing apparatus 12 provides a processing resource
for automatically or semi-automatically processing imaging
data sets, and comprises a central processing unit (CPU) 22.

The computing apparatus 12 includes alignment circuitry
24 configured to align data sets with an atlas, training
circuitry 26 configured to train a classifier, and detection
circuitry 28 configured to detect pathology using the trained
classifier.

In the present embodiment, the circuitries 24, 26, 28 are
cach implemented 1n computing apparatus 12 by means of a
computer program having computer-readable instructions
that are executable to perform the method of the embodi-
ment. However, 1n other embodiments, the various circuit-
ries may be implemented as one or more ASICs (application
specific itegrated circuits) or FPGAs (field programmable
gate arrays).

The computing apparatus 12 also includes a hard drive
and other components of a PC including RAM, ROM, a data
bus, an operating system including various device drivers,
and hardware devices including a graphics card. Such com-
ponents are not shown 1n FIG. 1 for clanty.

The apparatus of FIG. 1 1s configured to perform a process
as shown i overview in FIG. 2. The process of FIG. 2
comprises an atlas alignment process as shown in overview
in FIG. §, a training process as shown in overview in FIG.
6, and a detection process as shown 1n overview 1n FIG. 9.

In the present embodiment, the computing apparatus 12 1s
configured to perform both a classifier training process
having a series of stages as illustrated 1n overview 1n FIG.
6, and a detection process having a series of stages as
illustrated 1n overview in FIG. 9. In alternative embodi-
ments, a first apparatus 1s configured to perform the process
of FIG. 6 to train at least one classifier, and one or more
second apparatuses are configured to perform the process of
FIG. 9 to subsequently use the trained classifier or classifiers
to detect an abnormality or abnormalities in sets of 1image
data. Thus, for example, classifiers may be trained mnitially
by one computer based on training data sets, and the traimned
classifiers may be distributed to, and subsequently used by,
various further computers (for example, workstations for use
by radiologists or other operators, or central servers) to
classity further 1image data sets.

Before the process of FIG. 2 1s performed, training data
sets 30 are obtained that are representative of the abnormal-
ity of 1nterest and are taken 1n a modality of interest. In the
present embodiment, the traimng data sets 30 comprise
non-contrast CT 1maging data sets obtained from CT scans
of the brains of a plurality of training subjects. Each of the
training data sets 30 has been identified by an expert as
exhibiting signs of a pathology of interest, which i this
embodiment 1s thrombus. In other embodiments, the training
data sets may be representative of a different anatomical
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structure, a different abnormality and/or a different modality.
For example, in one embodiment the training data sets
comprise planar radiographs representative of the pelvis,
and the abnormality comprises fracture of the pelvis.

A thrombus may be a blood clot. In some circumstances,
a thrombus may block a blood vessel, preventing or reducing
the tlow of blood through that vessel. Thrombus may appear
in a CT scan as a region of a vessel having a higher density
than other vessel regions. In some circumstances, the signs
of thrombus may be referred to as dense vessels. A region of
thrombus may show on a CT scan as an abnormally dense
vessel structure.

In the present embodiment, 100 training data sets 30 are
obtained. Each training data set 30 1s an 1maging data set that
has been acquired by performing a CT scan of the brain of
a respective subject. Each training data set 30 comprises an
array ol voxels and associated intensities, with each voxel
being representative of a corresponding spatial location in
the CT scan.

For each of the tramning data sets 30, an expert (for
example, a radiologist) manually identifies regions of throm-
bus in the training data set 30. For example, the expert may
draw a boundary around the or each region of thrombus. A
ground truth data set 31 associated with the training data set
30 1s obtained based on the mput of the expert. The ground
truth data set 31 provides an indication of which voxels of
the training data set 30 were determined by the expert to be
normal and which voxels of the training data set 30 were
determined by the expert to be abnormal. For example,
voxels that are outside a boundary drawn by the expert may
be considered to be normal and voxels that are inside a
boundary drawn by the expert may be considered to be
abnormal.

Although 1n the present embodiment the expert has 1den-
tified regions of thrombus, in other embodiments the expert
may 1dentily regions ol any appropriate abnormality, for
example any appropriate pathology. The expert identifies
regions of the abnormality for which a classifier 1s to be
trained. In some embodiments, the expert identifies regions
of more than one abnormality, and a respective classifier 1s
trained for each abnormality. In some embodiments, the
expert 1dentifies regions having any appropriate character-
istic. For example, the expert may identily regions of tissue
motion or liquid tlow.

The ground truth data set 31 corresponding to a given
training data set 30 may comprise an array corresponding in
s1ze to the array of voxels of the training data set 30. In the
ground truth data set 31, voxels determined by the expert to
be normal may be represented by one number (for example,
—1) while voxels determined by the expert to be abnormal
are represented by a diflerent number (for example, 1). In
other embodiments, any suitable format for the ground truth
data may be used.

In the present embodiment, voxels of a training data set 30
that have been designated as abnormal (for example, voxels
inside a boundary drawn by the expert) are represented 1n a
corresponding ground truth data set 31 by the number 1.
Each traiming data set 30 comprises one or more regions of
abnormality, each region of abnormality comprising only
abnormal voxels.

In further embodiments, the regions identified by the
expert may be any appropriate regions, which may or may
not be indicative of abnormalities. Voxels determined to be
in regions having different characteristics may be repre-
sented by different numbers.

FIG. 3 1s a schematic diagram that i1s representative of a
training data set 30. A region 32 of the training data set 30
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has been 1dentified by an expert as an abnormal region. Each
voxel i the abnormal region 32 1s designated as an abnor-
mal voxel and assigned the number 1.

In the present embodiment, the ground truth data set 31 1s
modified to designate some voxels as voxels that are not to
be used 1n classifier training. Such voxels may be referred to
as don’t-care voxels. In the present embodiment, don’t-care
voxels are assigned the number 0. Don’t-care voxels may
comprise, for example, voxels that lie on or near a boundary
between normal and abnormal voxels. Don’t-care voxels
may 1n some circumstances comprise voxels for which 1t
may be unclear whether the voxel 1s normal or abnormal.

In the present embodiment, the training circuitry 26
dilates each region of abnormality to obtain a dilated region.
For example, the processing circuitry may dilate the region
of abnormality by 2 or 3 voxels in each direction. The
processing circuitry then designates as a don’t-care voxel
cach voxel that 1s 1n the dilated region but not 1n the region
of abnormality. Voxels of the training data set 30 that are
designated as don’t-care voxels are represented in the cor-
responding ground truth data set by the number 0. The
remaining voxels (voxels that are neither abnormal or don’t-
care) are represented i the ground truth data set by the
number -1, and may be described as normal voxels.

In FIG. 3, the abnormal region 32 1s dilated to obtain a
dilated region 33. Voxels that are in the dilated region 33 but
not 1n the abnormal region 32 are designated as don’t-care
voxels and assigned the number 0. Voxels that are in neither
the abnormal region nor the dilated region are designated as
normal voxels and assigned the number -1.

The ground truth data set 31, once 1t has been modified to
include don’t-care voxels, identifies each of the voxels of its
corresponding traiming data set 30 as either an abnormal
voxel, a normal voxel, or a don’t-care voxel.

The process of FIG. 2 comprises training a classifier to
distinguish between normal and abnormal voxels (in this
embodiment, the classifier 1s trained to i1dentily voxels of
thrombus as abnormal). By designating voxels that are at or
near a boundary between normal and abnormal as don’t-care
voxels, and excluding those don’t-care voxels from the
training of the classifier, the training of the classifier to
distinguish between normal and abnormal voxels may 1n
some cases be improved. In some circumstances, 1t may be
more important for the classifier to be trained to find most or
all abnormal voxels than 1t 1s for the classifier to be trained
to correctly detect an exact boundary of an abnormal region.
Excluding voxels near the boundary of the abnormal region
from the training of the classifier may 1n some circumstances
provide faster and/or more eflective training of the classifier.

Although 1n the present embodiment don’t-care voxels are
excluded from the training of the classifier, 1n other embodi-
ments an importance of the don’t-care voxels 1n the traiming,
of the classifier may be adjusted in any suitable manner,
which may or may not involve excluding the don’t-care
voxels. For example, the importance of the don’t-care voxels
may be reduced without excluding the don’t-care voxels.

In other embodiments, no designating of voxels as don’t-
care voxels 1s performed. The ground truth data set 31
identifies each voxel of the training data set 30 as either a
normal voxel or an abnormal voxel.

At stage 36 of the flowchart of FIG. 2, the alignment
circuitry 24 receives the plurality of training data sets 30
(ecach of which may be referred to as an imaging data set or
imaging volume) and a corresponding plurality of sets of
ground truth data 31. Each ground truth data set 31 repre-
sents normal, don’t-care, and abnormal voxels 1n 1ts corre-
sponding training data set 30 by -1, 0 and 1 respectively.
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The alignment circuitry 24 also receives a set of reference
landmarks 34 for use 1n atlas alignment. The set of reference
landmarks 34 comprises the locations of a plurality of
anatomical landmarks 1n an atlas data set. The locations are
expressed as X, y, Z coordinates in a coordinate space of the
atlas data set.

The atlas data set may comprise a set of reference data, for
example a set of volumetric imaging data that 1s represen-
tative of all or part of a human body. The atlas data set may
be an 1maging data set that 1s segmented to i1dentily ana-
tomical structures and/or in which anatomical structures are
labelled. The atlas data set may be substantially symmetrical
in a sense 1 which the human body i1s substantially sym-
metrical, 1.e. 1t has a sagittal line of symmetry around which
many (but not all) of 1ts anatomical structures are substan-
tially symmetrical. A coordinate system of the atlas data set
may be defined such that the sagittal line of symmetry of the
atlas data set defines the centre of a left-right axis of the atlas
data set.

An anatomical landmark 1s usually a well-defined point 1n
an anatomy (for example, the human anatomy). Anatomical
landmarks may be defined anatomically, 1n relation to ana-
tomical structures such as bones, vessels or organs. An
anatomical landmark may be located in a data set and
assigned a set of coordinates 1n the coordinate frame of that
data set. The location of an anatomical landmark may be
regarded as a point 1n coordinate space.

In the present embodiment, the set of reference landmarks
34 comprises landmarks 1n or near the brain. Examples of
such landmarks may include the pineal gland and the base of
the pituitary gland.

At stage 36, the alignment circuitry 24 aligns each of the
training data sets 30 and ground truth data sets 31 to the atlas
data set for which the set of reference landmarks 34 1is
provided. Any suitable alignment method may be used at
stage 36 to align the training data sets 30 to the atlas data set
based on the landmarks. In further embodiments, an align-
ment method may be performed 1n which landmarks are not
used. In some such embodiments, no reference landmarks 34
may be provided to the alignment circuitry 24.

In some embodiments, the training data sets 30 are
aligned to the atlas data set using image registration. For
example, each training data set 30 may be aligned to the atlas
data set by performing a rigid registration of the training data
set 30 to the atlas based on voxel intensities. The rigid
registration may optionally be followed by a non-rigid
registration.

By aligning each training data set 30 to the atlas data set
at stage 36, each training data set 30 may be aligned so that
it 1s centred on 1ts sagittal line of symmetry. Each training
data set, once aligned, may be substantially symmetrical 1n
the same sense as the atlas data set, 1.e. centred on its sagittal
line of symmetry.

It should be noted that each aligned data set (and the atlas
data set 1tself) may be unlikely to have identical intensities
on each side of its sagittal line of symmetry. In some cases,
there are expected differences between the right side and the
left side of the body. In some cases, a pathology or other
abnormality may cause a difference between the right side
and the left side (a fact which 1s used 1n the training of the
classifier).

In the present embodiment, a symmetrical portion of the
atlas data set 1s defined 1n the atlas data set. The symmetrical
portion of the atlas data set may be referred to as a block. For
cach training data set 30, as part of stage 36 the alignment
circuitry 24 selects a symmetrical portion of each training
data set 30 once the traiming data set 30 has been aligned to
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the atlas data set, where the symmetrical portion of the
training data set 30 corresponds to the symmetrical portion
of the atlas data set. The symmetrical portion of the aligned

training data set may be referred to as a midline centred data
set 38.

The symmetrical portion of the atlas data set may be a
sub-region of a region represented by the atlas data set. The
symmetrical portion may be symmetrical 1n that 1t comprises
an equal number of voxels on each side of the line of
symmetry. Each voxel on one side of the line of symmetry
has a corresponding, mirror-image, voxel on the other side
of the line of symmetry.

Although 1n the present embodiment, only one symmetri-
cal portion of the atlas data set 1s defined, in other embodi-
ments a plurality of symmetrical portions of the atlas data set
are defined. For example, a plurality of blocks may be
defined such that most or all of atlas set 1s covered by the

blocks.

The symmetrical portion of the atlas data set may be a
portion of the aligned data set 1n which abnormalities (in this
embodiment, thrombus) may be considered to be likely to
occur. In some circumstances, the symmetrical portion may
be selected based on ground truth data. For example, the
symmetrical portion may represent an anatomical region 1n
which, from the ground truth data, 1t 1s known that the
abnormality of interest often occurs. The symmetrical por-
tion may be selected based on the position of at least one
anatomical structure. For example, a symmetrical portion
may be selected that includes the pineal gland. The sym-
metrical portion may be defined on the atlas set using
segmentation and/or labelling of anatomical structures that
1s available in the atlas data set.

FIG. 4 shows an example of the selection of a block.
Images 60 and 62 are views of the atlas data set. A
symmetrical volumetric portion (shown on FIG. 4 as regions
70, 72) of the atlas data set 1s highlighted.

Although 1n the present embodiment a block of volumet-
ric data 1s selected at stage 36, in other embodiments the
entire aligned training data set 1s used as the midline centred
data set 38 for subsequent stages of the process of FIG. 2. In
other embodiments, multiple blocks may be selected at stage
36, and each of the multiple blocks may be used to train a
different classifier.

Selecting a block of volumetric data on which to train the
classifier instead of tramning the classifier on the entire
aligned volumetric data set may 1n some circumstances
make the training of the classifier faster and/or more eflec-
tive. In some circumstances, the classifier may have better
performance 11 1t 1s trained on a block (for example, a block
covering a small part of the brain) instead of on the entire
aligned traiming data set (for example, a training data set
covering the whole of the brain). Traiming on a more specific
environment may cause the training of the classifier to be
more eflective. A learning task performed by the training
circuitry 26 maybe made easier by being made more spe-
cific. The classifier may not need to generalise as much as 1f
it were trained on a larger volume.

The block may comprise a region at the edge of the block
that may be referred to as a processing margin. When the
classifier 1s trained, 1t may not be trained on the voxels 1n the
processing margin. However, data for the voxels in the
processing margin may be used to train other voxels that are
not part of the processing margin. For example, for each
voxel for which the classifier 1s trained, the classifier may
use convolution kernels that use data from surrounding
voxels, which may 1n some cases include voxels in the
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processing margin. The size of the processing margin may
depend on a size of convolution kernels used.

In embodiments 1 which multiple blocks are used 1n
training multiple classifiers, the blocks may be defined such
that they overlap at least by the width of a processing
margin. This may ensure that there are no anatomical regions
for which no classifier 1s trained.

The method used by the alignment circuitry 24 to perform
stage 36 1n the present embodiment 1s shown in overview 1n
the flowchart of FIG. 5. The method of FIG. 3 1s performed
for each training data set 30 and associated ground truth data
set 31.

At stage 80 of FIG. 5, the alignment circuitry 24 receives
one of the training data sets 30 and 1ts associated ground
truth data set 31. The alignment circuitry 24 detects a
plurality of anatomical landmarks 1n the training data set 30.
The anatomical landmarks detected 1in the training data set
may correspond to some or all of the reference landmarks 34
that were supplied to the alignment circuitry 24. For
example, the alignment circuitry 24 may detect the pineal
gland and the base of the pituitary gland in the training data
set 30. The alignment circuitry 24 determines a location for
cach of the detected anatomical landmarks 1n the coordinate
space of the training data set 30.

The location of each landmark 1n the coordinate space of
the training data set 30 may be expected to be different from
the location of the corresponding reference landmark in the
coordinate space of the atlas data set. For example, the
relative locations of the landmarks may differ due to differ-
ences 1n the patient’s anatomy from the anatomy represented
in the atlas data set, for example a diference 1n the scale of
the patient’s head. The locations of the landmarks may differ
due to a different in the positioning of the patient from the
positioning of the subject of the atlas data set.

Any suitable method for detection of anatomical land-
marks may be used. For example, the method of landmark
detection may be as described in Mohammad A Dabbah,
Sean Murphy, Hippolyte Pello, Romain Courbon, Erin Bev-
eridge, Stewart Wiseman, Daniel Wyeth and Ian Poole,
‘Detection and location of 127 anatomical landmarks in
diverse CT datasets’, Proc. SPIE 9034, Medical Imaging
2014: Image Processing, 903415 (Mar. 21, 2014).

At stage 82 of FIG. 3, the alignment circuitry 24 aligns the
training data set 30 with the atlas data set using the ana-
tomical landmarks detected at stage 80 and the set of
reference landmarks 34. The alignment circuitry 24 deter-
mines a correspondence between the determined location of
cach anatomical landmark in the traiming data set 30 and the
location of 1ts corresponding reference landmark. The align-
ment circuitry 24 performs a rigid registration of the traiming
data set 30 and the atlas data set using the relationship
between corresponding landmark locations. For example,
the alignment circuitry 24 may align the training data set 30
and atlas data set using a least-squares method to minimise
a distance between the locations of the landmarks in the
training data set 30 and the locations of the corresponding
landmarks 1n the atlas data set.

The alignment circuitry 24 obtains registration data rep-
resentative of the results of the rigid registration. In other
embodiments, the alignment circuitry 24 may perform any
suitable registration (for example, an afline or non-rnigid
registration) in addition to or instead of the ngid registration,
and obtain any suitable registration data. For example, the
registration data may comprise a warp field.

An output of stage 82 i1s a transformed training data set
that has been transformed into the coordinate space of the
atlas data set.
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At stage 84, the alignment circuitry 24 refines a midline
of the transformed traiming data set. The midline 1s a line of
symmetry of the transformed training data set, which 1n this
case 1s a sagittal line of symmetry. In the present embodi-
ment, an 1nitial midline 1s obtained from the alignment of the
training data set 30 to the atlas data set (using the known
midline of the atlas data set)

To refine the midline, the alignment circuitry 24 performs
a left-right inversion of the transformed training data set 30
and registers the inverted version of the transformed training
data set to the transformed traiming data set 30 to determine
the line of symmetry of the transformed training data set 30.
The determined line of symmetry is taken to be the midline
of the transformed training data set 30. In other embodi-
ments, any suitable method of determining the midline may
be used. In some embodiments, stage 84 1s omitted and the
midline of the atlas data set 1s used to determine the midline
of the transformed training data set 30.

The output of stage 84 1s an atlas-dataset transform that
relates the tramming data set 30 to the atlas data set. The
atlas-dataset transform may alternatively be referred to as a
reference-dataset transform.

The alignment circuitry 24 transforms the training data set
30 into the coordinate space of the atlas data set, such that
the location of each anatomical landmark 1n the transformed
training data set 30 coincides, as nearly as possible, with the
location of the corresponding reference landmark in the atlas
data set. The transformation may comprise an 1sotropic
resampling of the transformed training data set 30.

In the present embodiment, the training data set 30 and
atlas data set are aligned using the locations of landmarks 1n
cach of the tramning data set 30 and atlas data set. In other
embodiments, any suitable method may be used to align the
training data set 30 with the atlas data set. For example, the
training data set 30 and atlas data set may be registered using,
an intensity-based registration method.

At stage 88, the alignment circuitry extracts a midline
centred data set 38 from the transformed training data set
(which 1s now 1n the coordinate space of the atlas data set,
and has had its midline refined from registration with 1ts
left-right inversion). The midline centred data set 38 com-
prises a symmetrical portion of the transformed training data
set 30 corresponding to the symmetrical portion of the atlas
data set on which the classifier 1s to be trained (for example,
the block shown as 70, 72 1n FIG. 4). The portion may be
representative of a narrow region of anatomy extracted
symmetrically about the determined sagittal midline.

Although in the present embodiment the midline centred
data set 38 comprises only a portion of the transformed
training data set, in other embodiments the midline centred
data set 38 comprises all of the transformed training data set.
In some such embodiments, stage 88 may be omitted.

In the present embodiment, one midline centred data set
38 (which may be referred to as one block) 1s extracted from
cach transformed training data set. In other embodiments, a
plurality of different midline centred data sets (a plurality of
blocks) may be extracted from each transformed training
data set. For example, each block may be representative of
a different part of the brain.

At stage 90 of the process of FIG. 5, the alignment
circuitry 24 extracts a midline centred ground truth data set
40 from the ground truth data 31 corresponding to the
training data set 30 using the atlas-dataset transform 86 that
was obtained by aligning the training data set 30 with the
atlas data set (the ground truth data set 32 and training data
set 30 are defined 1n the same coordinate space). The midline
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centred ground truth data set 40 indicates which voxels of
the midline centred data set 38 are normal, don’t-care, or
abnormal.

The outputs of the process of FIG. 5 are the midline
centred data set 38 and midline centred ground truth data set
40, which are of equal dimensions.

The alignment process of FIG. 5 is repeated for each of
the plurality of training data sets 30 and associated ground
truth data sets 31. At least one midline centred data set 38
and midline centred ground truth data set 40 may be
obtained for each of the training data sets 30 and associated
ground truth data set 31.

Turning back to FIG. 2, midline centred data sets 38 and
midline centred ground truth data sets 40 are shown in FIG.
2 as the outputs of the alignment stage 36. Although 1n the
present embodiment the alignment stage 36 comprises the
alignment process described above with reference to FIG. 5,
in other embodiments any suitable alignment process may
be used.

Each midline centred data set 38 1s a symmetrical portion
of a transformed traiming data set. Each midline centred data
set 38 1s representative of the same anatomaical region of the
brain. For example, each midline centred data set 38 may
comprise a symmetrical block of data as shown as 70, 72 1n
FI1G. 4. In some other embodiments, each midline centred
data set 38 comprises a transformation of an entire training
data set 30 into the coordinate space of the atlas data set.

In some embodiments, the alignment process of stage 36
outputs more than one midline centred data set 38 for each
training data set 30. For a given training data set, each
midline centred data set 38 may be representative of a
different symmetrical portion of the transformed training
data set. Each extracted portion of the transformed training
data set may correspond to a different anatomical region.
Diflerent portions may be used to train different classifiers.
The different portions may overlap.

At stage 42 of the process of FIG. 2 the alignment
circuitry 24 passes the midline centred data sets 38 and
midline centred ground truth data sets 40 to the traiming
circuitry 26. The training circuitry 26 trains a classifier using
some or all of the midline centred data sets 38 and midline
centred ground truth data sets 40 received from the align-
ment circuitry 24. Since 1n the present embodiment the
midline centred data sets 38 are representative of a particular
anatomical region (for example, corresponding to the
regions shown as 70, 72 1n FIG. 4), the classifier 1s trained
for classifying voxels within that anatomaical region.

In the present embodiment, the classifier 1s trained to
distinguish between normal and abnormal voxels, where the
abnormal voxels are representative ol thrombus. In other
embodiments, the abnormal voxels may be voxels represen-
tative of a diflerent pathology. The abnormal voxels may be
voxels representative of any suitable characteristics. In fur-
ther embodiments, the classifier may be trained to distin-
guish between more than two classes of voxels. Although
only one classifier 1s trained 1n the present embodiment, 1n
other embodiments a plurality of classifiers are trained.
Different classifiers may be trained for different abnormali-
ties and/or different anatomical regions.

The process used by the traiming circuitry 26 at stage 42
of FIG. 2 to train the classifier of the present embodiment 1s
represented in overview by the flowchart of FIG. 6. In other
embodiments, different classifier traiming methods may be
used at stage 42 of FIG. 2.

The 1nputs of stage 42 of FIG. 2 are the midline centred
data sets 38 and midline centred ground truth data sets 40
obtained from the alignment process of stage 36 of FIG. 2.
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The flowchart of FIG. 6 shows a single one of the midline
centred data sets 38 and a corresponding midline centred
ground truth data sets 40. In practice, the process of FIG. 6
1s pertormed for each of a plurality (optionally, all) of the
midline centred data sets 38 and maidline centred ground
truth data sets 40.

At stage 100 of the process of FIG. 6, the training circuitry
26 receives a midline centred data set 38 (data set X) and
midline centred ground truth data set 40 (data set Y). The
training circuitry folds the midline centred data set 38 at its
midline. The midline may be considered to divide the
midline centred data set 38 into a first part (1n this case, left
part X, ) on a first side of the midline and a second part (in
this case, right part X, ) on an opposite side of the midline.
In the folding of stage 100, one of the leit part X, and the
right part X, 1s inverted with respect to the midline. After
iversion, the voxels of the inverted part may be considered
to overlay the voxels of the non-inverted part.

Each half of the folded data set may be considered to
occupy half of the coordinate space that was occupied by the
midline centred data set 38, since 1t occupies the coordinate
space on one side of the midline. (In practice, each half of
the folded data set may be extended across the midline by
the width of a processing margin 1n order to be able to train
the classifier on data that 1s positioned near to the midline.)

FIG. 7a shows an example of an image 120 derived from
a training data set by transforming the training data set mnto
the coordinate space of the atlas data set. A symmetrical
portion (block 121) of the image 120 1s highlighted in FIG.
7a. The symmetrical portion 121 corresponds to a midline
centred data set extracted from the transformed training data
set.

FI1G. 7b shows the same 1image portion 121 as FIG. 7a. A
line of symmetry 122 1s drawn at the midline of the image
portion 121, dividing the image portion 121 into a left part

123 to the left side of the midline 122 and a rnight part 124
to the right side of the midline 122.

In FIG. 7b, the midline centred data set 38 1s represented
as a set of cubes 126 that may be considered to be repre-
sentative of voxels. The set of cubes extended across the
entire left-right dimension of the image portion, showing
that the space on the left and on the right of the midline 1s
occupied belore the midline centred data set 1s folded.

FIG. 7¢ represents the 1mage portion 121 once 1t has been
folded along the midline 122. In this example, the right part
124 1s unchanged by the folding. The left part 123 1s
inverted, resulting 1n an 1inverted lett part 125. Right part 124
and inverted left part 125 are overlaid. In practice, right part
124 and inverted left part 125 may be considered to be
exactly overlaid, but in FIG. 7¢ they are shown to be slightly
angled with respect to each other for clarity.

Instead of a single set of cubes 126 extending from the left
to right of the image portion 121, two sets of cubes 127, 128
are each shown as extending from the midline to the nght
side of the folded portion, representing the overlaying of
voxels of the right part 124 and voxels of the mverted left
part 125. Once the folding 1s performed, right part voxels
and 1nverted left part voxels occupy exactly the same
positions 1n space. One may consider that each pair of
mirror-image (right and left part) voxels, each having a
respective 1mtensity value, 1s replaced by a single right part
voxel with two intensity values.

The folding of the midline centred data set 38 creates a
folded data set that occupies half of the space (in this case,
the right half of the space) of the midline centred data set 38.
The folded data set comprises left and right channels of
intensity data. Each voxel of the folded data set has a first
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intensity value representative of one of the night part and
inverted left part, and second 1ntensity value representative
of the other of the nght part and inverted left part.

In the present embodiment, two folded data sets 102, 104
are obtained. Each of the folded data sets 102, 104 has
different ordering of the channels representative of the left
part and of the right part. In the first folded data set 102,
intensity data from the left part X, comes before intensity
data from the right part X,. In the second tfolded data set
104, intensity data from the right part X, comes before
intensity data from the left part X;.

The training circuitry 26 also folds the midline centred
ground truth data set 40 at the midline, to obtain a folded
ground truth data set. A left part Y, of the midline centred
ground truth data set 40 to the left of the midline corresponds
to the lett part X, of the midline centred data set 38. A right
part Y, of the midline centred ground truth data set 40 to the
right of the midline corresponds to the right part X, of the
midline centred data set 38.

The left part Y, of the ground truth data set 40 1s
associated with the first folded data set 102. The right part
Y . of ground truth data set 40 1s associated with the second
folded data set 104.

At stage 106, semi-atlas channel data 1s added to the first
tolded data set 102 and second folded data set 104. Each of
the first folded data set 102 and second folded data set 104
comprises two intensity channels representing intensities of
the left and right parts X,, X, (with the first folded data set
102 listing the intensity of the left part voxels first, and the
second folded data set 104 listing the intensity of the right
part voxels first). In the present embodiment, the semi-atlas
channel data comprises three extra channels, which are
representative of X, y and z coordinates for each voxel 1n the
coordinate space of the folded data sets.

Because of the alignment process described above, the
coordinate space of the folded data sets 1s the same as the
coordinate space of the atlas data set. However, because of
the folding process, the folded data sets occupy only one half
of that coordinate space (in this case, the right half).

The resulting first folded data set comprises, for each
voxel: intensity of that voxel 1n the lett part; intensity of that
voxel 1 the mverted right part; x coordinate; y coordinate;
7. coordinate. In the second folded data set, the order of the
intensities 1s reversed.

In some other embodiments, no X, y and z channels are
added to the folded data sets. Stage 106 of FIG. 6 may be
omitted.

In further embodiments, different representations of the
semi-atlas may be used. In some embodiments, the atlas data
set 1s segmented and voxels of the atlas data set are labelled
to mdicate the anatomical structure to which they belong.

In one such embodiment, the semi-atlas channel data
added at stage 106 comprises a label for each voxel,
obtained by correspondence with the segmented atlas data
set. In another embodiment, each segmented region of the
atlas data set 1s used as an individual binary mask, and the
semi-atlas channel data comprises data from those binary
masks.

In a further embodiment, binary masks are used to deter-
mine distance transforms. Each distance transform 1s repre-
sentative of a distance from the edge of a binary region, and
may indicate whether a given voxel 1s 1side or outside a
particular binary region and whether 1t 1s close to the
boundary. The semi-atlas channel data may comprise values
for distance transforms for each voxel.

After the X, vy, z channels are added to the folded data sets,
the folded data sets are combined to provide a combined
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folded data set. In the present embodiment, the folded data
sets are concatenated to form the combined folded data set.
In other embodiments, any suitable method of combining
the folded data sets may be used. In further embodiments,
the folded data sets may not be combined.

The folding of the midline centred data set 38 may allow
the training of a classifier that uses data from both sides of
the midline centred data set 38 in order to 1dentify abnormal
voxels. By adding x, v, z channels, the classifier may also be
trained to use position data 1 order to i1dentily abnormal
voxels. The position data may 1n some circumstances act as
a prior, since there may be some positions 1 which the
pathology of interest 1s particularly likely to occur. In other
embodiments, any suitable semi-atlas channel data may be
used 1n training the classifier to use anatomical information
(for example, whether a voxel 1s part of a particular ana-
tomical structure) in order to identify abnormal voxels.

FIG. 8 provides an schematic representation of the folding
of a midline centred data set and corresponding midline
centred ground truth data set.

A midline centred data set 130 comprises a left part, L,
and a right part, R. A corresponding midline centred ground
truth data set 132 comprises a left part, L, and a right part,
R. The midline centred data set 130 1s folded by inverting the
right part R to obtain an inverted right part R'. The midline
centred ground truth data set 132 1s folded by inverting the
right part R to obtain an inverted right part, R'.

A first folded data set 134 has a first intensity channel
comprising intensities of the left part L of the midline
centred data set 130, and a second intensity channel com-
prising intensities of the inverted right part R' of the midline
centred data set 130. First folded data set 134 1s grouped
with the left part L of the midline centred ground truth data
set 132.

A second folded data set 136 has a {irst intensity channel
comprising intensities of the inverted right part R' of the
midline centred data set 130, and a second intensity channel
comprising intensities of the left part L of the midline
centred data set 130. First folded data set 134 1s grouped
with the inverted right part R' of the midline centred ground
truth data set 132.

Additional x, y, z channels are added to the first folded
data set 134 and second folded data set 136, and the folded
datasets are concatenated to provide a single data set 138.

Returming to FIG. 6, the output of stage 106 1s a combined
folded data set having five channels: two intensity channels
(with half the data using one ordering of intensity channels
and half the data using the other ordering of intensity
channels) and X, y, z channels.

At stage 108, the tramning circuitry extracts sub-sets of
data from the combined folded data set. The sub-sets of data
may be referred to as patches. Each patch 1s representative
of a smaller sub-region of the region that 1s represented by
the combined folded data set.

In some cases, 1f a classifier were to be trained on all the
data 1n each midline centred data set 38, the traiming process
may be very computationally intensive. The regions of
abnormality 32 in each of the training data sets 30 may be
very small compared to the size of those data sets. Even if
midline centred data sets 38 are obtained that represent only
a particular anatomical region of the anatomy covered by the
initial tramning data sets 30, the voxels that have been
identified by an expert as abnormal may still occupy only a
very small part of the midline centred data sets 38.

In some circumstances, 1t may be preferable to train a
classifier on data 1n which the number of abnormal voxels
used 1n training 1s similar to the number of normal voxels
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used 1n training. If it 1s not possible to use the same number
of normal and abnormal voxels, it may be preferable at least
to reduce the number of normal voxels compared to the
number of abnormal voxels to a suitable level.

The training circuitry 98 selects one or more patches of
the combined folded data sets on which to train a detector.
The patches may be small sub-regions of a region repre-
sented by the combined folded data set. For example, 1n the
present embodiment, each patch 1s 10x10x10 voxels 1n size.
In other embodiments, any suitable size of patches may be
used.

Although 1n the present embodiment, the size of each
patch 1s 10x10x10 voxels, a larger portion of the data may
be used 1n the training of the classifier, because the classifier
may use properties of the neighborhood of each voxel. A
processing margin may be added to each patch. The pro-
cessing margin may comprise a boundary region, where the
boundary region 1s outside the boundary of that patch.

In the present embodiment, the traiming circuitry 28
selects, for each of the combined folded data sets, one or
more patches that include voxels identified as abnormal by
the expert in the corresponding ground truth data. For each
of the combined folded data sets, the training circuitry 28
may also select one or more patches that include voxels that
the expert has 1dentified as normal.

For each patch location, two training patches are obtained.
For each spatial location, the combined folded data set
comprises two entries, one 1 which the intensity of the right
part 1s listed first, and one 1n which the intensity of the left
part 1s listed first. A first training patch i1s obtained in which
the intensity of the right part 1s listed first, and one 1n which
the 1ntensity of the left part 1s listed first.

The two training patches for a given patch location may
be listed as A and B:

A. chO=left intensity, chl=right intensity, GT class=from left
B. chO=right intensity, chl=left intensity, GT class=trom
right

where chO, chl are the first and second intensity channels,
and GT class indicates which part of the ground truth data
1s used.

At stage 110, the training circuitry trains a detector on the
patches that were extracted from the combined folded data
sets. The detector comprises a classifier that 1s trained to
detect abnormal voxels, which 1 the present embodiment
are voxels of thrombus.

The detector 1s trained such that it 1s left-right agnostic.
The detector 1s trained to use first and second intensity data
without taking into account whether the first intensity data
came from the left or from the right side.

In some embodiments, a boosting method 1s used to train
the detector. The detector may be partially trained using
some randomly selected abnormal data, then some data may
be excluded to force the classifier to focus on particularly
relevant areas (for example, to train the classifier to distin-
guish between dense vessels and a calcified pineal gland).

In the present embodiment, the classifier comprises a
convolutional neural network, for example a convolutional
neural network as described 1n Matthew Brown and Saeed
Shiry Ghidary, ‘Convolutional neural networks for image
processing: an application in robot vision’. The 16” Austra-
lian Joint Conference on Artificial Intelligence, AI'03,
December 2003. In other embodiments, the classifier may
comprise any suitable classifier, for example a neural net-
work or a random decision forest.

The classifier training process determines convolutions
both spatially (for example, by determining texture features)
and across channels. The convolutions may make use of
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properties of the neighborhood of each voxel as well as
properties of the voxel itsell. The convolutions may use
intensity data in combination with spatial data. Each con-
volution may comprise a weighting of 1mage intensities.

Although one particular data set 1s shown 1n FIG. 6, the 5
detector 1s trained on patches derived from a plurality
(optionally, all) of the training data sets.

In many pathologies, including subtle stroke signs such as
thrombus or 1schemia, a human expert detecting the pathol-
ogy would compare the left and right side of an 1mage of a 10
substantially symmetrical anatomical structure to determine
whether the pathology 1s present. By obtaining a folded data
set having two intensity channels, the classifier may also be
trained to compare left side and right side data to determine
whether the pathology of interest 1s present. A human expert 15
may also make use of anatomical context. By including
semi-atlas channels in the training data, the classifier may
also be trained to make use of anatomical context. Since
cach tramning data set 1s aligned to the atlas data set,
corresponding positions 1n different training data sets may 20
be representative of the same anatomy.

Furthermore, the selection of a block rather than the
whole data set may allow a classifier to be trained for a
specific anatomical region. In some circumstances, different
classifiers may be trained for diflerent anatomical regions, 25
for example for different parts of the brain.

The output of the process of FIG. 6 1s a trained detector
44 that has been trained to detect abnormal voxels (which 1n
the present embodiment are voxels of thrombus).

The trained detector 44 1s trained to detect whether a 30
voxel 1s abnormal using a set of criteria that do not depend
on whether the voxel 1s on the right or left of a data set, but
may take into account the intensity of the voxel and of its
mirror-image voxel, the neighborhood of the voxel, and the
location of the voxel in the coordinate space of the atlas data 35
set.

By creating two folded data sets from each midline
centred data set 38, training data may be used efliciently. In
some circumstances, there may be a shortage of suitable
training data available. By using two folded data sets (each 40
having a different ordering of intensity data), the available
training data may be considered to be doubled. Each set of
training data may be used twice 1n the training process, once
tor the left part of the training data and once for the nght part
of the traiming data. 45

Turning again to FIG. 2, the trained detector 44 is the
output of stage 42. Although in the present embodiment the
detector 44 was trained using the process of FIG. 6, in other
embodiments any suitable training process using data from
both sides of a line of symmetry may be used to train the 50
detector 44 to detect abnormal voxels.

At stage 48 of FIG. 2, a novel data set 46 1s recerved by
the detection circuitry 28. The novel data set 1s a data set for
which no ground truth 1s known. It 1s not known whether the
novel data set comprises abnormal voxels. The novel data 55
set may be received from the CT scanner 14 or from storage
(for example, PACS).

The detection circuitry 28 aligns the novel data set 46 with
the atlas data set. In the present embodiment, the detection
circuitry 28 aligns the novel data set 46 with the atlas data 60
set using the alignment method described above with refer-
ence to FIG. 5. In other embodiments, any alignment method
may be used.

As part of the alignment method, the detection circuitry
28 detects anatomical landmarks 1n the novel data set 46, 65
aligns the novel data set 46 with the atlas data set using the
landmarks, refines a midline of the novel data set, deter-
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mines an atlas-data set transform for the novel data set 46,
and extracts a novel midline centred data set 140 from the
transformed novel data set. The novel midline centred data
set 140 corresponds to the same symmetrical portion of the
atlas data set (for example, the portion represented as 70, 72
in FIG. 4) as the midline centred data sets 38 that were used
to train the classifier.

At stage 50 of the process of FIG. 2, the detection
circuitry 28 uses the trained detector 44 to determine the
presence or absence of abnormal voxels (1in this embodi-
ment, voxels of thrombus) 1n the novel midline centred data
set 140. Any suitable detection process may be used to
determine the presence or absence of such abnormal voxels.
In the present embodiment, the detection process used 1is
shown 1n detail in the flow chart of FIG. 9.

Turning to FIG. 9, at stage 142 the detection circuitry 28
folds the midline centred data set 140 (data set X) at 1ts
midline (which has been determined during 1ts alignment at
stage 48) to obtain a first part X, and a second part X,.
Folding at the sagittal midline produces a two-channel
volume, one of which channels 1s mirror-imaged.

The detection circuitry 28 obtains two folded data sets
144, 150. A first folded data set 144 comprises a first channel
representative of intensity of the left part of the midline
centred data set and a second channel representative of
intensity of the right part of the midline data set. A second
folded data set 150 comprises a first channel representative
ol intensity of the right part of the midline centred data set
and a second channel representative of intensity of the left
part of the midline data set.

The first folded data set 144 and second folded data set
150 are treated separately. Since the trained detector 44
classifies left or right agnostically, 1t 1s applied twice during
detection. It 1s applied to the leit part and right part sepa-
rately.

At stage 146, semi-atlas channels which 1n this embodi-
ment comprise X, v and z coordinates for the lett part of the
midline centred data set are added to the first folded data set.
At stage 148, the trained detector 44 1s applied to the first
folded data set, to which the semi-atlas channels have been
added. The trained detector 44 detects abnormal voxels 1n
the left part of the midline centred data set 140 using
intensities of the left part, intensities of the right part, and x,
y, Z coordinates.

At stage 152, semi-atlas channels comprising x, v and z
coordinates for the left part of the midline centred data set
are added to the second folded data set. At stage 154 the
trained detector 44 1s applied to the second folded data set,
to which the semi-atlas channels have been added. The
trained detector 44 detects abnormal voxels 1n the right part
of the midline centred data set 140 using intensities of the
right part, intensities of the left part, and X, y, z coordinates.

In some alternative embodiments, semi-atlas channels are
not added and stages 146 and 152 may be omitted. In further
embodiments, different semi-atlas channel 1s used, for
example labels or binary mask data.

The trained detector 44 applied to the first folded data set
(1n which left data 1s listed first) 1s the same as the trained
detector 44 applied to the second folded data set (1in which
right data 1s listed first). In detecting abnormal voxels, the
trained detector 44 does not take into account whether the
abnormal voxel came from the left side or the nght side of
the novel midline centred data set 140.

In stages 148 and 154 of the present embodiment, the
training circuitry 28 assigns to each voxel a probability that
the voxel 1s abnormal. For example, the training circuitry 28
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may assign to each voxel a probability between 0 and 1. The
training circuitry 28 may assign a z-score to each voxel.

At stage 156 of the process of FIG. 9, the detection
circuitry 28 adds the results for the left part that were
obtained at stage 148 to the results for the right part that were
obtained at stage 154. The detection circuitry 28 thereby
obtains a probability for each voxel in the novel midline
centred data set 140.

The detection circuitry 28 outputs a probability volume 52
that comprises, for each voxel of the novel midline centred
data set 140, a probabaility that the voxel 1s abnormal.

Turning back to FIG. 2, the output of the detection of
stage 50 1s the probability volume 52. Although in the
present embodiment, the detection of stage 50 1s performed
using the process of FIG. 9, in other embodiments any
suitable detection process may be used.

At stage 54, the detection circuitry 28 compares each of
the probabilities 1n the probability volume 52 to a threshold
value. In the present embodiment, the threshold value 1s a
fixed value stored by the detection circuitry 28. In some
embodiments, the threshold value may be selected by a user.
The threshold value may be selected to provide a desired
sensitivity and specificity of detection. For example, the
threshold value may be selected to result 1n a low number of
false negatives.

For a given voxel, 1f the probability of being abnormal 1s
above the threshold value, the detection circuitry classifies
the voxel as abnormal. If the probability of being abnormal
1s below the threshold value, the detection circuitry classifies
the voxel as normal. The detection circuitry 28 labels each
ol the voxels of the midline centred data set 140 as normal
or abnormal, for example by assigning -1 to the normal
voxels and 1 to the abnormal voxels.

At stage 56 of the process of FIG. 2, the detection
circuitry 28 groups the voxels that have been classified as
abnormal into abnormal regions. Any suitable method may
be used to group the voxels classified as abnormal 1nto
abnormal regions. For example, connected component
analysis may be used. If there 1s more than one abnormal
region, the detection circuitry 28 ranks the abnormal
regions. For example, the detection circuitry 28 may rank
the abnormal regions by size. The detection circuitry 28 may
rank the abnormal regions by probability.

At stage 58, the detection circuitry 28 presents the ranked
abnormal regions to a clinician ({or example a radiologist) or
other user. In the present embodiment, the detection circuitry
28 renders an i1mage from the novel data set 46. The
detection circuitry 28 transforms the abnormal region or
regions that were obtained in the coordinate space of the
atlas data set 1nto the coordinate space of the novel data set,
for example using alignment data that was generated at stage
48 of FIG. 2. The detection circuitry displays the abnormal
region or regions on the rendered image. In other embodi-
ments, any suitable 1image may be rendered.

Each abnormal region 1s displayed in a different colour. A
list of detections 1s displayed that 1s ranked by probability.
Clicking on a listing of an abnormal region navigates to an
MPR (multi-planar reformatting) view of the abnormal
region. Each detected abnormal region 1s highlighted by
colour 1n the MPR view. The user interface allows easy
removal ol highlighting.

Although 1n the present embodiment a single classifier 1s
trained and used to detect a single abnormality (thrombus),
in some embodiments multiple classifiers may be trained
and used. The presentation at stage 58 may comprise regions
of abnormality detected by diflerent classifiers. For example,
different classifiers may be used to detect different patholo-
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gies, or diflerent classifiers may be used to detect a pathol-
ogy in different anatomical regions. In one such embodi-
ment, the training circuitry 28 renders an 1mage i which
regions of a first abnormality (detected by a first classifier)
and regions of a second abnormality (detected by a second
classifier) are displayed, for example 1n different colours. In
one embodiment, a list 1s displayed which lists for each of
the abnormal regions the colour in which that abnormal
region 1s rendered; a type of abnormality (for example,
ischemia or dense vessel); an anatomical location for the
abnormal region (for example, perisylvian cortex or leit
MCA); a size of the abnormal region; and a confidence level
for the detection.

In some embodiments, abnormal regions are displayed by
rendering them in a different colour from regions that are
classified as normal. In some embodiments, a colour 1n
which an abnormal region 1s rendered may depend on 1its
ranking. In some embodiments, ranking may be indicated by
numbers. In other embodiments, any suitable display
method may be used.

In some embodiments, the clinician or other user is
provided with a list of abnormal regions. The list of abnor-
mal regions may also contain additional information about
the abnormal regions, for example ranking, size or location
information.

Although 1n the present embodiment, each voxel 1is
labelled and displayed as either abnormal or normal, 1n other
embodiments the presentation to the clinician or other user
uses the probabilities from the probability volume. For
example, a colour gradient may be used i which each
colour on the colour gradient represents a different prob-
ability value.

If no abnormal voxels are detected by the classifier, at

stage 58 the detection circuitry 28 may provide an indication
to the clinician or other user of the absence of such abnormal
voxels.

In other embodiments, the detection circuitry 28 may
provide any suitable output that 1s representative of an
output of the trained detector 44. The output may represent
a probability of the presence of an abnormality at each of a
plurality of voxel positions. The output may be representa-
tive of the presence of an abnormality as a function of
position.

The clinician or other user may use the information
presented to 1dentily regions of the image for further ispec-
tion. For example, in the present embodiment, the presen-
tation may indicate several possible regions of thrombus. A
clinician may inspect each of the possible regions of throm-
bus to determine, in his or her opinion, whether each of the
regions 1s actually a region of thrombus.

The method of FIG. 2 was applied for detection of stroke
signs 1n non-contrast CT. A result was obtamned from a
volume that was not included 1n tramning. Quantitative
evaluation was performed across 120 volumes, divided
evenly between training an test. An ROC AUC (receiver
operating characteristic area under curve) of 98.4% was
achieved.

By providing a traiming and detection method as described
above with reference to FIG. 2, a classifier may be trained
to detect an abnormality 1n a substantially symmetrical
anatomical structure. The classifier may detect the abnor-
mality using intensity data from both sides of the substan-
tially symmetrical anatomical structure, for example by
comparing intensities ol a given voxel and 1ts mirror 1image.
Data folding and bilateral information extraction may be
used. By using intensity data from channels representative
both sides of a substantially symmetrical anatomical struc-
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ture, the data from one channel may be considered to
normalise the data from the other channel. The classifier
may learn to normalise intensities 1 one channel with
respect to intensities from the other channel.

In mterpreting 1mage data, a human expert (for example,
a neuroradiologist) may make use of learned experience
from viewing thousands of examples. The human expert
may also make use of expected approximate leit/right sym-
metry where relevant. The human expert may make use of
anatomical context. In the method of FIG. 2, the training of
the classifier makes use of learned experience from a large
number of training data sets. The classifier makes use of
expected approximate left/right symmetry where appropri-
ate, for example by using a diflerence 1n intensity between
cach voxel and 1ts mirror image. The classifier 1s able to
perform bilateral comparison. The classifier may make use
of anatomical context since 1t 1s trained on X, vy, z coordinate
data in addition to intensity data.

The method of FIG. 2 may achieve automatic detection
through a particular supervised learning model. The use of
automated detection may provide information to a clinician
that may increase the speed or accuracy of the clinician’s
analysis of an image, particularly when subtle signs of
pathology are present.

In some circumstances, the classifier or classifiers trained
and used 1n the method of FIG. 2 may not classity whole
images, but may instead highlight regions with pathologies.
CNN may be used to automatically extract features from
patches.

Using a left-right agnostic classifier may allow each set of
training data to be used twice 1n training, once for the left
side of the tramning data and once for the right side. A
left-right agnostic classifier may be appropnate for detecting
abnormalities 1n a substantially symmetrical anatomical
structure in which an abnormality may occur on either side
of the anatomical structure.

For example a thrombus may occur on the right side of the
brain, causing a region of the right side of the brain to appear
denser than a corresponding region on the left side of the
brain. Or a thrombus may occur on the leit side of the brain,
causing a region of the left side of the brain to appear denser
than a corresponding region on the right side of the brain.
The same classifier may be used to detect the thrombus
whether 1t 1s on the left or the right side.

In the embodiment described above, the method of FIG.
2 1s used to detecting signs of thrombus 1n non-contrast CT
acquired for acute stroke. In other embodiments, the method
of FIG. 2 may be applicable to other modalities and/or
abnormalities.

The method of FIG. 2 may be used to train a classifier to
detect one or more subtle stroke signs, for example 1schemia
and/or 1nfarcts. A classifier may be used to identily regions
of slightly lowered intensity which may be representative of
iIschemia and/or infarcts. A classifier may be used to detect
a loss of gray matter or a loss of white matter. A classifier
may be used to detect calcification.

In one embodiment, a classifier 1s trained to detect 1sch-
emia. In some circumstances, 1schemia may appear 1n an
imaging data set as a very large region of one side of the
brain, which has a slightly lowered intensity compared with
the other side of the brain. By using a comparison between
the two sides of the brain, the large region of lowered
intensity may be identified. In some circumstances, such a
large region of lowered intensity may not be i1dentified by a
classifier that did not use data from both sides of the brain
in order to classily voxels. The classifier may be trained so
as to at least partially normalise data values of the first part
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of the set of medical imaging data relative to the second part
of the set of medical imaging data, for example 1n training,
the classifier may discover rules which have the eflect of at
least partially normalising data values of the first part of the
set of medical imaging data relative to data values of the
second part of the set of medical imaging data.

The method of FIG. 2 may be applied to the detection of
any appropriate abnormality, for example any appropriate
pathology, 1n any appropriate human or animal anatomy. The
method of FIG. 2 may be applied to the analysis of 1images
indicating function, for example tissue motion or liquid tlow.

In some embodiments, the method of FIG. 2 1s applied to
the detection of fractures. For example, a classifier may be
trained to detect subtle fractures of the pelvis by using data
from the left and right side of the pelvis.

Any suitable modality of data may be used, for example
CT data, cone-beam CT data, X-ray data, ultrasound data,
MR data, PET data or SPECT data.

Certain embodiments provide a method of identilying
pathology in volumetric data where normal anatomy 1s
mostly symmetrical, comprising: for each volume 1n which
pathology has been manually marked, aligning the volume
to a reference atlas, dividing the data at a midline, inverting
one hallf of the data to produce two aligned left/right
channels, and extracting training samples representing left
and right pathology status; training a classifier on a total set
of training samples; and, for a novel volume, aligning the
novel volume to a reference atlas, dividing the novel volume
data at a midline, inverting one half of the novel volume data
to produce two aligned left/right channels, and applying the
trained classifier separately for the left and right results,
channels being appropriately ordered 1n each case.

Further channels may be added to encode atlas location.
The classifier may comprise a convolutional neural network.
The classifier may comprise a decision forest. The dividing
of the data at a midline may comprise extraction ol multiple

locks defined in atlas space. Each block location may be
trained for separately.

Whilst particular circuitries have been described herein,
in alternative embodiments functionality of one or more of
these circuitries can be provided by a single processing
resource or other component, or functionality provided by a
single circuitry can be provided by two or more processing,
resources or other components 1n combination. Reference to
a single circuitry encompasses multiple components provid-
ing the functionality of that circuitry, whether or not such
components are remote from one another, and reference to
multiple circuitries encompasses a single component pro-
viding the functionality of those circuitries.

Whilst certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not mntended to limit the scope of the invention.
Indeed the novel methods and systems described herein may
be embodied mm a vanety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the methods and systems described herein may be made
without departing from the spint of the mvention. The
accompanying claims and their equivalents are itended to
cover such forms and modifications as would fall within the
scope of the invention.

The mvention claimed 1s:

1. A medical image data processing apparatus comprising
processing circuitry configured to:

recerve a plurality of sets of medical imaging data; and

train a classifier for use 1n classification, wherein

the training of the classifier comprises, for each of the

plurality of sets of medical imaging data:
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selecting a first part and a second part of the respective
set of medical imaging data, wherein the first part
and the second part are representative ol different
regions of the same subject; and

training the classifier for use in classification based on

the first part of the set of medical imaging data and

the second part of the set of medical imaging data,

and

the training of the classifier for use 1n classification based

on the first part of the set of medical imaging data and
the second part of the set of medical imaging data
comprises training the classifier for use 1 determining
presence or absence of at least one abnormality 1n the
first part of the set of medical imaging data based at
least partially on the second part of the set of medical
imaging data and ground truth data associated with the
first part of the set of medical 1imaging data.

2. An apparatus according to claim 1, wherein the first part
and the second part of the set of medical imaging data are
representative of at least one of: substantially symmetrical
regions; or regions having substantially the same shape.

3. An apparatus according to claim 1, wherein:

the first part of the set of medical imaging data 1s

representative of a region on one side of a line of
symmetry of anatomical structure represented by the
medical 1imaging data;

the second part of the set of medical imaging data 1s

representative of a region on an opposite side of the line
of symmetry; and

wherein the first part of the set of medical imaging data

and second part of the set of medical imaging data are
representative of corresponding anatomical features on
opposite sides of the line of symmetry.

4. An apparatus according to claim 3, wherein the traiming
of the classifier for use in determining the presence or
absence of at least one abnormality in the first part of the
medical imaging data based at least partially on the second
part of the set of medical imaging data 1s such as to at least
partially normalise data values of the first part of the set of
medical imaging data relative to the second part of the set of
medical 1maging data.

5. An apparatus according to claim 3, wherein the pro-
cessing circuitry 1s configured to, for each of the sets of
medical 1maging data, perform a folding process about said
line of symmetry 1n respect of one of the first and second
parts of the medical imaging data set such that imaging data
of the first part at least partially overlays imaging data of the
second part.

6. An apparatus according to claim 1, wherein the pro-
cessing circuitry 1s configured to select boundaries of the
first and second parts based on at least one of ground truth
data, expected position of one or more abnormalities, or a
position of at least one selected anatomical feature.

7. An apparatus according to claim 3, wherein the pro-
cessing circuitry 1s configured to modily the ground truth
data for at least some positions adjacent to regions of
abnormality indicated by the ground truth data, and to use
the modified ground truth data in traiming the classifier.

8. An apparatus according to claim 7, wherein the pro-
cessing circuitry 1s configured to adjust the importance of at
least some of the modified ground truth data in training the
classifier.

9. An apparatus according to claim 1, wherein the pro-
cessing circuitry 1s further configured to at least one of:

use atlas data in training the classifier;

use expected or actual position of at least one anatomical

feature 1n traiming the classifier;
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align at least one of the medical imaging data sets with at
least one atlas data set to obtain registration data, and
use the registration data in training the classifier.

10. A medical image data processing method comprising;:

recetving a plurality of sets of medical imaging data; and

training a classifier for use in classification, wherein

the training of the classifier comprises, for each of the
plurality of sets of medical imaging data:

selecting a first part and a second part of the respective

set of medical 1imaging data, wherein the first part
and the second part are representative of different
regions of the same subject; and

training the classifier for use in classification based on
the first part of the set of medical imaging data and
the second part of the set of medical imaging data,

and

the training of the classifier for use 1n classification based

on the first part of the set of medical imaging data and
the second part of the set of medical 1imaging data
comprises training the classifier for use 1 determining,
presence or absence of at least one abnormality 1n the
first part of the set of medical imaging data based at
least partially on the second part of the set of medical
imaging data and ground truth data associated with the
first part of the set of medical imaging data.

11. A method according to claim 10, wherein the first part
and the second part of the set of medical imaging data are at
least one of: representative of substantially symmetrical
regions; or regions having substantially the same shape.

12. A method according to claim 10, wherein:

the first part of the set of medical imaging data 1is

representative ol a region on one side of a line of
symmetry ol anatomical structure represented by the
medical 1imaging data;

the second part of the set of medical imaging data 1s

representative of a region on an opposite side of the line
of symmetry; and

wherein the first part of the set of medical imaging data

and second part of the set of medical imaging data are
representative of corresponding anatomical features on
opposite sides of the line of symmetry.

13. A method according to claim 12, wherein the training
of the classifier for use in determining the presence or
absence of at least one abnormality in the first part of the
medical imaging data based at least partially on the second
part of the set of medical imaging data is such as to at least
partially normalise data values of the first part of the set of
medical imaging data relative to the second part of the set of
medical imaging data.

14. A method according to claim 12, further comprising,
for each of the sets of medical imaging data, performing a
folding process about said line of symmetry 1n respect of one
of the first and second parts of the medical imaging data set
such that imaging data of the first part at least partially
overlays 1maging data of the second part.

15. A method according to claim 10, further comprising
selecting boundaries of the first and second parts based on at
least one of ground truth data, expected position of one or
more abnormalities, or a position of at least one selected
anatomical feature.

16. A method according to claim 12, further comprising
moditying the ground truth data for at least some positions
adjacent to regions of abnormality indicated by the ground
truth data, and using the modified ground truth data in
training the classifier.
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17. A method according to claim 16, further comprising
adjusting the importance of at least some of the modified
ground truth data in training the classifier.

18. A method according to claim 10, further comprising at
least one of: 5

using atlas data in training the classifier;

using expected or actual position of at least one anatomi-
cal feature 1n training the classifier;

aligning at least one of the medical imaging data sets with
at least one atlas data set to obtain registration data, and 10
using the registration data 1n training the classifier.
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