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FLEXIBLE BONE SCREW

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent

application Ser. No. 15/197,879, filed Jun. 30, 2016, which
claims the benefit of U.S. Provisional Application No.

62/191,904, filed Jul. 13, 2015, and U.S. Provisional Appli-
cation No. 62/238,780, filed Oct. 8, 2015, all of which are

hereby incorporated by reference.

FIELD OF THE INVENTION

Examples of the invention relate generally to orthopedic
devices for the surgical treatment of bone and, more par-
ticularly, to the stabilization of bones with an intramedullary
device.

BACKGROUND

Orthopedic medicine provides a wide array of implants
that can be attached to bone to repair fractures. External
fixation 1involves the attachment of a device that protrudes
out of the skin, and therefore carries significant risk of
infection. Many 1fractures i long bones can be repaired
through the use of bone plates, which are implanted and
attached to lie directly on the bone surface. The bone plate
then remains 1n the body long enough to allow the fractured
bone to heal properly. Unfortunately, such bone plates often
require the surgical exposure ol substantially the entire
length of bone to which the plate 1s to be attached. Such
exposure typically results 1n a lengthy and painful healing
process, which must often be repeated when the implanta-
tion site 1s again exposed to allow removal of the plate.
There 1s a need 1n the art for implants and related instru-
ments that do not require such broad exposure of the
fractured bone, while minimizing the probability of infec-
tion by avoiding elements that must protrude through the
skin as the bone heals.

SUMMARY

Examples of the mvention provide devices and methods
for stabilizing first and second bone portions relative to one
another.

In one example of the invention, a device for stabilizing
a fracture 1n a bone 1includes a body having an elongate distal
portion having an outer surface defining a screw thread and
an elongate proximal portion having a non-threaded outer
surface.

In another example of the invention, a passage 1s formed
through the proximal portion transverse to the longitudinal
axis ifrom a first opening on the surface of the proximal
portion to a second opening on the surface of the proximal
portion.

In another example of the ivention, a method of stabi-
lizing a fractured long bone having an intramedullary canal,
comprises providing a bone implant comprising a body
defining a longitudinal axis extending between a proximal
end and a distal end; an elongate distal portion of the body
having an outer surface defining a screw thread, the screw
thread having a minor diameter and a major diameter; and an
clongate proximal portion of the body having a non-threaded
outer surface, a passage formed through the proximal por-
tion transverse to the longitudinal axis from a first opening,
on the surface of the proximal portion to a second opening
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2

on the surface of the proximal portion; and inserting the
bone mmplant into an mtramedullary canal of a bone so that
the proximal portion spans a fracture in the bone.

BRIEF DESCRIPTION OF THE DRAWINGS

Various examples of the mnvention will be discussed with
reference to the appended drawings. These drawings depict
only 1llustrative examples of the imnvention and are not to be
considered limiting of its scope.

FIG. 1 1s a side elevation view of a screw according to one
example of the mvention;

FIG. 2 1s a detail view of the screw of FIG. 1;

FIG. 3 1s a detail view of the screw of FIG. 1;:

FIG. 4 1s an end view of the screw of FIG. 1;

FIGS. 5-7 are side elevation views of a set of differently
sized screws like that of FIG. 1;

FIGS. 8-10 are partial sectional views showing the inser-
tion of the screw of FIG. 1 into bone;

FIGS. 11-35 illustrate a surgical procedure utilizing the
bone screw of FIG. 1;

FIG. 36 1s a perspective view of a screw according to one
example of the mvention;

FIG. 37 1s a top plan view of the screw of FIG. 36;

FI1G. 38 1s a side elevation view of the screw of FIG. 36;

FIG. 39 1s an end view of the screw of FIG. 36:

FIG. 40 1s a sectional view taken along line 40-40 of FIG.
37;

FIG. 41 1s an exploded sectional view taken along line
40-40 of FIG. 37;

FIG. 42 1s a cross sectional view of a screw according to
one example of the invention;

FIG. 43 1s an exploded cross sectional view of the screw
of FIG. 42:

FIG. 44 15 an exploded side view of a screw according to
one example of the invention;

FIG. 45 1s an assembled sectional view taken along line
45-45 of FIG. 44;

FIG. 46 1s an exploded side view of a screw according to
one example of the invention;

FIG. 47 1s an assembled sectional view taken along line

47-47 of FIG. 46;
FIG. 48 1s an end view of the screw of FIG. 46; and

FIG. 49 1s a cross sectional view taken along line 49-49
of FIG. 47.

DESCRIPTION OF THE ILLUSTRATIVE
EXAMPLES

The term “transverse” 1s used herein to mean not parallel.
FIGS. 1-4 depict a bone screw 100 according to one example
of the invention having an elongate body 102 with a distal
portion 104, a mid-portion 106 and a proximal portion 108
spaced longitudinally relative to a longitudinal axis 110. The
distal portion 104 includes a helical thread 112 having a
major diameter 114, a minor diameter 116, and a pitch 128.
The mid-portion 106 has a non-threaded outer surface 118
with an outer diameter 120. In the illustrative example of
FIGS. 1-4, the mid-portion outer diameter 120 1s equal to or
greater than the thread major diameter 114. The distal
threaded portion 104 1s operable to bend as 1t 1s threaded 1nto
a bone to follow a curved path. For example, the bending
stiflness of the distal threaded portion 104 1s such that 1t will
bend to follow a curved path 1n human bone. Such a curved
path may be defined, for example, by a curved hole 1n the
bone, a guide wire, or a natural bone feature such as a
non-linear mtramedullary canal bounded by cortical bone.
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This 1s distinct from prior art screws which 1f started on a
curved path in human bone would, when advanced, continue
in a straight line and thus deviate from the curved path and
form their own, straight, path through the bone. Preferably
the bending stifiness of the threaded distal portion 104 1s
lower than the bending stiflness of the mid-portion 106. The
relatively lower bending stifiness of the threaded distal
portion 104 causes the threaded distal portion to bend to

follow a curved path while the relatively higher bending
stiflness of the mid-portion causes the mid-portion to remain
straight to stabilize first and second bone portions relative to
one another at a bone interface such as at a {racture,
osteotomy, or fusion site. The difference in bending stiflness
between the threaded distal portion 104 and the mid-portion
106 may be achieved 1n different ways. For example, the
threaded distal portion 104 and the mid-portion 106 may be
made of different materials and/or may have different sec-
tional moduli. In the illustrative example of FIGS. 1-4, the
threaded distal portion 104 and the mid-portion 106 have
different sectional moduli. The threaded distal portion minor
diameter 116 1s less than the outer diameter 120 of the
mid- portion 106 and the threaded distal portion major diam-
cter 1s less than or equal to the outer diameter 120 of the
mid-portion 106. Preferably, the ratio of the bending stifl-
ness of the mid-portion 106 to the bending stiflness of the
threaded distal portion 104 1s in the range of 1.5:1 to 100:1.
More preferably, the ratio 1s in the range of 2:1 to 20:1. For
example, screws suitable for internal fixation of a clavicle
fracture and that fall within these ranges may have a major
diameter 114 1n the range of 4-6.5 mm, a minor diameter 116
in the range of 2.5-3.5 and a cannulation 101 with a diameter
in the range of 1-2 mm. Preferably, the screw 100 1s made
ol a polymer.

Table 1 compares the calculated load required to bend a
cantilevered tube of 3 mm outside diameter and 1.5 mm
inside diameter around a radius of 50 mm and an arc length
of 26 mm. The titantum and stainless steel alloys are
predicted to have a required load approximately 10 times
that of the PEEK and PLLA. These loads would be greater
than the bone could withstand and a threaded device made
of those materials would not follow a curved path in the
bone but would 1nstead cause the bone to fail. In the case of
the highly cold worked stainless steel, even if the bone could
withstand the load, the screw would fail since the minimum
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TABLE 1
[.oad at 50 mm bend radius

Yield  Failure Yield Failure  Flexural

Stress Stress  Strain Strain Modulus [.oad
Material (MPa) (MPa) (%) (%) (MPa) (N)
PEEK 100 115 25% 20% 4 9.8
ASTM
F2026
PLLA 90 100 2.6%  25% 3.5 8.7
Ti—6Al—4V 88O 990  0.8% 14% 114 91.7
ELI ASTM
F136
316L.VM 1468 1696  0.7% 3% 197 Not
Stainless possible
Steel
ASTM
FR99

Another way to quantily the bending stiflness of the
threaded distal portion 104 1s by the amount of torque
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required to turn the threaded distal portion 104 1nto a curved
bone hole having a specified radius of curvature. For
example, the threaded distal portion 104 preferably requires
a torque less than 20 1n-1bs to turn the distal threaded portion
104 into a bone to follow a curved path having a radius of
curvature of 50 mm. More preferably the required torque 1s
less than 10 1n-lbs. More preferably the required torque is
less than 5 in-lbs. More preferably the required torque 1is
approximately 2 in-lbs.

Table 2 compares the measured torque required to
advance a threaded tube 25 mm into a 50 mm threaded
radius formed 1 a ngid test block. The tubes were all
machined to the same geometry but of different materials.
The thread major diameter was 4.25 mm, the minor diameter
was 3.0 mm and the inner diameter of the tube was 1.5 mm.
A nigid block was prepared having a curved, threaded path.
Such a path has a pitch that 1s wider on the outside of the
curve and a pitch that 1s narrower on the inside of the curve
corresponding to the shape of the screw thread when 1t 1s
curved. Multiple samples of each screw were serted nto
the block over an arc length of 25 mm. The maximum torque
for each revolution was measured and 1t was found that the
torque increased for each revolution. In Table 2, the range 1s
the range of torque values from the first to the last revolu-
tion. The average 1s the average of the torque values for all
revolutions. The peak 1s the highest torque value and 1n all
cases occurred in the last revolution. However, the torque
values for each material were relatively constant over the
last few revolutions. The titamium and stainless steel alloys
had measured torque values approximately 10 times that of
the PEEK. These tests were conducted using a threaded
block made of tool steel with a strength greater than that of
the materials being tested in order to compare the torque
values. As pointed out relative to Table 1, the loads gener-
ated from the metal implants would be greater than the bone
could withstand and a threaded device as described herein
made of these metals would not follow a curved path 1n the
bone but would 1nstead cause the bone to fail.

TABLE 2

Torque to thread around rigid 50 mm radius

Range Average Peak
Material (1n-1bs) (1n-lbs) (1n-1bs)
PEEK 0-2.0 1.4 2.0
ASTM F2026
Ti—6A1—4V ELI 0.7-25 16 25
ASTM F136
316LVM 0.5-20 13 20
Stainless Steel
ASTM F899

In addition to bending stiflness advantages, having the
threaded distal portion major diameter less than or equal to
the outer diameter 120 of the mid-portion 106 allows the
distal threaded portion 104 to pass through a passage 1n a
bone that will be a sliding or press fit with the mid-portion
106. A screw so configured, as shown 1n the illustrative
example of FIGS. 1-4, can have an intramedullary canal
filling mid-portion 106 providing solid support to a bone
interface and a relatively bendable distal threaded portion
104 following a curved path such as for threading into a
distal portion of a curved bone to secure the screw 1n the
bone.

The proximal portion 108 may be identical to the mid-
portion 106. Alternatively, the proximal portion may have a
positive driver engagement feature (not shown) such as
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internal or external non-circular surfaces, profiles, or holes.
For example, an internal or external slotted, threaded, tri-
angular, square, hexagonal, hexalobular, or other drive fea-
ture may be provided. In addition, as shown 1n the 1llustra-
tive example of FIGS. 1-4, the proximal portion 108 may
include an optional external helical thread 122 able to
engage a bone portion to provide proximal fixation of the
screw. For example, the proximal thread 122 may have a
major diameter 124, a minor diameter 126, and a pitch 130
wherein the proximal thread minor diameter 126 1s equal to
the mid-portion outer diameter 120. In the illustrative
example of FIGS. 1-4, the mid-portion outer diameter 120 1s
equal to the proximal thread minor diameter 126 and the
distal thread major diameter 114. The proximal portion may
alternatively, or 1n addition, receive a locking member such
as a pin or screw transverse to the longitudinal axis to lock
a proximal bone portion to the nail. The locking member
may be drilled through the proximal portion. Preferably, the
proximal portion has one or more transverse holes formed
through 1t for receiving the locking member.

The distal and proximal thread pitches 128, 130 may
advantageously be the same or diflerent depending on the
application. For example, to stabilize a fracture, the screw
100 may be mnserted into a bone across the fracture so that
the distal thread 112 1s engaged with bone distal to the
fracture and the proximal thread 122 1s engaged with bone
proximal to the fracture. If the bone portions on either side
of the fracture are reduced to a desired final position prior to
inserting the screw 100, then it 1s advantageous for the
thread pitches 128, 130 to be equal so that msertion of the
screw does not change the relative positions of the bone
portions. If on the other hand, 1t 1s desirable to move the
bone portions relative to one another by the action of
inserting the screw then it 1s advantageous for the pitches
128, 130 to be different. For example, to move the bone
portions closer together to reduce the fracture, the distal
thread pitch 128 may be made greater than the proximal
thread pitch 130 so that with the distal thread 112 engaged
distally and the proximal thread 122 engaged proximally,
turther advancing the screw causes the distal bone portion to
move proximally relative to the screw faster than the proxi-
mal bone portion moves proximally and thus move the bone
portions closer together. Alternatively, to move the bone
portions further apart to distract the fracture, the distal thread
pitch 128 may be made smaller than the proximal thread
pitch 130 so that with the distal thread 112 engaged distally
and the proximal thread 122 engaged proximally, further
advancing the screw causes the distal bone portion to move
proximally relative to the screw more slowly than the
proximal bone portion moves proximally and thus move the
bone portions further apart. Preferably, the bone screw 100
has a through bore, or cannulation 101, coaxial with the
longitudinal axis 110 to permit the bone screw 100 to be
inserted over a guide wire.

The bone screw 100 of FIGS. 1-4, may advantageously be
provided 1n a set containing a plurality of bone screws as
shown 1n the illustrative example of FIGS. 5-7. For example,
it 1s advantageous in a surgical procedure to minimize the
number of steps and the amount of time needed to complete
the procedure. In a bone fixation procedure, a surgeon often
makes an 1itial sizing decision based on medical imaging.
During the procedure, 1t may become expedient to change
the predetermined size based on observation of the surgical
site or the {it of trial implants or instruments. For example,
a surgeon may determine 1nitially that a smaller bone screw
1s appropriate. However, during preparation of the site, the
surgeon may determine that a larger screw will better grip
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6

the bone or fill, for example, a canal 1n the bone. The
illustrative set of bone screws shown in FIGS. 5-7 facilitates
changing between sizes. Each screw 140, 150, 160 1n the set

has a minor diameter 142, 152, 162, a major diameter 144,
154, 164, and a pitch 146, 156, 166. The minor diameters

142, 152, 162 are equal to one another so that a single
diameter drill will provide an initial bore hole appropriate
for all the screws 1n the set. The pitches 146, 156, 166 arc
equal to one another so that all of the screws 1n the set will
threadably engage a helical thread of the same pitch. The
major diameters 144, 154, 164 may increase to provide
progressively more bone purchase or, for example, to span
increasing larger intramedullary canals. For example, with
the set of screws of the illustrative example of FIGS. 5-7, a
surgeon may drill a hole equal to the minor diameters 142,
152, 162 and then tap the hole with a tap corresponding to
the thread of the smallest major diameter screw 140. The
tactile feedback received by the surgeon as the tap 1s mserted
will indicate to the surgeon if the thread major diameter 1s
suilicient to provide a desired level of bone engagement. For
example, the surgeon can feel if the tap i1s engaging the
cortical walls of an intramedullary canal or if the tap 1s 1n
softer cancellous bone. If the surgeon determines that greater
engagement 1s desired, the surgeon can next tap the hole
with a tap corresponding to the thread of the next larger
major diameter screw 150. Since the minor diameters 142,
152, 162 and thread pitches 146, 156, 166 are the same for
all of the screws 1n the set, the next tap will thread into the
previously tapped hole and increase the bone thread major
diameter without damaging the bone thread. Once the
desired bone engagement 1s achieved, the surgeon may then
insert the desired screw 140, 150, 160. If in tapping the
larger major diameter thread, the surgeon determines that the
bone 1s providing too much resistance, the surgeon may
revert to the smaller sized screw since the threads are still
compatible. Alternatively to using a separate tap, the screw
threads may be configured as seli-tapping so that the screws
may be threaded directly into the bored hole.

In addition to the sizing advantages of having the same
minor diameter 142, 152, 162 across a family of screws, 1t
1s also advantageous because the distal threaded portion of
cach screw will have a similar bendlng stiflness to each of
the other screws 140, 150, 160 since the continuous wall of
the minor diameter contrlbutes much more to the bending
stiflness than the helical thread itself. This similar bending
stiflness means that they can be inserted around a similar
bending radius with a similar torque.

In the 1llustrative example of FIGS. 5-7, each screw 140,
150, 160 has a mid-portion diameter 148, 158, 168 cqual to
the corresponding major diameter 144, 154, 164. The
increasing mid-portion diameters provide progressively less
flexible mid-portions across the set of screws and, for
example, canal filling for increasingly larger bones 1f used 1n
the intramedullary canal. If the screws incorporate the
optional increasing mid-portion diameter as shown, then 1t 1s
desirable to re-drill the mid-portion of the bone hole to
accommodate the mid-portion when an increase in screw
s1ze 1s desired. However, the distal, threaded portion of the
bone hole does not need to be re-drilled so the screw threads
will not be damaged by drilling.

Alternatively to, or in addition to, the threaded distal
portion 104 and mid-portion 106 having different sectional
moduli, the threaded distal portion 104 and mid-portion 106
may have different material properties such as two diflerent
materials or different conditions of the same material to
produce a difference 1 bending stiflness between them.
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In the illustrative example of FIGS. 36-41, a screw 170
has separate first and second members 172, 174 permanently
joined together. The first member 172 includes an elongate
body 176 with a proximal end 178, a distal end 180, a
longitudinal axis 182, and an axial through bore 184. The
proximal end 178 of the first member includes a pair of
transverse through bores 181, 183. Each transverse bore
181, 183 defines a longitudinal axis and the axes form an
angle 183 between them about the longitudinal axis 182 as
best seen 1 FIG. 39. Providing more than one transverse
through bore increases options for attaching the screw to
bone fragments and options for fixation direction. Both
bores may be used for fixation or the one that 1s most
conveniently located. Preferably the angle 185 1s i the
range of 0 to 90 degrees. More preferably the angle 185 1s
in the range of 20 to 90 degrees. In the 1llustrative example
of FIGS. 36-41, the angle 185 1s 45 degrees. The proximal
end 178 also includes opposed flats 187 for engaging a
driver in torque transmitting relationship. An internal thread
189 within the bore 184 1s engageable with, e.g., a threaded
draw bar to secure the first member to a driver.

The second member 174 includes an elongate body 186
with a proximal end 188, a distal end 190, a longitudinal axis
192, an external helical thread 194, and an axial through
bore 196. The distal end 180 of the first member 172 and the
proximal end 188 of the second member 174 may have
complementary geometries to aid in joining them. In the
illustrative example of FIGS. 36-41, the distal end 180 of the
first member has a stepped conical taper and the proximal
end 188 of the second member has a corresponding stepped
conical socket 198. The mating surfaces may be any suitable
shape as determined by the materials and joining technique
including but not limited to plug and socket joints (as
shown), scart joints, butt joints, dovetail joints, finger joints,
and lap joints. The joint may be remnforced with a third
component such as an adhesive, pin, or key. The joint may
be formed by mechanical interlock, chemical bonding,
molding, welding or other suitable joining process. The final
assembled screw 170, has a distal portion 191, a mid-portion
193, and a proximal portion 195 and may have the thread
forms, diameters, and relationships as described relative to
the examples of FIGS. 1-7.

The first and second components 172, 174 may be made
of different materials or different conditions of the same
material. For example, they may be made of polymers,
metals, or ceramics. Metals may include stainless steel
alloys, titamium, titantum alloys, cobalt-chromium steel
alloys, nickel-titanium alloys, and/or others. Polymers may
include nonresorbable polymers including polyolefins, poly-
esters, polyimides, polyamides, polyacrylates, poly(ke-
tones), fluropolymers, siloxane based polymers, and/or oth-
ers. Polymers may include resorbable polymers including
polyesters (e.g. lactide and glycolide), polyanhydrides, poly
(aminoacid) polymers (e.g. tyrosine based polymers), and/or
others. Other possible materials include nonresorbable and
resorbable ceramics (e.g. hydroxyapatite and calcium sul-
fate) or biocompatible glasses. They may be made of
homogenous materials or reinforced materials. They may be
made ol crystallographically different materials such as
annealed versus cold worked. It 1s preferable for the mid
portion 193 to have a higher bending stiflness than the distal
portion 191 and the distal portion should have a bending
stiflness low enough for it to be mserted along a curved path
in bone.

In a first example, the first component may be made of a
metal with a relatively high degree of cold work and the
second component of a metal with a relatively low amount
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of cold work such as for example annealed and cold worked
stainless steel. The components may be joined for example
by welding. However, as discussed relative to Table 1, most
metals are far too stifl to allow threading along a curved path
in a bone within suitable torsional loads.

Preferably the distal portion 1s made of a polymer. In a
second example, the first component 1s made of a metal,
such as stainless steel or a titamium alloy, and the second
component 1s made of a polymer such as polyetheretherke-
tone (PEEK) or a polylactide polymer (e.g. PLLA). The
components may be joined such as for example by threading
them together.

Preferably both components are made of polymers. In a
third example, the first and second components are both
made ol non-resorbable polymers. For example, the first

component may be made of fiber reinforced PEEK (e.g.

Invibio PEEK-Optima™ Ultra-Reinforced) and the second
component may be made of neat (unreinforced) PEEK (e.g.
Invibio PEEK-Optima™ Natural). The fiber remforced
PEEK 1s strong while the neat PEEK 1s relatively flexible
allowing 1t to be easily threaded around a curved path even
while having a relatively large bone filling diameter. The
components may be joined, e.g. by molding the components
as a continuous matrix with first component fiber reinforce-
ment and second component neat polymer with polymer
chains extending across the joint intertace. In the example of
FIGS. 36-41, the second component 1s relatively more
transparent to laser radiation than the first component and
the parts are joined by laser welding at the conical intertace.
The laser energy passes relatively easily through the second
component and 1s absorbed by the first component so that
localized heating at the conical interface takes place causing
the polymer constituent of the two components to fuse
together.

In a fourth example, the mid-portion and distal portion are
made of resorbable polymers. For example, the mid-portion
may be made of a glass fiber reinforced PLLA (e.g. Corbion-
Purac FiberLive™) and the distal portion may be made of
neat PLLA.

Alternatively, the first member 172 and second member
174 may form one continuous part with different properties
between first and second portions. The difference 1n prop-
erties may be achieved, for example, by different processing
(c.g. thermal processing) or blending matenals. For
example, different polymers may be combined in a single
injection mold cavity and formed together. The polymers
may be blended so that there 1s a transition between them.
In another example, stiffening and/or strengthening matenal,
¢.g. fibers, whiskers, and/or granules, may be selectively
incorporated 1n, e.g., the first portion.

FIGS. 42 and 43 illustrate an example of a screw 270
similar to that of FIGS. 36-41 except that the first member
272 1s not cannulated, the first member 272 extends the full
length of the second member 274, and the transverse holes
281, 283 are coplanar. The screw 270 may be assembled as
with the prior example including by using complimentary
screw threads in the proximal region of the second member
274 and mid portion of the first member 272 as indicated by
reference number 250. The screw 270 of the example of
FIGS. 42 and 43 may be include any of the materials and
features described relative to the prior examples. If, for
example, the first member 272 1s made of a radiographically
more opaque material than the second member 274, then the
first member will provide a radiographic marker over the
entire length of the screw 270 that may be radiographically
visualized during and after surgery to confirm screw place-
ment. For example, a metal first component and polymer
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second component would provide for radiographic visual-
1zation of the metal first component. It has been found by the
present inventors that the bending stifiness of the distal end
of the screw 1s not materially changed by eliminating the
axial through bore of the first component and 1s essentially
unchanged when the bending stiflness of a guide wire 1s
accounted for which was optionally used with the previous
cannulated screw examples. The guide wire 1s not necessary
imnasmuch as the screw 270 will follow a curved hole
prepared to recerve 1t. The transverse holes 181, 183 may be
provided 1n any number or not at all as desired but 1t has
been found that one 1s suflicient and two provides the user
with additional fixation choice.

FIGS. 44 and 45 illustrate a bone implant 400 useful for
stabilizing bone fractures according to one example of the
invention. The bone implant 400 includes a body 402
defining a longitudinal axis 404 extending between a proxi-
mal end 406 and a distal end 408. The body has an elongate
distal portion 410 having an outer surface 412 defining a
screw thread 414 having a minor diameter 416 and a major
diameter 418. The body has an elongate proximal portion
430 having a non-threaded outer surface 432. Passages 434
and 436 are each formed through the proximal portion 430
transverse to the longitudinal axis from a first opening 438,
440 on the surface of the proximal portion to a second
opening 442, 444 on the surface of the proximal portion. A
driver engaging feature 1s formed at the proximal end for
engaging a driver in torque transmitting relationship. The
driver engaging feature may be a male feature or a female
feature. Preferably 1t 1s a polygonal feature engageable with
a correspondingly shaped driver. In the example of FIGS. 44
and 45, the dniver engaging feature 1s a hexagonal socket
446 formed 1n the proximal end of the implant. The socket
446 1ncludes a threaded recess 448 for threaded engagement
with other tools such as a driver retaining draw rod, a cross
pinning guide, or the like. The distal portion 1s responsive to
rotation of the implant to thread into a bone and advance the
bone 1implant into the bone. This rotary advancement action
1s advantageous compared to typical bone nails that are
impacted into the bone since the threaded advancement 1s
less stressiul to the bone and surrounding tissues. As the
distal portion 1s threaded into the bone, 1t pulls the proximal
portion into the bone. The distal threaded portion 1s
anchored 1n the bone by the thread 414. The smooth proxi-
mal portion may be positioned to span a fracture so that, for
example, no sharp edges are engaged with the fracture and
no stress concentrating features that might weaken the
implant span the fracture.

In the example of FIGS. 44 and 435, the proximal portion
has a length 450 measured from the free proximal end 406
to the proximal start 452 of the threads of the distal portion.
The proximal portion has a maximum diameter. For example
for a conical or cylindrical proximal portion the maximum
diameter 1s simply the largest diameter along the proximal
portion. For an ovoid proximal portion, the maximum diam-
cter would be the major diameter of the elliptical cross
section. For other shapes, such as fluted proximal portions,
the maximum diameter 1s the maximum dimension normal
to the longitudinal axis 404 of the proximal portion. The
maximum diameter 1s preferably constant over a portion of
the proximal portion length to provide a uniform thickness
for spanning a fracture. For example, the maximum diameter
1s preferably uniform over at least one-fourth of the proxi-
mal portion length; more preferably at least one-third; more
preferably at least one-half; more preferably more than
one-half. In the 1llustrative example of FIGS. 44 and 45, the
proximal portion has a constant cylindrical diameter over its
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entire length. The drniver engaging feature preferably has a
maximum dimension normal to the longitudinal axis that 1s
less than or equal to the maximum diameter of the proximal
portion so that, for example, the proximal end of the bone
implant may be seated below the bone surface.

The bone implant may be a umitary construct, like shown
in the illustrative example of FIGS. 1-4, in which the
proximal and distal portions are formed of one continuous
material. Optionally, the proximal and distal portions may be
separate components joined together as shown in the
example of FIG. 36 and the example of FIG. 42. In the
illustrative example of FIGS. 44 and 435, the bone implant
includes a sleeve 460 surrounding a separate core 462. The
sleeve and core are joined together to form the body. Various
methods may be used to join the sleeve and core. For
example, they may be threaded, pinned, bonded, welded, or
otherwise joined. In the example of FIGS. 44 and 45, the
sleeve 1s threaded onto the core via an internal thread 464
and corresponding male thread 466 formed on the core. The
sleeve 1s further pinned to the core with a pin 468 pressed
through holes 470, 472 1n the sleeve wall and in the core.

As described relative to previous examples, it 1s desirable
tfor the distal portion to have a lower bending resistance than
the proximal portion. In one example, the sleeve 1s at least
partially formed of a polymer and the core 1s at least partially
formed of a metal. In the example of FIGS. 44 and 45, the
sleeve 1s machined from a polymer and includes the distal
screw thread while the core 1s machined from a metal and
includes the proximal portion. In one example, the core 1s
made of a biocompatible titanium alloy and the sleeve 1s
made of a biocompatible polyaryletherketone polymer such
as, for example, polyetheretherketone. In another example,
the core 1s made of a suitable biocompatible metal and the
sleeve 1s made of a resorbable polymer so that, over time, the
sleeve will resorb 1n the patient’s body and allow gradually
increasing motion of the bone and load transfer to the bone
to promote healing. The core may extend partway toward the
distal end as in the example of FIG. 36, all the way to the
distal end as 1n the example of FIG. 42, or 1t may extend past
the distal end as 1n the example of FIGS. 44 and 45. With the
tip 480 of the core extendmg beyond the distal end, the tip
480 provides an easier start of the implant into a hole 1n the
bone and, as shown 1n the example of FIGS. 44 and 43, the
tip 480 provides a smooth bearing surface for following a
curved path 1n a bone.

FIGS. 46 and 47 illustrate a bone implant 500 similar to
that of FIGS. 44 and 45. The bone implant 500 includes a
core 502 and a sleeve 504. In the example of FIGS. 44 and
45, the smooth proximal portion 506 1s more evenly pro-
portioned over the core and sleeve. Also, the core steps up
more gradually in diameter from the distal end 508 to the
proximal end 510 resulting in a more gradual transition in
bending stifiness over three zones. In a first zone 512, a
relatively thin portion of the core 1s surrounded by a rela-
tively thick portion of the sleeve. In a second zone 514, a
relatively thicker portion of the core 1s surrounded by a
relatively thinner portion of the sleeve. In a third zone 516,
only a relatively thicker portion of the core remains. Also, 1n
the example of FIGS. 46 and 47 a slip resisting feature 1s
provided on the core and a polymer sleeve 1s molded to the
core so that the polymer and slip resisting feature interdigi-
tate. The slip resisting feature may be knurling, threads,
grooves, splines, spikes, holes, or other features. The slip
resisting feature may be oriented to enhance torque transfer,
longitudinal force transier, or otherwise oriented. In the
example of FIGS. 46 and 47, the slip resisting feature
includes longitudinal splines 518 to enhance the ability to
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transier torque between the core and sleeve. Longitudinal
force transier 1s suili

iciently accommodated by the bonding
of the sleeve to the core during the molding process.

In use, the preceding implants may be provided in an
appropriate size and 1nserted into a bone to span a fracture
in the bone. Preferably the proximal portion of the implant
spans the fracture. The arrangement of a smooth proximal
portion and a threaded distal portion permits rotating the
bone 1mplant to cause the threaded distal portion to engage
the bone and pull the proximal portion of the bone implant
into a positioning spanning the fracture. In the case of an
implant comprising a resorbable polymer, the polymer will
resorb over time 1n the patient to gradually transier load to
and permit motion of the bone to enhance healing of the
fracture. One or more pins or screws may be inserted so that
they extend through one or more of the passages in the
proximal end, for example the proximal passages 434, 436

in the example of FIGS. 44-45, and through a portion of the

bone to fix the bone to the proximal portion of the implant.
For example with the distal end of the bone implant fixed by
engagement ol the threads in a distal portion of the bone a
proximal portion of the bone may be secured with pins or
screws as described. This may be used to hold compression
or distraction on bone portions on opposing sides of the
fracture or to attach loose bone fragments.

FIGS. 8-10 1illustrate an implant being inserted into first
and second bone portions 200, 202 having a bone 1nterface
204 between them. The implant could be any of the
examples of FIGS. 1, 36, 42, 44, and 46 and the variations
described herein. In the particular example of FIGS. 8-10,
bone screw 100 1s shown. A first or proximal bore 206 1s
formed 1in the first bone portion 200, across the bone
interface 204, and into the second bone portion 202. A
second or distal bore 208 extends distally from the proximal
bore 206 defining a curved path 210. The screw 100 1s
advanced through the proximal bore 206 until the distal
screw threads engage the distal bore 208 as shown 1 FIG.
9. Further advancing the screw 100 causes it to bend to
tollow the curved path 210 as shown in FIG. 10. Having a
straight portion of the path, and thus the straight mid portion
of the screw 100, spanning the bone interface results 1n a
zero stress and strain state at the bone interface which
prevents separation of the bone portions 200, 202 at the
interface 204.

FIGS. 11-35 depict an 1llustrative method of using an
implant to {ix a fractured clavicle. The implant could be any
of the examples of FIGS. 1, 36, 42, 44, and 46 and the
variations described herein. In the particular example of
FIGS. 11-35, bone screw 100 1s shown. A patient 1s placed
in a beach chair position with the head rotated away from the
operative side. A bolster 1s placed between the shoulder
blades and head allowing the injured shoulder girdle to
retract posteriorly. A C-arm 1s positioned to enable anterior-
posterior (AP) and cephalic views of the operative site. A 2-3
cm 1ncision 300 1s made at the fracture site along Langer’s
Lines running perpendicular to the long axis of the clavicle
to expose the fracture site (FIG. 10). The platysma muscle
1s freed from the skin and split between 1ts fibers. The middle
branch of the supraclavicular nerve 1s 1dentified and
retracted.

The medial end 302 of the lateral fragment 304 of the
fractured clavicle 1s elevated from the fracture site incision
(F1G. 12).

A K-wire 306, ¢.g. a 1.4 mm K-wire, 15 drilled into the
canal of the lateral fragment 304 and advanced through the

dorsolateral cortex 308 and out through the skin (FIG. 13).
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A wire drniver 1s attached to the lateral portion of the
K-wire and used to back the wire out until it 1s lateral to the
fracture 310 (FIG. 14). Bone clamps are used at the incision
site to reduce the fracture and clamp the bone fragments 1n
position. Proper reduction 1s confirmed with AP and cephalic
radiographic views.

The K-wire 306 1s advanced until it 1s preferably at least
20 mm medial to the fracture (FIG. 15).

A first dilator 312, e.g. a 3.2 mm dilator, 1s placed over the
K-wire and advanced until 1t contacts the bone (FIGS.
16-17).

A second dilator 314, e.g. a 4.5 mm dilator, 1s placed over
the first dilator 312 and advanced until it contacts the bone
(F1G. 18).

A dnll guide 316 1s placed over the second dilator 314 and
advanced until 1t contacts the bone (FIG. 19).

The first dilator 312 1s removed and a {irst lateral drill 318,
corresponding to the minor diameter of the distal screw
threads, e.g. a 3.2 mum drill, 1s advanced over the K-wire mnto
the bone preferably at least 20 mm medial to the fracture.
A dnill depth mark readable adjacen‘[ the drill guide may be
noted as a reference for implant sizing (FIG. 20).

The K-wire 1s removed and replaced with a flexible guide
wire 320, e.g. a nitinol guide wire, sized to fit within the
screw cannulation, e.g. a 1.4 mm guide wire. The flexible
guide wire 320 1s advanced through the first lateral drill and
turther along the intramedullary canal of the medial bone
fragment and will curve to follow the intramedullary canal
to define a curved path in the bone. Preferably, the guide
wire 1s advanced approximately 30 mm medial to the tip of

the first lateral drill 318 (FIG. 21).

The first lateral drill 318 1s removed and a flexible shaft
reamer 322, corresponding to the minor diameter of the
distal screw threads, 1s guided over the flexible guide wire
320 to ream the medial portion of the curved path (FIG. 22)
The flexible reamer 322 and second dilator 314 are then
removed.

A second lateral drill 324, having a diameter correspond-
ing to the diameter of the mid-portion of the screw, e.g. a 4.5
mm drill, 1s guided over the tlexible guide wire to enlarge the
bone hole laterally to receive the mid-portion and proximal
portion of the screw 100. The second lateral drill 324 1s
advanced the same distance as the first lateral drill (FI1G. 23).
The dnlling step may be monitored in A/P and cephalic
views with the C-arm to avoid perforating the bone cortex as
the second lateral drill 324 1s advanced into the medial bone
fragment 326.

A flexible tap 328, having cutting threads corresponding
to the distal threads of the screw 100 1s guided over the
flexible guide wire to cut threads into the medial bone
fragment along the curved path (FIG. 24). The tap may serve
as a trial implant and provides tactile feedback regarding the
fit of the implant 1n the bone. If 1t 1s determined that a larger
screw 1s desirable, subsequent larger second drills may be
used to re-drill the lateral straight portion and subsequent
larger tlexible taps may be used to increase the distal thread
major diameter without having to re-ream the medial curved
portion of the bone hole. Once a desired level of thread
purchase and canal filling are achieved, a depth mark
readable adjacent the drill guide may be noted as a reference
for the required implant length. If a screw 100 with a
proximal threaded portion 1s used, a lateral tap may be used
to tap the lateral bone fragment to receive the proximal
threads.

The screw 100 1s attached to an inserter 330 and guided
over the flexible gumide wire until 1t 1s fully seated in the
prepared threads in the medial bone fragment (FIGS. 25 and
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26). Optionally, the screw 100 may be axially driven with a
mallet through the lateral bone fragment until just short of
the distal thread engagement. The screw 100 may then be
threaded 1nto full engagement with the prepared threads in
the medial fragment. Radiographic visualization may be
used to ensure that the fracture 1s fully reduced and ana-
tomically aligned 1n length and rotation.

If a proximally threaded screw has not been used, or if
additional fixation 1s otherwise desired, cross fixation may
be used. For example, a cross fixation guide 340 may be
engaged with the implant inserter 330 (FI1G. 27). The cross
fixation guide may include a knob 342 that threadingly
engages the implant mserter 330 and a cross fixation guide
sleeve 344 that abuts the lateral bone fragment adjacent the
bone hole entrance. Rotating the knob 342 moves the cross
fixation guide sleeve 344 and implant mserter 330 axially
relative to one another. With the cross fixation guide sleeve
344 abutting the lateral bone fragment 304, the implant
iserter, implant, and medial bone fragment 326 will be
drawn laterally and the lateral bone fragment 304 will be
pressed medially to apply compression across the fracture.

Inner and outer drill sleeves 346, 348 are advanced
through the guide 340 until they abut the bone (FIG. 28). In
the case of a screw such as the examples of FIGS. 36, 42, 44
and 46 having one or more preformed transverse bores, the
cross fixation guide may have one or more targeting holes
positioned to align with the one or more transverse bores. In
the case of a screw such as the example of FIG. 1 not having
preformed transverse bores, cross fixation may be mserted
directly through the screw 100 forming a transverse bore
intraoperatively.

For example, a cross fixation wire 350 may be guided
through the dnll sleeves, through the near cortex, through
the mid or proximal portions of the screw, and into the far
cortex of the lateral bone fragment (FIG. 29). If wire cross
fixation 1s adequate, the cross fixation guide may be
removed and the wire may be trimmed flush with the bone
surface.

However, 11 screw cross fixation 1s desired, a screw depth
gauge 352 may be placed over the cross fixation wire to
measure the projecting portion of the guide wire to deter-
mine the required screw length for bi-cortical fixation (FIG.
30).

A countersink tool 354 may be used to create a counter-
sink for a cross fixation bone screw 356 (FI1G. 31).

The appropriate length cross fixation screw 356 may then
be guided over the cross fixation wire 350 and seated 1nto the

bone (FIG. 32). These steps may be repeated to place
additional screws 11 desired.

FIGS. 33 and 34 illustrate the location of the screw 100
and cross fixation screws 356 relative to the lateral and
medial bone fragments.

FIG. 335 1llustrates the cross fixation screws 356 1n the
screw 100 without the bone to obscure the view. Preferably
the screw 100 1s made of a relatively soft material, e.g. a
polymer, that facilitates arbitrary placement of the cross
fixation screws at any desired location.

Various examples have been presented to aid in 1llustrat-
ing the mvention. These various examples are 1llustrative but
not comprehensive and variations may be made within the
scope of the invention. For example, the various features
described relative to each example may be interchanged
among the examples.

What 1s claimed 1s:
1. A bone screw for stabilizing bone fractures, the bone
SCrew comprising:
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a body defining a longitudinal axis extending between a
proximal end and a distal end;

an elongate proximal portion of the body comprising a
first material; and

an elongate distal portion of the body comprising a second
material different from the first material such that a
material composition of the body varies along a length
of the body, the elongate distal portion having an outer
surface defining a helical distal screw thread formed on
a threaded distal portion, wherein the threaded distal
portion 1s formed entirely of the second matenal, the
helical distal screw thread having a minor diameter and
a major diameter, wherein the second material has a
lower stifiness than the first material, and

wherein a part of the body that 1s proximal to the helical

distal screw thread has a diameter that 1s greater than
the minor diameter of the helical distal screw thread.

2. The bone screw of claim 1 further comprising a passage
formed through the elongate proximal portion transverse to
the longitudinal axis from a first opening on an outer surface
of the elongate proximal portion to a second opening on the
outer surface of the elongate proximal portion.

3. The bone screw of claim 1 wherein the body comprises
a sleeve surrounding a separate core, the sleeve and core
being joined together to form the body.

4. The bone screw of claim 3 wherein the helical distal
screw thread 1s formed on the sleeve.

5. The bone screw of claim 4 wherein the elongate
proximal portion comprises the core extending proximally
from the sleeve.

6. The bone screw of claim 4 wherein the sleeve com-
prises a polymeric material, the helical distal screw thread
being formed 1n the polymeric material of the helical distal
screw thread.

7. The bone screw of claim 6 wherein the core comprises
a metal.

8. The bone screw of claim 6 wherein the sleeve com-
prises a resorbable polymer.

9. The bone screw of claim 8 wherein the core comprises
a reinforced polymer.

10. The bone screw of claim 6 wherein the core comprises
a slip resisting feature formed on a surface of the core and
the sleeve 1s molded onto the core so that the polymeric
material and slip resisting feature interdigitate.

11. The bone screw of claim 6 wherein the polymeric
material comprises polyetheretherketone and the core com-
prises titanium.

12. The bone screw of claim 3 wherein the sleeve 1s
pinned to the core.

13. The bone screw of claim 3 wherein the sleeve 1s
threaded onto the core.

14. A bone screw for stabilizing bone fractures, the bone
SCrew comprising:

a body defining a longitudinal axis extending between a

proximal end and a distal end;

an elongate proximal portion of the body comprising a

first material; and

an elongate distal portion of the body comprising a second

material such that the elongate distal portion of the
body has a second bending stifiness less than half of a
first bending stiflness of the elongate proximal portion,
the elongate distal portion having an outer surface
defining a helical distal screw thread formed on a
threaded distal portion, wherein the threaded distal
portion 1s formed entirely of the second matenal, the
helical distal screw thread having a minor diameter and
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a major diameter, and wherein the helical distal screw
thread has a length, along the longitudinal axis, at least
twice 1ts minor diameter.

15. The bone screw of claim 14 further comprising a
passage formed through the elongate proximal portion trans-
verse to the longitudinal axis from a first opening on an outer
surface of the elongate proximal portion to a second opening
on the outer surface of the elongate proximal portion.

16. The bone screw of claim 14 wherein the body com-
prises a sleeve surrounding a separate core, the sleeve and
core being joined together to form the body.

17. The bone screw of claim 16, wherein
the core 1s formed of the first matenal;
the sleeve 1s formed of the second material;
the first material comprises titanium; and
the second material comprises polyetheretherketone.

18. The bone screw of claim 17, wherein the sleeve 1s
secured to the core via at least one selection from the group
consisting of:

a pin passing through aligned holes 1n the sleeve and the

core; and

sleeve threads of the sleeve that engage core threads of the

core.

19. A bone screw for stabilizing bone fractures, the bone
SCrew comprising:

a body defining a longitudinal axis extending between a

proximal end and a distal end;

an elongate proximal portion of the body comprising a

first material comprising a metal; and

an elongate distal portion of the body comprising a second

material comprising a polymer, the elongate distal
portion having an outer surface defining a helical distal
screw thread formed on a threaded distal portion,
wherein the threaded distal portion 1s formed entirely of
the second material, the helical distal screw thread
having a minor diameter and a major diameter;

10

15

20

25

30

35

16

wherein the first material 1s not present in the elongate
distal portion, or 1s present 1n the elongate distal portion
with a second thickness, perpendicular to the longitu-
dinal axis, that 1s less than a first thickness, perpen-
dicular to the longitudinal axis, of the first material
within the elongate proximal portion, and

wherein a part of the body that 1s proximal to the helical
distal screw thread has a diameter that 1s greater than
the minor diameter of the helical distal screw thread.

20. The bone screw of claim 19 wherein:

the body comprises a sleeve surrounding a separate core,
the sleeve and core being joined together to form the
body;

the core 1s formed of the first material;

the sleeve 1s formed of the second material;

the helical distal screw thread i1s formed on the sleeve; and

the elongate proximal portion comprises the core extend-
ing proximally from the sleeve.

21. A bone screw for stabilizing bone fractures, the bone

screw consisting essentially of:

a body defining a longitudinal axis extending between an
clongate proximal portion and an elongate distal por-
tion, the body comprising:

a core, formed of a metal, extending at least through the
clongate proximal portion; and

a sleeve, formed of a polymer, surrounding and immov-
ably joined to the core and extending through the
clongate proximal portion and the elongate distal
portion;
wherein:
the elongate distal portion comprises an outer surface
defining a helical distal screw thread; and

the elongate distal portion 1s sufliciently flexible to
bend 1n response to msertion of the distal end into a
curved portion of a hole in human bone.
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