US010146646B1

a2 United States Patent (10) Patent No.: US 10,146,646 B1

Foley et al. 45) Date of Patent: Dec. 4, 2018
(54) SYNCHRONIZING RAID CONFIGURATION GO6F 3/0604; GO6F 3/0614; GO6F
CHANGES ACROSS STORAGE 3/0617; GO6F 3/0622; GOG6F 3/0629;
PROCESSORS GO6F 3/0634; GO6F 3/0644; GO6F
3/0653; GO6F 3/0655; GO6F 3/0638;
(71) Applicant: EMC IP Holding Company LLC, o GOGE 3/0683

Hopkinton, MA (US) See application file for complete search history.

(56) References Cited

(72) Inventors: Robert P. Foley, Clinton, MA (US);
Peter Puhov, Shrewsbury, MA (US); U.5. PATENT DOCUMENTS
Socheavy Heng, Cranston, RI (US)

6,058,455 A * 572000 Islam GOGF 11/1096

S, - 710/10

(73) Assignee: EMC IP Holding Company LLC, 7.433,300 BL* 10/2008 Bennet ... GOG6F 11/2005
Hopkinton, MA (US) 370/216

7,640,451 B2 12/2009 Meyer et al.

(*) Notice: Subject to any disclaimer, the term of this 8,612,699 B2* 12/2013 Jaif woveveevroerrsonn GO6F 11/1088
patent 1s extended or adjusted under 35 711/159
U.S.C. 154(b) by 113 days. 8,832,369 B2* 9/2014 Zhang GOGF 3/(1?(1)3
711
(21) Appl. No.: 15/498,847 9,304,699 Bl 4/2016 Goudreau et al.
(Continued)
(22) Filed: Apr. 27, 2017 Primary Examiner — Bryce P Bonzo
Assistant Examiner — Anthony J Amoroso
(51) Int. Cl. (74) Attorney, Agent, or Firm — BainwoodHuang
GO6F 11/00 (2006.01)
GOGF 11/16 (2006.01) (57) ABSTRACT
GO6F 11,20 (2006.01) A technique for maintaining RAID (redundant array of
GO6F 3/06 (2006.01) independent disks) configuration metadata across multiple
(52) U.S. CL. SPs (storage processors) includes receiving a change request
CPC GOG6F 11/1662 (2013.01); GO6F 3/0619 by a controller within a first SP, writing, by the first SP, a

(2013.01); GOGF 3/0665 (2013.01); GOG6F RAID configuration change described by the change request
3/0689 (2013.01); GO6F 11/2094 (2013.01); to a persistent intent log, and informing a second SP that the

GOGF 2201/80 (2013.01); GOGF 2201/85 intent log has been wrtten. The second SP, upon being
(2013.01) informed of the write to the intent log, reads the RAID

(58) Field of Classification Search configuration change from the intent log and writes the

CPC oo GOGE 11/1662: GO6F 11/2094: GogF ~ RAID configuration change to a persistent configuration
11/1658: GOGF 11/1675; GOGF 11/2089: database. In this manner, the first SP and the second SP both

GOGF 11/2092: GO6F 11/3003: GOGE receive the RAID configuration change and thus are both
11/3034: GOGF li 13051 GOGF 1{ 13055 equipped to service reads and writes directed to a aflected

GO6F 2201/80; GOGF 2201/85; GoeF ~ RAlD storage.

3/0619; GO6F 3/0665; GO6F 3/0689; 20 Claims, 7 Drawing Sheets
SP 120a SP 1200
Change Changa
Raquest Reply
202 {1 10
204-1{])1 { }T Start {2) EEDGE§ Start (3)
cu£|er ﬁgi “ Gcﬂlar
/ (23)
A B {3a) A B
et | BB HR | Gt
“220a e L2 JHA | Tz
u Ba) | HH
Log Local | Committe [HH {7a) [Commit to
(2) OB (9) - {Eta}__ - DB (8}
In-Memory In-Memory
Intert Log Intent Log
230a Log 230b
Local

Write to Read From
Log {4} Log (5)

Write to
DB {7)

FPersistent
Intent Log

170

Persistent
Config DB

180

US 10,146,646 B1
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

9,330,103 Bl
9,380,114 Bl
2011/0320865 Al

R

2012/0054441 Al*
2012/0110262 Al*

2017/0269857 Al*

* cited by examiner

5/2016
6/2016
12/2011

3/2012

5/2012

9/2017

Bono et al.
Holt et al.
Jain

#####################
iiiiiiiii

ttttttttttttttttttt

tttttttttttttttttt

GOO6F 11/1088

714/6.22
GOO6F 11/1441

711/124
GOoF 3/0607

711/114
GOo6F 3/0619

U.S. Patent Dec. 4, 2018 Sheet 1 of 7 US 10,146,646 B1

HOS‘; o

= =

Network
114

Sft}fééé'lﬁfocessor (SP) Storage Processor (SP) 120b

)
Comm Interface(s) 122b
Proc Unit(s) 124b

Comm Interface(s) 12
Proc Unit{s) 124a

1203
o

Memory 130a Memory 130b

RAID RAID
Metadata Metadata
State State
Machine Machine

1402 140b

{age 150
1024
164

|
L0
U0

|

FIG. 1

Prsistent Config ” '

U.S. Patent Dec. 4, 2018 Sheet 2 of 7 US 10,146,646 B1

SP 120a SP 120b

Change Change
Reqguest Reply

202 (1) (10) 260b
204~L] Start (2) 250b Start (3)
Controiler 'I 2o0a Controlier
2103 2608 210b
T 28
A B A B
In-Memory In-Memory
Config DB Config DB
220a 220D
L.og Local | Commit to Commit to
(2) DB (9) DB (8)
In-Memory In-Memory
Intent Log Intent Log
2303 Log 230b
Write to Kead From Write {0
l.og (4) Log (9) DB (7)
Persistent
intent Log
170
Persistent
ConfigDB | FIG. 2

180

U.S. Patent Dec. 4, 2018 Sheet 3 of 7 US 10,146,646 B1

Change
Request 202

(1)

310

Start local: Commit local
log local (9) and reply
(2) (10) FIG. 3A

320 Walt for
peer {o
Write Log 170 C"g‘m‘t
Start
Notification
(2a)
Start Local (3)
340 Walt for 350

peer {o write
log 170
(4a)

FIG. 3B

Log local (6); write to DB
(7); commit to DB (8);
send notification (8a)

U.S. Patent Dec. 4, 2018 Sheet 4 of 7 US 10,146,646 B1

SP 120z

Change Change
Request Repiy

202 (1 4
22 Y stant 2) o S
Controller 'I 250a Controlig .
2102 260a \ 210k
A B 2a A B '
In-Memory " 3 Memory
Config DB m Cjonfig DB
220a 4a X
Log Local | Commit to
(2) DB (6')
In-Memory in-Memory
intent Log Intent Log
2303 230b
Peer
~ Down 410
Write to
Log (4)
Write }G Persistent
DB (5) intent Log

70 FIG. 4

Persistent
Config DB
180

U.S. Patent Dec. 4, 2018 Sheet 5 of 7 US 10,146,646 B1

Change

260b Reply
250b (9)

250a Controller II

Start

N

)
ontroller A
103 ‘

Start (3)

v A B 2a A B
In-Memngg (3a in-Memory
Config DE | 1 Config DB
, 1a) 220b
. Cmmit to
DB (8)
in-Memory In-Memory
Intent Log intent Log
2302 Log 230b
| ocal
(6)
Peer Down
210
Write {0 Read From
L.og (4) l.og (5)

Write to
Persistent DB (7)
Intent Log
170
FIG. 5

Persistent
Config DB

180

U.S. Patent

Dec. 4, 2018

. ontmtie{ ‘

in-Memory
intent Log
2302

Write to
l.og (4)

Sheet 6 of 7

A B
2a)
3a)
L.og

L.ocal
(2”!)

Read From
Log (1 Hi)

Persistent
intent Log
170

Persistent

Config DB
180

US 10,146,646 B1

Start (3)

Controlier ll
210b

m.-Me'm.{:)ry
Config DB

220b

Commit to
DB (31”)

In-Memory

Intent Log
230D

Write 1o
DB (4™)

FIG. 6

U.S. Patent

710

(20

730

740

Dec. 4, 2018 Sheet 7 of 7

Receive, by a first controller running on
the first SP, a change request to make a

change in RAID configuration metadata
describing the RAID storage

In response to receiving the change
request, (1) write, by the first SP, a
configuration-change record to a
persistent intent log, the configuration-
change record describing the requested
change in RAID configuration metadata,
and (i) inform, by the first SP, a second
controller running on the second SP that
the configuration-change record has been
written

Read, by the second SP, the
configuration-change record from the
persistent intent log

Write, by the second SP, the
configuration-change record as read from
the persistent intent log to a persistent
configuration database, the persistent
intent log and the persistent configuration

database each stored externally to the first
SP and the second SP

US 10,146,646 B1

700

750

FIG. 7

US 10,146,646 Bl

1

SYNCHRONIZING RAID CONFIGURATION
CHANGES ACROSS STORAGE
PROCESSORS

BACKGROUND

Data storage systems are arrangements of hardware and
soltware that include storage processors coupled to arrays of
non-volatile storage devices, such as magnetic disk drives,
clectronic flash drives, and/or optical drives, for example.
The storage processors service storage requests, arriving
from host machines (*hosts), which specily files or other
data elements to be written, read, created, deleted, and so
forth. Software running on the storage processors manages
incoming storage requests and performs various data pro-
cessing tasks to organize and secure the data elements stored
on the non-volatile storage devices.

Data storage systems commonly arrange non-volatile
storage devices according to RAID protocols. As 1s known,
RAID (redundant array of independent disks) 1s a technique
for storing data redundantly across multiple disk drives
through the use of mirroring and/or parity. RAID systems
commonly arrange disk drives in RAID groups, and RAID
control software automatically translates writes directed to
RAID groups to redundant writes across multiple disk
drives.

A storage processor 1n a data storage system may store
configuration data for a particular RAID group. If a RAID
group changes, €.g., as a result ol swapping out a failed disk
drive for a spare, the storage processor updates 1ts configu-
ration data to reflect the presence of the spare, thus ensuring,
that the storage processor directs reads and writes to proper
disk drives going forward.

SUMMARY

Data storage systems commonly 1include multiple storage
processors (SPs) configured in so-called “active-passive”™
arrangements, 1 which particular SPs are designated as
owners of respective RAID groups. When a host 1ssues an
IO (anput/output) request to access data, the SP receiving the
10 request may check whether 1t 1s the owner of a target
RAID group where the data are stored. I so, the receiving
SP processes the 10 request by itseltf, mapping the 10 request
to the particular disk drives 1n the target RAID group and
performing the requested read or write. I not, the SP may
torward the 10 request to another SP, which the data storage
system has designated as the owner of the target RAID
group. The other SP then processes the 10 request to read or
write the specified data.

Some data storage systems support so-called “active-
active” arrangements, in which multiple SPs can process 10
requests directed to particular RAID groups. In such
arrangements, 1t 1s possible for RAID configuration data to
get out of sync between different storage processors. For
example, one SP may receive updated RAID configuration
data while another SP does not. Thus, a need arises to
maintain consistency in configuration data across different
SPs 1n an active-active arrangement.

In contrast with prior approaches, an improved technique
for maintaining RAID configuration metadata across mul-
tiple SPs includes receiving a change request by a controller
within a first SP, writing, by the first SP, a RAID configu-
ration change described by the change request to a persistent
intent log, and mnforming a second SP that the intent log has
been written. The second SP, upon being informed of the
write to the intent log, reads the RAID configuration change

10

15

20

25

30

35

40

45

50

55

60

65

2

from the intent log and writes the RAID configuration
change to a persistent configuration database. In this manner,
the first SP and the second SP both receive the RAID
configuration change and thus are both equipped to service
reads and writes directed to affected RAID storage. Further,
the data storage system stores the RAID configuration
change in the persistent configuration database, such that the
information 1s maintained even in the event of a power loss
Or system errofr.

In some examples, the data storage system stores the
persistent configuration database i a distributed manner
across multiple disk drives in the RAID storage. As the
amount of RAID configuration metadata scales 1in proportion
to the number of disk drives in the RAID system, such
distributed storage keeps the amount of RAID configuration
metadata stored on each disk drive approximately constant.

Certain embodiments are directed to a method of main-
taining configuration data describing RAID storage across
first and second SPs coupled to the RAID storage. The
method includes receiving, by a first controller running on
the first SP, a change request to make a change in RAID
configuration metadata describing the RAID storage. In
response to receiving the change request, the method further
includes (1) writing, by the first SP, a configuration-change
record to a persistent intent log, the configuration-change
record describing the requested change in RAID configura-
tion metadata, and (11) mforming, by the first SP, a second
controller running on the second SP that the configuration-
change record has been written. The method still further
includes reading, by the second SP, the configuration-change
record from the persistent intent log and writing, by the
second SP, the configuration-change record as read from the
persistent intent log to a persistent configuration database.
The persistent mtent log and the persistent configuration
database are each stored externally to the first SP and the
second SP.

Other embodiments are directed to a data storage system
constructed and arranged to perform a method of maintain-
ing configuration data describing RAID storage. Still other
embodiments are directed to a computer program product.
The computer program product stores instructions which,
when executed on control circuitry of a data storage system,
cause the data storage system to perform a method of
maintaining configuration data describing RAID storage.

The foregoing summary 1s presented for illustrative pur-
poses to assist the reader in readily grasping example
teatures presented herein; however, the foregoing summary
1s not intended to set forth required elements or to limait
embodiments hereof in any way. One should appreciate that
the above-described features can be combined 1n any man-
ner that makes technological sense, and that all such com-
binations are intended to be disclosed herein, regardless of
whether such combinations are i1dentified explicitly or not.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The foregoing and other features and advantages will be
apparent from the {following description of particular
embodiments of the invention, as illustrated in the accom-
panying drawings, 1n which like reference characters refer to
the same or similar parts throughout the different views.

FIG. 1 1s a block diagram of an example environment 1n
which embodiments of the improved technique hereof can
be practiced.

US 10,146,646 Bl

3

FIG. 2 1s a block diagram showing an example arrange-
ment for synchronmizing changes in RAID configuration

metadata across two storage processors.

FIGS. 3A and 3B are state transition diagrams showing
example state transitions of a {first storage processor that
receives a request to change RAID configuration metadata
(FIG. 3A) and a second storage processor that 1s synchro-
nized with the first storage processor (FIG. 3B).

FIG. 4 1s a block diagram showing an example fault
scenario 1n which the second storage processor fails while
synchronization 1S 1n progress.

FIG. 5 1s a block diagram showing another example fault
scenario 1n which the first storage processor fails while
synchronization 1s in progress.

FIG. 6 1s a block diagram showing yet another example
fault scenario 1n which both the first storage processor and
the second storage processor fail while synchronization 1s in
Progress.

FIG. 7 1s a flow chart showing an example method of
maintaining RAID configuration metadata across multiple
storage processors.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

Embodiments of the invention will now be described. It
should be appreciated that such embodiments are provided
by way of example to illustrate certain features and prin-
ciples of the invention but that the mmvention hereof 1s not
limited to the particular embodiments described.

An improved technique for maintaiming consistent RAID
configuration metadata across multiple SPs 1n an active-
active arrangement includes receiving a change request by a
controller within a first SP, writing a specified RAID con-
figuration change to a persistent intent log, and informing a
second SP that the intent log has been written. The second
SP, upon being informed of the write to the intent log, reads
the RAID configuration change from the intent log and
writes 1t to a persistent configuration database.

FIG. 1 shows an example environment 100 in which
embodiments of the mmproved technique hereof can be
practiced. Here, multiple host computing devices (“hosts™)
110 connect to a data storage system 116 over a network 114.
The data storage system 116 1includes multiple storage
processors (SPs) 120, such as a first SP 120aq and a second
SP 1205, and persistent storage 150. The persistent storage
150 includes multiple disk drives 160, such as magnetic disk
drives, electronic flash drives, optical drives, and the like. As
used herein, the terms “disk drives,” “disks.” and “drives”
may be used interchangeably to describe persistent storage
devices, regardless of whether such devices include any
physical disk or any physical drive mechanism.

Some or all of the disk drives 160 are arranged according
to RAID protocols, e.g., as RAID groups, as part of a
tully-mapped RAID system, and/or as other RAID configu-
rations. Each disk drive 160 has a logical block address
(LBA) range, which may be divided 1nto regions. In some
examples, a first region 162 1s reserved for system metadata
and a second range 164 1s reserved for host data. The system
metadata may include contents of a persistent intent log 170
and contents of a persistent configuration database 180. The
depicted persistent intent log 170 and persistent configura-
tion database 180 are thus logical structures whose physical
data are stored in a distributed manner within the regions
162. For example, each region 162 may store a portion of the
persistent mtent log 170 and/or a portion of the persistent
configuration database 180. The regions 162 may store

10

15

20

25

30

35

40

45

50

55

60

65

4

multiple copies of each such portion across diflerent disk
drives, e.g., to provide redundancy and fault tolerance. In
some examples, the regions 162 fall outside the scope of
RAID protocols that apply to host data 1n regions 164. For
example, the data storage system 116 may manage redun-

dant storage of system metadata 1n regions 162 via separate
means.

The SPs 120a and 1205 may be provided as circuit board
assemblies, or “blades,” which plug into a chassis that
encloses and cools the SPs. The chassis has a backplane for
interconnecting the SPs, and additional connections may be
made among SPs using cables. No particular hardware
configuration 1s required, however, as the SPs 120a and
1206 may be any type ol computing device capable of
processing host 10s. Although two SPs 120a and 12056 are
shown, the data storage system 116 may include a greater
number of SPs, e¢.g., 1n a clustered arrangement.

The network 114 may be any type of network or combi-
nation of networks, such as a storage area network (SAN),
a local area network (LLAN), a wide area network (WAN),
the Internet, and/or some other type of network or combi-
nation ol networks, for example. The hosts 110 may connect
to the SP 120 using various technologies, such as Fibre
Channel, 1SCSI, NFS, and CIFS, for example. Any number
of hosts 110 may be provided, using any of the above
protocols, some subset thereol, or other protocols besides
those shown. As 1s known, Fibre Channel and 1SCSI are
block-based protocols, whereas NFS and CIFS are file-based
protocols. The SP 120 1s configured to receive 10 requests
112 according to block-based and/or file-based protocols and
to respond to such 10 requests 112 by reading or writing the
storage 150.

Each of the SPs 120a and 12056 1s seen to include one or
more communication interfaces 122a or 1225, a set of
processing units 124a or 1225, and memory 130q or 1305.
The communication intertaces 122a and 12254 each include,
for example, SCSI target adapters and network interface
adapters for converting electronic and/or optical signals
received over the network 114 to electronic form for use by
the respective SP 120. The sets of processing units 124a and
1245 each include one or more processing chips and/or
assemblies. In a particular example, each set of processing
units 124a and 1245 includes numerous multi-core CPUSs.
Each memory 130a and 1306 may include both volatile
memory, €.g., random access memory (RAM), and non-
volatile memory, such as one or more read-only memories
(ROMs), disk drives, solid state drives, and the like. Each set
of processing units 124a or 1245 and respective memory
130a or 1306 form respective control circuitry, which 1s
constructed and arranged to carry out various methods and
functions as described herein. Also, memories 130a and
13056 each include a variety of software constructs realized
in the form of executable 1nstructions. When the executable
instructions are run by the respective set of processing units,
the set of processing units 1s caused to carry out the
operations of the software constructs. Although certain sofit-
ware constructs are specifically shown and described, 1t 1s
understood that memories 130a and 1306 typically each
include many other software constructs, which are not
shown, such as an operating system, various applications,
processes, and daemons.

As further shown 1n FIG. 1, memory 130q “includes,” 1.e.,
realizes by execution of software instructions, a RAID
metadata state machine 140q. Likewise, memory 1305
includes a RAID metadata state machine 14056. These state
machines 140q and 1405 operate 1n close coordination to
maintain consistent RAID configuration metadata across the

US 10,146,646 Bl

S

two SPs 120a and 12054. For example, any change in RAID
configuration mitiated by one SP 1s promptly synchronized
with the other SP, such that both SPs have the same
metadata. In this manner, each of the SPs 120a and 1205 1s
able to respond properly to 10 requests 112 from hosts 110
to eflect reads and writes to underlying RAID storage. For
example, each SP 120 has the RAID configuration metadata
needed to map reads and writes to correct disk drives 160 in
storage 130.

In an example, the RAID configuration metadata includes
information about disk drives 160, particular extents within
disk drives, and plans for arranging extents into RAID
groups. Included among the RAID configuration metadata 1s
identifier mapping information for particular disk drives
160. For example, each disk drive may have a globally
unique 1dentifier (GUID) as well as a system-assigned drive
ID, which 1s unique within the data storage system 116 but
not necessarily globally. The data storage system 116 assigns
cach drive ID as a short name or alias. Each GUID may be
a 128-bit number, for example, whereas the corresponding
drive ID may be only a few bits 1 length. Plans for
arranging extents into RAID groups typically identify disk
drives by drive IDs rather than GUIDs, owing to their more
compact nature. The data storage system 116 typically
assigns device IDs on startup, e.g., by discovering available
disks and assigning a disk ID to each. In some examples, the
data storage system 116 also assigns GUIDs to disk drives,
¢.g., based on one or more uniquely 1dentifying or descrip-
tive features, such as serial number, model number, capacity,
and the like.

Changes 1n RAID configuration metadata may arise for
many reasons. For instance, the data storage system 116 may
replace a failing or unreliable disk drive with a spare, with
the replacement requiring updates to one or more plans to
reflect changes 1n RAID group membership. The data stor-
age system 116 may also move disk drives between storage
tiers. For example, a flash drive approaching 1its endurance
limit may be moved from a tier of very active storage to a
tier of less-active storage involving fewer writes per day.
Moving the disk drive may entail changes to various plans
stored 1n the RAID configuration metadata. Also, new disk
drives may be added to a system, requiring new 1dentifiers
to be created and plans to be updated accordingly.

FIG. 2 shows example features of SP 120 and SP 1205
in further detail. Here, controller 210a on SP 120a and
controller 2105 on SP 1206 implement state machines 140a
and 1405, respectively. The controller 210a on SP 120a 1s
configured to access mm-memory configuration database
220a and in-memory intent log 2304 to support operation of
the state machine 140a. Likewise, controller 21056 on SP
1205 1s configured to access mm-memory configuration data-
base 2206 and 1n-memory ntent log 2305 to support opera-
tion of the state machine 1405. Flags 250a 1n SP 1204 store
state information of state machine 140q, ¢.g., with each tlag
designating completion of a respective action by state
machine 140q. Flags 25056 on SP 1206 are configured to
store a mirror image of flags 250q. In a stmilar manner, flags
2600 1n SP 12056 store state information of state machine
1406, e.g., with each flag designating completion of a
respective action by state machine 14056. Flags 260a in SP
120a are configured to store a mirror image of tlags 2605b.
The 1llustrated constructs 210a, 220a, 2304, 250a, and 2604
all reside within the memory 130a of SP 120a. Likewise, the
illustrated constructs 21056, 22056, 23056, 25056, and 2605 all
reside within the memory 13056 of SP 1205.

The numbered acts shown in parentheses depict an
example sequence of operation. At (1), controller 210a in SP

5

10

15

20

25

30

35

40

45

50

55

60

65

6

120a receives a change request 202 to update RAID con-
figuration metadata as specified 1n a configuration-change
record 204. The change request 202 may arrive from a client
operating within SP 120a or from an external client, such as
a host or administrator. In an example, the configuration-
change record 204 designates a desired metadata state that
reflects the requested configuration change, 1.e., the meta-
data that should be 1n place after the configuration change 1s
implemented to properly retlect a new configuration.

At (2), the controller 210q starts the state machine 140aq.
This act may include starting one or more software threads,
initializing variables, instantiating software objects, and so
forth, to support operation of state machine 140q. Also at
(2), the controller 210a writes the configuration-change
record 204 to the in-memory mtent log 230a.

At (2a), under direction of controller 210a, SP 120q
notifies SP 1205 that the state machine 140a has been
started. For example, controller 210q sets a flag (one of tlags
250a), which 1s designated to indicate completion of the start
operation at (2), and SP 120q sends tlags 250a to SP 1205.
SP 1206 receives the tlags 250a, and controller 2106 on SP
1206 detects that controller 140a has completed the start
operation at (2). As controller 2105 receives all tlags 250aq,
controller 2105 can detect the precise progress of controller
210a. For example, one flag may be set to indicate comple-
tion of act (2) but other flags may be reset, indicating that the
respective acts have yet to be completed (flags may be
implemented as individual bits). In some examples, SP 120q
sends both sets of tlags 250a and 260a at (2a). Controller
2105 may thus raise an error 1if flags 260a as received from
SP 120q differ from flags 2605 as stored locally.

At (3), controller 2105 on SP 1205 starts the state machine
1405, such as by starting threads, instantiating objects, etc.,
¢.g., 1n the same manner as described above for SP 120a.

At (3a), under direction of controller 2105, SP 1205
notifies SP 120a that the state machine 1405 has been
started. For example, controller 2105 sets one of the flags
260 designated to indicate completion of the start operation
at (3), and SP 1206 sends the flags 2606 to SP 120aq.
Controller 210a, which has been waiting for the notification
at (3a), recerves the flags 2605 (or both sets of tlags 2505
and 2605).

At (4), under direction of controller 210a, SP 120a writes
the configuration-change record 204 to the persistent intent
log 170, 1.¢., the persistent version of the mtent log kept 1n
storage 150. In some examples, this act (4) involves writing
the configuration-change record 204 to regions 162 on
multiple disk drives 160 (FIG. 1), e.g., to ensure redundancy
in the event of a disk drive failure.

At (4a), under direction of controller 210a, SP 120q
notifies SP 1206 that the configuration-change record 204
has been written to the persistent intent log 170, 1.¢., that the
act (4) has been completed. In an example, act (4a) involves
setting another one of the tlags 250a and sending the tlags
250a (and optionally 260a) to SP 120b.

At (85), controller 2105, which had been waiting for
notification (4a), directs SP 12056 to read the newly-written
configuration-change record 204 from the persistent intent
log 170. Optionally, the controller 2106 informs SP 120a of
this act at (3a), e.g., by setting another of the flags 2606 and
sending the flags 2606 to SP 1204. This act may be regarded
as optional because controller 210a on SP 1204 1s typically
not waiting for this act (8) to occur. Rather, controller 210a
1s prelerably waiting for a notification of more complete
progress, which comes later.

At (6), controller 2105 writes the configuration-change
record 204 as read at (5) to the in-memory intent log 2305.

US 10,146,646 Bl

7

Optionally, controller 2105 informs SP 120a of this act at
(6a), e.g., iIn a manner similar to that described above.

At (7), controller 2105 directs SP 1206 to write the

configuration-change record 204 as read at (5) to the per-
sistent configuration database 180, 1.¢., the persistent version
kept 1n storage 150. In some examples, this act (7) involves
writing the configuration-change record 204 to regions 162
on multiple disk drives 160 to ensure redundancy. The

controller 21056 may inform SP 120a of this act at (7a).

At (8), controller 2106 writes the configuration-change
record 204 as stored in the in-memory intent log 2305 to the
in-memory configuration database 2205, thus committing

the transaction locally on SP 1205.
At (8a), the controller 2105 directs SP 12056 to inform SP

120a that the transaction at (8) 1s complete, e.g., by setting
a tlag designated for this purpose and sending the flags 250a
and 260a to the SP 120a. In an example, the act at (8a)
provides controller 210a on SP 120a the notification for

which 1t has been waiting.

At (9), controller 210a, having recerved the notification at
(8a), writes the configuration-change record 204 as stored 1n
the m-memory intent log 230q to the in-memory configu-
ration database 220q, thus committing the transaction
locally on SP 120a.

At (10), controller 210a 1ssues a reply to the change
request 202 received at (1), indicating that the requested
metadata change has been completed successfully. I any
errors occurred during the above-described acts, controller
210a might mstead reply with an unsuccesstul result at (10).

In the manner described, both SPs 120aq and SP 1205 write
the configuration-change record 204 to their respective local
in-memory configuration databases 230a and 23056 before
the change request 202 1s acknowledged at (10). Thus, each
SP 1s prepared to receive and correctly process 10 requests
112, 1.e., by mapping read and write requests to correct disk
drives 160 1n storage 150. Also, the 1llustrated arrangement
ensures that the persistent configuration database 180 con-
tains the configuration-change record 204 prior to acknowl-
edging the request at (10). Thus, not only are the SPs 120a
and 1206 consistent with each other, but also they are
consistent with the persistent version in storage 150.

Although the roles of SP 120a and SP 1205 are not
symmetrical in the example above, one should appreciate
that either SP 120a or SP 1206 may play either role. For
example, 1t SP 1205 were to receive a change request 202
istead of SP 120aq, SP 1206 would perform the acts as
described above for SP 120a. Likewise, SP 120a would
perform the acts as described above for SP 12056. Thus, the
roles of the SPs 120 are interchangeable, depending on
which SP receives the change request 202.

Also, although the illustrated arrangement involves two
SPs 120, the same principles may be extended to any
number of SPs greater than two. For example, to synchro-
nize N SPs 120 (N>2), each SP includes 1ts own controller,
in-memory configuration database, and m-memory intent
log. The first SP, which receives the change request 202,
behaves similarly to SP 120a as described above, and the
Nth SP behaves similarly to SP 1206. The second through
(N-1)th SP perform acts similar to those of the second SP
1205, reading the persistent intent log 170 and writing to the
in-memory intent log. Only the Nth SP writes the persistent
device map 180. Each of the second through (N-1)th SP
waits for notification (similar to 8a) of completion from the
next SP before writing to 1ts own in-memory configuration
database and then acknowledging the previous SP. Once the
first SP receives acknowledgement from the second SP, the

10

15

20

25

30

35

40

45

50

55

60

65

8

first SP can acknowledge the change request 202 back to the
requestor at (10), completing the update.

FIGS. 3A and 3B show example state transitions that the
controllers 210aq and 21056 may implement on SP 120a and
SP 120b6. Each diagram shows respective states (encircled)
and respective acts (connecting lines) that trigger transitions
from one state to another.

The state transitions of FIG. 3A describe those of a
controller that recerves a change request 202, which 1n the
case of FIG. 2 1s the controller 210a. Here, the controller
210a itially assumes an 1dle state 310 in which 1t 1s waiting
for an event to occur. Upon the receipt of change request 202
at the act (1), the controller 210a pertforms the acts shown by
the line connecting state 310 to state 320. For example, the
controller 210a performs the act (2) of starting the state
machine 140q, initializing variables, etc. The controller also
writes the configuration-change record 204 to the local
in-memory intent log 230a.

Once the controller 210a has finished performing these
acts, the controller 210a assumes state 320, 1n which 1t waits
for notification that the state machine 1405 on SP 1205 has
started. Such notification arrives during the act (3a) (e.g., via
flags 2605). Upon receiving the notification from act (3a),
the controller 210a performs the act shown by the line
connecting state 320 to state 330, 1.¢., the act (4) of writing
the configuration-change record 202 to the persistent intent
log 170.

Once the write 1s complete, the controller 210a assumes
state 330, whereupon the controller 210a waits for a noti-
fication that the controller 2105 on SP 1205 has commatted
the transaction, at act (8), by writing the configuration-
change record 202 to 1its local in-memory configuration
database 220b. Such notification arrives at act (8a) (e.g., via
the flags 2605). Upon receiving the notification at act (8a),
the controller 210a performs the acts indicated by the arrow
connecting state 330 back to state 310. These acts 1include
the act (9) of commuitting the configuration-change record
202 to 1ts local in-memory configuration database 220a and
replying to the change request 202, at act (10). The control-
ler 210qa then again assumes the 1dle state 310, where it may

wait to receive another change request 202.

FIG. 3B shows state transitions that are complementary to
those of FIG. 3A. During 1dle state 340, the controller not
receiving the change request 202, such as controller 2106 1n
FIG. 2, receives a start notification as a result of act (2a). In
response, controller 2105 performs act (3), e.g., by starting
state machine 1405, initializing variables, etc., and transi-
tions to state 350, whereupon the controller 2105 waits for
a notification that SP 120q has written to the persistent intent
log 170. Upon receiving notification (8a), the controller
2106 proceeds to write the configuration-change record 202
to the local in-memory intent log 2306 (6), write the
configuration-change record 202 to the persistent configu-
ration database 160 (7), commit the configuration-change
record 202 to the local in-memory configuration database
2206 (8), and send notification (8a). The controller 2105
then transitions back to the i1dle state 340, where 1t may wait
to recerve another start notification.

Each SP 120 1s preferably programmed to operate accord-
ing to the state transitions shown in both FIG. 3A and FIG.
3B. Thus, each SP 120 may play the role of responding to
change requests 202, as i FIG. 3A, as well as the role of
responding to start notifications (2a), as 1 FIG. 3B.

The synchronization techmique as described 1n connection
with FIGS. 1-3 1s tolerant to various faults. Such tolerance

US 10,146,646 Bl

9

to faults enables the data storage system to recover from the
loss of one SP of both SPs, without loss of RAID configu-
ration data.

FIG. 4 shows an example scenario in which SP 1205
experiences a fault, such as a loss of power or a system
panic, which renders SP 12056 inoperative. Here, the fault
occurs when the controller 210a in SP 120q i1s 1n state 330
(FIG. 3A), 1.e., sometime after SP 120 has written the
configuration-change record 202 to the persistent intent log
170 at (4) and notified SP 12056 at (4a).

While the controller 2104 1s waiting 1n state 330, SP 120a
receives a peer down notification 410, which indicates that
SP 12056 1s not operating. Rather than stopping or failing the
change request 202, controller 210a 1nstead proceeds, at act
(5'), to direct SP 120a to write the configuration-change
record 202 to the persistent configuration database 180 by
itself. At (6'), the controller 210a commaits the transaction
locally by writing the configuration-change record 202 to 1ts
in-memory configuration database 220a. At (7'), the con-
troller 210a acknowledges completion of change request
202. SP 120aq 1s thus able to complete the update even when
SP 12056 1s down.

Similar acts may be performed if SP 12056 goes down
while controller 2104 1s 1n state 320. Here, controller 210a
on SP 120a receives the peer down notification 410 and
proceeds to perform act (4), by writing to the persistent
intent log 170. The controller 210q then performs acts (5'),
(6'), and (7') as described above.

FIG. 5 shows an example scenario in which SP 120aq
experiences a fault that renders 1t inoperative. For this
example, 1t 1s assumed that the fault occurs after the con-
troller 2105 has received a notification (4a) that the SP 1204
has written the configuration-change record 202 to the
persistent intent log 170, but before the update 1s completed.
In this scenario, controller 2105 proceeds as usual to per-
form acts (5), (6), (7), and (8). But rather than providing a
notification (8a) to SP 120a, controller 21056 1nstead issues
a change reply at (9"), 1.e., a response to the change request
202 recerved at (1). In thus manner, SP 1206 1s able to
complete the update even when SP 120a 1s down. One
should appreciate that 1ssuing the change reply at (9") may
be omitted 1n some examples. For imstance, 1f the change
request at (1) onginated from within SP 120aq itself, no
change reply may be sent, as SP 120« 1s not able to receive
it. In this arrangement, SP 12056 merely acts to write the
configuration-change record 202, which had been placed 1n
the persistent mtent log 170 by SP 1204, to the persistent
configuration database 180.

In the case of a fault on either SP 120a or SP 1205, the
faulted SP can refresh 1ts own in-memory configuration
database 220a or 22056 upon rebooting. For example, the
rebooted SP reads the persistent configuration database 180
and copies relevant contents 1nto 1ts own 1n-memory con-
figuration database 220a or 22056. Thus, failure of an SP does
not prevent that SP from receiving current RAID configu-
ration metadata once the SP reboots.

FIG. 6 shows yet another fault scenario. Here, both SPs
120a and 1205 become 1noperative sometime after an update
has started, such as when the controller 210a on SP 120a 1s
in state 330. The update can still proceed as long as the
configuration-change record 202 has been written to the
persistent intent log 170. The first SP to reboot (SP 12056 in
this example) reads the persistent intent log 170 at (1'),
writes any pending transactions at (2'") to the local in-
memory intent log 23056, writes the transactions at (3™) to
the m-memory configuration database 22056, and syncs the
contents at (4'") to the persistent device map 180. SP 120qa

10

15

20

25

30

35

40

45

50

55

60

65

10

may perform similar acts when 1t reboots, although no
pending transactions will typically remain in the persistent
intent log 170.

FIG. 7 shows an example method 700 that may be carried
out 1n connection with the environment 100. The method
700 1s typically performed, for example, by the software
constructs described in connection with FIGS. 1 and 2,
which reside 1n the memories 130aq and 1305 of the storage
processors 120aq and 1206 and are run by the sets of
processing units 124a and 1245. The various acts of method
700 may be ordered in any suitable way. Accordingly,
embodiments may be constructed in which acts are per-
formed 1n orders different from that 1llustrated, which may
include performing some acts simultaneously.

At 710, a first controller 210a running on the first SP 120q
receives a change request 202 to make a change in RAID
configuration metadata describing the RAID storage 150.

At 720, 1n response to receiving the change request 202,
the method 700 further includes (1) writing, by the first SP
120a, a configuration-change record 204 to a persistent
intent log 170, the configuration-change record 204 describ-
ing the requested change 1n RAID configuration metadata,
and (11) informing, by the first SP 1204, a second controller
2106 running on the second SP 1205 that the configuration-
change record 204 has been written.

At 730, the second SP 1206 reads the configuration-
change record 204 from the persistent intent log 170.

At 740, the second SP 1206 writes the configuration-
change record 204 as read from the persistent intent log 170
to the persistent configuration database 180, the persistent
intent log 170 and the persistent configuration database 180
cach stored externally to the first SP 120q and the second SP
1205.

An mmproved technique has been described for maintain-
ing consistency i RAID configuration metadata across
different storage processors 1 a data storage system. The
technique enables active-active-configured storage proces-
sors to correctly map IO requests to disk drives in RAID
storage even as RAID configurations change. The technique
also distributes RAID configuration metadata among difler-
ent disk drives to promote scalability and redundancy in the
storage ol such metadata.

Having described certain embodiments, numerous alter-
native embodiments or variations can be made. Further,
although features are shown and described with reference to
particular embodiments hereof, such {features may be
included and hereby are included in any of the disclosed
embodiments and their variants. Thus, 1t 1s understood that
teatures disclosed 1n connection with any embodiment are
included as variants of any other embodiment.

Further still, the improvement or portions thereof may be
embodied as a computer program product including one or
more non-transient, computer-readable storage media, such
as a magnetic disk, magnetic tape, compact disk, DVD,
optical disk, flash drive, solid state drive, SD (secure digital)
chip or device, application specific integrated circuit
(ASIC), field programmable gate array (FPGA), and/or the
like (shown by way of example as medium 750 in FIG. 7).
Any number of computer-readable media may be used. The
media may be encoded with instructions which, when
executed on one or more computers or other processors,
perform the process or processes described herein. Such
media may be considered articles of manufacture or
machines, and may be transportable from one machine to
another.

As used throughout this document, the words “compris-

ing,” “including,” “containing,” and “having” are intended

A 4 4

US 10,146,646 Bl

11

to set forth certain items, steps, elements, or aspects of
something 1n an open-ended fashion. Also, as used herein
and unless a specific statement 1s made to the contrary, the
word “set” means one or more of something. This 1s the case
regardless ol whether the phrase “set of” 1s followed by a
singular or plural object and regardless of whether 1t 1s
conjugated with a singular or plural verb. Further, although
ordinal expressions, such as “first,” “second,” “third,” and so
on, may be used as adjectives herein, such ordinal expres-
sions are used for identification purposes and, unless spe-
cifically indicated, are not intended to imply any ordering or
sequence. Thus, for example, a “second” event may take
place belore or after a “first event,” or even 1 no first event
ever occurs. In addition, an identification herein of a par-
ticular element, feature, or act as being a “first” such
clement, feature, or act should not be construed as requiring
that there must also be a “second” or other such element,
feature or act. Rather, the “first” 1tem may be the only one.
Although certain embodiments are disclosed herein, 1t 1s
understood that these are provided by way of example only
and that the invention 1s not limited to these particular
embodiments.

Those skilled 1n the art will therefore understand that
various changes 1 form and detaill may be made to the
embodiments disclosed herein without departing from the
scope of the mnvention.

What 1s claimed 1s:

1. A method of maintaining configuration data describing
RAID (redundant array of independent disks) storage across
first and second SPs (storage processors) coupled to the
RAID storage, the method comprising:

receiving, by a first controller running on the first SP, a

change request to make a change 1n RAID configura-
tion metadata describing the RAID storage;

in response to recerving the change request, (1) writing, by

the first SP, a configuration-change record to a persis-
tent intent log, the configuration-change record describ-
ing the requested change 1n RAID configuration meta-
data, and (1) mmforming, by the first SP, a second
controller running on the second SP that the configu-
ration-change record has been written;

reading, by the second SP, the configuration-change

record from the persistent intent log; and

writing, by the second SP, the configuration-change

record as read from the persistent intent log to a
persistent configuration database, the persistent intent
log and the persistent configuration database each
stored externally to the first SP and the second SP.

2. The method of claim 1, wherein the RAID storage
includes multiple disk drives, and wherein the persistent
intent log and the persistent configuration database are each
stored among the multiple disk drives of the RAID storage.

3. The method of claim 2, wherein the multiple disk drives
cach include a first region reserved for system metadata and
a second region for storing host data, and wherein the
persistent intent log and the persistent configuration data-
base are stored 1n the regions reserved for system metadata.

4. The method of claim 2, further comprising:

storing, on each of the first SP and the second SP, a

respective in-memory intent log;

in response to recerving the change request, writing, by

the first controller, the configuration-change record to
the in-memory mtent log of the first SP; and

after reading, by the second SP, the configuration-change

record from the persistent intent log, writing, by the
second controller, the configuration-change record to
the in-memory mtent log of the second SP.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. The method of claim 4, further comprising;:

storing, on each of the first SP and the second SP, a

respective in-memory configuration database;

alter writing, by the second SP, the configuration-change

record as read from the persistent itent log to the
persistent configuration database, writing, by the sec-
ond controller, the configuration-change record to the
in-memory configuration database of the second SP;
and

in response to receiving a message from the second SP

that the configuration-change record has been written to
the in-memory configuration database of the second SP,
writing, by the first controller, the configuration-change
record to the mm-memory configuration database of the
first SP.

6. The method of claim 5, wherein the first SP and the
second SP each store (1) a first set of flags that indicates
actions completed by the first SP 1n responding to the change
request and (1) a second set of flags that indicates actions
completed by the second SP in responding to the change
request.

7. The method of claim 6, wherein informing, by the first
SP, the second controller running on the second SP that the
persistent intent log has been changed includes sending the
first set of flags to the second SP.

8. The method of claim 7, wherein receiving the message
from the second SP includes receiving, by the first SP, the
second set of flags from the second SP.

9. The method of claim 5, further comprising;:

recerving, by the first controller, a second change request

to make a change 1n RAID configuration metadata;

in response to receiving the second change request, (1)

writing, by the first SP, a second configuration-change
record to the persistent intent log and (1) informing, by
the first SP, the second controller that the second
configuration-change record has been written to the
persistent intent log;

recerving, by the first SP, a notification that the second SP

1s down; and

1in response to recerving the notification that the second SP

1s down, writing, by the first SP, the second configu-
ration-change record to the persistent configuration
database.

10. The method of claim 5, further comprising;:

recerving, by the first controller, a third change request to

make a change 1n RAID configuration metadata;

in response to receiving the third change request, (1)

writing, by the first SP, a third configuration-change
record to the persistent intent log and (1) informing, by
the first SP, the second controller that the third con-
figuration-change record has been written to the per-
sistent 1ntent log;

recerving, by the second SP, a notification that the first SP

1s down; and

in response to recerving the notification that the first SP 1s

down, writing, by the second SP, the third configura-
tion-change record to the persistent configuration data-
base.

11. The method of claim 5, further comprising:

recerving, by the first controller, a fourth change request

to make a change 1n RAID configuration metadata;

in response to receiving the fourth change request, (1)

writing, by the first SP, a fourth configuration-change
record to the persistent intent log and (1) informing, by
the first SP, the second controller that the fourth con-
figuration-change record has been written to the per-
sistent intent log; and

US 10,146,646 Bl

13

in response to both the first SP and the second SP going
down and after one of the first SP and the second SP has
rebooted, synchromizing, by the rebooted SP, the fourth
configuration-change record stored in the persistent
intent log to the persistent configuration database.

12. A data storage system, comprising a first SP (storage
processor) and a second SP coupled to RAID (redundant
array ol independent disks) storage, the data storage system
constructed and arranged to:

receive, by a first controller running on the first SP, a

change request to make a change 1n RAID configura-
tion metadata describing the RAID storage;

in response to receiving the change request, (1) write, by

the first SP, a configuration-change record to a persis-
tent intent log, the configuration-change record describ-
ing the requested change in RAID configuration meta-
data, and (11) inform, by the first SP, a second controller
running on the second SP that the configuration-change
record has been written;

read, by the second SP, the configuration-change record

from the persistent 1ntent log; and

write, by the second SP, the configuration-change record

as read from the persistent intent log to a persistent
configuration database, the persistent intent log and the
persistent configuration database each stored externally
to the first SP and the second SP.

13. A computer program product including a set of
non-transitory, computer-readable media having instructions
which, when executed by first and second SPs (storage
processors) of a data storage system, cause the SPs to
perform a method of maintaining configuration data across
the first and second SPs, the method comprising:

receiving, by a first controller running on the first SP, a

change request to make a change 1n RAID (redundant
array of independent disks) configuration metadata
describing RAID storage;

in response to recerving the change request, (1) writing, by

the first SP, a configuration-change record to a persis-
tent intent log, the configuration-change record describ-
ing the requested change in RAID configuration meta-
data, and (1) mforming, by the first SP, a second
controller running on the second SP that the configu-
ration-change record has been written;

reading, by the second SP, the configuration-change

record from the persistent intent log; and

writing, by the second SP, the configuration-change

record as read from the persistent intent log to a
persistent configuration database, the persistent intent
log and the persistent configuration database each
stored externally to the first SP and the second SP.

14. The computer program product of claim 13, wherein
the method further comprises:

storing, on each of the first SP and the second SP, a

respective m-memory intent log;

in response to receiving the change request, writing, by

the first controller, the configuration-change record to
the in-memory intent log of the first SP; and

after reading, by the second SP, the configuration-change

record from the persistent intent log, writing, by the
second controller, the configuration-change record to
the in-memory mtent log of the second SP.

15. The computer program product of claim 14, wherein
the method further comprises:

10

15

20

25

30

35

40

45

50

55

60

14

storing, on each of the first SP and the second SP, a

respective imn-memory configuration database;

alter writing, by the second SP, the configuration-change

record as read from the persistent intent log to the
persistent configuration database, writing, by the sec-
ond controller, the configuration-change record to the
in-memory configuration database of the second SP;
and

in response to receiving a message from the second SP

that the configuration-change record has been written to
the in-memory configuration database of the second SP,
writing, by the first controller, the configuration-change
record to the mn-memory configuration database of the
first SP.

16. The computer program product of claim 15, wherein
the first SP and the second SP each store (1) a first set of tlags
that indicates actions completed by the first SP in responding
to the change request and (11) a second set of flags that
indicates actions completed by the second SP 1n responding
to the change request.

17. The computer program product of claim 16, wherein
informing, by the first SP, the second controller running on
the second SP that the persistent intent log has been changed
includes sending the first set of flags to the second SP.

18. The computer program product of claim 17, wherein
receiving the message from the second SP includes receiv-
ing, by the first SP, the second set of flags from the second
SP.

19. The computer program product of claim 135, wherein
the method further comprises:

receiving, by the first controller, a second change request

to make a change 1n RAID configuration metadata;

in response to receiving the second change request, (1)

writing, by the first SP, a second configuration-change
record to the persistent intent log and (1) informing, by
the first SP, the second controller that the second
configuration-change record has been written to the
persistent intent log;

recerving, by the first SP, a notification that the second SP
1s down; and

1in response to recerving the notification that the second SP
1s down, writing, by the first SP, the second configu-
ration-change record to the persistent configuration
database.

20. The computer program product of claim 15, wherein

the method further comprises:

recerving, by the first controller, a third change request to
make a change 1n RAID configuration metadata;

in response to receiving the third change request, (1)
writing, by the first SP, a third configuration-change
record to the persistent intent log and (1) informing, by
the first SP, the second controller that the third con-
figuration-change record has been written to the per-
sistent 1ntent log;

receiving, by the second SP, a notification that the first SP
1s down; and

in response to recerving the notification that the first SP 1s
down, writing, by the second SP, the third configura-
tion-change record to the persistent configuration data-
base.

	Front Page
	Drawings
	Specification
	Claims

