12 United States Patent

US010140201B2

(10) Patent No.: US 10,140,201 B2

Purushothaman 45) Date of Patent: Nov. 27, 2018
(54) SOFTWARE DEFECT DETECTION TOOL 9,021,308 B2* 4/2015 Cantor GO6F 11/321
714/38.1
(71) Applicant: Bank of America Corporation, 9,176,729 B2 112015 Mockus et al.
Charlotte, NC (US) 9,195,566 B2 11/2015 Huang et al
" 9,465,725 B2* 10/2016 Maczuba GO6F 11/0778
: 9,671,371 B2* 6/2017 Liucoooovviinnn. GO1N 27/83
(72) Inventor: Sasidhar Purushothaman, Telangana 0.804.830 B2* 10/2017 REL]&D ****************** GO6F 8/443
(IN) 2014/0298098 Al* 10/2014 Poghosyan ... GOGF 11/3452
714/37
(73) Assignee: Bank of America Corporation, 2017/0279834 Al* 9/2017 Vasseur HO4L 63/1425
Charlotte, NC (US)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICALIONS
patent 1s extended or adjusted under 35 Nousiainen et al., “Anomaly detection from server log data—A case
U.S.C. 154(b) by 21 days. study”, 2009, VTT Technical Research Centre of Finland, 44
_ pages.™
(21) Appl. No.: 15/383,488 Hangal et al., “Tracking Down Software Bugs Using Automatic
: An ly Detection™, 2002, ACM, pp. 291-301.*
(22) Filed: Dec. 19, 2016 T e PP
* cited b 1
(65) Prior Publication Data CIEE Dy CRAIEE
US 2018/0173607 A1~ Jun. 21, 2018 Primary Examiner — led 1. Vo
(74) Attorney, Agent, or Firm — Michael A. Springs
(51) Int. CL
GO6F 9/44 (2018.01) (57) ABSTRACT
GO6F 11/36 (2006.01) A software defect detection tool determines a modification
(52) US. ClL in a software code at a first time and analyzes an execution
CPC ... GO6F 11/3612 (2013.01); GO6F 11/3668 of the software code to detect a performance 1ssue at a
(2013.01) second time. The software defect detection tool detects a
(58) Field of Classification Search defect in the software code by a comparison of the first time
CPC e, GO6F 11/3612; GO6F 11/3668 and a second time. A software defect ana]ysis tool generates
S PO e e e et e eeareeanns 717/124—133 q Cause/ca‘[egory combination for a software code defect.
See application file for complete search history. The software defect analysis tool determines whether the
_ cause/category combination 1s an approved combination and
(56) References Cited whether the software code defect 1s a false positive. The

U.S. PATENT DOCUMENTS

8,166,157 B2* 4/2012 Couture GOOF 11/3495

370/252

8,214,798 B2 7/2012 Bellucct et al.

soltware defect analysis tool generates a corrective action
plan indicating measures to implement to reduce software
defects.

17 Claims, 5 Drawing Sheets

SOFTWARE DEFECT DETECTION TOOL 125 4100

REQUEST 130
140 146

CODE
CODE 154
PERFORMANCE s 15 -
142 148)) ALERT

CODE CHANGES

SOFTWARE DEFECT ANALYSIS TOOL 158

AGGREGATION

156
144 AUTOFIX

DEFECT CAUSE

CAUSE/CATEGORY
COMBINATION

168 DEFECT CATEGORY I

PROCESSOR - 162
164 —1 DEFECT INFORMATION | 160
170
166

172 — DEVELOPER S 176 - 178 S 180
APPROVED FALSE POSITIVE CORRECTIVE
i74 ROOT CAUSE COMBINATION COMBINATION ACTION PLAN

NV 1d NOILOV NOLLYNIGWOO | NOILVYNIGINOD 351V0 1004 ZA

AALLOFHH00 FALLIS0d 351Vd | GdA0EddY
081 8LT 9T &g3d014A40 L1

US 10,140,201 B2

AH0OILYD 103440 891

25MV0 104430 991 |

NOILYNIGNOD

AHQDALVO/E5NYO

9T |

0LT
091 NOILYWHOANI 103430
\
29T E iowwmoom&
I= >
\ o
,_w 85T 100L SISATYNY 103430 FHYMLIO0S SO 011
7 s
XI40LNY b
v o
9cT NOILYWHO AN |
m 103430 ATYINONY OLve oy [1STFONYHO 3000
~ el 25T 0ST
“ bCT FONYINYO 443 e
2 3009
c4 O Ob1
0ET 183N03Y
GET — E HOSSIO0Nd
00T — ¢T 100L NOILD3L3A L3430 TYYMLLOS

U.S. Patent

US 10,140,201 B2

Sheet 2 of §

Nov. 27, 2018

U.S. Patent

951 XIHO1NY

PaT 1dd 1V

ANIDONA NOLLDAYHOD

GCC

¢ DIA

NOLLVINJOINI
NOLLYOIdODV

8t
ANIDNS NOLLYDIHODV

SAONVHO 24d0CD

ad

INIDNSG SISATVYNY 3400

01

A IVWONY

051
JONVINAO4ddd 440D

Ol

ANIDNS
SISATVNY JONVINEOAd3d

3d05

44!

153N0Y

OF1

ANIDNA TVAJIY 13

50¢

US 10,140,201 B2

Sheet 3 of 5

Nov. 27, 2018

U.S. Patent

SNOLLVYNIGINOD
JALLISOd 451V

SNOLLYNIZINOD AYOOTLYD
/ASNVD A3A0YddY

NOLLYNIGINOD
Ad09D3LVD/3SNVYD

74
INIONT SISATYNY

OT¢

¢ OIA

A5MVO 100d

PLT

di4d01dAdd

A

AdOD41YD 1073440

A5MVO 103430

99T
ANIDNG NOLLDVH1IX]

S50¢

NYTd NOLLOY
JALLDTHHOD

08T
ANIDN-L DNI

NOLLVINJOJNI 153430

POl

ANIDND IVAJIH 1Y

STE

00¢

U.S. Patent

Nov. 27, 2018

400 —"N\

Sheet 4 of 5

RECEIVE REQUEST
RECEIVE CODE

' 415
NO CODE
CHANGES?

MONITOR CODE PERFORMANCE

PERFORMANCE
ANOMALY?

DETERMINE DEFECT
PERFORM CORRECTIVE MEASURES |

YES

YES

END

rl

G. 4

425

405

410

420

430

435

US 10,140,201 B2

U.S. Patent Nov. 27, 2018 Sheet 5 of 5 US 10,140,201 B2

START /500

505

UPDATE
APPROVED CAUSE/CATEGORY
COMBINATIONS?

YES
CATEGORY COMBINATIONS
510
515
520
h25
530
53

540

NO

5

CAUSE/
EGORY COMBINA
APPROVED?

NO COMMUNICATE REQUEST
TO DEVELOPER

545

YES
550

YES

FALSE
POSITIVE?

GENERATE CORRECTIVE ACTION PLAN

FIG. 5

US 10,140,201 B2

1
SOFITWARE DEFECT DETECTION TOOL

TECHNICAL FIELD

This disclosure relates generally to detecting and analyz-
ing solftware defects and improving software code quality.

BACKGROUND

Software developers create software code. For example,
soltware developers create new applications, new versions
of applications, and soitware patches. Solftware code may
contain defects that cause the software code to execute
improperly.

SUMMARY OF TH.

T

DISCLOSURE

According to an embodiment, a software defect detection
tool 1ncludes a retrieval engine, a code analysis engine, a
performance analysis engine, and an aggregation engine.
The retrieval engine recerves a request to monitor a perfor-
mance of a software code. The retrieval engine retrieves the
software code 1n response to the request. The code analysis
engine determines a modification in the software code by
comparing the recerved software code to a prior version of
the software code. The code analysis engine determines a
first time at which the software code was modified. The
performance analysis engine analyzes an execution of the
soltware code 1n real time. The performance analysis engine
detects an anomaly indicating a performance 1ssue with the
soltware code. The performance analysis engine determines
a second time at which the anomaly 1s detected. The
aggregation engine receives the first time and the second
time. The aggregation engine detects a defect 1n the software
code based on a comparison of the first time and the second
time.

According to another embodiment, a method includes
receiving a request to monitor a performance of a software
code. The method further includes retrieving the software
code 1n response to the request. The method further includes
determining a modification in the software code by com-
paring the received solftware code to a prior version of the
software code. The method further includes determining a
first time at which the software code was modified. The
method further includes analyzing an execution of the
software code in real time. The method further includes
detecting an anomaly 1ndicating a performance 1ssue with
the software code. The method further includes determining,
a second time at which the anomaly 1s detected. The method
turther includes receiving the first time and the second time.
The method further includes detecting a defect 1n the sofit-
ware code based on a comparison of the first time and the
second time.

According to yet another embodiment, a software defect
analysis tool includes a network interface, an extraction
engine, an analysis engine, and a reporting engine. The
network interface receives defect information for a defect in
a solftware code. The defect information includes a defect
category indicating that the defect 1s one of a plurality of
defect categories. The defect information includes a defect
cause 1mdicating a cause of the defect. The defect informa-
tion includes developer information indicating a developer
of the software code. The extraction engine determines the
defect cause, the defect category and the developer. The
analysis engine generates a cause/category combination, the
cause/category combination comprising the defect cause and
the defect category. The analysis engine determines whether

10

15

20

25

30

35

40

45

50

55

60

65

2

the cause/category combination 1s an approved cause/cat-
cgory combination by comparing the cause/category com-

bination to a plurality of predetermined approved cause/
category combinations. Upon a determination that the cause/
category combination 1s not an approved cause/category
combination, the analysis engine communicates a request to
the developer to update at least one of the defect cause and
the defect category as per the approved cause/category
combination. The reporting engine generates a corrective
action plan base on the root cause i1dentified by the devel-
oper. The corrective action plan indicating measures to
implement to reduce solftware defects.

According to yet another embodiment, a method 1ncludes
receiving defect information for a defect 1n a software code.
The defect information includes a defect category indicating
that the defect 1s one of a plurality of defect categories. The
defect information 1ncludes a defect cause indicating a cause
of the defect. The defect information includes developer
information indicating a developer of the software code. The
method further includes determining the defect cause, the
defect category, and the developer. The method further
includes generating a cause/category combination. The
cause/category combination includes the defect cause and
the defect category. The method further includes determin-
ing whether the cause/category combination 1s an approved
cause/category combination by comparing the cause/cat-
cgory combination to a plurality of predetermined approved
cause/category combinations. The method further includes
communicating a request to the developer to update at least
one of the defect cause and the defect category upon a
determination that the cause/category combination 1s not an
approved cause/category combination and also to update the
root cause. The method further includes generating a cor-
rective action plan, the corrective action plan indicating
measures to implement to reduce soiftware defects.

Certain embodiments provide one or more technical
advantages. For example, an embodiment eliminates or
reduces defects 1n software code. This improves the quality
ol software code. In certain embodiments eliminating or
reducing soltware code defects allows software code to
execute properly. In some embodiments, eliminating or
reducing soltware code defects allows software code to
execute more efliciently. For example, reducing software
code defects improves processing speed by ensuring that the
soltware code 1s processed properly. As another example,
reducing defects 1n software code reduces memory usage.
For example, reducing software code errors reduces memory
leaks 1n some embodiments.

Certain embodiments may include none, some, or all of
the above technical advantages. One or more other technical
advantages may be readily apparent to one skilled in the art
from the figures, descriptions, and claims included herein.

BRIEF DESCRIPTION OF THE

DRAWINGS

For a more complete understanding of the present disclo-
sure, reference 1s now made to the following description,
taken 1n conjunction with the accompanying drawings, in
which:

FIG. 1 illustrates a system for software code defect
detection and analysis;

FIG. 2 1llustrates the software defect detection tool of the
system of FIG. 1;

FIG. 3 illustrates the software defect analysis tool of the
system of FIG. 1;

FIG. 4 1s a flowchart illustrating a method for software
defect detection using the system of FIG. 1; and

US 10,140,201 B2

3

FIG. 5 1s a flowchart illustrating a method for software
defect analysis using the system of FIG. 1.

DETAILED DESCRIPTION

Embodiments of the present disclosure and 1ts advantages
are best understood by referring to FIGS. 1 through 5 of the
drawings, like numerals being used for like and correspond-
ing parts of the various drawings.

Soltware developers create software code. For example,
soltware developers create new applications, new versions
ol applications, and soiftware patches. Software code may
contain defects that cause the software code to execute
improperly. Developing and executing software code pres-
ents several technical challenges. Errors in software code
may not surface immediately after executing software code.
This presents the technical challenge of identifying an error
in soitware code. Once an error 1s 1dentified, the error may
be categorized. Categorizing errors facilitates determining,
causes of errors. This allows software developers to reduce
or eliminate code errors.

Soltware errors may be improperly categorized. For
example, software errors may be improperly categorized due
to human error. As another example, software errors may be
improperly categorized by computers with limited catego-
rization technology. Frror categorization facilitates deter-
minming error causes. Error categorization facilitates reducing,
tuture errors by i1dentifying proactive measures to reduce or
climinate error causes. Improperly categorized errors reduce
the likelihood of successtully correcting the errors and
reducing future errors.

Errors may be false positives. A false positive 1s an
identified software error that 1s not an error. A human and/or
a machine may incorrectly identify a piece of software code
as including an error. False positives reduce the efliciency of
reducing and eliminating errors. For example, false positives
may lead to preventative measures that are unneeded. As
another example, a machine may attempt to automatically
correct a false positive. This leads to using unneeded pro-
cessing power to attempt to correct software code that does
not have an error. Further, a machine may create a software
error while attempting to correct a false positive. False
positives waste computer resources and can lead to an
increased number of software errors.

This disclosure contemplates a software defect detection
tool that idenfifies errors 1n software code to facilitate
reducing or eliminating the errors. The soltware defect
detection tool momnitors changes 1n software code and the
performance of the software code. For example, the software
defect detection tool may monitor a processing usage, a
memory usage, and/or a network bandwidth usage expended
to execute software code. As another example, the software
defect detection tool may monitor the execution of the
soltware code for application failures. If the software defect
detection tool determines that the execution of the software
code 1s underperforming, the software defect detection tool
determines a software error by determiming the change 1n the
software code that caused the execution of the software code
to underperform. The software defect detection tool facili-
tates correcting software errors by communicating a com-
mand to automatically correct the error and/or communicat-
ing an alert to a software developer.

This disclosure further contemplates a soiftware defect
analysis tool. The software defect analysis tool categorizes
errors 1n umiversal way to facilitate generating a corrective
action plan to reduce future software errors. The software
defect analysis tool facilitates a universal logging of sofit-

10

15

20

25

30

35

40

45

50

55

60

65

4

ware coding errors. A universal logging system allows the
soltware defect analysis tool to generate a corrective action
plan. For example, by using a universal logging system, the
soltware defect analysis tool may analyze the most prevalent
root cause for the software code error and generate a plan to
reduce the errors. The software defect analysis tool may
automatically communicate software coding errors to sofit-
ware developers responsible for the code. The software
developers may revise the software code to remove errors.
The software defect analysis tool receives a soltware coding
error. For example, the software defect analysis tool recerves
an error from the software defect detection tool. The soft-
ware delfect analysis tool determines a category and cause
combination of the errors. The software defect analysis tool
determines whether the category and cause combination 1s
consistent with a universal logging system. The software
defect analysis tool uses the category and cause to addition-
ally determine whether the error 1s a false positive. If the
error 1s not a false positive the software defect analysis tool
communicates the error to a soltware developer to be
corrected. The solftware defect analysis tool generates a
corrective action plan based on the errors that indicates
measures to implement to reduce soitware errors.

In this disclosure, the terms software defect, software
error, coding error, coding defect, error, and defect are used
interchangeably and each refer to an error 1n a piece of
soltware code that causes the code to operate in an unin-
tended manner.

FIG. 1 1llustrates a system 100 for software code defect
detection and analysis. As illustrated 1n FIG. 1, system 100
includes users 105, devices 110, network 115, software
defect detection tool 125, and software defect analysis tool
158. In particular embodiments, system 100 reduces or
climinates software code defects.

Devices 110 may be any devices that operate and/or
communicate with other components of system 100. In
general, devices 110 communicate a request to monitor
software code performance. For example, devices 110 com-
municate request 140 to solftware defect detection tool 1235
or any other suitable component of system 100. Devices 110
may communicate soltware code to soltware defect detec-
tion tool 125 for analysis. In some embodiments, devices
110 recerve corrective action plan 180 from software defect
analysis tool 158. Devices 110 may be associated with a
soltware developer or group of software developers.

This disclosure contemplates device 110 being any appro-
priate device for sending and recerving communications
over network 115. As an example and not by way of
limitation, device 110 may be a computer, a laptop, a
wireless or cellular telephone, an electronic notebook, a
personal digital assistant, a tablet, or any other device
capable of recerving, processing, storing, and/or communi-
cating information with other components of system 100.
Device 110 may also include a user interface, such as a
display, a microphone, keypad, or other appropriate terminal
equipment usable by user 105. In some embodiments, an
application executed by device 110 may perform the func-
tions described herein.

Network 115 facilitates communication between and
amongst the various components of system 100. This dis-
closure contemplates network 1135 being any suitable net-
work operable to {facilitate communication between the
components of system 100. Network 115 may include any
interconnecting system capable of transmitting audio, video,
signals, data, messages, or any combination of the preced-
ing. Network 115 may include all or a portion of a public
switched telephone network (PSTN), a public or private data

US 10,140,201 B2

S

network, a local area network (LAN), a metropolitan area
network (MAN), a wide areca network (WAN), a local,
regional, or global communication or computer network,
such as the Internet, a wireline or wireless network, an
enterprise intranet, or any other suitable communication
link, including combinations thereof, operable to facilitate
communication between the components.

Software code may comprise defects. For example, sofit-
ware code may include keystroke errors. As another
example, software code may include logic errors and/or run
time errors. This disclosure contemplates a software code
defect including any type of coding defect. Software code
may render executing software code impossible. For
example, a machine executing may be unable to compile
and/or run the software code. As another example, software
code errors may cause the software code to be executed
inefhiciently, using unneeded processing and/or memory
resources. System 100 generally facilitates correcting, ana-
lyzing, and correcting software code errors.

Software defect detection tool 1235 determines defects 1n
soltware code and facilitates correcting soitware errors to
reduce or eliminate errors 1 software code. Software defect
detection tool 125 generally collects and analyzes real-time
performance data from the execution of software code and
correlates the data to a root cause by continuously tracking
the changes and/or configurations of the software code. As
illustrated 1n FIG. 1, software defect detection tool includes
processor 130 and memory 135. This disclosure contem-
plates processor 130 and memory 135 being configured to
perform any of the operations of software defect detection
tool 125 described herein. In particular embodiments, soft-
ware defect detection tool 125 reduces or eliminates soft-
ware coding errors.

Processor 130 1s any electronic circuitry, including, but
not limited to microprocessors, application specific inte-
grated circuits (ASIC), application specific instruction set
processor (ASIP), and/or state machines, that communica-
tively couples to memory 135 and controls the operation of
software defect detection tool 125. Processor 130 may be
8-bit, 16-bit, 32-bit, 64-bit or of any other suitable archi-
tecture. Processor 130 may include an arithmetic logic unit
(ALU) for performing arithmetic and logic operations, pro-
cessor registers that supply operands to the ALU and store
the results of ALU operations, and a control unit that fetches
instructions from memory 1335 and executes them by direct-
ing the coordinated operations of the ALU, registers and
other components. Processor 130 may include other hard-
ware and software that operates to control and process
information. Processor 130 executes software stored on
memory 135 to perform any of the functions described
herein. Processor 130 controls the operation and adminis-
tration of software defect detection tool 125 by processing,
information received from network 115, device(s) 110, and
memory 135. Processor 130 may be a programmable logic
device, a microcontroller, a microprocessor, any suitable
processing device, or any suitable combination of the pre-
ceding. Processor 130 1s not limited to a single processing
device and may encompass multiple processing devices.

Memory 135 may store, either permanently or temporar-
i1ly, data, operational software, or other information for
processor 130. Memory 135 may include any one or a
combination of volatile or non-volatile local or remote
devices suitable for storing information. For example,
memory 135 may include random access memory (RAM),
read only memory (ROM), magnetic storage devices, optical
storage devices, or any other suitable information storage
device or a combination of these devices. The software

5

10

15

20

25

30

35

40

45

50

55

60

65

6

represents any suitable set of instructions, logic, or code
embodied in a computer-readable storage medium. For
example, the software may be embodied in memory 135, a
disk, a CD, or a tlash drive. In particular embodiments, the
soltware may include an application executable by processor
130 to perform one or more of the functions described
herein. In particular embodiments, memory 135 may store
software code 142, code changes 144, and/or any other
suitable information to operate software defect detection
tool 125.

In an exemplary embodiment, software defect detection
tool 125 recerves a request 140. Request 140 may indicate
a request to monitor for errors 1n software code 142. Request
140 may indicate software code 142 stored in devices 110,
memory 135, memory 162, and/or any other suitable com-
ponent of system 100.

In response to receiving request 140, software defect
detection tool 125 may retrieve a software code 142. For
example, soltware defect detection tool 125 may retrieve
software code 142 from devices 110 and/or any other
suitable component of system 100. Generally, software code
142 1s software code that 1s executed using one or more
computing machines. As discussed, software code 142 may
include errors that cause software code 142 to execute
and/or perform in an unintended manner.

Software defect detection tool 125 may monitor changes
in software code 142 to generate code changes 144. Code
changes 144 generally indicates modifications 1n software
code 142. For example, software defect detection tool 125
may dynamically receive updates to soltware code 142 and
analyze updated code to gather real-time data of configura-
tion changes, module changes, feature changes, and/or cod-
ing changes to software code 142. Software defect detection
tool 125 may generate code changes 144 by continually
monitor the changes 1n an environment with reference to a
timeline of when the changes occurred.

Software defect detection tool 1235 uses software code 142
to generate code performance 146. Code performance 146
generally indicates whether software code 142 1s executing
properly. Software defect detection tool 125 generates code
performance 146 by monitoring the execution of software
code 142. Software defect tool 125 monitors software code
142 execution for performance issues to generate code
performance 146. For example, software defect tool 125
monitors memory usage, central processing unit (“CPU”)
usage, disk space usage, number of processes, active listen-
ers, buller cache, average read/write times, mput/output wait
times, packets transmitted per second, interface status,
response time, bytes per session, stall count, heap usage,
and/or thread usage. Software defect detection tool 125 may
monitor for application failures to generate code perfor-
mance 146.

Software defect detection tool 125 aggregates code
changes 144 and code performance 146 to generate aggre-
gation mformation 148. Aggregation information 148 gen-
crally facilitates 1identifying changes 1n software code 142
that caused performance i1ssues. Aggregation information
148 places code changes 144 and code performance 146 on
a common timeline. In this way, aggregation information
148 indicates how one or more code changes 144 aflected
code performance 146.

Software defect detection tool 125 detects anomaly 1350
using code performance 146. Anomaly 150 generally indi-
cates that the execution of software code 142 is experiencing
performance 1ssues. For example, the execution of software
code 142 may be expending more than a predetermined
amount of memory usage, CPU usage, and/or disk space

US 10,140,201 B2

7

usage. As another example, anomaly 150 may indicate that
executing software code 142 requires greater than a prede-
termined number of processes, active listeners, builer cache
percentage, read/write times, input/output wait times, pack-
cts transmitted per second, response time, bytes per session,
stall counts, heap usage, and/or thread usage. As yet another
example, anomaly 150 may indicate a greater than a prede-
termined number of application failures.

Software defect detection tool 125 identifies defect 152
using anomaly 150 and aggregation information 148. Detfect
152 1s generally an error in software code 142 that causes
anomaly 150. Software defect detection tool 1235 1dentifies
the presence of defect 152 using anomaly 150 as discussed.
Software defect detection tool 125 determines the cause of
anomaly 150 using aggregation information 148. For
example, 11 software defect detection tool 125 determines
anomaly 150 upon a determination that CPU usage 1s above
a predetermined amount, software detect detection tool 1235
uses aggregation mnformation 148 to determine a time that
the CPU usage increased above a predetermined amount.
Software defect detection tool 123 parses aggregation infor-
mation 148 to determine a code change 144 that occurred at
a previous time and/or a substantially similar time as
anomaly 150. Software defect detection tool 125 uses this
information to identify defect 152.

Software defect detection tool 125 may determine
whether 1t can automatically fix defect 152. For example,
soltware defect tool 125 may determine that 1t can restart the
execution of software code 142 to automatically fix the error.
IT software defect detection tool 125 may automatically fix
the error, software defect detection tool 125 generates auto
{1x 156 to fix the error. Auto 1ix 156 1s a command to perform
an operation to fix defect 152. For example, auto 1ix 156 may
be a command to restart the execution of software code 142.

Software defect detection tool 125 may communicate
alert 154 to a software developer or any other suitable
person. Alert 154 i1dentifies defect 152. A software developer
may remove defect 152 1n response to alert 154. In some
embodiments, software defect detection tool 125 automati-
cally categorizes defect 152 and communicates defect 152 to
soltware defect analysis tool 158. In some embodiments, a
software defect detection tool communicates defect 152 to a
soltware developer for categorization before defect 152 1s
communicated to software defect analysis tool 158.

Soltware defect analysis tool 158 categorizes defect 152,
determines whether defect 152 1s a false positive, and
generates corrective action plan 180. As 1llustrated 1n FIG.
1, software defect analysis tool 158 includes a processor 160
and memory 162. This disclosure contemplates processor
160 and memory 162 being configured to perform any of the
operations ol software defect analysis tool 158 described
herein. In particular embodiments, software defect analysis
tool 158 reduces or eliminates coding errors in software
development.

Processor 160 1s any electronic circuitry, including, but
not limited to microprocessors, application specific inte-
grated circuits (ASIC), application specific instruction set
processor (ASIP), and/or state machines, that communica-
tively couples to memory 162 and controls the operation of
software defect analysis tool 158. Processor 160 may be
8-bit, 16-bit, 32-bit, 64-bit or of any other suitable archi-
tecture. Processor 160 may include an arithmetic logic unit
(ALU) for performing arithmetic and logic operations, pro-
cessor registers that supply operands to the ALU and store
the results of ALU operations, and a control unit that fetches
instructions from memory 162 and executes them by direct-
ing the coordinated operations of the ALU, registers and

10

15

20

25

30

35

40

45

50

55

60

65

8

other components. Processor 160 may include other hard-
ware and software that operates to control and process
information. Processor 160 executes software stored on
memory 162 to perform any of the functions described
herein. Processor 160 controls the operation and adminis-
tration of software defect analysis tool 158 by processing
information received from network 115, device(s) 110, and
memory 162. Processor 160 may be a programmable logic
device, a microcontroller, a microprocessor, any suitable
processing device, or any suitable combination of the pre-
ceding. Processor 160 1s not limited to a single processing
device and may encompass multiple processing devices.

Memory 162 may store, either permanently or temporar-
i1ly, data, operational software, or other information for
processor 160. Memory 162 may include any one or a
combination of volatile or non-volatile local or remote
devices suitable for storing information. For example,
memory 162 may include RAM, ROM, magnetic storage
devices, optical storage devices, or any other suitable infor-
mation storage device or a combination of these devices.
The software represents any suitable set of instructions,
logic, or code embodied in a computer-readable storage
medium. For example, the software may be embodied in
memory 162, a disk, a CD, or a flash drive. In particular
embodiments, the software may include an application
executable by processor 160 to perform one or more of the
functions described herein. In particular embodiments,
memory 162 may store approved combinations 176, false
positive combinations 178, and/or any other suitable infor-
mation to facilitate the operation of software defect analysis
tool 158. This disclosure contemplates memory 162 storing
any ol the elements stored i devices 110, memory 135,
and/or any other suitable component of system 100.

In an exemplary embodiment, soitware defect analysis
tool 158 receives defect information 164. Soitware defect
analysis tool 158 may receive defect information 164 from
software defect detection tool 125, one or more users 105 via
devices 110, or any other suitable component of system 100.
Defect information 164 may include defect 152 and infor-
mation associated with defect 152. Defect information 164
includes defect cause 166, defect category 168, developer
172, and root cause 174. Software defect analysis tool 158
parses defect information 164 to determine defect cause 166,
defect category 168, developer 172, and root cause 174.

Defect cause 166 indicates a cause of defect 152. Soft-
ware defect detection tool 125 may determine defect cause
166. In some embodiments, one or more soltware develop-
ers determine defect cause 166. Delfect cause 166 may be
one or more of incorrect coding, existing production 1ssue,
performance, working as designed, incorrect data setup, user
input error, migration 1ssue, performance tuning, non-SAP
system, SAP system, unable to reproduce, and out of scope.

Defect category 168 1ndicates a category of defect 152.
Software defect detection tool 125 may automatically deter-
mine defect category 168. In some embodiments, one or
more users 105 determine defect category 168. Detect
category may be one or more of configuration, data, deploy-
ment, development, operations, and requirements.

Developer 172 generally indicates one or more software
developers 172 responsible for software code 142. For
example, developer 172 may 1ndicate a code developer that
generated software code 142. As another example, developer
172 may indicate a team of developers that generated
soltware code 142. As yet another example, developer 172
may indicate a developer or team of developers responsible
for maintaining software code 142. Developer 172 may be
a subset of users 105. Developer 172 may be the same as

US 10,140,201 B2

9

users 105. In some embodiments, developer 172 1dentifies
defect cause 166 and/or defect category 168.

Root cause 174 indicates a real-world reason for defect
152. Root cause 174 may be used to facilitate generating
corrective action plan 180. Software defect analysis tool 158
may generate root cause 174 using defect cause 166 and/or
defect category 168. As another example, software defect
detection tool 125 may i1dentify root cause 174. As yet
another example, developer 172 may determine root cause
174. Root cause 174 may be one or more of oversight,
missed test scenario, improper understand, and 1gnorance.

Software defect analysis tool 158 generates cause/cat-
cgory combination 170 using defect cause 166 and defect
category 168. Solftware defect analysis tool 158 aggregates
defect cause 166 and defect category 168 to generate cause/
category combination 170. For example, 1f defect category
168 defect 152 1s configuration and defect cause 168 for
defect 152 1s coded incorrectly, cause/category combination
170 may be coded incorrectly/configuration.

Software defect analysis tool 138 compares cause/cat-
cegory combination 170 to a predetermined list of approved
cause/category combinations 176 to determine whether 1t 1s
an approved combination. For example, 11 cause/category
combination 170 matches one or more approved cause/
category combinations 176, software defect analysis tool
158 determines that cause/category combination 170 1s an
approved combination. If software defect analytics tool 158
determines that cause/category combination 170 1s not an
approved combination, software defect analysis tool 158
may communicate defect information 164 and/or defect 152
to developer 172 to reclassily defect 152. For example,
defect 152 may be reclassified by modifying defect cause
166 and/or defect category 168

Software defect analysis tool 158 determines whether
defect 152 1s a false positive by comparing cause/category
combination 170 to false positive combinations 178. False
positive combinations 178 1s a list of false positive cause/
category combinations. A false positive indicates that defect
152 1s not an error in soitware code 142. Software defect
analysis tool 158 may include a predetermined list of false
positive combinations 178. For example, the predetermined
list may include working as designed/configuration, data
setup 1ncorrect/data, user input error/data, working as
designed/development, unable to reproduce/operations,
requirement out of scope/requirements, and/or working as
designed/requirements cause/category combinations. Soit-
ware defect analysis tool 158 may receive false positive
combinations 178 from devices 110 and/or any other suit-
able component of system 100. IT software defect analysis
tool 158 determines that cause/category combination 170 1s
included i a predetermined list of false positive, then
software defect analysis tool 158 determines that defect 152
1s a false positive.

Software defect analysis tool 158 generates corrective
action plan 180. Corrective action plan 180 indicates mea-
sures to 1mplement to reduce software defects. Software
defect analysis tool 158 may use cause/category combina-
tion 170 and/or root cause 174 to develop corrective action
plan 180. For example if root cause 174 1s oversight,
corrective action plan may generate a review checklist
and/or employ automated code review. As another example,
iI root cause 1s 1mproper understanding, correction action
plan 180 may indicate to provide working sessions to
provide mformation on the granular requirements of gener-
ating software code 142. As yet another example, 11 root
cause 174 1s 1gnorance, corrective action plan 180 may
indicate to provide review check lists. Software defect

10

15

20

25

30

35

40

45

50

55

60

65

10

analysis tool 158 may communicate corrective action plan
180 to developer 172, users 105, and/or any other suitable
person.

Modifications, additions, or omissions may be made to
system 100 without departing from the scope of the mven-
tion. For example, system 100 may include any number of
processors 130/160, memory 135/162, and/or devices 110.
System 100 may not include software defect detection tool
125. In another example, system 100 may not include
soltware defect analysis tool 158. As a further example,
software defect detection tool 125 and software defect
analysis tool 158 may be combined to form a single tool.

FIG. 2 1llustrates the software defect detection tool 125 of
the system 100 of FIG. 1. As illustrated in FIG. 2, software
defect detection tool 125 includes retrieval engine 200, code
analysis engine 210, performance analysis engine 215,
aggregation engine 220, and correction engine 225. In
particular embodiments, software defect detection tool 125
reduces or eliminates errors 1n soitware development.

Retrieval engine 200 receives request 140 retrieves and
software code 142 based on request 140. In particular
embodiments, retrieval engine 200 receirves request 140
from one or more devices 110. An example algorithm for
retrieval engine 200 1s as follows: wait for request 140;
receive request 140 from one or more devices 110; in
response to receiving request 140, retrieve soltware code
142; and communicate request 140 and software code 142 to
code analysis engine 210 and performance analysis engine
215. In an embodiment, request 140 includes software code
142.

Code analysis engine 210 recerves request 140 and soft-
ware code 142 and generates code changes 144. Code
analysis engine 210 may compare software code 142 to a
previous version ol software code 142 to determine changes.
Code analysis engine 210 may dynamically receive updates
to soitware code 142 and compare soltware code 142 to
previous versions of software code 142. Code changes 144
generally indicate a type of software change and a time at
which software code 142 was modified. An example algo-
rithm for retrieval engine 200 to generate code changes 144
1s as follows: receive soltware code 142; compare software
code 142 to a previous version ol software code 142;
determine changes 1n software code 142 from the previous
version of software code 142; determine a time that the
changes occurred; and commumnicate code changes 144 to
aggregation engine 220.

Performance analysis engine 215 receives soltware code
142 and generates code performance 146 and anomaly 105.
Performance analysis engine 215 may execute software code
142 to determine code performance 146. As another
example, performance engine 2135 may receive mformation
from a computing machine that 1s executing software code
142 to generate code performance 146. In some embodi-
ments, performance analysis engine 215 generates code
performance 146 1n real time as soltware code 142 1s
executed. Performance analysis engine 215 may detect
anomaly 150 using code performance 146 as previously
discussed. Performance analysis engine 215 determines a
time that anomaly 150 occurred. As previously discussed,
anomaly 150 indicates a performance 1ssue with software
code 142. For example, if anomaly 150 1s that CPU usage
exceeded a predetermined amount, performance analysis
engine 2135 determines a time that the CPU usage exceeded
the predetermined amount. In some embodiments, perfor-
mance analysis engine 215 may only generate code perfor-
mance 146 for a subset of software code 142. For example,
software defect detection tool 125 may determine that only

US 10,140,201 B2

11

a portion of software code 142 was modified and/or 1is
relevant. Performance analysis engine may only determine
code performance 146 for this subset of software code 142.
Performance analysis engine 215 communicates anomaly
150 to aggregation engine 220. An example algorithm for
performance analysis engine 215 generating code perfor-
mance 146 and anomaly 150 i1s as follows: receive software
code 142 from retrieval engine 205; generate code pertor-
mance 146 using software code 142; determine anomaly 150
using code performance 146; and communicate anomaly
150 to aggregation engine 220.

Aggregation engine 220 uses code changes 144 and
anomaly 150 to determine defect 152. Anomaly 150 indi-
cates a defect and a time that the defect occurred. Code
changes 144 indicates a time that a code change occurred.
Aggregation engine 220 aggregates code changes 144 and
anomaly 150 to generate aggregation information 148.
Aggregation mformation 148 places code changes 144 and
anomaly 150 on a timeline. Aggregation engine 220 may
then determine defect 152 by comparing the time anomaly
150 occurred to times of code changes 144. For example, 11
a code change 144 occurred just before anomaly 150,
aggregation engine 220 may determine that the code change
144 caused anomaly 150. Aggregation engine 220 may parse
the code change 144 to determine defect 152. Aggregation
engine 220 communicates defect 152 to correction engine
225. An example algorithm for aggregation engine 220 to
generate defect 152 1s as follows: receive code changes 144
and code performance 146. Aggregate code changes 144 and
code performance 146 to generate aggregation mformation
148; determine defect 152 using aggregation information
148; and communicate defect 152 to correction engine 225.
In some embodiments, aggregation engine 220 generates
cause/category combination 170 and communicates cause/
category combination 170 to solftware defect analysis tool
158.

Correction engine 225 receives defect 152 and facilitates
generating alert 154 and/or generating auto-1ix 156. Correc-
tion engine 225 receives defect 152 and determines whether
defect 152 may be automatically corrected. For example,
correction engine 225 may determine software code 142
may be restarted. Correction engine 225 may determine that
soltware code may be automatically corrected by comparing
defect 152 to predetermined types of defects that may be
automatically corrected. Correction engine 225 may gener-
ate auto fix 156 upon a determination that defect 152 may be
automatically corrected. Auto fix 156 facilitates corrected
error 156. In some embodiments, auto fix 156 includes a
command to restart execution of solftware code 142. Cor-
rection engine 156 may communicate auto fix 156 to a
computing machine that 1s executing soitware code 142.
Correction engine 225 may communicate alert 154 to devel-
oper 172 and/or any other suitable person. Alert 154 includes
defect 152. An example algorithm for correction engine 2235
1s as follows: receive defect 152; determine whether defect
152 may be automatically correct; generate auto {ix 156 to
automatically correct defect 152; generate alert 154; and
communicate alert 154.

Modifications, additions, or omissions may be made to
soltware defect detection tool 125 without departing from
the scope of the invention. For example, software defect
detection tool 125 may not include correction engine 225.
Software defect detection tool 125 may include some, none,
or all of the engines illustrated 1n FIG. 2. As another
example, software defect detection tool 125 may include
additional engines.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 3 illustrates the software defect analysis tool 158 of
the system 100 of FIG. 1. As illustrated in FIG. 3, software
defect analysis tool 158 includes retrieval engine 300,
extraction engine 303, analysis engine 170, and reporting
engine 180. Software defect analysis tool 158 reduces or
climinates errors 1n soltware code development.

Retrieval engine 200 receives defect information 164 for
defect 152. In particular embodiments, retrieval engine 200
receives defect mformation 164 from one or more devices
110. Retrieval engine 200 may receive defect information
164 from soitware defect detection tool 125. In some
embodiments, retrieval engine 300 1includes a network inter-
face. Defect information 164 1s information for a defect n
software code 142. Defect mnformation 164 may include
defect cause 166 indicating a cause of defect 152. For
example, defect cause may be one of a coded incorrectly
cause, an existing production 1ssue cause, a performance
cause, a data setup incorrect cause, a user input error cause,
and a migration 1ssue cause. Defect information may include
defect category 168 indicating that defect 152 i1s one of a
plurality of defect categories. For example, defect 152 may
be one of a configuration category, a data category, a
deployment category, an operations category, and a require-
ments category. Defect information 164 may include devel-
oper 172 indicating one or more developers of software code
142. Detfect information 164 may include root cause 174 that
indicates a root cause of the defect. Root cause 174 1is
selected from a list including oversight, missed test scenario,
improper understanding, and ignorance. An example algo-
rithm for retrieval engine 200 1s as follows: wait for defect
information 164; recerve defect information 164 {from one or
more devices 110; and communicate defect information 164
and to extraction engine 305.

Extraction engine 305 extracts imformation from defect
information 164 to determine defect cause 166, defect
category 168, developer 172, and root cause 174. For
example, extraction engine 305 parses defect information
164 to extract defect cause 166, defect category 168, devel-
oper 172, and root cause 174 from defect information 164.
Extraction engine communicates defect cause 166, defect
category 168, developer 172, and root cause 174 from defect
information 164 to analysis engine 310 and/or reporting
engine 315. An example algorithm for extraction engine 305
extracting information from defect information 164 1s as
follows: receive defect information 164 from retrieval
engine 164; extract defect cause 166, defect category 168,
developer 172, and root cause 174 from defect information
164; and communicate defect cause 166, defect category
168, developer 172, and root cause 174 from to analysis
engine 310 and reporting engine 315.

Analysis engine 310 generates cause/category combina-
tion 170, determines whether cause/category combination
170 1s an approved cause/category combination, and deter-
mines whether defect 152 1s a false positive. Analysis engine
310 receives defect cause 166 and defect category 168 from
extraction engine 305. Analysis engine 310 aggregates
defect cause 166 and defect category 168 to generation
cause/category combination 170. An example algorithm for
analysis engine 310 to generate cause/category combination
170 1s as follows: receive defect cause 166; receive defect
category 168; aggregate defect cause 166 and defect cat-
cgory 168 to generate cause/category combination 170.

Analysis engine 310 determines whether cause/category
combination 170 1s an approved cause/category combination
by comparing cause/category combination 170 to approved
cause/category combinations 176. Approved cause/category
combinations 176 are predetermined approved cause/cat-

US 10,140,201 B2

13

cgory combinations. Analysis engine 310 may receive a list
ol approved cause/category combinations 176 from devices
110 and/or any other suitable component of system 100. In
some embodiments, analysis engine may update approved
cause/category combinations 176 upon receipt of new
approved cause/category combinations. For example,
retrieval engine 164 may recerve one or more additional
approved cause/category combinations from devices 110.
Analysis engine 310 may recerve the one or more additional
approved cause/category combinations from retrieval engine
300 and save the additional approved cause/category com-
binations, along with the previous approved cause/category
combinations, as approved cause/category combinations
176. User 105 may add, delete, and/or modily approved
cause/category combinations 176 using devices 110. Analy-
s1s engine 300 determines whether cause/category combi-
nation 170 1s an approved cause/category by comparing
cause/category combination 170 to approved cause/category
combinations 176. IT analysis engine 170 determines that
cause/category combination 170 1s not an approved cause/
category combination, it may communicate cause/category
combination, defect 152, and/or defect information to devel-
oper 172 for classification. For example, analysis engine 310
may communicate a request to developer 172 to update at
least one of the defect cause 166 and the defect category 168
of the defect 152. An example algorithm for analysis engine
310 to determine whether cause/category combination 170 1s
an approved cause/category combination 1s as follows: com-
pare the generated cause/category combination 170 to
approved cause/category combinations 176 to determine 1f
cause/category combination 170 matches one or more of the
approved cause/category combinations 176.

Analysis engine 310 determines whether defect 152 1s a
false positive. Analysis engine makes this determination by
comparing cause/category combination 170 to false positive
combinations 178. False positive combinations 178 1s a list
of predetermined cause/category combinations that are false
positive. Analysis engine 310 may receive false positive
combinations 178 from devices 110, software defect detec-
tion tool 125, and/or any other suitable component of system
100. User 105 may determine that particular cause/category
combinations are not software defects and communicate the
cause/category combinations to analysis engine 31. Example
of false positive combinations 178 include the working as
designed/configuration, data setup incorrect/data, user input
error/data, working as designed/development, unable to
reproduce/operations/requirement out of scope/require-
ments, and/or working as designed requirements may be a
talse positive combination 178. Analysis engine 310 deter-
mines 1 cause/category combination 170 matches one or
more false positive combinations 178 to determine whether
defect 152 1s a false positive. An example algorithm for
analysis engine 310 determining whether defect 152 1s a
talse positive 1s as follows: generate cause/category combi-
nation 170; compare cause/category combination 170 to
false positive combinations 178; and determine whether
cause/category combination matches one or more {false
positive combinations 178.

Reporting engine 315 recerves developer 172, root cause
174, and/or cause/category combination 170 and generates
corrective action plan 180. Corrective action plan 180 indi-
cates measures to 1mplement to reduce software defects.
Corrective action plan 180 may 1dentify error 152 and the
defect cause 166 and detect category 168 of error 152. Each
cause/category combination 170 may be linked to one or
more recommendations. Reporting engine may receive the
recommendations from, e.g., devices 110. Reporting engine

10

15

20

25

30

35

40

45

50

55

60

65

14

315 may include the recommendations 1n corrective action
plan 180. In some embodiments, corrective action plan 180
includes root cause 174. Root cause 174 may be linked to
one or more recommendations that 1s included 1n corrective
action plan 180. In some embodiments, reporting engine 315
receives mformation for a plurality of defects 152. Analysis
engine 310 generates a cause/category combination 170 for
cach of the defects as previously discussed. Reporting
engine may sort the plurality of defects 152 by cause/
category combination 170 and include the sorted list of
defects 152 1in correction active plan 180. As another
example, reporting engine 315 may determine a percentage
of defects that are a specific cause/category combination and
include the percentage in corrective action plan 180. An
example algorithm for reporting engine 315 to generating
corrective action plan 180 i1s as follows: receive defect
information 164 from extraction engine 3015; recerve cause/
category combination 170 from analysis engine 310; and
generate corrective action plan 180 based on at least part of
defect cause mformation 164 and cause/category combina-
tion 170.

Modifications, additions, or omissions may be made to
software defect analysis tool 158 without departing from the
scope of the invention. For example, software defect analy-
s1s tool 158 may include some, none, or all of the engines
illustrated 1n FIG. 3. As another example, software defect
analysis tool 158 may include additional engines.

FIG. 4 1s a flowchart illustrating a method 400 for
soltware defect detection using system 100. In particular
embodiments, software defect detection tool 125 performs
method 300. By performing method 300, software defect
detection tool 125 reduces or eliminates coding errors in
soltware development.

The method begins at step 405 where software defect
detection tool 125 recerves request 140 to determine one or
more errors 152. In step 410, soitware defect detection tool
125 retrieves software code 142 in response to request 140.
Software defect detection tool 125 determines there are any
code changes 144 in step 415. For example, software defect
detection tool 125 compares software code 142 to a previous
version of solftware code 142. If software defect detection
tool 125 does not determine a code change 144 at step 415,
the method ends. Otherwise, the method proceeds to step
420.

At step 420, software defect detection tool 125 monitors
code performance 146. As discussed, software code 142 1s
executed and software defect detection tool 125 monitors the
execution of software code 142 to determine code perfor-
mance 146. Soitware defect detection tool 1235 determines
whether there 1s an anomaly 150 at step 4235. As previously
discussed, anomaly 150 may indicate a performance 1ssue
with the execution of software code 142. It software defect
detection tool 125 does not detect anomaly 150, the method
proceeds to step 420, where software defect detection tool
125 continues to monitor code performance 146.

If software defect detection tool 125 does detect anomaly
150 at step 425, the method proceeds to step 430 where
software defect detection tool 125 determines defect 152.
Software defect detection tool 125 may compare a time at
which anomaly occurred with a time of code changes 144.
If software defect detection tool 125 determines that a code
change 144 occurred at the same time or substantially the
same time as anomaly 150 was detected, software defect
detection tool 125 may determine that the code change 144
caused the anomaly and may determine defect 430 based on
the code change 144. Next the method proceeds to step 435
where software defect detection tool 1235 performs correc-

US 10,140,201 B2

15

tive actions. For example, software defect detection tool 125
may generate alert 154 or auto-fix 156, as previously dis-
cussed.

Modifications, additions, or omissions may be made to
method 400 depicted in FIG. 4. Method 400 may include
more, fewer, or other steps. For example, steps may be
performed 1n parallel or in any suitable order. While dis-
cussed as soltware defect detection tool 125 performing the
steps, any suitable component of system 100, such as
device(s) 110 and/or soitware defect analysis tool 158, for
example, may perform one or more steps of the method.

FIG. § 1s a flowchart illustrating a method 500 for
soltware defect analysis using system 100. In particular
embodiments, software defect analysis tool 158 performs
method 500. By performing method 500, software detect
analysis tool 158 reduces or eliminates coding errors in
software development.

The method begins at step 505 software defect analysis
tool 158 determines whether it receives updated approved
cause/category combinations. If soitware defect analysis
tool 158 does recerve updated approved cause/category
combinations at step 305, software defect analysis tool 158
updates approved cause/category combinations 176 at step
510. Otherwise the method proceeds to step 515 where
software defect analysis tool 158 receives defect information
164.

Software defect analysis tool 158 determines defect cause
166, defect category 168, and root cause 174 at steps 520,
525, and 530 respectively. As discussed software defect
analysis tool 158 extracts defect cause 166, defect category
168, and root cause 174 from defect information 164. In step
535, soltware defect analysis tool 158 generates cause/
category combination 170 by aggregating defect cause 166
and defect category 168.

Solftware defect analysis tool 158 determines whether
cause/category combination 170 1s an approved cause/cat-
cgory combination in step 540. As previously discussed,
software defect analysis tool 158 compares cause/category
combination 170 to approved cause/category combinations
176 to determine whether it 1s approved. If cause/category
combination 1s not approved, soitware defect analysis tool
158 communicates a request to developer 172 to revise at
least one of defect cause 166 and defect category 168 before
proceeding to step 515.

If software defect analysis tool 158 determines that cause/
category combination 170 1s an approved combination at
step 540, the method proceeds to step 350 where software
defect analysis tool 1358 determines whether defect 152 1s a
false positive. As described previously, solftware defect
analysis tool 158 determines whether defect 152 1s a false
positive by comparing cause/category combination 170 to
talse positive combinations 178. I software defect analysis
tool 158 determines that defect 152 1s a false positive, the
method ends. If software defect analysis tool 158 determines
that defect 152 1s not a false positive, the method proceeds
to step 555 where software defect analysis tool 158 gener-
ates correction action plan 180 as previously discussed
betore the method ends.

Modifications, additions, or omissions may be made to
method 500 depicted in FIG. 5. Method 500 may include
more, fewer, or other steps. For example, steps may be
performed 1n parallel or in any suitable order. While dis-
cussed as software defect analysis tool 138 performing the
steps, any suitable component of system 100, such as
device(s) 110 and/or soitware defect detection tool 125, for
example, may perform one or more steps of the method. As
another example, corrective action plan 555 may include

10

15

20

25

30

35

40

45

50

55

60

65

16

information for any number of defects 152. In this example,
soltware defect analysis tool 158 may perform method 500
any suitable number of times. In this example, solftware
defect analysis tool may perform step 355 a single time
while performing the rest of method 500 a plurality of times
for each defect 152.

Although the present disclosure includes several embodi-
ments, a myriad of changes, variations, alterations, trans-
formations, and modifications may be suggested to one
skilled 1n the art, and it 1s intended that the present disclosure
encompass such changes, variations, alterations, transior-
mations, and modifications as fall within the scope of the
appended claims.

What 1s claimed 1s:

1. A software defect detection tool comprising:

a retrieval engine implemented by a hardware processor,

the retrieval engine configured to:

receive a request to monitor a performance of a soft-
ware code; and

retrieve the software code 1n response to the request;

a code analysis engine implemented by the hardware

processor, the code analysis engine configured to:

determine a modification 1 the software code by
comparing the recerved software code to a prior
version of the software code; and

determine a first time at which the software code was
modified;

a performance analysis engine configured to:

analyze an execution of the software code 1n real time;

detect an anomaly indicating a performance 1ssue with
the software code;

determine a second time at which the anomaly 1is
detected; and

an aggregation engine configured to:

receive the first time and the second time; and
detect a defect 1n the software code based on a com-
parison of the first time and the second time; and

a correction engine implemented by the hardware proces-

sor, the correction engine configured to correct the
detected defect by restarting the software code execu-
tion.

2. The software defect detection tool of claim 1, wherein
the correction engine 1s further configured to, upon the
detection of a defect, communicate an alert to a code
developer.

3. The software defect detection tool of claim 1, wherein
the performance analysis engine analyzes an execution of a
subset of the software code 1n real time.

4. The software defect detection tool of claim 3, wherein
the subset of the soitware code 1s the modification of the
soltware code.

5. The software defect detection tool of claim 1, wherein
the performance 1ssue indicates one of an application failure,
a memory usage greater than a predetermined level, a
computer processing unit usage above a predetermined
level, a number of processes above a predetermined level,
and a stall count above a predetermined level.

6. The software defect detection tool of claim 1, wherein
the aggregation engine 1s further configured to:

determine a cause/category combination of the defect; and

communicate the cause/category combination to a soft-

ware defect analysis tool.

7. A method comprising;

recerving, by a hardware processor, a request to monitor

a performance of a software code;

retrieving, by the hardware processor, the software code

in response to the request;

US 10,140,201 B2

17

determining, by the hardware processor, a modification in
the software code by comparing the received software
code to a prior version of the software code;

determining, by the hardware processor, a first time at
which the software code was modified;

analyzing, by the hardware processor, an execution of the

software code 1n real time:

detecting, by the hardware processor, an anomaly indi-

cating a performance 1ssue with the software code;
determining, by the hardware processor, a second time at
which the anomaly 1s detected;

receiving, by the hardware processor, the first time and the

second time;:

detecting, by the hardware processor, a defect in the

soltware code based on a comparison of the first time
and the second time; and

correcting, by the hardware processor, the detected detect

by restarting the solftware code execution.

8. The method of claim 7, further comprising, upon the
detection of a defect, communicating an alert to a code
developer.

9. The method of claim 7, further comprising analyzing an
execution of a subset of the software code 1n real time.

10. The method of claim 9, wherein the subset of the
software code 1s the modification of the software code.

11. The method of claim 7, wherein the performance 1ssue
indicates one ol an application failure, a memory usage
greater than a predetermined level, a computer processing
unit usage above a predetermined level, a number of pro-
cesses above a predetermined level, and a stall count above
a predetermined level.

12. The method of claim 7, further comprising:

determining a cause/category combination of the defect;

and

communicating the cause/category combination to a soft-

ware defect analysis tool.

10

15

20

25

30

35

18

13. A system comprising:

a user device; and

a software defect detection tool configured to:

receive a request to monitor a performance of a soft-
ware code from the user device;

retrieve the software code 1n response to the request;

determine a modification 1n the software code by
comparing the recerved software code to a prior
version of the software code;

determine a first time at which the software code was
modified;

analyze an execution of the software code 1n real time;

detect an anomaly indicating a performance 1ssue with
the software code;

determine a second time at which the anomaly 1is
detected;

recerve the first time and the second time;

detect a defect 1n the software code based on a com-
parison of the first time and the second time; and

correct the detected defect by restarting the software
code execution.

14. The system of claim 13, wherein the software defect
detection tool 1s further configured to, upon the detection of
a defect, communicate an alert to a code developer.

15. The system of claim 13, wherein the software defect
detection tool analyzes an execution of a subset of the
software code 1n real time.

16. The system of claim 15, wherein the subset of the
software code 1s the modification of the software code.

17. The system of claam 13, wherein the performance
issue 1indicates one of an application failure, a memory usage
greater than a predetermined level, a computer processing
unit usage above a predetermined level, a number of pro-
cesses above a predetermined level, and a stall count above
a predetermined level.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

