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SCORING ATTRIBUTES IN DEEP QUESTION
ANSWERING SYSTEMS BASED ON

ALGORITHMIC SOURCE CODE
INFLUENCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of co-pending U.S.
patent application Ser. No. 14/574,861, filed Dec. 18, 2014.
The aforementioned related patent application 1s herein
incorporated by reference in 1ts entirety.

BACKGROUND

The present disclosure relates to deep question answering,
systems, and more specifically, to scoring attributes in deep
question answering systems based on algorithmic source
code 1nfluences.

Deep question answering (deep (QA) systems receive
cases (also referred to as questions) from users. The deep
QA systems receive cases from users which include different
data elements. The deep QA systems leverage corpora of
information to process the cases 1 an execution pipeline,
returning a set of candidate answers as responsive to the
cases. Often, however, users do not provide information
needed by the deep QA system to generate the most correct
response (or answer) to the case. Even without this infor-
mation, the deep QA system 1s expected to give a reasonable
response to the case.

SUMMARY

Embodiments disclosed herein include methods to per-
form an operation comprising: identifying a first attribute 1n
a source code of a deep question answering system, coms-
puting an influence score for the first attribute based on a
rule 1n the source code used to compute a confidence score
for each of a plurality of candidate answers generated by the
deep question answering system, computing an importance
score for the first attribute based at least in part on the
computed intluence score, and upon determining that the
importance score exceeds a predefined threshold, storing an
indication that the first attribute 1s an i1mportant attribute
relative to other attributes specified in the source code.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1llustrates a system which scores attributes 1in a
deep question answering system based on algorithmic
source code 1ntluences, according to one embodiment.

FIG. 2 illustrates a method to 1dentity important attributes
in a deep question answering system based on algorithmic
source code influences, according to one embodiment.

FIG. 3 illustrates a method to compute an influence score
for an attribute, according to one embodiment.

FIG. 4 illustrates a method to compute an importance
score for an attribute, according to one embodiment.

DETAILED DESCRIPTION

Embodiments disclosed herein provide deep question
answering systems (deep QA systems) configured to 1dentily
attributes that are important to answering cases received
from users by analyzing the source code of the deep QA
system. That 1s, the deep QA system can evaluate the source

10

15

20

25

30

35

40

45

50

55

60

65

2

code of the deep QA system to learn what attributes matter
for a class of cases. That 1s, the deep QA system may learn
relationships between different attributes from the source
code of the deep QA systems (or relationships between
attributes 1n those cases) that can significantly impact the
correctness of an answer. If a user submits a case that lacks
one of the identified attributes, the deep QA system may
prompt the user to provide a value for the attribute. Before
doing so, the deep QA system may determine a measure of
how 1mportant the missing attribute 1s to answering that
particular case. Generally, the deep QA system may scan the
source code to determine which attributes have the greatest
influence when computing a response to a case. In at least
one embodiment, the deep QA system may compute an
influence score for each rule that includes the attribute. The
rule may generally be any segment of source code that
specifies the attribute, such as an algorithm, module, func-
tion, and the like. The mfluence score may reflect a level of
influence the attribute has on a confidence score computed
by a scoring algorithm of the deep QA system for each
candidate answer that may be returned as responses to the
case. In at least one embodiment, the deep QA system may
then compute an importance score for the attribute, where
the importance score normalizes the number of rules apply-
ing the attribute and the respective intluence scores for the
attribute. If the importance score exceeds a predefined
threshold, the deep QA system may determine that the
attribute 1s an important attribute.

For example, the deep QA system may analyze the source
code of a scoring algorithm that computes confidence scores
for candidate answers. In analyzing the source code of the
scoring algorithm, the deep QA system may determine the
amount of influence each attribute (or synonyms thereotf) has
in the scoring algorithm based on the number of times the
attribute 1s specified 1n the source code, the programming
constructs applied to the attribute, where the attribute
appears 1n the source code, and/or any weights applied to the
attribute by the source code.

When the deep QA system subsequently receives cases
from users that do not specily a value for an important
attribute, the deep QA system may prompt the user to
provide a value for the important attribute. Doing so may
allow the deep QA system to provide more accurate
responses to cases without having to first process the case
without the value of the important attribute.

Although the medical field 1s used herein a reference
example, embodiments disclosed herein may apply equally
to any type of domain. Generally, using the techniques
described herein, deep question answering systems may
identily important attributes in any domain.

FIG. 1 1llustrates a system 100 which scores attributes 1in
a deep question answering system based on algorithmic
source code 1tluences, according to one embodiment. The
networked system 100 includes a computer system 102. The
computer system 102 may also be connected to other
computers via a network 130. In general, the network 130
may be a telecommunications network and/or a wide area
network (WAN). In a particular embodiment, the network
130 1s the Internet.

The computer system 102 generally includes a processor
104 which obtains instructions and data via a bus 120 from
a memory 106 and/or a storage 108. The computer 102 may
also include one or more network interface devices 118,
input devices 122, and output devices 124 connected to the
bus 120. The computer system 102 1s generally under the
control of an operating system (not shown). Examples of
operating systems 1include the UNIX operating system,
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versions of the Microsoit Windows operating system, and
distributions of the Linux operating system. (UNIX 1s a
registered trademark of The Open Group 1n the United States
and other countries. Microsoit and Windows are trademarks
of Microsoft Corporation 1n the United States, other coun-
tries, or both. Linux 1s a registered trademark of Linus
Torvalds in the United States, other countries, or both.) More
generally, any operating system supporting the functions
disclosed herein may be used. The processor 104 1s a
programmable logic device that performs 1nstruction, logic,
and mathematical processing, and may be representative of
one or more CPUs. The network interface device 118 may be
any type of network communications device allowing the
computer 102 to communicate with other computers via the
network 130.

The storage 108 1s representative of hard-disk drives,
solid state drives, flash memory devices, optical media and
the like. Generally, the storage 108 stores application pro-
grams and data for use by the computer 102. In addition, the
memory 106 and the storage 108 may be considered to
include memory and storage systems on other systems
coupled to the computer system 102.

The 1nput device 122 represents keyboards, mice, con-
trollers, and so on. The output device 124 represents moni-
tors, touch screen displays, and so on.

As shown, the storage 108 includes a case data 113, a
corpus 114, an importance data 115, a scorers 116, and a
source code 117. The case data 113 includes data related to
the case submitted by a user. For example, 1n a medical
setting, the case data 113 may include a patient’s medical
history, and any other data regarding the patient. The corpus
114 1s a body of information used by the QA application 112
to generate answers to questions (also referred to as cases).
For example, the corpus 114 may contain scholarly articles,
dictionary definitions, encyclopedia references, product
descriptions, web pages, and the like. The importance data
115 includes, without limitation, attributes identified in the
source code 117 and any influence scores and/or importance
scores computed by the QA application 112 for the attribute.
The importance data 115 may also include and threshold
values (or ranges) for importance scores and influence
scores. In addition, the importance data 115 may include
parsing rules that the QA application 112 may apply when
scanning the source code to 1dentify attributes.

The scorers 116 includes scoring algorithms used by the
QA application 112 to compute confidence scores for can-
didate answers generated by the QA application 112. The
source code 117 1s a data store including a set of computer
instructions written 1n a human-readable programming lan-
guage that may be compiled to provide the QA application
112. When compiled, the compiled source code 117 1s
executable by the processor 104 to provide the functionality
of the QA application 112. The source code 117 may include
all of the source code currently used to drive the function-
ality of the QA application 112. The source code 117 may
specily a plurality of attributes that are of different levels of
importance in returning answers to cases supplied by users.
As previously indicated, the QA application 112 may scan
the source code 117 to 1dentity which of these attributes are
of the most importance to answering a class of cases. Doing
so allows the QA application 112 to ensure that values for
the important attributes are provided by a user, which 1n turn
allows the QA application 112 to return candidate answers
having the greatest levels of confidence.

As shown, the memory 106 contains a QA application
112, which 1s an application generally configured to provide
a deep question answering (QA) system. One example of a
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4

deep question answering system 1s Watson, by the IBM
Corporation of Armonk, N.Y. A user may submit a case (also
referred to as a question) to the QA application 112. The QA
application 112 will then provide an answer to the case based
on an analysis of a corpus of mformation 114. Although
depicted as executing on a single computer, the functionality
of the QA application 112 may be provided by grid or cluster
of computers (not pictured), and the QA application 112 may
serve as a frontend to orchestrate such distributed function-
ality.

The QA application 112 1s trained to generate responses to
cases during a traiming phase. During the training phase, the
QA application 112 i1s trained to answer cases using an
“answer sheet” which predefines the most correct responses.
During training, the QA application 112 ingests content 1n
the corpus 114 to produce one or more machine learning
models (not pictured). In addition, during the training phase,
the QA application 112 1s configured to i1dentily data attri-
butes which are important to answering cases (namely, those
attributes having an impact on the confidence score of a
gIven answer).

After being trained, the QA application 112 may process
user cases through a runtime analysis pipeline. In at least one
embodiment, the case data 113 include medical records of a
patient, and the candidate answers returned by the QA
application 112 correspond to a set of recommended treat-
ments, ranked by a confidence score of each respective
candidate answer. The analysis pipeline executes a collec-
tion of analysis programs to evaluate both the question text
and candidate answers (1.e., text passages extracted from
documents 1n a corpus 114) 1n order to construct the most
probable correct answer, based on the information extracted
from the corpus and from the question. A typical execution
pipeline may begin with question analysis, which analyzes
and annotates each question presented 1n the case to 1dentily
key topics, concepts, and attributes for conducting a search.
The next step of the pipeline may include a primary search,
which involves searching for documents 1n the corpus 114
using the key attributes from the question analysis phase.
The next step of the pipeline may generate candidate
answers. For example, the QA application 112 may identity
key matching passages (based on, for example, topics,
concepts, and/or string matching) from the search results
with passages 1n the candidate answers. In the next step of
the pipeline, the QA application 112 may then retrieve and
process supporting evidence for the candidate answers. The
QA application 112 may then complete the pipeline by
scoring the various candidate answers, from which the most
correct answer 1dentified by the QA application 112 may
returned to the user.

In addition, the QA application 112 i1s configured to
identily important attributes (or variables) 1n the source code
117 of the QA application 112. Generally, an important
attribute 1s an attribute that influences the confidence score
ol a candidate answer beyond a specified threshold. The QA
application 112 may identily important attributes in the
source code using a variety of techniques, including i1den-
tifying a number of times an attribute appears 1n the source
code, where the attribute appears 1n the source code, the
programming constructs applied to the attribute, the type of
algorithm specilying the attribute, a stage of the execution
pipeline of the QA application 112 where the attribute
appears, and any weight applied to the attribute (or syn-
onyms thereof) in the source code. In one embodiment, the
QA application 112 identifies “rules” 1n the source code that
relate to an attribute. A “rule,” as used herein, includes any
logic 1n the source code applied to a value of an attribute.
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For example, a first rule 1n the source code 117 may
specily blood pressure ranges as an attribute that a scorer
116 uses to compute a confidence score for prescribing a
medication to treat a patient. The QA application 112 may
determine that the blood pressure occurs X number of times
in the source code 117 of the scorer 116. The QA application
112 may also determine that the first rule applies different
weights for different blood pressure ranges when scoring the
medication as a candidate treatment. For example, the first
rule may specily that a range of high blood pressure values
negatively impacts the confidence score of the treatment
(indicating, for example, that a patient having a high blood
pressure cannot take the medication). Stmilarly, the first rule
may specily that a range of low blood pressure values
positively 1mpacts the confidence score of the treatment
(indicating the medication 1s very beneficial to patients with
low blood pressure). As such, the deep QA system may
identify blood pressure as having an influence on the can-
didate answer. In one embodiment, the QA application 112
may compute an influence score for the attribute (blood
pressure) to determine the level of influence the attribute has
on candidate answer scoring. The QA application 112 may
base the influence score on any number of criteria, includ-
ing, the number of times an attribute appears in the first rule,
where the first rule (including the attribute) appears in the
source code, the programming constructs the first rule
applies to the attribute, the type of algorithm including the
first rule, a stage of the execution pipeline of the QA
application 112 where the first rule appears, any weight the
first rule applies to the attribute, and the number and types
of other code segments that call the source code including
the first rule. Generally, the QA application 112 may com-
pute mntluence scores for each rule (or algorithm, module,
and the like) that specifies a given attribute.

Once the QA application 112 computes intluence scores
for sections of source code 117 that reference the attribute,
the QA application 112 may compute an importance score
for the attribute. In at least one embodiment, the QA
application 112 may compare the computed intluence score
to an influence threshold stored in the importance data 115
to determine that the attribute 1s of suthcient influence prior
to computing the importance score for the attribute. Gener-
ally, the importance score of the attribute normalizes each
influence score computed for the attribute to determine an
overall measure of importance. If the importance score
exceeds an importance threshold, the QA application 112
may determine that the attribute i1s of importance. In one
embodiment, the QA application 112 may store an indication
that the attribute 1s 1mportant in the importance data 115.
When the QA application 112 subsequently receives a case
from the user, the QA application 112 may verity that the
user supplied values for each attribute listed 1n the 1mpor-
tance data 113 as being of importance to answering the case.
I1 the user does not supply values for important attributes,
the QA application 112 may prompt the user to supply a
value for the important attribute.

In at least one embodiment, the QA application 112 may
order (or rank) a plurality of different attributes based on the
respective 1mportance score computed for each attribute.
Therefore, 11 a user submits a case that has missing attri-
butes, the QA application 112 may prompt the user to supply
values for each missing attribute, with each attribute being,
ordered by importance score. By ordering the attributes by
importance score, the QA application 112 may call the user’s
attention to the most important attributes by placing the most
important attributes at the top of the list.
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Generally, the QA application 112 may scan the source
code 117 at any time to 1dentily important attributes therein.
In at least one embodiment, the QA application 112 may
scan the source code 117 at deployment time, allowing the
QA application 112 to identify attributes 1n the source code
117 that are actually deployed to run the QA application 112.
Doing so may allow the QA application 112 to dynamically
identily important attributes as algorithms are added and/or
removed to the source code 117 (or enabled for a pipeline or
class of cases) that currently provides the QA application
112.

FIG. 2 illustrates a method 200 to identily important
attributes 1n a deep question answering system based on
algorithmic source code influences, according to one
embodiment. Generally, the QA application 112 may per-
form the steps of the method 200 to identily important
attributes 1n the source code 117 of the QA application 112.
At step 210, the QA application 112 may scan the source
code 117 of the QA application 112. At step 220, the QA
application 112 may apply one or more rules 1n the impor-
tance data 115 to identify attributes 1n the source code 117.
In at least one embodiment, the QA application 112 1denti-
fies rules, algorithms, or modules including the attribute at
step 220. At step 230, the QA application 112 may compute
an influence score for each attribute identified 1n the source
code 117. Generally, the mfluence score may reflect how
much the value of a given attribute has on a confidence score
computed by a scorer 116 for a candidate answer.

At step 240, the QA application 112 may compute an
importance score for the attributes identified in the source
code 117. The importance score may reflect a normalized
value of all the influence scores computed for a given
attribute. At step 250, the QA application 112 may store an
indication that the attribute 1s 1important upon determining
that the importance score of the attribute exceeds a specified
importance threshold. At step 260, the QA application 112
may request a value for an important attribute from a user
upon determining that the user did not specity a value for the
important attribute as part of a case presented to the QA
application 112. In at least one embodiment, the QA appli-
cation 112 may not process the case received at step 260
until the user supplies the value. In other embodiments, the
QA application 112 may process the case without the value
for the important attribute, present a response to the user, but
request that the user specily a value for the important
attribute. In such embodiments, the QA application 112 may
re-process the case using the value for the important attri-
bute to return a response having a higher confidence score
than the response that was returned by processing the case
without the value for the important attribute.

FIG. 3 illustrates a method 300 corresponding to step 230,
according to one embodiment. That 1s, FIG. 3 illustrates a
method 300 to compute an influence score for an attribute.
The QA application 112 may perform the steps of the
method 300 for each attribute i1dentified at step 220 as part
of the code scan process initiated at step 210.

The method 300 begins at step 310, where the QA
application 112 executes a loop including steps 320-380 for
cach algorithm specitying an attribute identified at step 220.
While the steps of the method 300 are discussed relative to
cach algorithm, the QA application 112 may score the
importance of an attribute relative to any other unit of source
code, such as functions, modules, or rules. At step 320, the
QA application 112 may identily the programming con-
structs applied to each instance of the attribute in the
algorithm. The programming constructs include, without
limitation, mathematical operations, function calls, and the
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like. For example, a patient’s blood pressure may be mul-
tiplied by a factor of X, while the patient’s cholesterol may
be divided by a factor of Y by two different programming,
constructs. At step 330, the QA application 112 may 1dentily
any ranges ol values for a specified attribute. For example,
a first programming construct may specily five different
welghts to apply to five diflerent ranges of prostate specific
antigen (PSA) values used to determine a suitable dosage of
chemotherapy drugs for a patient. The weights may gener-
ally retlect that the higher the PSA, the greater the amount
of chemotherapy drugs the patient should be prescribed. By
identifying the ranges (and weights), the QA application 112
may determine that the patient’s PSA 1s of influence.

At step 340, the QA application 112 may determine the
properties of the algorithm including the attribute. The
properties may include the type of algorithm, the algo
rithm’s place in the processing pipeline, the algorithm’s
place 1n the source code, and the like. At step 350, the QA
application 112 may determine the number of times the
current algorithm 1s called by other segments of code in the
source code 117. The QA application 112 may leverage the
number of times the current algorithm 1s called to infer the
importance of the current algorithm. For example, the QA
application 112 may determine that the more times the
current algorithm i1s called by other segments of code, the
more important the current algorithm (and therefore the
attributes therein). At step 360, the QA application 112 may
determine 11 the algorithm applies an express weight to the
attribute when computing a score for a candidate answer. For
example, the source code of a scorer 1 the scorers 116
indicates that the final confidence score of a candidate
answer 1s directly proportional to a patient’s age. Similarly,
the source code of the scorer may indicate that a patient’s
dosage 1s multiplied by a normalized body mass 1ndex
(BMI) value. The QA application 112 may consider these
express weights applied to the attributes when computing
respective influence scores for the attributes.

At step 370, the QA application 112 may compute an
influence score for the attribute relative to the current
algorithm (or other unit of source code). The QA application
112 may compute the influence score according to any
suitable algorithm, and may produce influence scores of any
range. Generally, the QA application 112 may compute the
influence score based on any number of criteria, including,
without limitation, the determinations made at steps 320-
360. The QA application 112 may then store the computed
influence score for the attribute relative to the current
algorithm 1n the importance data 115. At step 380, the QA
application 112 may determine whether more algorithms
were 1dentified at step 220 that include the current attribute.
If more algorithms remain, the QA application 112 returns to
step 310. Otherwise, the method 300 ends.

FI1G. 4 1llustrates a method 400 corresponding to step 240,
according to one embodiment. That 1s, FIG. 4 1llustrates a
method 400 to compute an importance score for an attribute.
In at least one embodiment, the QA application 112 performs
the steps of the method 400. The method 400 begins at step
410, where the QA application 112 executes a loop including
steps 420-450 for each attribute the QA application 112
computed one or more influence scores for at step 370. At
step 420, the QA application 112 may determine each
influence score computed at step 370 for the current attri-
bute. At step 430, the QA application 112 may determine the
number of algorithms that include the current attribute. At
step 440, the QA application 112 may compute the impor-
tance score for the attribute. In at least one embodiment, the
QA application 112 computes the importance score using an
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algorithm that takes, as mput, the number of algorithms
speciiying the attribute and the respective intluence scores
for each attribute relative to the algorithm. Generally, the
QA application 112 may produce an importance score that
falls into any range of values. The QA application 112 may
store the computed importance score 1n the importance data
115. At step 450, the QA application 112 may determine
whether more attributes remain. If more attributes having a
computed influence score remain, the QA application 112
may return to step 410. If no more attributes remain, the
method 400 ends.

Advantageously, embodiments disclosed herein i1dentity
important attributes in the source code of a deep question
answering system. By identitying the attributes that are most
influential in the source code, the deep question answering
system may ensure that users specily values for all important
attributes, allowing the deep question answering system to
return more accurate results.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

In the foregoing, reference 1s made to embodiments
presented 1n this disclosure. However, the scope of the
present disclosure 1s not limited to specific described
embodiments. Instead, any combination of the recited fea-
tures and elements, whether related to different embodi-
ments or not, 1s contemplated to implement and practice
contemplated embodiments. Furthermore, although embodi-
ments disclosed herein may achieve advantages over other
possible solutions or over the prior art, whether or not a
particular advantage 1s achieved by a given embodiment 1s
not limiting of the scope of the present disclosure. Thus, the
recited aspects, features, embodiments and advantages are
merely 1llustrative and are not considered elements or limi-
tations of the appended claims except where explicitly
recited 1n a claim(s). Likewise, reference to “the invention”™
shall not be construed as a generalization of any mventive
subject matter disclosed herein and shall not be considered
to be an element or limitation of the appended claims except
where explicitly recited 1 a claim(s).

Aspects of the present disclosure may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.”

The present disclosure may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present disclosure.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
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semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations ol the present disclosure may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
ol one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program 1instructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present disclosure.

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams ol methods, apparatus (systems), and computer pro-
gram products according to embodiments of the disclosure.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
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blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1n the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Embodiments of the disclosure may be provided to end
users through a cloud computing infrastructure. Cloud com-
puting generally refers to the provision of scalable comput-
Ing resources as a service over a network. More formally,
cloud computing may be defined as a computing capability
that provides an abstraction between the computing resource
and 1ts underlying technical architecture (e.g., servers, stor-
age, networks), enabling convenient, on-demand network
access to a shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal
management effort or service provider interaction. Thus,
cloud computing allows a user to access virtual computing
resources (e.g., storage, data, applications, and even com-
plete virtualized computing systems) 1n “the cloud,” without
regard for the underlying physical systems (or locations of
those systems) used to provide the computing resources.

Typically, cloud computing resources are provided to a
user on a pay-per-use basis, where users are charged only for
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the computing resources actually used (e.g. an amount of
storage space consumed by a user or a number of virtualized
systems instantiated by the user). A user can access any of
the resources that reside in the cloud at any time, and from
anywhere across the Internet. In context of the present
disclosure, a user may access applications or related data
available 1n the cloud. For example, the QA application 112
could execute on a computing system in the cloud and the
scan source code of the QA application 112 to identily
important attributes therein. In such a case, the QA appli-
cation 112 could compute importance scores for the attri-
butes and store the importance scores at a storage location in
the cloud. Doing so allows a user to access this information
from any computing system attached to a network connected
to the cloud (e.g., the Internet).

While the foregoing 1s directed to embodiments of the
present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof 1s determined by the
claims that follow.

What 1s claimed 1s:
1. A method, comprising:
identifying a first variable 1n a source code of a question
answering (QA) system;
upon determining that a weight applied to a value of the
first variable by a first rule in the source code increases
a confidence score for candidate answers generated by
the QA system beyond a threshold,;
computing an 1influence score for the first variable
based on: (1) the weight applied to the value of the
variable by the first rule in the source code, (11) a
number of rules specitying weights applied to values
of the first attribute, (1) a location of the first
attribute 1n each rule, (1v) a number of times the first
variable 1s used 1n each rule, (v) a type of operation
applied to the value of the first vanable by each
respective rule, and (v1) an identified phase of a
processing pipeline of the QA system 1n which each
respective rule 1s applied;

computing an importance score for the first variable
based at least 1in part on the computed influence
score; and
upon determining that the importance score exceeds a
predefined threshold, storing an indication that the
first variable 1s an important variable relative to other
variables specified 1n the source code;
receiving, by the QA system, a case that does not specily
a value for the first variable; and
refraining, by the QA system, from processing the case.
2. The method of claim 1, further comprising;:
outputting, to a user, a request to provide a value for the
first variable;
receiving, {rom the user, a first value for the variable; and
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processing, by the QA system, the case using the first

value for the vanable.

3. The method of claim 1, wherein the intluence score for
the first variable 1s further based on a respective weight
applied to each of a plurality of possible values for the first
variable specified in the first rule.

4. The method of claim 1, wherein the first variable 1s
identified during a code scan of the source code of each of
a plurality of scorers configured to compute confidence
scores for candidate answers 1n the QA system.

5. The method of claim 1, wherein the confidence score
specifies a level of confidence that a response to a case
generated by the deep question answering system 1s correct,
wherein the source code comprises a current source code of
the QA system.

6. The method of claim 1, further comprising;:

identilying a second variable in the source code of the QA

system:

determining that a weight applied to a value of the second

variable by a second rule 1n the source code increases
the confidence score for candidate answers generated
by the QA system beyond the threshold;
computing an influence score for the second variable
based on the weight applied to the value of the second
variable by the second rule 1n the source code;

computing an importance score for the second variable
based at least 1n part on the computed intluence score
for the second variable; and

determining that the importance score exceeds the pre-

defined threshold.
7. The method of claim 6, further comprising:
recerving, by the QA system, a case that does not specity
values for at least the first and second variables:

determiming that the importance score for the first variable
1s greater than the importance for the second variable;
and

outputting, to a user, a request to provide values for the

first and second variables, wherein the request 1s
ordered based on the importance score of the first
variable being greater than the importance score of the
second variable.

8. The method of claim 7, wherein the case does not
specily values for a plurality of variables including the first
and second variables, the method further comprising:

generating an ordered list of the plurality of variables,

wherein the list 1s ordered according to the importance
score of each variable;

outputting the ordered list to the user;

receiving, from the user, values for each of the plurality of

variables; and processing, by the QA system, the case
based on the values for each of the plurality of variables
provided by the user.
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