US010120885B2

12 United States Patent

Mielenhausen

US 10,120,885 B2
Nov. 6, 2018

(10) Patent No.:
45) Date of Patent:

(54) SMART RESTRICT MODE FOR DATA (56) References Cited

DEFINITION STATEMENTS

U.S. PATENT DOCUMENTS

(71) Applicant: SAP SE, Walldort (DE) 7,640,533 B1* 12/2009 Lottero GOGF 8/71
717/108
_ : : O 2005/0050068 Al* 3/2005 Vaschillo GO6F 17/30569
(72) Inventor B.loern Mlelenhausen! PlankStadt (D—’) 2006/0095447 A 3 5/2006 DiCkiﬂSOﬂ *********** G06F 17/246
2010/0114962 Al1* 5/2010 Ahadian GO6F 8/75
(73) Assignee: SAP SE, Walldorf (DE) 707/782
2011/0078113 Al1* 3/2011 Franz GO6F 17/30297
| | o | 707/634
(*) Notice: Subject to any disclaimer, the term of this 2012/0278282 A1* 11/2012 LU wovoveeoveeern GOG6F 17/30578
patent 1s extended or adjusted under 35 707/634
U.S.C. 154(b) by 604 days. * cited by examiner
_ Primary Examiner — Robert W Beausoliel, Ir.
(21) Appl. No.: 14/727,259 Assistant Examiner — Pedro] Santos
(74) Attorney, Agent, or Firm — Schwegman Lundberg &
(22) Filed: Jun. 1, 2015 Woessner, P.A.
(57) ABSTRACT
(65) Prior Publication Data Example embodiments involve a system, computer-readable
US 2016/0350348 A1 Dec. 1, 2016 storage medium storing at leas!: one program, and computer-
implemented method for modifying a database object with
one or more dependent database objects. The method may
(51) Int. CL include recerving a data defimition statement involving a
GO6F 17/30 (2006.01) modification to a database object. The received data defini-
(52) U.S. CL. tion statement includes a clause imposing a restriction on the
CPC .. GOG6F 17/30292 (2013.01); GO6F 17/30348 modiication to the database object. The method further
(2013.01): GO6F 17/30371 (2013.01) includes determining whether the modification results 1n
_ _ 7 ' invalidation of at least one dependent database object 1n
(38) FKield of Classification Search o response to the clause being included 1n the received data
CPC ... GOGE 17/30575; GO6L :~7/ 30563; GOOL definition statement. Based on determining that the modafi-
17/30595; GO6F 17/30607; GO6F cation results in the invalidation of at least one dependent
17/30294; GO6LF 17/30377; GO6F database object, the modification to the database object is
17/30292; GO6F 17/30348; GO6F prevented. Based on determining that the modification does
17/30371 not result 1n the mnvalidation any dependent database objects,
USPC 707/990 102. 999 1 R03. 602. 802. 634 the modification to the database object 1s performed in

7007703, 755; 717/151
See application file for complete search history.

accordance with the data definition statement.
20 Claims, 4 Drawing Sheets

400\

(START l

405 <

RECEIVE DATA DEFINITION
STATEMENT

——————

410 | DETERMINE STATEMENT INCLUDES
NO-INVALIDATION CLAUSE

413

420 y

PERFORM MODIFICATION

DEPENDENT OBJECTS
INVALIDATED?

425 < Y

PREVENT MODIFICATION

END

e\

=

£}

X .

S [DIA

e\

1-...,.

—

—

)

-

.4

S

° ZT _ orT
— 3SVaY1v(a 3SVEYLVA
O

e

2 >

% 7 o0}

= NTLSAS 3INAON

< ONILNAWOD LN3ID HOvd3IN

2 __

7 301 o7

J1MNJdON

ONISSTO0Yd INIWTLYLS 31NAOW ONISHYd

70l WALSAS INJWIOVYNVIA 35VEVY.LVA
001 WALSAS

U.S. Patent

U.S. Patent Nov. 6, 2018 Sheet 2 of 4 US 10,120,885 B2

200 ﬂ“‘_},

~

PROCESSORS 210

PROCESSOR g

MEMORY/STORAGE 220

LI VA R P

MEMORY 222

e

R L Rl WP PR O

B e T A A N A R - "I A H

S

AT R,
R T S T L T L

INSTRUCTIONS

STORAGE UNIT 226

PROCESSOR |

214

INSTRUCTIONS
210

T R RRL LG R RREATH P PN LI T LR AL P ARA LI R RR AL

s

INSTRUCTIONS 216

N T O R A T N

T e P

L A T e A S R D (A R T D T A N D A L R e e e L T S e I T T T I B R R U RS NN R R A SR

F————————————————————————— =
S
o e o

r-————-——_————————
AT

LI L B]

BUS 202

o T T T T T T T T T T T T T T O T T T T T e R] v

r— " —————————m TR TR R T S R R, IR, GRS IS S R S, R e ===

/O COMPONENTS 250

DA A

T .

¥ -

+ B

T P

5 P

| | : |
“ -
= -
+ T
n =
e s
" =
e T ey e T T R ey e e g e g g e x o TN T S R T R TR T R R R R R S RURURE RSN T Y SRR R SR, T R R R R R R Y
"
’ HE K
v =
- Nz
v K=
= W=
r. K=
I R e T i e e i N R TR e e e R cetE e R R e e kA D R N e e -
" T
- K=
[H +
v =
~ T
: Ll A
L T L R LY Lt L P g e, S o o e e L A T S R A A R

AAOTARREA T T AR T AR T AR LT AR LR A RAREEG B SH R,

Had Al .k,

I 5 ﬁi'ﬂ' FEACR AN '-:E?'x: - b ‘»:H \e 'ﬁf'__l-'

T e T A e T R R S R R S A,
.
Lr}
=
*
=
| =
-
- i
w =
"®
K =z
LN &
=
’. A A A O N e s e A A T R N O N L N T T O 0o, wgou e e AN N e el Ty e T, gy, T
"
:'\-:
L
5 -
uy *
L -
% =
T L e DT e e T A e AL Ay A L A e e L D i I A DESE BRSSO ERR DTSt et e A R e e e S T e T e e L T L
. s
n R
Ei =
o k3
. N
I.\{ Iﬂ:
5 I
ey L i
R T U A B .'%-..'i'.!k IENUTL SR L B NI RN N BN AT AL SO SR T N T L B B N Lt R M e e s e S e T T e A T e e T T T e T e
L,
"

PP N L DI O S T ST DR p P PO -
L R R T A B T R A e R A R L T

oA

L L TN T T T T O L PV N L LI DAL PO P P
REEAARN R N AN R AN e M e T e A N e g e Ty e

R B S T I R A TR AN S

O Iy
-~ L -

s

R T S

BT T o T T T T e T T e e e i e T e T T T S T T T T T T T R T e e B LR T I T T e o e e T e I T T T T B B R A i T B T LR T LRt B DR LA TR R

NEAR FIELD BLUETOOTH | WI-F|

L . 3 3 -

B B T L L A T e PR T T e e e T

o

AR

L - -

B T L e e TR [T T T T e T T e e = e e e e e gt ST R A e T

PEL Y IT R x4 R I A - T T e R L L A - E T i R A R HE e Mok MOMLL NI MM AE NN ANY L AW A N e e T L R e NN e Y Lo n e RN WA hC I - T CREEHEEEE - LU

l

|

|

I

|

)

|
I k
| :

|

|

)

L

Y

—_—

ERr A

-

DEVICES

US 10,120,385 B2

Sheet 3 of 4

Nov. 6, 2018

U.S. Patent

JOVSSIN H0dH3 NdNL13d

NOILVOIAIdOWN LNJAJ4d

NOILVOI3IJON Wd0443d

301 ' 1NAOW DNISSIO0ad INJNFLVLS “

¢ OIA

(NOILVAIVANI

OLE

(5190440 LNJAN344d 90¢
ASNV10 S3ANTONI

INJWSLVLS INING3L13Q |

POL!

901 F1NAON DNIS&Vd |

INJWILVLS

NIOLINI43d V.1Vd JAIF03d

¢0l 3TNAON FOV4d31NI

c0t

U.S. Patent

400\,&

420
PERFORM MODIFICATION

Nov. 6, 2018 Sheet 4 of 4

START

409 RECEIVE DATA DEFINITION
STATEMENT
410 | DETERMINE STATEMENT INCLUDES
NO-INVALIDATION CLAUSE

415
DEPENDENT OBJECTS

INVALIDATED?

4

END

FiG. 4

US 10,120,385 B2

29
PREVENT MODIFICATION

US 10,120,885 B2

1

SMART RESTRICT MODE FOR DATA
DEFINITION STATEMENTS

TECHNICAL FIELD

Example embodiments of the present application gener-
ally relate to data processing and, more particularly, to
database management techniques.

BACKGROUND

Database query languages are computer-readable lan-
guages used 1n querying, updating, and managing relational
databases. In database query languages such as standard
query language (SQL), objects may depend on tables and
other objects stored in the database. For example, an SQL
view object may depend on a data table. A traditional
database management system (DBMS) supports automatic
recompiling whenever objects 1n the SQL catalog are subject
to change (e.g., via alter- or drop-statement) through one of
two conventional approaches.

In the first approach, the DBMS provides a “restrict
mode” 1n which any change is rejected 1f there are other
objects depending on the object to be changed. As an

example of the foregoing approach, consider the following

code snmippet:
CREATE TABLE t(x INT, y INT);

CREATE VIEW v AS SELECT y FROM t WHERE y=3;

DROP TABLE t RESTRICT;

In the above example, the DROP statement will fail because
VIEW v depends on TABLE t. In this approach, all depend-
ing objects must be deleted or changed to remove the
dependency. The “RESTRICT” clause automatically drops
any dependent object transitively. Because the “restrict
mode” offers little flexibility, many DBMSs follow a second
approach that supports more graceful data definition state-
ments.

In the second approach, a DBMS provides a “smart
mode” that allows changes to objects even 1f there are
dependent objects, and even 1f the changes result in the
invalidation of a dependent object. As an example, consider
the following code snippet:

CREATE TABLE t(x INT, y INT);

CREATE VIEW v AS SELECT y FROM t WHERE y=3;

DROP TABLE f;

In the above example, the DROP statement will succeed
(1.e., the TABLE t will be dropped), but as a result of
dropping t, the VIEW v will become invalid (e.g., VIEW v
cannot be recompiled and any usage of VIEW v will result
in an error). Thus, the approaches employed under conven-
tional practice either prevent invalidation of dependent
objects by preventing all modifications to objects with
dependent objects, or allow all modifications to objects,
regardless of whether such modification results 1n the mvali-
dation of a dependent object.

However, situations may arise in which a programmer
may want to change objects with dependent objects only
when the change does not lead to invalidation of the depen-
dent objects. For example, consider the following code
snppet:

CREATE TABLE t(x INT, y INT);

CREATE VIEW v AS SELECT vy FROM t WHERE y=3;

ALTER TABLE t DROP COLUMN x;

In the above example, the VIEW v can be successiully
reconciled since column x 1s not used within the definition
of v.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

Various ones of the appended drawings merely 1llustrate
example embodiments of the present inventive subject mat-
ter and cannot be considered as limiting 1ts scope.

FIG. 1 1s a block diagram illustrating a system according,
to an example embodiment.

FIG. 2 1s a 1s a diagrammatic representation of a machine
in the example form of a computer system within which a set
ol instructions for causing the machine to perform any one
or more ol the methodologies discussed herein may be
executed.

FIG. 3 1s an interaction diagram that illustrates interac-
tions between the various functional components of the
system, according to an example embodiment.

FIG. 4 1s a flow chart illustrating a method for changing
a database object having one or more dependent database
objects, according to an example embodiment.

DETAILED DESCRIPTION

Reference will now be made 1n detail to specific example
embodiments for carrying out the inventive subject matter.
Examples of these specific embodiments are illustrated 1n
the accompanying drawings, and specific details are set forth
in the following description in order to provide a thorough
understanding of the subject matter. It will be understood
that these examples are not intended to limait the scope of the
claims to the 1illustrated embodiments. On the contrary, they
are intended to cover such alternatives, modifications, and
equivalents as may be included within the scope of the
disclosure.

Aspects of the present disclosure seek to improve func-
tionality of the conventional DBMS by providing the ability
to prevent modifications to database objects 1n 1nstances in
which a dependent object (e.g., an object that depends on
another) 1s invalidated. In particular, example embodiments
involve use of a “no-invalidation™ clause in data definition
statements. Use of a no-invalidation clause causes the state-
ment to succeed only if all dependent objects can be suc-
cessiully recompiled. In other words, use of a no-mnvalida-
tion clause 1n conjunction with a data definition statement
restricts the statement from being executed 1 the execution
causes any dependent database object to become invalid
(e.g., unable to be recompiled), but the statement 1s executed
if no dependent object 1nvalidation occurs.

For purposes of the present disclosure, the terms “data
definition statement,” and “statement” may be used synony-
mously to refer to an executable command within a database
query language that expresses an action to be carried out
with respect to a database object (e.g., a data object residing
on a database). As an example, SQL includes a data defi-
nition language (DDL) that includes CREATE, ALTER,
DROP, and RFPLACE statements, each of which are
examples of data definition statements. Although specific
reference may be made in the present disclosure to data
definition statements that are provided as part of a particular
programming language, namely SQL, 1t shall be appreciated
that the subject matter of the present disclosure 1s not
intended to be limited to SQL and may be equally applicable
to other programming languages.

FIG. 1 1s a block diagram illustrating a system 100
according to an example embodiment. As 1s understood by
skilled artisans in the relevant computer and Internet-related
arts, each component 1llustrated 1n FIG. 1 represents a set of
executable software instructions and the corresponding
hardware (e.g., memory and processor) for executing the

US 10,120,885 B2

3

instructions. To avoid obscuring the inventive subject matter
with unnecessary detail, various functional components
(e.g., modules) that are not germane to conveying an under-
standing of the inventive subject matter have been omitted
from FIG. 1. However, a skilled artisan will readily recog-
nize that various additional functional components may be
supported by the system 100 to facilitate additional func-
tionality that 1s not specifically described herein. Moreover,
it shall be appreciated that although the various functional
components of the system 100 are discussed 1n the singular
sense, multiple instances of one or more of the various
functional components may be employed.

As shown, the system 100 includes an interface module
102 and a DBMS 104 comprising a parsing module 106 and
a statement processing module 108, configured to commu-
nicate with each other (e.g., via a bus, shared memory, a
switch, or application programming interfaces (APIs)). The
various functional components of system 100 may reside on
a single computer (e.g., a server), or may be distributed
across several computers in various arrangements.

The interface module 102 provides interfaces such as a
Graphical User Interface (GUI) or Application Program-
ming Interface (API) that may be used to receive user
commands and data. The DBMS 104 generally 1s a software
subsystem for storing, retrieving, and manipulating infor-
mation (e.g., database objects) stored in database tables of
databases 110-112. Under the command of DBMS 104, the
system 100 receives user commands (e.g., data definition
statements) and data submitted by a client computing system
114 through the interface module 102. User interfaces pro-
vided by the interface module 102 may include a built-in
query surface or editor for accessing and processing data-
base information.

The parsing module 106 1s responsible for parsing and
analyzing commands receirved by the interface module 102.
In particular, the parsing module 106 may analyze data
definition statements to break them into their component
parts to facilitate processing by the statement processing
module 108. The statement processing module 108 1s
responsible for processing data definition statements, which
includes executing the actions expressed 1n the data defini-
tion statements.

FIG. 2 1s a block diagram illustrating components of a
machine 200, according to some example embodiments,
able to read instructions from a machine-readable medium
(¢.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein. Spe-
cifically, FIG. 2 shows a diagrammatic representation of the
machine 200 1n the example form of a computer system,
within which instructions 216 (e.g., software, a program, an
application, an applet, an app, or other executable code) for
causing the machine 200 to perform any one or more of the
methodologies discussed herein may be executed. For
example, these mstructions 216 transtorm the general, non-
programmed machine into a particular machine pro-
grammed to carry out the described and 1llustrated functions
of the system 100 in the manner described herein. The
machine 200 may operate as a standalone device or may be
coupled (e.g., networked) to other machines. In a networked
deployment, the machine 200 may operate in the capacity of
a server machine or a client machine in a server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. By way ol non-
limiting example, the machine 200 may comprise or corre-
spond to a server computer, a client computer, a personal
computer (PC), a tablet computer, a laptop computer, a
netbook, a set-top box (STB), a personal digital assistant

5

10

15

20

25

30

35

40

45

50

55

60

65

4

(PDA), an entertainment media system, a cellular telephone,
a smart phone, a mobile device, a wearable device (e.g., a
smart watch), a smart home device (e.g., a smart appliance),
other smart devices, a web appliance, a network router, a
network switch, a network bridge, or any machine capable
of executing the structions 216, sequentially or otherwise,
that specily actions to be taken by the machine 200. Further,
while only a single machine 200 1s illustrated, the term
“machine” shall also be taken to include a collection of
machines 200 that individually or jointly execute the mnstruc-
tions 216 to perform any one or more of the methodologies
discussed herein.

The machine 200 may include processors 210, memory
220, and input/output (I/O) components 250, which may be
configured to communicate with each other such as via a bus
202. In an example embodiment, the processors 210 (e.g., a
Central Processing Unit (CPU), a Reduced Instruction Set
Computing (RISC) processor, a Complex Instruction Set
Computing (CISC) processor, a Graphics Processing Unit
(GPU), a Dagital Signal Processor (DSP), an Application
Specific Integrated Circuit (ASIC), a Radio-Frequency Inte-
grated Circuit (RFIC), another processor, or any suitable
combination thereol) may include, for example, processor
212 and processor 214 that may execute mnstructions 216.
The term “‘processor” i1s intended to include multi-core
processor that may comprise two or more independent
processors (sometimes referred to as “‘cores”) that may
execute nstructions contemporaneously. Although FIG. 2
shows multiple processors, the machine 200 may include a
single processor with a single core, a single processor with
multiple cores (e.g., a multi-core process), multiple proces-
sors with a single core, multiple processors with multiples
cores, or any combination thereof.

The memory/storage 220 may include a memory 222,
such as a main memory, or other memory storage, and a
storage unit 226, both accessible to the processors 210 such
as via the bus 202. The storage unit 226 and memory 222
store the nstructions 216 embodying any one or more of the
methodologies or functions described herein. The nstruc-
tions 216 may also reside, completely or partially, within the
memory 222, within the storage unit 226, within at least one
of the processors 210 (e.g., within the processor’s cache
memory), or any suitable combination thereof, during
execution thereof by the machine 200. Accordingly, the
memory 222, the storage unit 226, and the memory of
processors 210 are examples of machine-readable media.

As used herein, “machine-readable medium” means a
device able to store instructions (e.g., istructions 216) and
data temporarily or permanently and may include, but is not
be limited to, random-access memory (RAM), read-only
memory (ROM), bufler memory, flash memory, optical
media, magnetic media, cache memory, other types of
storage (e.g., Frasable Programmable Read-Only Memory
(EEPROM)) and/or any suitable combination thereof. The
term “machine-readable medium”™ should be taken to include
a single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) able
to store 1instructions 216. The term “machine-readable
medium™ shall also be taken to include any medium, or
combination of multiple media, that 1s capable of storing
istructions (e.g., instructions 216) for execution by a
machine (e.g., machine 200), such that the instructions,
when executed by one or more processors of the machine
200 (e.g., processors 210), cause the machine 200 to perform
any one or more of the methodologies described herein.
Accordingly, a “machine-readable medium™ refers to a
single storage apparatus or device, as well as “cloud-based”

US 10,120,885 B2

S

storage systems or storage networks that include multiple
storage apparatus or devices. The term “machine-readable
medium” excludes signals per se.

The I/O components 250 may include a wide variety of
components to receive input, provide output, produce out-
put, transmit information, exchange information, capture
measurements, and so on. The specific I'O components 2350
that are included 1n a particular machine will depend on the
type of machine. For example, portable machines such as
mobile phones will likely include a touch mput device or
other such input mechanisms, while a headless server
machine will likely not include such a touch mput device. It
will be appreciated that the I/O components 250 may include
many other components that are not shown 1n FIG. 2. The
I/O components 250 are grouped according to functionality
merely for simplifying the following discussion and the
grouping 1s in no way limiting. In various example embodi-
ments, the I/O components 250 may mclude output compo-
nents 252 and mput components 254. The output compo-
nents 252 may include visual components (e.g., a display
such as a plasma display panel (PDP), a light emitting diode
(LED) display, a liquid crystal display (LLCD), a projector, or
a cathode ray tube (CRT)), acoustic components (e.g.,
speakers), haptic components (e.g., a vibratory motor, resis-
tance mechanisms), other signal generators, and so forth.
The input components 254 may include alphanumeric input
components (€.g., a keyboard, a touch screen configured to
receive alphanumeric input, a photo-optical keyboard, or
other alphanumeric mput components), point based nput
components (e.g., a mouse, a touchpad, a trackball, a joy-
stick, a motion sensor, or other pointing instrument), tactile
input components (e.g., a physical button, a touch screen
that provides location and/or force of touches or touch
gestures, or other tactile mput components), audio nput
components (e.g., a microphone), and the like.

In further example embodiments, the I/O components 250
may include biometric components 256, motion components
2358, environmental components 260, or position compo-
nents 262 among a wide array of other components. For
example, the biometric components 256 may include com-
ponents to detect expressions (e.g., hand expressions, facial
expressions, vocal expressions, body gestures, or eye track-
ing), measure biosignals (e.g., blood pressure, heart rate,
body temperature, perspiration, or brain waves), 1dentily a
person (e.g., voice 1dentification, retinal 1dentification, facial
identification, fingerprint identification, or electroencepha-
logram based 1dentification), and the like. The motion com-
ponents 258 may include acceleration sensor components
(e.g., accelerometer), gravitation sensor components, rota-
tion sensor components (e.g., gyroscope), and so forth. The
environmental components 260 may include, for example,
1llumination sensor components (e.g., photometer), tempera-
ture sensor components (€.g., one or more thermometer that
detect ambient temperature), humidity sensor components,
pressure sensor components (€.g., barometer), acoustic sen-
sor components (€.g., one or more microphones that detect
background noise), proximity sensor components (e.g.,
infrared sensors that detect nearby objects), gas sensors
(e.g., gas detection sensors to detection concentrations of
hazardous gases for safety or to measure pollutants 1 the
atmosphere), or other components that may provide 1ndica-
tions, measurements, or signals corresponding to a surround-
ing physical environment. The position components 262
may include location sensor components (e.g., a Global
Position System (GPS) receiver component), altitude sensor
components (e.g., altimeters or barometers that detect air

5

10

15

20

25

30

35

40

45

50

55

60

65

6

pressure from which altitude may be derived), orientation
sensor components (e.g., magnetometers), and the like.

Communication may be implemented using a wide vari-
ety of technologies. The I/O components 250 may include
communication components 264 operable to couple the
machine 200 to a network 280 or devices 270 via coupling
282 and coupling 272, respectively. For example, the com-
munication components 264 may i1nclude a network inter-
face component or other suitable device to interface with the
network 280. In further examples, communication compo-
nents 264 may include wired communication components,
wireless communication components, cellular communica-
tion components, Near Field Communication (NFC) com-
ponents, Bluetooth® components (e.g., Bluetooth® Low
Energy), Wi-F1i® components, and other communication
components to provide communication via other modalities.
The devices 270 may be another machine or any of a wide
variety ol peripheral devices (e.g., a peripheral device
coupled via a Universal Serial Bus (USB)).

Moreover, the communication components 264 may
detect identifiers or include components operable to detect
identifiers. For example, the communication components
264 may include Radio Frequency Identification (RFID) tag
reader components, NFC smart tag detection components,
optical reader components (e.g., an optical sensor to detect
one-dimensional bar codes such as Universal Product Code
(UPC) bar code, multi-dimensional bar codes such as Quick
Response (QR) code, Aztec code, Data Matrix, Dataglyph,
Maxi1Code, PDF417, Ultra Code, UCC RSS-2D bar code,
and other optical codes), or acoustic detection components
(e.g., microphones to identity tagged audio signals). In
addition, a variety of information may be derived via the
communication components 264, such as location via Inter-
net Protocol (IP) geo-location, location via Wi-Fi® signal
triangulation, location via detecting a NFC beacon signal
that may indicate a particular location, and so forth.

In various example embodiments, one or more portions of
the network 280 may be an ad hoc network, an intranet, an

extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a wide area

network (WAN), a wireless WAN (WWAN), a metropolitan
area network (MAN), the Internet, a portion of the Internet,
a portion of the Public Switched Telephone Network
(PSTN), a plain old telephone service (POTS) network, a
cellular telephone network, a wireless network, a Wi-Fi®
network, another type of network, or a combination of two
or more such networks. For example, the network 280 or a
portion of the network 280 may include a wireless or cellular
network and the coupling 282 may be a Code Division
Multiple Access (CDMA) connection, a Global System for
Mobile communications (GSM) connection, or other type of
cellular or wireless coupling. In this example, the coupling
282 may implement any of a variety of types of data transter
technology, such as Single Carrier Radio Transmission
Technology (1xRTT), Evolution-Data Optimized (EVDO)
technology, General Packet Radio Service (GPRS) technol-
ogy, Enhanced Data rates for GSM Evolution (EDGE)
technology, third Generation Partnership Project (2GPP)
including 2G, fourth generation wireless (4G) networks,
Universal Mobile Telecommunications System (UMTS),
High Speed Packet Access (HSPA), Worldwide Interoper-
ability for Microwave Access (WiIMAX), Long Term Evo-
lution (LTE) standard, others defined by various standard
setting organizations, other long range protocols, or other
data transier technology.

The 1nstructions 216 may be transmaitted or received over
the network 280 using a transmission medium via a network

US 10,120,885 B2

7

interface device (e.g., a network interface component
included 1in the communication components 264) and uti-
lizing any one of a number of well-known transfer protocols
(e.g., Hypertext Transter Protocol (HTTP)). Similarly, the
istructions 216 may be transmitted or received using a
transmission medium via the coupling 272 (e.g., a peer-to-
peer coupling) to devices 270. The term “transmission
medium”™ shall be taken to include any intangible medium
that 1s capable of storing, encoding, or carrying instructions
216 for execution by the machine 200, and includes digital
or analog communications signals or other intangible
medium to facilitate communication of such software.

FIG. 3 1s an interaction diagram illustrating interactions
between the various functional components of the system
100, according to an example embodiment. In particular,
FIG. 3 illustrates example interactions that occur between
the interface module 102, the parsing module 106, and the
statement processing module 108 upon receiving a data
definition statement (e.g., from the client computing system
114) signaling modification of a database object.

As shown, the process begins at operation 302 with the
interface module 102 receiving a data definition statement to
command modification (e.g., an ALTER or DROP statement
in SQL) of a database object (e.g., a data table). The
modification may, for example, mvolve a change to an
clement of a database object, addition of a new element, or
deletion of an existing element. As an example, the data
definition statement may include a command to remove a
column from an existing data table. As another example, the
data definition statement may include a command to change
a column 1n an existing data table.

At operation 304, the parsing module 106 parses the data
definition statement to determine that a no-invalidation
clause 1s included in the statement. The inclusion of a
no-invalidation clause 1n the data definition statement
imposes a restriction on the modification to the database
object. Specifically, the no-invalidation clause 1s used to
command the DBMS 104 to prevent the modification if the
modification causes a dependent database object to become
invalid (e.g., any use of the dependent database object would
result 1n an error). In other words, because the data definition
state includes the no-invalidation clause, the DBMS 104 will
perform the modification only 1f no dependent database
object invalidation occurs.

Based on the no-invalidation clause being included 1n the
statement, the parsing module 106 determines, at operation
306, whether there are any other database objects that
depend from the database object that i1s the subject of the
data defimition statement. For example, the database object
may be a data table, and the parsing module 106 may
identily a view object that depends on at least a portion of
the data table. If the parsing module 106 determines that
there are no dependent database objects (e.g., other database
objects that depend on the database object), then the state-
ment processing module 108 performs the modification in
accordance with the data definition statement, at operation
308.

If the parsing module 106 determines that the database
object has at least one dependent database object, the parsing
module 106 proceeds to operation 310, where the parsing
module 106 evaluates the data definition statement to deter-
mine whether the modification would result in the 1nvalida-
tion of any of the dependent objects (e.g., whether any of the
dependent object cannot be recompiled as a result of the
modification). In some embodiments, the determination of
whether the database object has any dependent database
objects (operation 306) may be performed as part of the

10

15

20

25

30

35

40

45

50

55

60

65

8

determination of whether the modification would result 1n
the invalidation of any of the dependent objects (operation
308).

If the parsing module 106 determines through operation
310 that no mvalidation of a dependent database object
would occur as a result of the modification, the statement
processing module 108 performs the modification at opera-
tion 308. If, on the other hand, the parsing module 106
determines that at least one dependent object would be
invalidated as a result of the modification (e.g., deleting a
column of a data table from which a view object depends),
the statement processing statement 108 prevents the modi-
fication to the database object (e.g., the statement processing
module 108 causes the data definition statement to fail), at
operation 312. At operation 314, the statement processing
module 108 returns an error message 1n response to the data
definition statement based on the data definition statement
including a no-invalidation clause, and causing the 1nvali-
dation of a dependent database object.

FIG. 4 1s a flow chart illustrating a method 400 for
creating a database object with dependencies on a non-
existing database object, according to an example embodi-
ment. The method 400 may be embodied 1 computer-
readable 1nstructions for execution by one or more
processors such that the steps of the method 400 may be
performed in part or in whole by the components of the
DBMS 102; accordingly, the method 400 1s described below
by way of example with reference thereto. However, 1t shall
be appreciated that the method 400 may be deployed on
various other hardware configurations and 1s not itended to
be limited to the DBMS 104.

At operation 405, the interface module 102 receives a data
definition statement (e.g., from the client computing system
114) and signals modification of a database object having at
least one dependent database object. For example, the inter-
face module 102 may recerve a SQL ALTER statement
signaling modification of a portion of a data table from
which a view object depends. The data definition statement
also includes a no-invalidation clause that imposes a restric-
tion on the modification to the database object (e.g., by
preventing the modification 1f the modification causes a
dependent database object to become 1nvalid).

At operation 410, the parsing module 106 parses the data
definition statement to determine whether the data definition
statement includes the no-invalidation clause. Based on the
no-invalidation clause being included 1n the data definition
statement, the parsing module 106, at operation 415, evalu-
ates the data definition statement to determine whether the
modification results in the invalidation of any of the depen-
dent database objects (e.g., objects that depend on the
database object that 1s the subject of the data definition
statement). The determination of whether the modification
results 1n the ivalidation of any dependent database object
may include identifying dependent database objects with
dependence on the database object, and determining whether
the dependent database objects are able to be successiully
recompiled as a result of the modification.

If the parsing module 106 determines that the modifica-
tion results 1 the invalidation of any dependent database
objects, the data definition statement fails and the statement
processing module 108 prevents the modification from
occurring at operation 425. In some embodiments, the
statement processing module 108 may further return an error
message 1 response to the failure of the data definition
statement. If the parsing module 106 determines that the
modification does not result mn the invalidation of any
dependent database objects, the data definition statement

US 10,120,885 B2

9

succeeds and the statement processing module 108 performs
the modification to the database object, at operation 420, in
accordance with the data definition statement.

Modules, Components and Logic

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or 1n a transmis-
sion signal) or hardware modules. A hardware module 1s
tangible unit capable of performing certain operations and
may be configured or arranged in a certain manner. In
example embodiments, one or more computer systems (e.g.,
a standalone, client or server computer system) or one or
more hardware modules of a computer system (e.g., a
processor or a group ol processors) may be configured by
soltware (e.g., an application or application portion) as a
hardware module that operates to perform certain operations
as described herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that 1s permanently configured (e.g., as a special-purpose
processor, such as a field programmable gate array (FPGA)
or an application-specific integrated circuit (ASIC)) to per-
form certain operations. A hardware module may also com-
prise programmable logic or circuitry (e.g., as encompassed
within a general-purpose processor or other programmable
processor) that 1s temporarily configured by software to
perform certain operations. It will be appreciated that the
decision to implement a hardware module mechanically, 1n
dedicated and permanently configured circuitry, or in tems-
porarily configured circuitry (e.g., configured by software)
may be driven by cost and time considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that 1s physically constructed, permanently configured (e.g.,
hardwired) or temporarily configured (e.g., programmed) to
operate 1n a certain manner and/or to perform certain opera-
tions described herein. Considering embodiments 1n which
hardware modules are temporarily configured (e.g., pro-
grammed), each of the hardware modules need not be
configured or istantiated at any one instance in time. For
example, where the hardware modules comprise a general-
purpose processor configured using software, the general-
purpose processor may be configured as respective diflerent
hardware modules at different times. Software may accord-
ingly configure a processor, for example, to constitute a

particular hardware module at one instance of time and to
constitute a diflerent hardware module at a different instance
of time.

Hardware modules can provide information to, and
recelve information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple of such
hardware modules exist contemporaneously, communica-
tions may be achieved through signal transmission (e.g.,
over appropriate circuits and buses) that connect the hard-
ware modules. In embodiments 1n which multiple hardware
modules are configured or instantiated at different times,
communications between such hardware modules may be
achieved, for example, through the storage and retrieval of
information 1 memory structures to which the multiple
hardware modules have access. For example, one hardware
module may perform an operation, and store the output of
that operation 1n a memory device to which 1t 1s communi-
catively coupled. A further hardware module may then, at a
later time, access the memory device to retrieve and process

10

15

20

25

30

35

40

45

50

55

60

65

10

the stored output. Hardware modules may also imitiate
communications with mput or output devices, and can
operate on a resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, 1n some
example embodiments, comprise processor-implemented
modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
ol the operations of a method may be performed by one or
processors or processor-implemented modules. The perfor-
mance of certain of the operations may be distributed among
the one or more processors, not only residing within a single
machine, but deployed across a number of machines. In
some example embodiments, the processor or processors
may be located i a single location (e.g., within a home
environment, an oflice environment or as a server farm),
while 1 other embodiments the processors may be distrib-
uted across a number of locations.

The one or more processors may also operate to support
performance of the relevant operations 1n a “cloud comput-
ing’” environment or as a “‘software as a service” (SaaS). For
example, at least some of the operations may be performed
by a group of computers (as examples of machines including
processors), these operations being accessible via a network
(e.g., the Internet) and via one or more appropriate interfaces
(e.g., APIs).

Electronic Apparatus and System

Example embodiments may be implemented n digital
clectronic circuitry, or 1 computer hardware, firmware,
soltware, or in combinations of them. Example embodi-
ments may be implemented using a computer program
product, e.g., a computer program tangibly embodied 1n an
information carrier, €.g., in a machine-readable medium for
execution by, or to control the operation of, data processing
apparatus, €.g., a programmable processor, a computer, or
multiple computers.

A computer program can be written 1 any form of
programming language, including compiled or interpreted
languages, and 1t can be deployed in any form, including as
a stand-alone program or as a module, subroutine, or other
unit suitable for use 1 a computing environment. A com-
puter program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

In example embodiments, operations may be performed
by one or more programmable processors executing a com-
puter program to perform functions by operating on input
data and generating output. Method operations can also be
performed by, and apparatus of example embodiments may
be implemented as, special purpose logic circuitry, e.g., a
field programmable gate array (FPGA) or an application-
specific itegrated circuit (ASIC).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, 1t will be

US 10,120,885 B2

11

appreciated that that both hardware and software architec-
tures require consideration. Specifically, 1t will be appreci-
ated that the choice of whether to implement certain func-
tionality 1n permanently configured hardware (e.g., an
ASIC), 1n temporarily configured hardware (e.g., a combi-
nation ol software and a programmable processor), or a
combination ol permanently and temporarily configured
hardware may be a design choice.

Language

Although the present inventive subject matter has been
described with reference to specific example embodiments,
it will be evident that various modifications and changes
may be made to these embodiments without departing from
the broader scope of the inventive subject matter. Accord-
ingly, the specification and drawings are to be regarded 1n an
illustrative rather than a restrictive sense. The accompanying
drawings that form a part hereof show by way of illustration,
and not of limitation, specific embodiments 1 which the
subject matter may be practiced. The embodiments 1llus-
trated are described 1n suthicient detail to enable those skilled
in the art to practice the teachings disclosed herein. Other
embodiments may be used and derived therefrom, such that
structural and logical substitutions and changes may be
made without departing from the scope of this disclosure.
This Detailed Description, therefore, 1s not to be taken 1n a
limiting sense, and the scope of various embodiments 1s
defined only by the appended claims, along with the tull
range of equivalents to which such claims are entitled.

Such embodiments of the inventive subject matter may be
referred to herein, individually and/or collectively, by the
term “‘invention” merely for convenience and without
intending to voluntarily limit the scope of this application to
any single mvention or inventive concept 1if more than one
1s 1n fact disclosed. Thus, although specific embodiments
have been 1illustrated and described herein, 1t should be
appreciated that any arrangement calculated to achieve the
same purpose may be substituted for the specific embodi-
ments shown. This disclosure 1s intended to cover any and
all adaptations or variations of various embodiments. Com-
binations of the above embodiments, and other embodi-
ments not specifically described herein, will be apparent, to
those of skill i the art, upon reviewing the above descrip-
tion.

All publications, patents, and patent documents referred
to 1n this document are incorporated by reference herein in
their entirety, as though individually incorporated by refer-
ence. In the event of inconsistent usages between this
document and those documents so incorporated by refer-
ence, the usage 1n the incorporated references should be
considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document

controls.

In this document, the terms “a” or “an” are used, as 1s
common 1n patent documents, to imnclude one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or’” 1s
used to refer to a nonexclusive or, such that “A or B”
includes “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In the appended claims, the terms
“including” and “in which” are used as the plain-English
equivalents of the respective terms “comprising” and
“wherein.” Also, 1n the following claims, the terms “includ-
ing” and “comprising” are open-ended; that 1s, a system,
device, article, or process that includes elements 1n addition
to those listed after such a term 1n a claim are still deemed
to fall within the scope of that claim.

10

15

20

25

30

35

40

45

50

55

60

65

12

What 1s claimed 1s:

1. A system comprising:

an interface, implemented by one or more hardware
processors, configured to receive a data definition state-
ment mmvolving a modification to a database object
stored 1n a database, the data definition statement
including a clause imposing a restriction on the modi-
fication to the database object based on whether the
modification results in 1nvalidation of at least one
dependent database object of the database object;

a parser, implemented by the one or more hardware
processors, configured to determine whether the modi-
fication results 1n invalidation of at least one dependent
database object of the database object 1n response to the
clause being included in the data definition statement,
the parser being configured to determine whether the
modification results in the mvalidation of the at least
one dependent database object by performing opera-
tions including determining whether the at least one
dependent database object i1s able to be successiully
recompiled as a result of the modification; and

a statement processor implemented by the one or more
hardware processors, configured to prevent the modi-
fication to the database object based on determining
that the modification results 1n the invalidation of the at
least one dependent database object; the statement
processor further to perform the modification to the
database object based on determining that the modifi-
cation does not result in the invalidation of the at least
one dependent database object.

2. The system of claim 1, wherein the parser 1s further to
determine whether the database object has one or more
dependent database objects.

3. The system of claim 2, wherein the parser 1s to
determine that the modification does not result 1n the invali-
dation of at least one dependent database object by deter-
mining that the database object does not have a dependent
database object.

4. The system of claim 1, wherein the parser i1s further
configured to identily one or more dependent database
objects with dependence on the database object.

5. The system of claim 1, wherein the statement processor
1s further to 1ssue an error message 1n response to determin-
ing that the modification results in 1nvalidation of at least
one dependent database object.

6. The system of claim 1, wherein the data defimition
statement 1s a data definition language (DDL) statement 1n
standard query language (SQL).

7. The system of claim 1, wherein the modification to the
database object includes a deletion of an element of the
database object.

8. The system of claim 1, wherein the data definition
statement includes a command to change an element of the
database object.

9. The system of claim 1, wherein the database object 1s
a data table, and wherein the at least one dependent database
object 1includes a view object corresponding to a portion of
the data table.

10. A method comprising:

recerving a data definition statement involving a modifi-
cation to a database object, the data definition statement

including a clause imposing a restriction on the modi-
fication to the database object based on whether the

modification results in 1nvalidation of at least one
dependent database object of the database object;

in response to the clause being included in the received
data definition statement, determining, using one or

US 10,120,885 B2

13

more processors ol a machine, whether the modifica-
tion results 1 mvalidation of at least one dependent
database object, the at least one dependent database
object being dependent on the database object, the
determining of whether the modification results in the
invalidation of the at least one dependent database
object 1mcludes determining whether the at least one
dependent database object 1s able to be successtully
recompiled as a result of the modification;
based on determining that the modification results 1n the
invalidation of at least one dependent database object,
preventing the modification to the database object.
11. The method of claim 10, further comprising performs-
ing the modification to the database object 1n accordance

with the data defimition statement based on determining that
the modification does not result 1in the invalidation of at least
one dependent database object.

12. The method of claim 10, wherein determiming whether
the modification results 1n the invalidation of at least one
dependent database object includes determining whether the
database object has one or more dependent database objects.

13. The method of claim 12, further comprising:

wherein determining that the modification does not result

in the invalidation of at least one dependent database
object includes determining that the database object
does not have one or more dependent database objects.

14. The method of claim 10, wherein the determining
whether the modification results in the invalidation of at
least one dependent database object further includes:

identifying one or more dependent database objects with

dependence on the database object.

15. The method of claim 10, further comprising 1ssuing an
error message in response to determining that the modifi-
cation results in the invalidation of at least one dependent
database object.

16. The method of claim 10, wherein the data definition
statement 1s a data definition language (DDL) statement 1n
standard query language (SQL).

10

15

20

25

30

35

14

17. The method of claim 10, wherein the modification to
the database object includes a change to an element of the
database object.

18. The method of claim 10, wherein the data definition
statement 1includes a command to delete at least a portion of
the database object.

19. The method of claim 10, wherein the database object
1s a data table, and wherein the at least one dependent

database object includes a view object corresponding to a
portion of the data table.

20. A tangible computer-readable storage medium 1nclud-
ing instructions that, when executed by at least one proces-
sor of a machine, cause the machine to perform operations
comprising;

receiving a data definition statement involving a modifi-

cation to a database object, the data definition statement
including a clause imposing a restriction on the modi-
fication to the database object based on whether the
modification results in invalidation of at least one
dependent database object of the database object;

in response to the clause being included in the received

data definition statement, determining; using one or
more processors ol a machine, whether the modifica-
tion results 1 1nvalidation of at least one dependent
database object, the at least one dependent database
object being dependent on the database object, the
determining of whether the modification results 1n the
invalidation of the at least one dependent database
object includes determining whether the at least one
dependent database object 1s able to be successiully
recompiled as a result of the modification;

based on determining that the modification results in the

invalidation of at least one dependent database object,
preventing the modification to the database object; and
based on determining that the modification does not result
in the mvalidation of at least one dependent database
object, performing the modification to the database
object 1n accordance with the data definition statement.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

