United States Patent

US010116500B1

(12) 10) Patent No.: US 10,116,500 B1
Long et al. 45) Date of Patent: Oct. 30, 2018

(54) EXCHANGING INFORMATION AMONG 2006/0139372 Al* 6/2006 Orofino, II GO6T 11/60
SYSTEM MIDDLEWARE AND MODELS 345/629
2008/0052425 Al* 2/2008 Orofino, II GO6F 17/5009

710/52

(71)

(72)

(73)

(%)

(21)
(22)

(1)
(52)

(58)

(56)

Applicant: The MathWorks, Inc., Natick, MA
(US)

Inventors: Xianchao Long, Worcester, MA (US);
Justyna Zander, Framingham, MA
(US); David Koh, Boston, MA (US);
Gautam K. Vallabha, Framingham,
MA (US); Pieter J. Mosterman,
Framingham, MA (US)

Assignee: The MathWorks, Inc., Natick, MA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 834 days.

Appl. No.: 14/635,719

Filed: Mar. 2, 2015

Int. CL.

HO4L 12/24 (2006.01)

U.S. CL

CPC e, HO4L 41/0806 (2013.01)
Field of Classification Search

None

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
7.490,032 B1* 2/2009 Koh GO6F 17/5000
703/22
8,046,201 B1* 10/2011 Pikeccoovvvvnnan.n. GO6F 9/4443
700/10

OTHER PUBLICATTONS

Ulusoy et al., U.S. Appl. No. 15/060,019, entitled “Automatic

Grouping of Signals of a Model”, filed Mar. 3, 2016, 72 pages.

Shakeri et al., U.S. Appl. No. 15/298,019, entitled “Port Manage-
ment for Graphical Modeling”, filed Oct. 19, 2016, 72 pages.
Tutonalspoint, “UML 2.0—Overview,” https://www.tutorialspoint.
com/uml/uml_2_ overview.htm, Feb. 20, 2009, 7 pages.
Wikipedia, “Composite structure diagram,” http://en.wikipedia.org/
wiki/Composite structure diagram, May 15, 2016, 2 pages.
University of Texas, “Polymorphism,” http://www.cs.utexas.edu/
~mitra/csSummer2012/cs3 12/1ectures/interfaces html, Nov. 26, 2003,
2 pages.

OMG: Object Management Group, “Common Object Request Bro-
ker Architecture (CORBA),” http://www.omg.org/spec/CORBA/3.
3/, Nov. 12, 2012, 532 pages.

(Continued)

Primary Examiner — Syed Roni
(74) Attorney, Agent, or Firm — Harnty & Harnty, LLP

(57) ABSTRACT

A device generates a block for a model associated with a
system, and the system 1s associated with middleware. The
block subscribes to information generated by the middle-
ware based on communication between the middleware and
the system. The device receives subscriber configuration
information for configuring the block, and creates, based on
the subscriber configuration information, a signal that con-
verts the information generated by the middleware into a
format compatible with the model.

21 Claims, 13 Drawing Sheets

510 ‘ Receive / creale model of systermn that includes

micdieware :|

Y

520

Provigde subscriber block, for model, that subscribes to
information generated by middieware

530 Provide first user interface for receiving subscriber
configuration information for subscriber block

Y

X

Create, based on subscriber configuration info., first
540 —— structured signal that converts information generated by
middieware into format compatibie with model

"

Y

550 Provide publisher block, for modei, that publishes
information generated by model to middleware

Y

560 Provigde second user interface for receiving publishar
configuration infaormation for publisher block

Y

’

Create, based on pubtisher configuration infe., second
570 —— structured signal that converts Information generated by
maoddat info format compaiible with middleware

J

US 10,116,500 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Forwardsim: simulations & technologies, “HLA Blockset: The

Simulink interface to HLA,” Mar. 2014, 2 pages.

OMG: Object Management Group, “Data Distribution Service for
Real-time Systems,” Jul. 1, 2001, 260 pages.

OSGi Alliance, “The OSG1 Architecture,” http://www.osgi.org/
Technology/WhatIsOSGi, Aug. 13, 2008, 4 pages.

Xiong et al., “HLA Based Collaborative Simulation with MATLAB
Seamlessly Embedded,” International Journal fo Machine Learning
and Computing, vol. 2, No. 2, Apr. 2012, 8 pages.

Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration, corresponding to PCT/US2016/064098 dated May 18,
2018, pp. 1-16.

The MathWorks: “Simulink Model-Based Design and System-
Based Design—Using Simulink Version 5, Oct. 5, 2014, XP002410179,
pp. 4-48.

* cited by examiner

jopoll SIBMBIPPIU YUm 8iqneduwos
weibelp »ooid 1BULIOJ UT BIED [OPON

%
i
!
l
l
!
i
l
!
i
|
i
i
I
i
!
I
i
|
:
i
|
|
l
!
i
I
!
I

S
!
I
i
|
l
i
|
l
i
|
I
i
l
i
l
|
i
I
|
i
I
|
I

US 10,116,500 B1

ysyand
SIeMB3[PPIN |

301 yim 8jqueduioo pbueyoxe |
JEWLIO) Ul B)eD JOpON Tisenbay
 9gLIOSgNS

 usHand

jsenboy |
aquIsSgng |
ysiqnd |

18 gLIOSgns
IEMBIPPIN |

Sheet 1 of 13

_ 01 Uim muBm_mQEoo |
JeuLIOf U] ejep WojsAS

JUSWIUOIIAUS Bupndwios jesiuyos]

!iil_ iiiiii -imls wimbm Aninl- minis winim Seinpb minis mim einl minis dnim- ininp miniy dnink nink sinim Wnink eink Sinim Eainl ‘ . (lllll - uimie minie dimim ieinp miniy Muim dning sinin Anink iminls Sinim Sein) il simis imini minb winin Seink

SIEMBIPPIU YHIM 8iqnediulioo
JeuLIO) Ul B1ep WaISAS

Oct. 30, 2018

} Old

U.S. Patent

2jep
WolSAS

US 10,116,500 B1

Sheet 2 of 13

Oct. 30, 2018

7

U.S. Patent

0¢¢

(3D 1) JUSLIUOHAUT
bunnduwon jeatuyds |

0&c
921A(] 1OAIBS

Ol

(0} 7#
MIOMION

0¢¢

(3D 1) JUSLIUOHAUT
bunnduwon jeatuyoss |

012
201AaQ JUBIID

US 10,116,500 B1

—
T
-
e,
3
e
9

0cc
o0 401
=
2 rrer———
=3 1743
. Jusuoduwion
S obrio1g

¢ Ol

U.S. Patent

LE

aoBLIa|
UOHEDIUNWIWON

AJOWIBIA]

ot

Juauodwon
glosltle

e

108S800.4d

G¢

juauodwon
Induy

OlLe
sng

cTTTTEEEEEEEe s Em e m e - cTTETEEEEET Ty (gep)gEp FTTTTT TS
__ Bh_coo “
_ i

_ Vol
9CY | ‘susuand |
SHOOIq JBYIO | | DIBMSIPPIA |

1742
1BqguOsSgNs
eleq

US 10,116,500 B1

(zE) a1EMOIPPIL
Ym 8jqipedilos
JBLLIOY U BJEP JOIJUOD

... UOWISOd

. — — L Liop
] u .
| _
b
1 17 P
el _ —t BIBUIED

JOMBIA OIAPDIA

Sheet 4 of 13

SIEMBIPPIN 1systiand ejeq

(917) asemajppiu
Y3im 8jgIreduloo
Jeuiiof ui ejep WosAS

UOISJOAUOD
abew

| JOSUBS

Oct. 30, 2018

ISPOW IEMI|PPIN o130qoy

Vv Ol

U.S. Patent

OANOB/XNW [OA PLUID/

US 10,116,500 B1

Ojul eiawed/bgi/eisuie))
sojepdn Jopweled/erswes/

suonduosep Jejpweied/eiowes/ ‘

e sjuiod/yidep/etswiedy _
v - | _
“ mes abewyyidap/esautesy uBIS IO | %
ok aidoy e 9s00yD | swep oidoy | | 4oquosqns
.m __ sieoweseg | | aiemalppin
Z
Firt e (ysew) waysAsgng |
S N - e P TS E V=Y
M __
=3 O¥v
o
>
O oINoeX3 MBIA Sjo0p WpF ejid
Me= (30.) LNIWNOXIANT ONILNJINOD T¥IINHOAL |
~
=
S gy "ol
&) 00V
-

US 10,116,500 B1

ot
y—
T
M uejpusbiq w_.
w __ mcwﬁoucm @ ”
7 S1ep] _ ypm €3
U1 PIM 61 @
{(yG¥) 1817 —> Wby | HHORH S .
Buipoous | ME.S mmmE_Em._\EmEmo\.
w _
—
|
=3
ot
w °INdaX3y MSIA §j00) WpF 8jid

X&) (301) INTFNNOHIANT ONILNAIWOD TVIINHOIL

U.S. Patent

US 10,116,500 B1

<RIepP>

cevy
UOISIBAUQD

gy
jaquosqns

TBMIIA QAPIA abeu

BIEMBIPPI

<Buipoous>

]

(0zd)
|[OPO

Sheet 7 of 13

(z9¥) shg

Oct. 30, 2018

3INo8XJ MBIA 3100 | Hp3 a4

X &= (3DL) LINTWNOHIANT ONILNDINOD TVYIINHOIL

av Ol

U.S. Patent
I

US 10,116,500 B1

Bjep
Uipim

Wby
BuipooUs

Sheet 8 of 13

2G ayl 85) 8ng

910

— b0t

Oct. 30, 2018
S
Q
-
[
@
m
{f;
-
1
?
he
D
=
E
iy
8N
o
»
RS,
0
-
O
C
)

U.S. Patent

US 10,116,500 B1

Sheet 9 of 13

Oct. 30, 2018

U.S. Patent

CLy

ysignd
SIEeMB{PPIN

\,u_m_:mcm .
X jejnbue .
renbue €.

iy -

KLW@C: @ ot
jesulj @3-

1sim | sBsw Ansuwiosb _.

Z Jejnbue
X leoui]

I e —— m «t—0y
X[~ Jaysigngd 104 induj 108508 | OLY

IIN0aXy MSIA S|004 g 9t
X] (301) INTFWNOUIANT ONILAJINOD TVIINHOIL

47 Old

ZIURISUO))

US 10,116,500 B1

(z 1ejnbue) ye

(0557
jaysignd

SIEMOIPPIN | X Jeaul .

(x"1e8ul}) pQp JUBISUOD)

Sheet 10 of 13

087

8Inoexy MSIA Sjo0L Jp3 8l |
(301) INIWNOUIANT ONILNAINOD TVIINHOIL

Oct. 30, 2018

U.S. Patent

US 10,116,500 B1

Sheet 11 of 13

Oct. 30, 2018

U.S. Patent

et e 111.111.111.11.11”1”1.11.11”1“n.._1 " . HM““““" L

e e e e e e e
SRt TR R T R r r r r o r HHH.-.
rrrrrrrararer N
” . q . 1 .1 1 et .a.auaa“lnnaul....qu......nu_"n"ﬂ“aala

ERERR LN 2 e,

e

H......
S

PN

k)
ol

Erm X r iy e ey e A
e N
e T T I o e Sy
e A e e el e e e e e a0 ey a0 e e dr ke Rk
e e e e e e e e e e e e e e
-.t"uvi T NN N N NN NN D A AL M D)
[] o
- F B e e e e e e e e e e e e e e e e e e e A
e, B e e e e e e e e e e e e e e
Frror ora L

-
L S I o o
L I e e e e e W
N o e e o o Al A e
L T I o I e
L S A Al o e
LR e
e e A
ar e e dr e e e dp e dp i dr A
-

& ar
e el

mllu- ik i e e e

- W et e
-

r ~

e .

e,

e

X

i e e e e e e e
[]

o
E N A R
A N)

ra DR

F
r

ror
r

rr

; F RN
B ' A

x
*
.
i
»
L]

L]

»

L]
L "4‘
¥,

]

T

LK
»
*
L)
»
»
»
L]

)
Pl
R
e
P e)
Pl al a2l
P N ey
de i e i e e
i T T
P L LAl "
A i e e T .
......H...H...H&H...H...H#H...H...H “"hannnanlnanallnaaal
P N xR R

L E TR EEEAR -

Jaysignd
2J/eMaIppI

1A
1aquosgns

SIeMI|PPIN

124% ey

ISMBIA

UOISISALOD

(301) INFWNOYIANT DNILNAINOD TVIINHOIL |

(9gp) weibeip

AIOWBIA] 81018 Ble(]
joypueied

JuBIsuon
SOy 01 InAINQ

US 10,116,500 B1

Sheet 12 of 13

~— G6v

aInoexXg MSIA S{00) Pl oii4
(301} INTFWNOMIANT ONILNJINOD TVYIINHOIL

Oct. 30, 2018

U.S. Patent

US 10,116,500 B1

Sheet 13 of 13

Oct. 30, 2018

U.S. Patent

g 9Old

SJEMSIPRILI YIIMm jgneduo)d 1eluio) ojul jopoul

%Q Umum._@:@m UOIBULIOJUI SHBAUOCD 1L} _wcm.w 08Non bw

pUOD8S “ojul uoneinbyuco seysignd Uo paseq ‘e81esin

MOOIq Jaysyand 10} uoneurojul uonesnbiyuos
1ysiugnd BuIABSI 10} 90BLISIUI JBSN PUODSS aPIADIY

aiemappill 01 japotu Ag pajeiousd uoneuwoiu
saysignd ey} ‘1apotl 10} MO0ig Jeysiignd apIAcld

[BPOoWUI YHM 8ignedulod 1BULIO) OJUl BieMa|ppil

| Aq pejesauab uonewIoul SHBAUCD JeY) [Bubis painjonas

1S4 “oju uonenByuOoD JBguOSaNS UC Paseq ‘ajestn

¥OO0[(q J2quosgns 10} uoijeuriojul ucleinbyuos
JBguosgns DUIAIBO8L 0} 9088l 18SN 1S4l BPIACId

aiemaippiu Ag u&ﬁ.@cmm UONBULLIO}UI
0} SBgLIOSONS 184 ‘|8potU J0) 00| 18GHLIOSgNS BPIACIY

S IeMI|PPIU
SaPNOUL jell] E@«w\mm u—O 2P0 3ILI0 [SAISO0Y

0LS

- 09§

- 095

$)4*

068
— 025

_ 0L

US 10,116,500 Bl

1

EXCHANGING INFORMATION AMONG
SYSTEM MIDDLEWARE AND MODELS

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example implementation
described herein;

FIG. 2 1s a block diagram of an example environment in
which systems and/or methods, described herein, may be
implemented;

FIG. 3 15 a block diagram of example components of one
or more devices of FIG. 2;

FIGS. 4A-41 are block diagrams of example implemen-
tations ol exchanging information between middleware of
systems and models of the systems; and

FIG. 5 1s a flow chart of an example process for exchang-
ing information between middleware of a system and a
model of the system.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same
reference numbers 1 different drawings may identity the
same or similar elements.

Behavior of a system, such as, for example, an informa-
tion system (e.g., a digital control system, a signal process-
ing system, or the like); a technical system (e.g., an airplane
wing system); a natural system (e.g., a human organ, a plant,
or the like); a physical system (e.g., a bouncing ball); or the
like, can be simulated using one or more models executed on
a device. The system can interact with 1ts corresponding
models through software, e.g., middleware, stored and
executed on a device associated with the system or another
device. For simplicity of the description below, such sofit-
ware 1s referred to as middleware, although the description
applies to any type of software having the features described
below. Implementations, described herein, may allow the
models, to automatically access data communicated on the
middleware. The implementations may not be tied to a
specific communication protocol and may be adapted to
different types of data generated by the middleware.

A system may include hardware and software operating
on the hardware. The software may include an operating
system that executes on the hardware and controls the
behavior of the hardware. The system may include middle-
ware that provides services to software applications beyond
those available from the operating system. The middleware
may be implemented 1n different forms of hardware (e.g., a
network of processors), firmware, or a combination of
hardware and software. The middleware may include a
master and multiple slaves controlled by the master. The
master may maintain a registry of the multiple slaves, and a
registry of data (e.g., topics) provided (e.g., published) by
the multiple slaves and/or received (e.g., subscribed to) by
the multiple slaves. Each slave may publish data for a
topic(s) (e.g., camera data, robotic data, or the like), and
provide the data to other slaves. Each slave may subscribe
to data for a topic(s), and receive the data from another
slave. Fach slave may request service(s) (e.g., a remote
procedure call) from another slave, and may receive the
service(s) via a response from the other slave. The multiple
slaves may perform such functions after initiation by the
master, and/or may perform such functions directly with
other slaves.

A device, such as a computer, may receive or generate a
model of a system. The model may 1nclude a set of model

10

15

20

25

30

35

40

45

50

55

60

65

2

elements that, when executed, simulates behavior of the
system. The model elements may correspond to physical
clements of the system and may, when executed, simulate
the behavior of the physical elements. For example, the
model may include a block diagram model with one or more
blocks (e.g., model elements) that represent an operation of
a component of the system. The blocks may be connected
via one or more connector lines (e.g., lines for carrying a
signal associated with the blocks). One or more parameters
may describe the behavior of a block 1n the context of the
block diagram model, and may influence a manner 1n which
the block behaves, when executed.

The model may communicate with the system via the
middleware. Implementations, described herein, may allow
the model to automatically access data communicated on the
middleware. The implementations may not be tied to a
specific communication protocol and may be adapted to
different types of data (e.g., topics) generated by the middle-
ware. Communications with middleware can be performed
using different, ncompatible communication protocols and
different types of data.

FIG. 1 1s a block diagram of an example implementation
100 described herein. Example implementation 100 may be
performed by a device (now shown), such as a computer,
that includes a technical computing environment (T'CE) and
that communicates with a system via middleware. The TCE
may include any hardware-based component or a combina-
tion of hardware and software-based components that pro-
vides a computing environment that allows tasks to be
performed related to disciplines, such as, but not limited to,
mathematics, science, engineering, medicine, and business.

As shown 1 FIG. 1, the device (e.g., via the TCE) may
receive a block diagram model or may create the block
diagram model for simulating a system. The system may be
associated with and communicate system data (e.g., camera
data, robotic data, communication protocols, system param-
cters, or the like) to middleware. The middleware may
include a master and, in some implementations, multiple
slaves may be controlled by the master. In some implemen-
tations, the master may provide configuration information
(c.g., parameters for the system, parameters for the middle-
ware, communication protocols, or the like) to the multiple
slaves, and may be used to configure communication
between the multiple slaves after the multiple slaves have
been configured (e.g., where the multiple slaves may
exchange information directly instead of having to pass the
information through the master). Each slave may publish
(e.g., generate) data for topics associated with the system
data (e.g., when the system data 1s generated), and provide
the topic data to other slaves. Each slave may subscribe to
(e.g., request) data for topics associated with the system
data, and receive the topic data from another slave. Each
slave may request services (e.g., remote procedure calls)
from another slave, and may receive the services via a
response from the other slave. As further shown in FIG. 1,
the middleware may provide the system data, in a format
compatible with the middleware, to the block diagram
model. The system data may include the system data pro-
vided by the system, the topic data exchanged by the slaves,
information associated with services exchanged by the
slaves, or the like. The format of the system data may be
incompatible with the model (e.g., data types may be dii-
ferent so that the model cannot read data directly from the
system, and the system cannot read data directly from the
model). In some 1mplementations, the user may be asked to
resolve an incompatible data type mto a format that that the
model can read. In such implementations, a conversion may

US 10,116,500 Bl

3

be utilized, such as converting from a double floating point
representation to a fixed point representation or from a
two-dimensional array to a one-dimensional array (e.g.,
either 1n a row major or a column major form). Furthermore,
an error or a warning may be displayed to the user in such
implementations.

The model may include one or more blocks simulating
one or more portions of the system, and the TCE may
provide a user of the model with access to a middleware
subscriber block and a middleware publisher block. In some
implementations, the middleware subscriber block and the
middleware publisher block are inserted into the model
based on a user’s request. The middleware subscriber block
can be configured 1n the TCE to receive system data from the
middleware. For example, the middleware subscriber block
may receive system data (e.g., images, video, or the like) for
a particular component (e.g., a camera) of the system. The
middleware subscriber block may receive the system data,
for the particular component, from the middleware, and may
convert the system data into a format (e.g., a numeric array,
a character array, a table, a structure, a cell array, or the like)
compatible with the TCE and the block diagram model. The
middleware subscriber block may then provide the con-
verted system data to the block diagram model.

As further shown in FIG. 1, the middleware publisher
block may provide particular model data (e.g., generated by
the model) to the middleware. For example, the middleware
publisher block may provide model data for a particular
block of the model. The middleware publisher block may
receive the model data from the particular block, and may
convert the model data into a format compatible with the
middleware and the system (e.g., common data format
(CDF), flexible image transport system (FITS) files, hierar-
chical data format (HDF), or the like). The middleware
publisher block may then provide the converted model data
to the middleware. The middleware subscriber block and the
middleware publisher block may enable mformation to be
communicated between the block diagram model and the
system (e.g., via the middleware).

Systems and/or methods, described herein, may allow a
model and a user of the model to automatically access data
communicated on middleware. The systems and/or methods
may enable different types of data to be communicated
between the model and a system being modeled, via the
middleware.

FI1G. 2 1s a block diagram of an example environment 200
in which systems and/or methods, described herein, may be
implemented. As shown i FIG. 2, environment 200 may
include a client device 210, which may include a technical
computing environment (1CE) 225. Furthermore, environ-
ment 200 may include a server device 230, which may
include TCE 220, and a network 240. Devices of environ-
ment 200 may interconnect via wired connections, wireless
connections, or a combination of wired and wireless con-
nections.

Client device 210 may include a device capable of receiv-
Ing, generating, storing, processing, executing, and/or pro-
viding program information, such as information associated
with a model. For example, client device 210 may include a
computing device, such as a desktop computer, a laptop
computer, a tablet computer, a handheld computer, a server,
a mobile phone (e.g., a smart phone, a radiotelephone, or the
like), or a similar device. In some implementations, client
device 210 may receive mformation from and/or provide
information to server device 230.

Client device 210 may host TCE 220. Functions described
herein as being performed by TCE 220 may be performed by

10

15

20

25

30

35

40

45

50

55

60

65

4

client device 210 and execution of TCE 220 by client device
210. TCE 220 may include any hardware-based component
or a combination of hardware and software-based compo-
nents that provides a computing environment that allows
tasks to be performed (e.g., by users) related to disciplines,
such as, but not limited to, mathematics, science, engineer-
ing, medicine, and business. TCE 220 may include a text-
based environment (e.g., MATLAB software; Octave;
Python; Comsol Script; MATRIXx from National Instru-
ments; Mathematica from Wolfram Research, Inc.; Mathcad
from Mathsoit Engineering & Education Inc.; Maple from
Maplesoit; Extend from Imagine That Inc.; Scilab from The
French Institution for Research in Computer Science and
Control (INRIA); Virtuoso from Cadence; Modelica or
Dymola from Dynasim; etc.); a graphically-based environ-
ment (e.g., Simulink® software, Stateflow® soltware,
SimBEvents® software, Simscape™ software, etc., by The
MathWorks, Inc.; VisSim by Visual Solutions; LabView®
by National Instruments; Dymola by Dynasim; SoftWIRE
by Measurement Computing; Wil by DALSA Coreco; VEE
Pro or SystemVue by Agilent; Vision Program Manager
from PPT Vision; Khoros from Khoral Research; Gedae by
Gedae, Inc.; Scicos from (INRIA); Virtuoso from Cadence;
Rational Rose from IBM; Rhapsody or Tau from Telelogic;
Ptolemy from the University of Califormia at Berkeley;
aspects of a Unified Modeling Language (UML) or SysML
environment; etc.); or another type of environment, such as
a hybrid environment that includes one or more of the
above-referenced text-based environments and one or more
of the above-referenced graphically-based environments.

For example, TCE 220 may provide mathematical func-
tions and/or graphical tools (e.g., for creating plots, surfaces,
images, volumetric representations, or the like). In some
implementations, TCE 220 may provide these functions
and/or tools using toolboxes (e.g., toolboxes for signal
processing, 1mage processing, data plotting, parallel pro-
cessing, or the like). In some implementations, TCE 220
may provide these functions as block sets or 1n another way,
such as via a library, a local or remote database (e.g., a
database operating 1n a computing cloud), remote procedure
calls (*RPCs”), an application programming interface
(“API”), or the like.

TCE 220 may include a modeling system that may be
used 1n the creation of a functional model and that may
cnable generation of executable code based on the model.
For example, TCE 220 may include a graphical modeling
tool or application that provides a user interface for a
numerical computing environment. Additionally, or alterna-
tively, TCE 220 may include a graphical modeling tool
and/or application that provides a user iterface for model-
ing and simulating (e.g., by executing a model) a dynamic
system (e.g., based on differential equations, difference
equations, discrete events, discrete states, or the like).
Execution of a model to simulate a system may also be
referred to as simulating a model. The model may further
include static relations (e.g., algebraic relations, stochastic
relations, inequalities, or the like).

In some 1implementations, the model may include a block
diagram model. The block diagram model may include one
or more blocks (e.g., model elements) that represent an
operation of a component of a system (e.g., the sensor, the
camera, or the like) or that interact or communicate with
components of the system. The blocks may be connected via
one or more connector lines (e.g., lines for carrying a signal
associated with the blocks). A parameter may describe the
behavior of a block in the context of the block diagram
model, and may influence a manner 1 which the block

US 10,116,500 Bl

S

behaves, when executed. For example, the parameter may
identify an input to the block (and/or a system represented
by the block), an output from the block, a manner in which
the input 1s processed by the block, a manner in which the
output 1s generated by the block, a state associated with the
block, and/or other information that describes a behavior of
the block.

In some 1mplementations, the block diagram model may
be represented graphically, textually, and/or stored in some
form of internal representation. For example, a particular
visual depiction may be used to represent the block, such as
in a graphical model (e.g., a graphical block diagram).

In some implementations, the graphical model may
include entities with relationships between the entities, and
the relationships and/or the entities may be associated with
attributes. The entities may include model elements, such as
blocks and/or ports. The relationships may include model
clements, such as lines (e.g., connector lines) and references
(e.g., textual labels). The attributes may include value infor-
mation and meta iformation for the model element asso-
ciated with the attributes. In some implementations, the
graphical model may be associated with configuration infor-
mation. The configuration imnformation may include infor-
mation for the graphical model, such as model execution
information (e.g., numerical integration schemes, funda-
mental execution period, or the like), model diagnostic
information (e.g., whether an algebraic loop should be
considered an error or result 1n a warning), model optimi-
zation information (e.g., whether model elements should
share memory during execution), model processing infor-
mation (e.g., whether common functionality should be
shared 1n code that 1s generated for a model), or the like.

In some implementations, the graphical model may have
executable semantics and/or may be executable. An execut-
able graphical model may be a time based block diagram. A
time based block diagram may include, for example, blocks
connected by lines (e.g., connector lines). The blocks may
include elemental dynamic systems, such as a differential
equation system (e.g., to specily continuous-time behavior),
a difference equation system (e.g., to specily discrete-time
behavior), an algebraic equation system (e.g., to specily
constraints), a state transition system (e.g., to specily finite
state machine behavior), an event based system (e.g., to
specily discrete event behavior), or the like. The lines may
represent signals (e.g., to specily input/output relations
between blocks or to specily execution dependencies
between blocks), variables (e.g., to specily information
shared between blocks), physical connections (e.g., to
specily electrical wires, pipes with volume flow, ngid
mechanical connections, or the like), or the like. The attri-
butes may include meta information, such as sample times,
dimensions, complexity (whether there 1s an imaginary
component to a value), data type, or the like, associated with
the model elements.

In a time based block diagram, ports may be associated
with blocks. A relationship between two ports may be
created by connecting a line (e.g., a connector line) between
the two ports. Lines may also, or alternatively, be connected
to other lines, for example by creating branch points. For
instance, three or more ports can be connected by connecting
a line to each of the ports, and by connecting each of the
lines to a common branch point for all of the lines. A
common branch point for the lines that represent physical
connections may be a dynamic system (e.g., by summing all
variables of a certain type to zero or by equating all variables
of a certain type). A port may be an input port, an output
port, a non-causal port, an enable port, a trigger port, a

5

10

15

20

25

30

35

40

45

50

55

60

65

6

function-call port, a publish port, a subscribe port, an
exception port, an error port, a physics port, a power port, an
entity flow port, a data flow port, a control flow port, or the
like.

Relationships between blocks may be causal and/or non-
causal. For example, a model (e.g., a functional model) may
include a block that represents a continuous-time integration
block that may be causally related to a data logging block by
using a line (e.g., a connector line) to connect an output port
of the continuous-time 1ntegration block to an mput port of
the data logging block. Further, during execution of the
model, the value stored by the continuous-time integrator
may change as the current time of the execution progresses.
The value of the state of the continuous-time integrator may
be available on the output port and the connection with the
input port of the data logging block may make this value
available to the data logging block.

In one example, a block may include or otherwise corre-
spond to a non-causal modeling function or operation. An
example of a non-causal modeling function may include a
function, operation, or equation that may be executed 1n
different fashions depending on one or more inputs, circums-
stances, and/or conditions. Put another way, a non-causal
modeling function or operation may include a function,
operation, or equation that does not have a predetermined
causality. For instance, a non-causal modeling function may
include an equation (e.g., X=2Y) that can be used to identity
the value of one variable in the equation (e.g., “X’”) upon
receiving an assigned value corresponding to the other
variable (e.g., “Y”"). Similarly, if the value of the other
variable (e.g., “Y”’) were provided, the equation could also
be used to determine the value of the one vanable (e.g.,
“X7).

Assigning causality to equations may include determining
which variable 1 an equation 1s computed by using that
equation. Assigning causality may be performed by sorting
algorithms, such as a Gaussian elimination algorithm. The
result of assigning causality may be a lower block triangular
matrix that represents the sorted equations with strongly
connected components representative of algebraic cycles or
loops. Assigning causality may be part of model compila-
tion.

Equations may be provided in symbolic form. A set of
symbolic equations may be symbolically processed to, for
example, produce a simpler form. To illustrate, a system of
two equations X=2Y+U and Y=3X-2U may be symboli-
cally processed into one equation 5Y=-U. Symbolic pro-
cessing of equations may be part ol model compilation.

As such, a non-causal modeling function may not, for
example, require a certain mput or type ol mput (e.g., the
value of a particular variable) 1n order to produce a valid
output or otherwise operate as intended. Indeed, the opera-
tion of a non-causal modeling function may vary based on,
for example, circumstance, conditions, or inputs correspond-
ing to the non-causal modeling function. Consequently,
while the description provided above generally describes a
directionally specific or consistent signal flow between
blocks, 1n other implementations, the interactions between
blocks may not necessarily be directionally specific or
consistent.

In some 1implementations, connector lines 1n a model may
represent related variables that are shared between two
connected blocks. The variables may be related such that
their combination may represent power. For example, con-
nector lines may represent voltage, current, power, etc. In
some 1mplementations, the signal flow between blocks may
be automatically derived.

US 10,116,500 Bl

7

In some 1implementations, one or more blocks may also,
or alternatively, operate in accordance with one or more
rules or policies corresponding to a model 1n which they are
included. For instance, 1f the model were intended to behave
as an actual, physical system or device, such as an electronic
circuit, the blocks may be required to operate within, for
example, the laws of physics (also referred to herein as
“physics-based rules™). "

These laws of physics may be for-
mulated as differential and/or algebraic equations (e.g.,
constraints, etc.). The differential equations may include
derivatives with respect to time, distance, and/or other
quantities, and may be ordinary differential equations
(ODEs), partial differential equations (PDEs), and/or ditler-
ential and algebraic equations (DAEs). Requiring models
and/or model components to operate in accordance with
such rules or policies may, for example, help ensure that
simulations based on such models will operate as intended.

A sample time may be associated with the elements of a
graphical model. For example, a graphical model may
include a block with a continuous sample time such as a
continuous-time integration block that may integrate an
input value as time of execution progresses. This integration
may be specified by a differential equation. During execu-
tion, the continuous-time behavior may be approximated by
a numerical integration scheme that i1s part of a numerical
solver. The numerical solver may take discrete steps to
advance the execution time, and these discrete steps may be
constant during an execution (e.g., fixed step integration) or
may be variable during an execution (e.g., variable-step
integration).

In some implementations, a graphical model may include
a block with a discrete sample time such as a unit delay
block that may output values of a corresponding 1nput after
a specific delay. This delay may be a time interval and this
interval may determine a sample time of the block. During
execution, the unit delay block may be evaluated each time
the execution time has reached a point 1n time where an
output of the unit delay block may change. These points 1n
time may be statically determined based on a scheduling
analysis of the graphical model belore starting execution.

In some implementations, a graphical model may include
a block with an asynchronous sample time, such as a
tfunction-call generator block that may schedule a connected
block to be evaluated at a non-periodic time. During execu-
tion, a function-call generator block may evaluate an input
and when the 1mput attains a specific value when the execu-
tion time has reached a point 1 time, the function-call
generator block may schedule a connected block to be
evaluated at this point in time and before advancing execu-
tion time.

Further, the values of attributes of a graphical model may
be inferred from other elements of the graphical model or
attributes of the graphical model. The inferring may be part
of a model compilation. For example, the graphical model
may include a block, such as a unit delay block, that may
have an attribute that specifies a sample time of the block.
When a graphical model has an execution attribute that
specifies a fundamental execution period, the sample time of
the unit delay block may be inferred from this fundamental
execution period.

As another example, the graphical model may include two
unit delay blocks where the output of the first of the two umit
delay blocks 1s connected to the input of the second of the
two unit delay block. The sample time of the first unit delay
block may be inferred from the sample time of the second
unit delay block. This inference may be performed by
propagation of model element attributes such that after

10

15

20

25

30

35

40

45

50

55

60

65

8

evaluating the sample time attribute of the second unit delay
block, a graph search proceeds by evaluating the sample
time attribute of the first unit delay block since 1t 1s directly
connected to the second unit delay block.

The values of attributes of a graphical model may be set
to characteristic settings, such as one or more inherited
settings, one or more default settings, etc. For example, the
data type of a variable that 1s associated with a block may be
set to a default such as a double. Because of the default
setting, an alternate data type (e.g., a single, an integer, a
fixed point, etc.) may be inferred based on attributes of
clements that the graphical model comprises (e.g., the data
type of a variable associated with a connected block) and/or
attributes of the graphical model. As another example, the
sample time of a block may be set to be inherited. In case of
an inherited sample time, a specific sample time may be
inferred based on attributes of elements that the graphical
model comprises and/or attributes of the graphical model
(e.g., a Tundamental execution period).

Server device 230 may include one or more devices
capable of receiving, generating, storing, processing, and/or
providing information, such as information associated with
a model. For example, server device 230 may include a
computing device, such as a server, a desktop computer, a
laptop computer, a tablet computer, or a similar device. In
some 1mplementations, server device 230 may host TCE
220. In some mmplementations, client device 210 may be
used to access one or more TCEs 220 running on one or
more server devices 230. For example, multiple server
devices 230 may be used to execute program code (e.g.,
serially or 1n parallel), and may provide respective results of
executing the program code to client device 210.

In some mmplementations, client device 210 and server
device 230 may be owned by different entities. For example,
an end user may own client device 210, and a third party
may own server device 230. In some implementations,
server device 230 may include a device operating 1n a cloud
computing environment. In this way, front-end applications
(e.g., a user interface) may be separated from back-end
applications (e.g., program code execution). Additionally, or
alternatively, server device 230 may perform one, more, or
all operations described elsewhere herein as being per-
formed by client device 210.

Network 240 may include one or more wired and/or
wireless networks. For example, network 240 may include a
cellular network, a public land mobile network (PLMN), a
local area network (LAN), a wide area network (WAN), a
metropolitan area network (MAN), a telephone network
(e.g., the Public Switched Telephone Network (PSTN)), an
ad hoc network, an intranet, the Internet, a fiber optic-based
network, a private network, a cloud computing network,
and/or a combination of these or other types of networks.

The number and arrangement of devices and networks
shown 1n FIG. 2 are provided as an example. In practice,
there may be additional devices and/or networks, fewer
devices and/or networks, different devices and/or networks,
or differently arranged devices and/or networks than those
shown 1n FIG. 2. Furthermore, two or more devices shown
in FIG. 2 may be implemented within a single device, or a
single device shown in FIG. 2 may be immplemented as
multiple, distributed devices. Additionally, or alternatively, a
set of devices (e.g., one or more devices) of environment
200 may perform one or more functions described as being
performed by another set of devices of environment 200.

FIG. 3 1s a block diagram of example components of a
device 300. Device 300 may correspond to client device 210
and/or server device 230. In some implementations, client

US 10,116,500 Bl

9

device 210 and/or server device 230 may include one or
more devices 300 and/or one or more components of device

300. As shown 1n FIG. 3, device 300 may include a bus 310,

a processor 320, a memory 330, a storage component 340,
an mput component 350, an output component 360, and a
communication interface 370.

Bus 310 may include a component that permits commu-
nication among the components of device 300. Processor
320 1s implemented 1n hardware, firmware, or a combination
of hardware and software. Processor 320 may include a
processor (e.g., a central processing unit (CPU), a graphics
processing umt (GPU), an accelerated processing unit
(APU), or the like), a microprocessor, and/or any processing
component (e.g., a field-programmable gate array (FPGA),
an application-specific integrated circuit (ASIC), or the like)
that interprets and/or executes instructions, and/or that 1s
designed to implement one or more computing tasks. In
some 1mplementations, processor 320 may include multiple
processor cores for parallel computing. Memory 330 may
include a random access memory (RAM), a read only
memory (ROM), and/or another type of dynamic or static
storage device (e.g., a tlash memory, a magnetic memory, an
optical memory, or the like) that stores information and/or
istructions for use by processor 320.

Storage component 340 may store mmformation and/or
soltware related to the operation and use of device 300. For
example, storage component 340 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
a solid state disk, or the like), a compact disc (CD), a digital
versatile disc (DVD), a tloppy disk, a cartridge, a magnetic
tape, and/or another type of computer-readable medium,
along with a corresponding drive. In some implementations,
storage component 340 may store TCE 220.

Input component 350 may include a component that
permits device 300 to receive information, such as via user
iput (e.g., a touch screen display, a keyboard, a keypad, a
mouse, a buftton, a switch, a microphone, or the like).
Additionally, or alternatively, mput component 350 may
include a sensor for sensing information (e.g., a global
positioning system (GPS) component, an accelerometer, a
gyroscope, an actuator, or the like). Output component 360
may 1nclude a component that provides output information
from device 300 (e.g., a display, a speaker, one or more
light-emitting diodes (LEDs), or the like).

Communication interface 370 may include a transceiver-
like component (e.g., a transceiver, a separate receiver and
transmitter, or the like) that enables device 300 to commu-
nicate with other devices, such as via a wired connection, a
wireless connection, or a combination of wired and wireless
connections. Communication interface 370 may permit
device 300 to receive information from another device
and/or provide information to another device. For example,
communication interface 370 may include an Ethernet inter-
face, an optical interface, a coaxial interface, an infrared
interface, a radio frequency (RF) interface, a universal seral
bus (USB) iterface, a Wi-F1 interface, a cellular network
interface, or the like.

Device 300 may perform one or more processes described
herein. Device 300 may perform these processes 1n response
to processor 320 executing soitware mnstructions stored by a
computer-readable medium, such as memory 330 and/or
storage component 340. A computer-readable medium 1s
defined herein as a non-transitory memory device. A
memory device includes memory space within a single
physical storage device or memory space spread across
multiple physical storage devices.

10

15

20

25

30

35

40

45

50

55

60

65

10

Software 1nstructions may be read mto memory 330
and/or storage component 340 from another computer-
readable medium or from another device via communication
interface 370. When executed, soltware 1nstructions stored
in memory 330 and/or storage component 340 may cause
processor 320 to perform one or more processes described
herein. Additionally, or alternatively, hardwired circuitry
may be used 1n place of or 1n combination with software
istructions to perform one or more processes described
herein. Thus, implementations described herein are not
limited to any specific combination of hardware circuitry
and software.

The number and arrangement of components shown 1n
FIG. 3 are provided as an example. In practice, device 300
may include additional components, fewer components,
different components, or diflerently arranged components
than those shown 1n FIG. 3. Additionally, or alternatively, a
set of components (e.g., one or more components) of device
300 may perform one or more functions described as being
performed by another set of components of device 300.

FIGS. 4A-41 are block diagrams of example implemen-
tations 400 of exchanging information between middleware
of systems and models of the systems. In some implemen-
tations, the model may be of another system separate from
the system, a portion of the system or the other system, a
connected system to the system or the other system, or the
like. As shown 1n FIG. 4A, a robotic system 402 may include
a sensor, a camera, a joint position momtor, and/or a motor.
The sensor may measure movement of robotic system 402,
such as movement of a robotic arm. The camera may record
video of robotic system 402, surroundings of robotic system
402, or the like. The joint position monitor may measure a
jo1nt position of a component (e.g., a robotic arm) of robotic
system 402. The sensor, the camera, and the joint position
monitor may output the measured information as system
data 404. The motor may control operation of components of
robotic system 402, such as the sensor, the camera, the joint
position monitor, or the like. Although FIGS. 4A-41 are
described in connection with robotic system 402, implemen-
tations, described herein, may be utilized with another type
of system, such as, for example, an information system (e.g.,
a digital control system, a signal processing system, or the
like); a technical system (e.g., an airplane wing system); a
natural system (e.g., human organ, a plant, or the like); a
physical system (e.g., a bouncing ball); or the like.

Referring to FIG. 4A, robotic system 402 may be asso-
ciated with and communicate system data 404 to middle-
ware 410. In some implementations, middleware 410 may
include a Robot Operating System (ROS), Open®-aist,
robot soitware communications architecture (RSCA), or
other middleware capable of communicating with robotic
system 402. Middleware 410 may be implemented 1n dif-
ferent forms of hardware, firmware, or a combination of
hardware and software. Middleware 410 may include mul-
tiple slaves, such as a data publisher 412 and a data
subscriber 414. Data publisher 412 may publish (e.g., gen-
crate) data for topics associated with system data 404, and
may provide the topic data to other slaves. Data subscriber
414 may subscribe to (e.g., request) data for topics associ-
ated with system data 404, and may receive the topic data
from another slave. As further shown in FIG. 4A, data
publisher 412 may provide system data 404, in a format
compatible with middleware 410, to model 420, as indicated
by reference number 416. System data 416 may include
system data 404 provided by robotic system 402, the topic
data exchanged by data publisher 412 and data subscriber

US 10,116,500 Bl

11

414, information associated with services exchanged by data
publisher 412 and data subscriber 414, or the like.

With reference to FIG. 4A, assume that client device 210
(e.g., via TCE 220) receives model 420 or creates model 420
based on robotic system 402. In some i1mplementations,
client device 210 may recetve model 420 from a storage
device (e.g., memory 330 and/or storage component 340,
FIG. 3). In some implementations, model 420 may be stored
in a data structure associated with client device 210, and
client device 210 may receive model 420 by accessing the
data structure. In some implementations, the operations
described 1n connection with FIGS. 4A-41 may be per-
formed by another device or a group of devices separate
from or including client device 210, such as server device
230.

In some 1implementations, model 420 may include a set of
model elements that, when executed on client device 210,
simulates behavior of robotic system 402. For example,
robotic system 402 may include a set of physical elements
that correspond to portions and/or components of robotic
system 402. Robotic system 402 may be a dynamic system
that changes its state, for example, as time progresses. The
model elements may correspond to physical elements and
may, when executed, simulate the behavior of the physical
clements and/or robotic system 402. In some 1mplementa-
tions, the model elements may correspond to information
clements, such as digital control signals, digital signal
processing information, or the like.

In example implementation 400, assume that model 420
includes one or more blocks, such as an 1mage conversion
block 422, a video viewer block 424, and other blocks 426.
Image conversion block 422 may convert image information
(e.g., recerved from the camera of robotic system 402) into
a format compatible with video viewer 424. Video viewer
block 424 may receive the converted image information
from 1mage conversion block 422, and may display (e.g., via
client device 210) the converted image information (e.g., as
an 1mage, a video, or the like) to a user of model 420.

In some 1mplementations, TCE 220 may enable (e.g., via
client device 210) a middleware subscriber block 428 and a
middleware publisher block 430 to be provided 1in model
410. For example, TCE 220 may include or communication
with a library of blocks that includes middleware subscriber
block 428 and middleware publisher block 430. Assume that
the user of model 420 instructs client device 210, via TCE
220, to 1insert middleware subscriber block 428 and middle-
ware publisher block 430 into model 420. In some 1mple-
mentations, middleware subscriber block 428 may be con-
figured to receive particular system data 416 from
middleware 410, as described below. For example, middle-
ware subscriber block 428 may be configured to receive
system data 416 (e.g., subscribed to data) associated with the
camera of robotic system 402, and to convert system data
416 mto a format compatible with model 420.

In some implementations, middleware publisher block
430 may be configured to provide particular model data
(e.g., control data 432 generated by model 420) to middle-
ware 410, as described below. For example, middleware
publisher block 430 may be configured to provide control
data 432 (e.g., published data), in a format compatible with
middleware 410, to data subscriber 414 of middleware 410.
In some implementations, data subscriber 414 may utilize
control data 432 to control the motor of robotic system 402,
which, 1n turn, may control other components ol robotic
system 402. For example, the motor may utilize control data
432 to adjust a position of the camera, move the sensor, or

the like.

10

15

20

25

30

35

40

45

50

55

60

65

12

As shown 1n an example user interface 440 of FIG. 4B,
the user of model 420 may utilize TCE 220 to configure
middleware subscriber block 428. In some implementations,
the user may configure middleware subscriber block 428 by
selecting or hovering over middleware subscriber block 428
(e.g., with a selection mechanism, such as a mouse, a cursor,
or the like). In some implementations, when the user selects
or hovers over middleware subscriber block 428, TCE 220
may display a block parameters window 442 that enables the
user to specily parameters for middleware subscriber block
428, a topic to which to subscribe from middleware 410,
output signal parameters, or the like. With regard to the
topic, TCE 220 may display a topic window 444 from which
the user may select the topic. For example, the user may
select the topic i1dentified as “/camera/rgb/image _raw.” In
some 1mplementations, topic window 444 may include
information associated with topic data generated by middle-
ware 410, such as camera 1image data, camera parameters,
camera information, or the like. In some 1mplementations,
TCE 220 may filter information provided in topic window
444 based on a data type(s) associated with model 420. For
example, TCE 220 may filter topics that do not match the
data type(s) associated with model 420. In some 1implemen-
tations, TCE 220 may filter topics based on attributes
associated with middleware subscriber block 428. For
example, middleware subscriber block 428 may expect
certain attributes (e.g., a certain data type, a certain type of
communication, a certain sample time, a certain value range,
a certain data size, a certain unit, or the like), and may filter
topics based on the certain attributes. In some 1implementa-
tions, middleware subscriber block 428 may include a
specified quality of service (QoS), such as latency, reliabil-
ity, determinism, or the like, and only topics that are
communicated up to the specified QoS are displayed.

In some 1mplementations, each topic may include mul-
tiple messages (e.g., structured data for a topic), and can
have a topic structure that includes fields contaiming data or
information of each topic. TCE 220 may display an example
user interface 450 as shown 1n FIG. 4C for a user to extract
data of a topic from selected fields. For example, user
interface 450 may display a “Select Output for Subscriber”
window that includes data for the selected topic (e.g., raw
images captured by the camera of FIG. 4A contained 1n a

folder “/camera/rgb/image raw”) and a list of fields, includ-
ing “height,” “width,” “encoding,” “is_bigendian,” “step,”
“data,” and “header,” for the selected topic. The user may
utilize user intertace 450 to select which of the fields are to
be made available for display in TCE 220 and model 420.
For example, the user may select (e.g., with a selection
mechanism, such as a mouse, a cursor, or the like) a “data™
field, as indicated by reference number 452, and the “data”
field may be provided 1n a list 454 of previously selected
fields (e.g., the “encoding” field, the “height” field, and the
“width™ field). The fields provided 1n list 454 may be made
available for display in TCE 220 and model 420. In some
implementations, the order of the fields may correspond to
how the data, associated with the fields, 1s made available for
display 1n TCE 220. For example, the order of the ficlds may
be utilized when the fields are utilized 1n TCE 220. Alter-
natively, the names of the fields may be utilized to access
respective fields i TCE 220.

In some implementations, as shown 1n a user interface 460
of FIG. 4D, TCE 220 may utilize the fields provided 1n list
454 to automatically create a signal (e.g., a bus block 462)

in model 420. In some implementations, bus block 462 may

US 10,116,500 Bl

13

include data and variable dimensions. In some 1mplemen-
tations, a topic’s size of a dimension may not be provided
(e.g., left unknown) and the size may not become known
until subscription to (or publication of) the topic. In some
implementations, the topic’s dimension may change at run
time, e.g., after the subscription (or the publication) has been

established and as the model executes. In some 1mplemen-
tations, a number of dimensions may be variable 1n a similar

Header header

uimnt32 heigl
umnt32 width
string encod

uint® 1s bigendian

uimnt32 step
uint®[| data

manner (e.g., unknown until subscription to or publication
of the topic, or changed at run time).

In some 1mplementations, data of a topic may include a
s1ze that 1s greater than one (e.g., the data 1s an array), and
may include more than one dimension (e.g., in the case of a
matrix or a two-dimensional array). For example, an image
may 1nclude data that has two dimensions where one dimen-
sion may include a size of 640 values for 640 pixels and
another dimension may include a size of 480 values for 480
pixels.

In some implementations, bus block 462 may convert
system data 416 (FIG. 4A) (e.g., 1in the format compatible
with middleware 410, such as CDF, FITS files, HDEF, or the
like) received by middleware subscriber block 428 into a
format compatible with model 420 (e.g., a numeric array, a
character array, a table, a structure, a cell array, or the like).
For example, bus block 462 may convert system data 416
(c.g., the data associated with the “encoding” field, the
“height” field, the “width™ field, and the “data™ field of list
454, F1G. 4C) into a format compatible with 1image conver-
sion block 422.

In some 1implementations, client device 210 (e.g., via TCE
220) may receive and determine type information in pub-
lished topic information, and may parse the type informa-
tion. Client device 210 may potentially create a data struc-
ture for the parsed type information, and may determine data
types of various fields associated with the parsed type
information. Client device 210 may determine meta infor-
mation from the topic information about the data, and may
create a corresponding data type(s) mn TCE 220. In some
implementations, client device 210 (e.g., via TCE 220) may
configure bus block 462 based on a selected topic of data to
which bus block subscribes and/or publishes. Client device
210 may receive topic information, may read the topic
information, and may parse the topic information 1nto a data
structure. The topic information may include information
about data types, a quality of service allowed by the topic
information, or the like. Client device 210 may utilize such
information to create bus block 462 (e.g., a number of 1nput
ports, output ports, data types, dimensions, or the like for bus
block 462) and to set parameters (e.g., a sample time) for bus
block 462. In some implementations, the sample time may
be set with middleware subscriber block 428.

25

30

35

40

45

50

55

60

65

1t

ng

14

In some implementations, 1n order to create bus block
462, TCE 220 may determine a type of topic (e.g., “/camera/
rgb/image _raw”’) selected by the user via user interface 440
(FIG. 4B), and may read the topic via middleware subscriber
block 428. For example, the selected topic may be associ-
ated with the following information:

This topic contains an uncompressed 1mage
(0, 0) 1s at top-left corner of 1mage

Header timestamp should be acquisition time of image

Header frame 1d should be optical frame of camera

origin of frame should be optical center of camera

+x should point to the right in the image

+y should pomnt down in the image

+z should point into the plane of the image

If the frame 1d here and the frame id of the Cameralnfo message
associated with the image conflict, the behavior 1s undefined

1mage height, that 1s, number of rows

1mage width, that 1s number of columns

Encoding of pixels -- channel meaning, ordering, size taken from
the list of strings in include/sensor_msgs/image_encodings.h

1s this data bigendian?

Full row length 1n bytes

actual matrix data, size i1s (step * rows)

In some 1mplementations, the topic information may be
provided 1n a repository available to middleware 410 and/or
TCE 220 and associated with client device 210 and/or server
device 220. In some implementations, TCE 220 may convert
the selected topic information into a workspace variable
(e.g., “1image_msg’) using the following syntax:

>>1mage msg=middlewaremessage(‘sensor_msgs/Im-

age’)

1mage_msg=

Image with properties:

Messagelype: ‘sensor_msgs/Image’
header: (1x1 middleware.msggen.std_msgs.Header)
height: O

width: O

encoding; ¢’

1s_bigendian: O

step: O

data: [0x1 uint8]

In some implementations, TCE 220 may convert the
workspace variable (e.g., “image _msg”’) into a format com-
patible with model 420 (e.g., a signal called “1image_struct™)
using the following syntax:

>>1mage_struct=1mage_msg.toStruct

image_struct=

height: O

width: O

encoding: ¢’

1s_bigendian: O

step: O

data: [0x]1 uint8]

header: [1x1 struct]
Once TCE 220 creates the signal, TCE 220 may graphically
present the signal to the user, via user interface 450 (FIG.
4C), so that the user may select fields of interest (e.g., the
fields provided 1n list 454) associated with the selected topic
(e.g., “/camera/rgb/image_raw™), as described above.

After the fields of interest are selected, TCE 220 may
automatically populate bus block 462 with the selected fields

(e.g., the “encoding” field, the “height” field, the “width”
field, and the “data” field of list 454, FI1G. 4C), as shown 1n
FIG. 4D. As further shown in FIG. 4D, bus block 462 may

provide information associated with the selected fields to

US 10,116,500 Bl

15

image conversion block 422 (e.g., 1n a format compatible
with 1mage conversion block 422). In some implementa-
tions, 1mage conversion block 422 may convert the infor-
mation associated with the selected fields into a format
compatible with video viewer block 424. For example,
image conversion block 422 may convert the information
associated with the selected fields into a composite “1image™
signal compatible with a format used by video viewer block
424, and may provide the composite “image” signal to video
viewer block 424.

In some 1mplementations, the functions described above
for bus block 464 and 1mage conversion block 422 may be
performed by middleware subscriber block 428. For
example, middleware subscriber block 428 may convert
system data 416 (e.g., in the format compatible with middle-
ware 410) into mmformation associated with the selected
fields (e.g., n the format compatible with model 420).
Middleware subscriber block 428 may convert the informa-
tion associated with the selected fields mnto a composite
“mmage” signal compatible with a format used by video
viewer block 424. In some implementations, the functions
described above for image conversion block 422 may be
performed by middleware subscriber block 428. For
example, middleware subscriber block 424 may receive the
information associated with the selected fields from bus
block 462, and may convert the information associated with
the selected fields into a composite “image” signal compat-
ible with a format used by video viewer block 424. In some
implementations, repository information for a topic may be
processed by TCE 220 and used to automatically configure
middleware subscriber block 428, middleware publisher
block 430, and/or bus block 462.

In some 1mplementations, bus block 462 can be config-
ured based on a user selecting or hovering a pointer over bus
block 462 (e.g., with a selection or pointing mechanism,
such as a mouse, a cursor, or the like). In some 1implemen-
tations, when bus block 462 1s selected, TCE 220 may
display a user interface 464 as shown in FIG. 4E. In some
implementations, user interface 464 may provide the user
with direct access, in TCE 220, to the information associated
with the selected fields received from middleware 410. As
shown 1n FIG. 4E, user interface 464 may enable the user to
select output signals for bus block 462 (shown 1n FIG. 4D)
(e.g., an encoding output signal, a height output signal, a
width output signal, and a data output signal) based on the
information associated with the selected fields; remove
output signals for bus block 462; reorder output signals for
bus block 462; or the like. Once the user has configured bus
block 462, via user interface 464, the user may instruct TCE
220 to implement the configuration imn bus block 462 by
selecting an “OK” button or an “Apply” button. Bus block
462 may convert the information associated with the
selected fields (e.g., 1n the format compatible with middle-
ware 410) 1into a format compatible with model 420, based
on the configuration.

In some implementations, middleware publisher block
430 may provide particular model data (e.g., control data
432 generated by model 420) to middleware 410. For
example, as shown 1n a user interface 470 of FIG. 4F, the
user of model 420 may utilize TCE 220 to configure
middleware publisher block 430. In some 1implementations,
the user may configure middleware publisher block 430 by
selecting or hovering over middleware publisher block 430
(e.g., with a selection mechanism, such as a mouse, a cursor,
or the like). In some implementations, when the user selects
or hovers over middleware publisher block 430, TCE 220

may display a block parameters window 472 that enables the

10

15

20

25

30

35

40

45

50

55

60

65

16

user to specily parameters for middleware publisher block
430, a topic to publish to middleware 410, a topic name, a
topic message type, or the like.

In some implementations, each topic may include mul-
tiple messages (e.g., structured data for a topic), and each
topic may be organized into fields that are part of the topic
structure. In order to enable the user to select specific fields
of a selected topic, TCE 220 may display a publisher 1mnput
window 474, as further shown 1 FIG. 4F. For example,
publisher mput window 474 may enable the user to select
specific fields, of a particular selected topic (e.g., “/mobile
base/commands/velocity”), that are set as mput to middle-
ware publisher block 430. As shown 1n FIG. 4F, the user may
select (e.g., with a selection mechanism, such as a mouse, a
cursor, or the like) a “linear.x” field and an “angular.z” field
as the specific fields.

In some implementations, TCE 220 may create input ports
for the specific fields so that the specific fields may be
utilized as mputs to middleware publisher block 430. For
example, as shown 1n a user 1interface 480 of FI1G. 4G, TCE
220 may provide an enable port 482 1n middleware publisher
block 430 and input ports 484 for the specific fields (e.g., the
“linear.x” field and the “angular.z” field). Enable port 482
may enable middleware publisher block 430 to provide
particular model data (e.g., control data 432 generated by
model 420) to middleware 410. In some 1mplementations,
control data 432 may include information associated with
the “linear.x” field and the “angular.z” field, and middleware
publisher block 430 may convert the information associated
with the “linear.x” field and the “angular.z” field into a
format compatible with middleware 410 and may provide
the converted information to middleware 410 (e.g., to data
subscriber 414, FIG. 4A).

In some 1implementations, 1f a topic does not exist i a
repository available to TCE 220 and/or middleware 410, the
user may utilize TCE 220 to create a new topic. In some
implementations, TCE 220 may create a signal, a publisher
block, or the like that converts information associated with
the new topic into a format compatible with middleware
410. In some implementations, TCE 220 may store infor-
mation associated with the new topic 1in the repository
associated with TCE 220 and/or middleware 410. In some
implementations, information that may be derived from a
model, and included 1n a topic, may include field names,
ficld data types, field dimensions, data complexity (e.g.,
whether there 1s an 1maginary part), messages sample time,
messages semantics (e.g., discrete time, continuous time,
discrete event, or the like), execution semantics (e.g., time
triggered, event triggered, synchronous, asynchronous, or
the like), bufler size of a communication, structure of the
data (e.g., encoding, bus elements, or the like), or the like.

In some mmplementations, middleware subscriber block
428 and middleware publisher block 430 may enable 1nfor-
mation to be communicated across middleware 410 directly
from TCE 220 and 1n a format compatible with middleware
410. For example, as shown 1n a user interface 490 of FIG.
4H, a control and 1image processing model (e.g., model 420
and a video viewer window), provided by TCE 220, may be
connected to a virtual world (e.g., robotic system 402) using

middleware subscriber block 428 and middleware publisher
block 430 in model 420 and data publisher 412 and data

subscriber 414 1n middleware 410.

In some implementations, as shown 1n a user interface 495
of FIG. 41, model 420 may be or include a state transition
diagram 496. As shown, state transition diagram 496 may
include two states (e.g., state A and state B) where one of the
two states may be active. Upon 1nitialization of state tran-

US 10,116,500 Bl

17

sition diagram 496, state A may become active, as indicated
by a transition arrow with the solid circle as 1ts source. State
transition diagram 496 may subscribe to middleware 410 via
a symbol (e.g., ROS_msg_I)and may publish to middleware
410 via another symbol (e.g., ROS_msgQO). Such publish
and/or subscribe functionalities of state transition diagram
496 may be selected by interacting with a dialog window
497 (e.g., a ROS output dialog) for setting properties of the
symbols. As shown in FIG. 41, dialog window 497 may
show an example for setting properties associated with the
other symbol (e.g., ROS_msgQO). In this example, a pull
down menu of dialog window 497 may permit selection of
an “Output to ROS” option, which creates a publish inter-
face to middleware 410. A dialog window for the subscribe
functionality may provide an option, such as “Input from
ROS,” which creates a subscribe interface to middleware
410. After selecting a middleware publish or subscribe
option, topic selection may proceed as described above 1n
connection with FIG. 4B.

After configuring the interaction with middleware 410,
state transition diagram 496 may be executed. When state
transition diagram 496 1s executed, state A may become
active first. When a message 1s received from middleware
410 (e.g., via the ROS_msgl symbol), a transition may occur
where state A becomes 1nactive and state B becomes active.
This transition may occur 1if a message associated with
ROS_msgl arrives or 1f a field of the message includes a
specific value (e.g., a value of one, true, or the like). When
the transition to state B occurs, a message may be sent to
middleware 410 (e.g., via the symbol ROS_msgO). The sent
message may be a default message or may include additional
information (e.g., by using an argument 1n combination with
the symbol ROS_msgO(3) or an assignment, such as
ROS_msgO=3). In some implementations, specific fields 1n
a message may be read or written, for example, using a dot
notation as shown in FIG. 4F (e.g., ROS_msgO.x=3).

In some 1implementations, 1 middleware subscriber block
428 and/or middleware publisher block 430 are associated
with a topic, middleware subscriber block 428 and/or
middleware publisher block 430 may execute every time a
message, for the topic, 1s received and/or sent. In some
implementations, middleware subscriber block 428 and/or
middleware publisher block 430 may execute with a certain
sample rate so that the message may be stored before being
read and/or written during execution of middleware sub-
scriber block 428 and/or middleware publisher block 430. In
some 1mplementations, middleware subscriber block 428
and/or middleware publisher block 430 may store a number
of recent messages and may read a least recently read
message and/or write a least recently written message. In
some 1mplementations, a message may be discarded once
the message has been read by middleware subscriber block
428. Alternatively, a message may be discarded only 11 a
more recent message 1s available to middleware subscriber
block 428. I no message 1s available, a message with default
values (e.g., pre-specified values, previous values, or the
like) and/or user-defined values (e.g., initial conditions) may
be read by middleware subscriber block 428. In some
implementations, a message may be discarded once the
message has been written by middleware publisher block
430. Alternatively, a message may be discarded only 11 a
more recent message 1s available to middleware publisher
block 430. If no message 1s available, a message with default
values and/or user-defined values may be written by middle-
ware publisher block 430.

In some implementations, middleware subscriber block

428 and/or middleware publisher block 430 may discard

10

15

20

25

30

35

40

45

50

55

60

65

18

certain messages (e.g., 1if messages are received at a higher
rate than a rate at which middleware subscriber block 428
executes or 1f messages are sent at a lower rate than a rate
at which middleware publisher block 430 executes). In some
implementations, when middleware subscriber block 428
and/or middleware publisher block 430 execute and read/
write message information, middleware subscriber block
428 and/or middleware publisher block 430 may remove/
add the message information from/to a bufler. In some
implementations, 1 middleware subscriber block 428 and/or
middleware publisher block 430 execute, but a buller from
which messages are read/written 1s empty/full, the execution
of middleware subscriber block 428 and/or middleware
publisher block 430 may be stopped. Alternatively, or addi-
tionally, a default value may be read if the buller 1s empty
and the execution of middleware subscriber block 428 may
continue. Alternatively, or additionally, if the bufler 1s full,
middleware publisher block 430 may discard a new value
(e.g., by discarding the new value or by overwriting an
existing value 1n the bufler with the new value) and the
execution of middleware publisher block 430 may continue.

In some implementations, TCE 220 and middleware 410
may determine a quality of service (e.g., a latency, a number
of dropped packets, a desired data type resolution, or the
like) for communications between TCE 220 (e.g., middle-
ware subscriber block 428 and/or middleware publisher
block 430) and middleware 410 (e.g., data publisher 412
and/or data subscriber 414). For example, TCE 220 or the
user of TCE 220 may specily a quality of service for
information received from middleware 410, a different qual-
ity of service for information provided to middleware 410,
the same quality of service for information received from
middleware 410 and information provided to middleware
410, or the like. In some implementations, the user may
specily a quality of service, and TCE 220 may negotiate a
closest matching quality of service with middleware 410. In
some 1mplementations, 1f data 1s specified to include a single
resolution, but only double resolution data 1s available, the
double resolution data may be used instead of single reso-
lution data. In some implementations, TCE 220 may provide
teedback to the user. For example, 11 a closest matching
quality of service 1s found, the user may be queried as to
whether the closest matching quality of service should be
used, whether a number of matches that are close to the
specified quality of service should be used, whether the user
wishes to specily a range on quality of service characteris-
tics, or the like.

In some 1mplementations, 11 a user of a design environ-
ment (e.g., robotic system 402) selects a portion of robotic
system 402, TCE 220 may automatically create a middle-
ware subscriber block based on the selected portion of
robotic system 402. For example, 11 the user selects a robotic
hand of robotic system 402, TCE 220 may create a middle-
ware subscriber block that receives information associated
with the robotic hand (e.g., hand movement, hand position,
or the like) from middleware 410, and converts the infor-
mation into a format compatible with model 420.

In some 1mplementations, 1f a new topic becomes avail-
able 1n middleware 410, middleware 410 may inform TCE
220 about the new topic. In some implementations, TCE 220
may automatically create a subscriber block that converts
information associated with the new topic mto a format
compatible with model 420. In some 1implementations, TCE
220 may store information associated with the new topic 1n
the repository associated with TCE 220 and/or middleware
410. In some 1implementations, a newly created block may
be stored in a repository of blocks that can be used 1n a

US 10,116,500 Bl

19

model (e.g., a model library). This repository may be orga-
nized into categories such that blocks associated with certain
attributes may be grouped 1nto one category (e.g., subscriber
blocks, publisher blocks, blocks associated with 1mage top-
ics, blocks associated with motors topics, or the like).

In some implementations, middleware subscriber block
428 and middleware publisher block 430 may utilize the
same or different protocols for interactions with middleware
410 (e.g., publish and subscribe, send and receive, stream-
ing, interrupt and asynchronous, polling, or the like). In
some 1mplementations, configuration of middleware sub-

scriber block 428 and/or middleware publisher block 430

may be established prior to run time, at run time (e.g., while
middleware 410 1s already running, while model 420 1s
already running, or the like), or the like. In some 1implemen-
tations, bus block 462 may perform code generation (e.g., by
generating a struct in C code), and may be specified in many
languages, such as XML, a C struct, a proprietary language,
or the like. In some implementations, values communicated
by middleware subscriber block 428 and/or middleware
publisher block 430 may be numerical values, enumerations
(c.g., where enumeration information may be read and
processed 1nto a workspace variable), or the like.

As 1ndicated above, FIGS. 4A-41 are provided merely as
an example. Other examples are possible and may difler
from what was described with regard to FIGS. 4A-41.

FIG. 5 1s a flow chart of an example process 500 for
exchanging information between middleware of a system
and a model of the system. In some implementations, the
model may be of another system, a portion of the system or
the other system, a connected system to the system or the
other system, or the like. In some 1implementations, one or
more process blocks of FIG. 5 may be performed by client
device 210. In some 1mplementations, one or more process
blocks of FIG. 5 may be performed by another device or a
group of devices separate from or including client device
210, such as server device 230.

As shown 1n FIG. 3, process 300 may include receiving
and/or creating a model of a system that imncludes middle-
ware (block 510). For example, as described above in
connection with FIG. 4A, client device 210 (e.g., via TCE
220) may create and/or receirve model 420 that 1s based on
robotic system 402. In some implementations, client device
210 may receive model 420 from a storage device (e.g.,
memory 330 and/or storage component 340, FIG. 3). In
some 1mplementations, client device 210 (e.g., TCE 220)
may recerve model 420 based on a user creating model 420.
For example, a user may cause client device 210 to create or
open a user interface. The user may then add one or more
model blocks and/or model elements to the user interface to
create model 420. For example, in some implementations,
client device 210 may receive a command, from the user,
that indicates that a model block and/or a model element 1s
to be added to the user interface. Client device 210 may
receive the command based, for example, on detecting a
selection of a particular menu item, entry of a particular
textual or audible 1nput from the user, and/or entry of some
other predetermined mmput that indicates a desire to add a
model block and/or a model element to the user interface. As
another example, client device 210 may receive put (e.g.,
a drag and drop) that indicates that a model block and/or a
model element, included 1n a block library and/or a model
clement library associated with TCE 220, 1s to be added to
the user interface. Based on the command, client device 210
may add the model block and/or the model element to the
user 1nterface. In some implementations, the model may be

10

15

20

25

30

35

40

45

50

55

60

65

20

ol another system, a portion of robotic system 402 or the
other system, a connected system to robotic system 402 or
the other system, or the like.

As further shown in FIG. 5, process 500 may include
providing a subscriber block, for the model, that subscribes
to information generated by the middleware (block 520). For
example, as described above in connection with FIG. 4A,
TCE 220 may provide the user of model 420 with access to
middleware subscriber block 428. In some implementations,
TCE 220 may provide middleware subscriber block 428 1n
a library of blocks that may be utilized by the user. In some
implementations, the user of model 420 may instruct client
device 210, via TCE 220, to insert middleware subscriber
block 428 1n model 420, and TCE 220 may insert middle-
ware subscriber block 428 in model 420 based on the user’s
instruction. In some implementations, TCE 220 may auto-
matically create middleware subscriber block 428 based on
a portion (e.g., a publisher slave) of middleware 410 and/or
based on information received from middleware 410. For
example, 1 middleware 410 creates a new publisher slave,
middleware 410 may notily TCE 220 about the new pub-
lisher slave (e.g., via an indication or a notification), and
TCE 220 may automatically create middleware subscriber
block 428 that corresponds to the new publisher slave.

As further shown in FIG. 5, process 500 may include
receiving subscriber configuration information for the sub-
scriber block (block 530). For example, as described above
in connection with FIGS. 4B and 4C, the user of model 420
may utilize user interface 440, provided by TCE 220, to
configure middleware subscriber block 428. In some 1mple-
mentations, the user may configure middleware subscriber
block 428 by selecting or hovering over middleware sub-
scriber block 428 (e.g., with a selection mechanism, such as
a mouse, a cursor, or the like). In some 1mplementations,
when the user selects or hovers over middleware subscriber
block 428, TCE 220 may display block parameters window
442 that enables the user to specily parameters for middle-
ware subscriber block 428, a topic to which to subscribe
from middleware 410, output signal parameters, or the like.
With regard to the topic, TCE 220 may display topic window
444 from which the user may select the topic. For example,
the user may select the topic identified as ““/camera/rgb/
image _raw.”

In some 1mplementations, each topic may include mul-
tiple messages (e.g., structured data for a topic), and each
topic may be organized into fields that are part of the topic
structure. In order to enable the user to extract data of the
specific fields 1n a topic, TCE 220 may display user interface
450. User interface 450 may enable the user to extract data
of the specific fields for the selected topic (e.g., “/camera/

rgb/image raw”), and may include a list of fields (e.g.,

“height,” “width,” “encoding,” *“1s_bigendian, step,”
“data,” and “header”) for the selected topic. The user may
utilize user intertace 450 to select which of the fields to be
made available in TCE 220 and model 420. For example, the
user may select (e.g., with a selection mechanism, such as a
mouse, a cursor, or the like) a “data” field, as indicated by
reference number 452, and the “data” field may be provided
in list 454 of previously selected fields (e.g., the “encoding”
field, the “height” field, and the “width™ field). The fields
provided in list 454 may be made available in TCE 220 and
model 420. In some implementations, TCE 220 may auto-
matically configure middleware subscriber block 428 based
on configuration mformation received from robotic system

402. For example, robotic system 402 may provide the

22 14

US 10,116,500 Bl

21

configuration information to TCE 220, and TCE 220 may
configure middleware subscriber block 428 based on the
configuration mmformation.

As further shown i FIG. 5, process 300 may include
creating, based on the subscriber configuration information,
a first signal that converts information generated by the
middleware 1nto a format compatible with the model (block
540). For example, as described above 1n connection with
FIGS. 4C and 4D, TCE 220 may utilize the fields provided
in list 454 to automatically create a signal (e.g., bus block
462) in model 420. In some 1implementations, bus block 462
may include structured data and variable dimensions. In
some 1mplementations, bus block 462 may convert system
data 416 (e.g., in the format compatible with middleware
410) received by middleware subscriber block 428 into a
format compatible with model 420. For example, bus block
462 may convert system data 416 (e.g., the data associated
with the “encoding” field, the “height” field, the “width”
field, and the “data” field of list 454) into a format compat-
ible with 1mage conversion block 422.

As further shown i FIG. 3, process 500 may include
providing a publisher block, for the model, that publishes
information generated by the model to the middleware
(block 550). For example, as described above 1n connection
with FIG. 4A, TCE 220 may provide the user of model 420
with access to middleware publisher block 430. In some
implementations, TCE 220 may provide middleware pub-
lisher block 430 1n a library of blocks that may be utilized
by the user. In some 1implementations, the user of model 420
may 1nstruct client device 210, via TCE 220, to insert
middleware publisher block 430 in model 420, and TCE 220
may 1nsert middleware publisher block 430 1n model 420
based on the user’s instruction. In some 1implementations,
TCE 220 may automatically create middleware publisher
block 430 based on a portion (e.g., a subscriber slave) of
middleware 410 and/or based on information received from
middleware 410. For example, i middleware 410 creates a
new subscriber slave, middleware 410 may notity TCE 220
about the new subscriber slave (e.g., via an indication or a
notification), and TCE 220 may automatically create
middleware publisher block 430 that corresponds to the new
subscriber slave.

As further shown i FIG. 5, process 500 may include
receiving publisher configuration imformation for the pub-
lisher block (block 560). For example, as described above 1n
connection with FIG. 4F, the user may utilize TCE 220 to
configure middleware publisher block 430 to provide par-
ticular model data (e.g., control data 432 generated by model
420) to middleware 410. In some implementations, the user
of model 420 may utilize user interface 470, provided by
TCE 220, to configure middleware publisher block 430. In
some 1mplementations, the user may configure middleware
publisher block 430 by selecting or hovering over middle-
ware publisher block 430 (e.g., with a selection mechanism,
such as a mouse, a cursor, or the like). In some 1mplemen-
tations, when the user selects or hovers over middleware
publisher block 430, TCE 220 may display block parameters
window 472 that enables the user to specily parameters for
middleware publisher block 430, a topic to publish to
middleware 410, a topic name, a topic message type, or the
like.

In some 1mplementations, each topic may include mul-
tiple messages (e.g., structured data for a topic), and each
topic may be organized into fields that are part of the topic
structure. In order to enable the user to select specific fields
of a selected topic, TCE 220 may display publisher 1mnput
window 474. In some implementations, publisher input

10

15

20

25

30

35

40

45

50

55

60

65

22

window 474 may enable the user to select specific fields of
a particular selected topic that are set as input to middleware
publisher block 430, such as a “linearx” field and an
“angular.z” field.

As further shown in FIG. 5, process 500 may include
creating, based on the publisher configuration information, a
second signal that converts mmformation generated by the
model 1nto a format compatible with the middleware (block
570). For example, as described above 1n connection with
FIG. 4G, TCE 220 may create input ports for the specific
fields so that the specific fields may be utilized as inputs to
middleware publisher block 430. In some 1mplementations,
as shown 1n user interface 480, TCE 220 may provide enable
port 482 1n middleware publisher block 430 and 1nput ports
484 for the specific fields (e.g., the “linear.x” field and the
“angular.z” field). Enable port 482 may enable middleware
publisher block 430 to provide particular model data (e.g.,
control data 432 generated by model 420) to middleware
410. In some implementations, control data 432 may include
information associated with the “linear.x” field and the
“angular.z” field, and middleware publisher block 430 may
convert the information associated with the “linear.x” field
and the “angular.z” field mnto a format compatible with
middleware 410 and may provide the converted information
to middleware 410.

Although FIG. 5 shows example blocks of process 500, 1n
some 1mplementations, process 500 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 5. Additionally,
or alternatively, two or more of the blocks of process 500
may be performed in parallel.

Systems and/or methods, described herein, provide an
environment 1n which data, from middleware of a system,
may be communicated to and used 1n a model of the system.
The systems and/or methods may enable different types of
data to be communicated between the model and a system
being modeled, via the middleware. In this way, simulation
of systems may be enhanced by allowing data to be seam-
lessly transmitted between the system and the model.

The foregoing disclosure provides illustration and
description, but 1s not intended to be exhaustive or to limait
the implementations to the precise form disclosed. Modifi-
cations and variations are possible 1 light of the above
disclosure or may be acquired from practice of the imple-
mentations.

As used herein, the term component i1s intended to be
broadly construed as hardware, firmware, and/or a combi-
nation of hardware and software.

Program code (sometimes referred to herein as code) 1s to
be broadly interpreted to include text-based code that may
not require further processing to execute (e.g., C++ code,
Hardware Description Language (HDL) code, very-high-
speed integrated circuits (VHSIC) HDL (VHDL) code, or
the like), binary code that may be executed (e.g., executable
files that may be directly executed by an operating system,
bitstream files that may be used to configure an FPGA, or the
like), text files that may be executed 1in conjunction with
other executables (e.g., Python text files, Octave files, or the
like), source code (e.g., readable by a human), machine code
(e.g., readable by a machine), or the like. In some 1mple-
mentations, program code may include different combina-
tions ol the above-identified classes of code (e.g., text-based
code, binary code, text files, source code, machine code, or
the like). Additionally, or alternatively, program code may
include code generated using a dynamically-typed program-
ming language (e.g., the M language, a MATLAB® lan-
guage, a MATLAB-compatible language, a MATLAB-like

US 10,116,500 Bl

23

language, or the like) that may be used to express problems
and/or solutions using mathematical notations. Additionally,
or alternatively, program code may be of any type, such as
a function, a script, an object, or the like.

Certain user interfaces have been described herein and/or
shown 1n the figures. A user interface may include a graphi-
cal user interface, a non-graphical user interface, a text-
based user interface, etc. A user interface may provide
information for display. In some implementations, a user
may 1nteract with the information, such as by providing
input via an mput component of a device that provides the
user interface for display. In some implementations, a user
interface may be configurable by a device and/or a user (e.g.,
a user may change the size of the user interface, information
provided via the user interface, a position of mmformation
provided via the user interface, etc.). Additionally, or alter-
natively, a user interface may be pre-configured to a standard
configuration, a specific configuration based on a type of
device on which the user interface 1s displayed, and/or a set

of configurations based on capabilities and/or specifications
associated with a device on which the user interface is
displayed.

It will be apparent that systems and/or methods, described
herein, may be implemented in different forms of hardware,
firmware, or a combination of hardware and software. The
actual specialized control hardware or software code used to
implement these systems and/or methods 1s not limiting of
the implementations. Thus, the operation and behavior of the
systems and/or methods were described herein without
reference to specific software code—it being understood that
software and hardware can be designed to implement the
systems and/or methods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limait the disclosure of
possible implementations. In fact, many of these features
may be combined 1n ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of possible 1mplementations
includes each dependent claim in combination with every
other claim 1n the claim set.

No element, act, or instruction used herein should be
construed as critical or essential unless explicitly described
as such. Also, as used herein, the articles “a” and “‘an” are
intended to include one or more 1tems, and may be used
interchangeably with “one or more.” Furthermore, as used
herein, the term “set” 1s itended to include one or more
items (e.g., related items, unrelated 1tems, a combination of
related 1tems and unrelated items, etc.), and may be used
interchangeably with “one or more.” Where only one item 1s
intended, the term “one” or similar language 1s used. Also,
as used herein, the terms “has,” “have,” “having,” or the like
are intended to be open-ended terms. Further, the phrase
“based on” 1s intended to mean “based, at least 1n part, on”
unless explicitly stated otherwise.

What 1s claimed 1s:
1. A method, comprising:
mserting a block into a model associated with a system,
the system being associated with middleware,
the block subscribing to information generated by the
middleware based on communication between the
middleware and the system, and
the 1serting the block being performed by a device;
receiving subscriber configuration information for con-
figuring the block,

10

15

20

25

30

35

40

45

50

55

60

65

24

the recerving the subscriber configuration information
being performed by the device;
recerving, by the model and via communication with the
middleware, the information generated by the middle-
ware,
the recerving the mformation generated by the middle-
ware being performed by the device;
creating, based on the subscriber configuration informa-
tion, a signal associated with the block,
the signal including the information generated by the
middleware that 1s converted into a format compat-
ible with the model,
the creating the signal being performed by the device;
and
executing the model,
where the executing comprises using the signal that
includes the information generated by the middle-
ware that 1s converted into the format compatible
with the model,
the executing the model being performed by the
device.
2. The method of claim 1, further comprising:
receiving, from the middleware, an indication that the
middleware 1s generating the information generated by
the middleware; and
generating the block for the model based on the indica-
tion.
3. The method of claim 1, further comprising:
generating another block for the model,
the other block providing information generated by the
model to the middleware;
recerving publisher configuration information for config-
uring the other block; and
creating, based on the publisher configuration informa-
tion, another signal that converts the information gen-
crated by the model into a format compatible with the
middleware.
4. The method of claim 3, where the publisher configu-
ration information includes:
a topic, associated with the information generated by the
model, to provide to the middleware; and
one or more user-selectable fields associated with the
topic.
5. The method of claim 3, where the block and the other
block are provided 1n a repository of model blocks.
6. The method of claim 3, further comprising;:
recerving an indication that the model 1s generating the
information generated by the model; and
where the generating the other block further comprises:
generating the other block for the model based on the
indication.
7. The method of claim 1, where the subscriber configu-
ration mnformation includes:
a topic, associated with the information generated by the
middleware, to receive from the middleware; and
one or more user-selectable fields associated with the
topic.
8. The method of claim 1, where the model 1s associated
with a technical computing environment.
9. A computer-readable medium having stored instruc-

tions, the mstructions comprising:
one or more instructions that, when executed by one or
more processors of a device, cause the one or more
Processors to:

US 10,116,500 Bl

25

isert a block into a model associated with a system,
the system being associated with middleware that
enables communication between the system and

the model, and

the block subscribing to information generated by
the middleware based on communication between
the middleware and the system;

receive subscriber configuration information for con-
figuring the block;
receive, by the model and via communication with the
middleware, the information generated by the
middleware;
create, based on the subscriber configuration informa-
tion, a signal associated with the block,
the signal including the information generated by the
middleware that 1s converted 1into a format com-
patible with the model; and
execute the model,
where the signal that includes the information gen-
erated by the middleware that 1s converted into the
format compatible with the model 1s used during
execution of the model.

10. The computer-readable medium of claim 9, where the
one or more structions, when executed by the one or more
processors, further cause the one or more processors to:

generate another block for the model,

the other block providing information generated by the
model to the middleware;

receive publisher configuration information for configur-

ing the other block; and

create, based on the publisher configuration information,

another signal that converts the information generated
by the model 1nto a format compatible with the middle-
ware.

11. The computer-readable medium of claim 10, where
the one or more instructions that cause the one or more
processors to generate the other block, further cause the one
Or more processors to:

receive an indication that the model i1s generating the

information generated by the model; and

generate the other block for the model based on the

indication.

12. The computer-readable medium of claim 10, where
the publisher configuration information includes:

a topic, associated with the information generated by the

model, to provide to the middleware; and

one or more user-selectable fields associated with the

topic.

13. The computer-readable medium of claim 10, where
the block and the other block are provided 1n a repository of
model blocks.

14. The computer-readable medium of claim 9, where the
one or more instructions further cause the one or more
processors to:

receive, from the middleware, an indication that the

middleware 1s generating the information generated by
the middleware; and

generate the block for the model based on the 1indication.

15. The computer-readable medium of claim 9, where the
subscriber configuration information includes:

a topic, associated with the information generated by the
middleware, to receive from the middleware; and
one or more user-selectable fields associated with the

topic.

10

15

20

25

30

35

40

45

50

55

60

65

26

16. A device, comprising;:
one or more memories; and
one or more processors, connected to the one or more
memories, to:
isert a block into a model associated with a system,
the system being associated with middleware that
enables communication between the system and
the model, and
the block subscribing to information generated by
the middleware based on communication between
the middleware and the system:;
receive subscriber configuration information for con-
figuring the block;
receive, by the model and via communication with the
middleware, the information generated by the
middleware;
create, based on the subscriber configuration informa-
tion, a signal associated with the block,
the signal including the information generated by the
middleware that 1s converted 1nto a format com-
patible with the model; and
execute the model,
where the signal that includes the information gen-

crated by the middleware that 1s converted into the
format compatible with the model 1s used during
execution of the model.
17. The device of claim 16, where the one or more
processors are further to:

receive, from the middleware, an indication that the
middleware 1s generating the information generated by
the middleware; and
generate the block for the model based on the 1indication.
18. The device of claim 16, where the one or more
processors are further to:
recerve an indication that the model 1s generating the
information generated by the model; and
generate the other block for the model based on the
indication.
19. The device of claim 16, where the one or more
processors are further to:
insert another block into the model,
the other block providing information generated by the
model to the middleware;
recerve publisher configuration information for configur-
ing the other block; and
create, based on the publisher configuration information,
another signal associated with the other block,
the other signal including the information generated by
the model that 1s converted into a format compatible
with the middleware, and
where the other signal that includes the information

generated by the model that 1s converted 1nto the format
compatible with the middleware 1s used during execu-
tion of the model.
20. The device of claim 19, where the block and the other
block are provided in a repository of model blocks.
21. The device of claim 19, where:
the subscriber configuration information includes:

a first topic, associated with the information generated
by the middleware, to receive from the middleware,
and

one or more user-selectable first fields associated with
the first topic; and

the publisher configuration information includes:

a second topic, associated with the information gener-
ated by the model, to provide to the middleware, and

one or more user-selectable second fields associated
with the second topic.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

