12 United States Patent

Borikar

US010114764B2

US 10,114,764 B2
Oct. 30, 2018

(10) Patent No.:
45) Date of Patent:

(54) MULTI-LEVEL PAGING AND ADDRESS
TRANSLATION IN A NETWORK
ENVIRONMENT

(71) Applicant: CISCO TECHNOLOGY, INC., San

GO6F 2212/154 (2013.01); GOOF 2212/65
(2013.01); GO6F 2212/651 (2013.01); GO6F
2212/657 (2013.01)

(358) Field of Classification Search
None

Jose, CA (US) See application file for complete search history.

References Cited

(72) Inventor: Sagar Borikar, San Jose, CA (US) (56)

U.S. PATENT DOCUMENTS

(73) Assignee: CISCO TECHNOLOGY, INC, San
Jose, CA (US)

5,715,419 A 2/1998 Szczepanek et al.
_ , _ , , 6,738,882 Bl 5/2004 GGau
(*) Notice: Subject to any disclaimer, the term of this 7.752.360 B2 779010 Galles
patent 1s extended or adjusted under 35 7,934,033 B2 4/2011 Malwankar et al.
U.S.C. 154(b) by 0 days. 8,205,031 B2 6/2012 Kao et al.
9,317,446 B2 4/2016 Borikar

2002/0138709 Al* 9/2002 Ball GOo6F 13/423

711/211
6/2006 Madukkarumukumana

GOO6F 13/28
710/1

(21) Appl. No.: 15/910,846

2006/0143311 Al*

(22) Filed: Mar. 2, 2018

(65) Prior Publication Data
US 2018/0189191 Al Jul. 5, 2018

2006/0149888 Al 7/2006 Dong et al.

(Continued)

Primary Examiner — Sean D Rossiter

Related U.S. Application Data (74) Attorney, Agent, or Firm — Polsinell1 PC

(63) Continuation of application No. 15/077,353, filed on (57)
Mar. 22, 2016, now Pat. No. 9,921,970, which 1s a

continuation of application No. 14/494,302, filed on
Sep. 23, 2014, now Pat. No. 9,317.446.

ABSTRACT

An example method for facilitating multi-level paging and
address translation 1 a network environment 1s provided
and 1ncludes receiving a request for memory 1n a physical
memory ol a network element, associating the request with

(51) Int. Cl. a first virtual address space, mapping a memory region

GoOor 12/00 (2006.01) located 1n the physical memory to a first window 1n the first
GO6F 13/00 (2006.01) virtual address space, the memory region being also mapped
GO6F 12/109 (2016.01) to a second window 1n a different, second virtual address
GOo6F 3/06 (2006.01) space, remapping the first window in the first virtual address
GOor 12/10 (2016.01) space to the second window 1n the second virtual address

(52) U.S. (L space, and responding to the request with addresses of the
CPC GO6F 12/109 (2013.01); GO6F 3/0605 second window in the second virtual address space.

(2013.01); GO6F 3/067 (2013.01); GO6F

3/0631 (2013.01); GO6F 12/10 (2013.01); 20 Claims, 7 Drawing Sheets

100

/

RECEIVE PCI_ICMAP
102 REQUEST FROM DEVICE
DRIVER FOR IOMEM
ADDRESS TO DEVICE BAR

Y

104 REQUEST ATMTO
™ PROVIDE REMAPPED
ADDRESS FOR BAR

Y

106 ATM ASSOCIATES BAR
™ TOBE REMAPPED WITH
PHYSICAL ADDRESSES

REUSABLE
REMAP WINDOW
AVAILABLE?

YES

REMAP
WINDOW
AVAILABLE?

RETURN NULL

7
118

ATM ALLOCATES NEW
116" REMAP WINDOW

£

GENERATE VIRTUAL ADDRESS
110-" FOR REMAP WINDOW AND
RETURN TO DRVER

!
119 _A_ PCI_OMAP COMPLETE)

US 10,114,764 B2
Page 2

(56) References Cited
U.S. PATENT DOCUM.

2012/0278525 Al1* 11/2012 Serebrin
2014/0164666 Al* 6/2014 Yang
2015/0052322 Al1* 2/2015 Tsirkin
2015/0052323 Al1l* 2/2015 Noel
2015/0058533 Al* 2/2015 El-Batal
2015/0106587 Al* 4/2015 Che
2015/0178010 Al1* 6/2015 Chang
2016/0085684 Al 3/2016 Borikar

* cited by examiner

iiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiii

tttttttttttttttttt

iiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii

ttttttttttttttttttttttt

ttttttttttttttttttttt

GOO6F 11/1451

711/6
GOOF 13/28

710/308
GO6F 9/4856

1/162
12/00

711/162
GO6F 13/385

711/103
GO6F 12/109

711/209
GOOF 3/061

711/170

. gl
[“DId _ L 301A30 819d
8l 8l
C6
— 2 391A30 819d HOLIMS 210d | c£30A3010d |e— —

US 10,114,764 B2

| S140d XI1dINOD LOOY |

| JOVdS $S3HaAaV 3OVdS |

| 8¢ A dvN3Y $S3WAAV-SO | |

| 07 / \ |
r~ | H0SSI00Ud ot AJOWIN | V€ |
= | WOISAHd 70 |
—_ | 3T1NAONW |
- | NOILYTSNV¥L |
_.mﬂ...w | SS4dady NTISAS |

| ” |
7 _ Gz HIAINA OY 8t ozEﬂmmmo | _

_ _ SENE 0 _
o | 30IA3A |
A
S L L ZOINA DINA -]
_ TINYIN
e, W31SASENS 10d .VN _
o ¥3Ldvay Pl bl
&
© / | 1 1d0d | 0 140

cl
O
=i] |
= ALIINT
y gL LNIWIOYNYIA

8¢

U.S. Patent

@\
aa
4
G
o, ¢ DIA
4
y—
1.-..;.
it A0VdS SSIHAAV
o TYNLYIA LSYI
-
e ™
® _ -7 | ¥ [T~ Tovasssmawv L
— P P N \ WNLYIA 1SHId Ol
- P \ '\ 535S3HAQY AHOWIN
S ~ e N\ IYOISAHd dVI
3 g _ 7 J \ \
g —~K - | ®
= il N ® | SERENe
7 ~ I d0dv
SO o / \ Q3ddYNIY %%ﬁmm_éh
SO N o 3AINOYd
N ™~
e ~ /
= AHONIN ~ o — / Ol O,
! v
= WOISAHA 30vds ssavaay |87
“ TYNLYIA ONOD3S OL =TS SSaaY
> 53553d0AV AJONZIN 09 WNLHIA ONOD3S NI
= IVOISAHd dVI NILSAS | gs3yaav NunLIM
© 30VdS SSIHAAY ONILYH3dO G)
TYNLYIA ONOD3S
i
30VdS AHOWIN
96 1S3NOIY
NG
LNIWIT3 YHOMLIN

U.S. Patent

J1NAON
1S3N03Y |

LG

US 10,114,764 B2

A
~.
N
NN\

v\
r~ I\
S 145 / \
e ,
5 S3SSID0UA/HININA IDIAIA AD A3SN |
= |

\

/] /
= / 7 ¥3AM¥a 30IA30
m., Hve HLIM G31VIDOSSY \ OL INFHVASNYHL
~ SNOILYISNYYL
- o¢
- |
C ¢ Yve | zuvd L Wve

¢ 40IA30°10d || ¢30IAdd°I0d l 401A3d ®10d

99 ¥9 ¢9

U.S. Patent

U.S. Patent Oct. 30, 2018 Sheet 4 of 7 US 10,114,764 B2

100
yd
PCle DEVICE -~ | WINDOW1 4 92 g
e
86 /]
BAR1 |
, RECEIVE PCI IOMAP
ag_t BAR? 102 REQUEST FROM DEVICE
N DRIVER FOR IOMEM
00—t BAR3 [T\

o | ADDRESS TO DEVICE BAR
AN WINDOW 2
N 04

FIRST 104 REQUEST ATM TO
VIRTUAL - PROVIDE REMAPPED
ADDRESS 56 ADDRESS FOR BAR
SPACE
ATM ASSOCIATES BAR
FIG. 4 106~ 10 BE REMAPPED WITH
PHYSICAL ADDRESSES
108

REUSABLE
REMAP WINDOW
AVAILABLE?

YES

NO

REMAP
WINDOW
AVAILABLE?

RETURN NULL fe—NO

118 114

L YES

ATM ALLOCATES NEW
116" REMAP WINDOW

GENERATE VIRTUAL ADDRESS
110~ FOR REMAP WINDOW AND
RETURN TO DRIVER

1192 - PCI_OMAP COMPLETE)

FI1G. 5

U.S. Patent Oct. 30, 2018 Sheet 5 of 7 US 10,114,764 B2

120

3\

122 OPERATING SYSTEM DISCOVERS ROOT COMPLEX
PCle PORT AND THIRD PARTY PCle DEVICES

OPERATING SYSTEM ASSOCIATES REMAP

124 ADDRESS SPACE TO DISCOVERED PCle
DEVICES; REMAP ADDRESS SPACE IS
TRANSPARENT TO OPERATING SYSTEM

126 RC DRIVER REPORTS DISCOVERED
DEVICES TO MANAGEMENT ENTITY
128 MANAGEMENT ENTITY REQUESTS RC DRIVER
TO INSTANTIATE DRIVER TO MANAGE DEVICE

130 RC DRIVER INSTANTIATES VENDOR PROVIDED
STOCK DRIVER AND FOLLOWS USUAL DEVICE
SPECIFIC INITIALIZATION AND FUNCTIONAL FLOW

DEVICE DRIVER ISSUES REQUEST TO OS
132 WITH BAR ASSOCIATED WITH DEVICE

OPERATING SYSTEM'S ADDRESS
REMAPPING LOGIC INVOKES RC DRIVER

134 TO HANDLE REQUEST FOR TRANSLATION
FROM PHYSICAL TO VIRTUAL MAPPING

ATM DECODES ADDRESS AND DETERMINES

THAT REQUEST RELATES TO PHYSICAL PCle

136 DEVICE RESIDING BEHIND ROOT COMPLEX

ATM CONFIGURES REMAP WINDOW TO TRANSLATE
138 ADDRESS REQUESTED BY DEVICE TO RANGE IN
WHICH REMAP WINDOW CAN BE PROGRAMMED

TO FIG. 6B

FIG. 6A

U.S. Patent Oct. 30, 2018 Sheet 6 of 7 US 10,114,764 B2

120
\‘ FROM FIG. 6A

ATM DECODES REMAPS OF ADDRESS
140 SPACE RANGE AND PERFORMS ONE
MORE LEVEL OF VIRTUAL TRANSLATION
FROM NEW PHYSICAL ADDRESS TO MIPS
PROCESSOR SPECIFIC VIRTUAL ADDRESS

149 ATM RETURNS NEWLY MAPPED VIRTUAL
ADDRESS TO OPERATING SYSTEM WHICH
PASSES ADDRESS TO DEVICE DRIVER

DEVICE DRIVER PERFORMS REGULAR
144 TRANSACTIONS WITH ADDRESS AS IF IT
IS WORKING WITH OPERATING SYSTEM
PROVIDED VIRTUAL ADDRESS

ATM IMPLEMENTS ITS OWN OPAQUE
146 PAGE TRANSLATION SEQUENCE
UNDER HOOD OF OPERATING SYSTEM

IF ADDRESS SPACE RANGE CANNOT
148 BE SERVICED IN REMAP WINDOW,
APPROPRIATE ERROR IS GENERATED

SAME REMAP WINDOW IS USED FOR
150 PROVIDING REMAPPED VIRTUAL
ADDRESSES TO MULTIPLE DEVICES

FIG. 6B

U.S. Patent Oct. 30, 2018 Sheet 7 of 7 US 10,114,764 B2

160

1

162 RECEIVE REQUEST FOR MEMORY

164 ASSOCIATE REQUEST WITH
FIRST VIRTUAL ADDRESS SPACE

166 MAP MEMORY REGION IN PHYSICAL
MEMORY TO FIRST WINDOW IN
FIRST VIRTUAL ADDRESS SPACE

REMAP FIRST WINDOW IN FIRST VIRTUAL RETURN ADDRESSES IN
ADDRESS SPACE TO SECOND WINDOW SECOND WINDOW IN SECOND
IN SECOND VIRTUAL ADDRESS SPACE VIRTUAL ADDRESS SPACE

168

IDENTIFY PHYSICAL MEMORY 174
ADDRESSES OF MEMORY REGION
CORRESPONDING TO FIRST WINDOW
IN FIRST VIRTUAL ADDRESS SPACE

170

IDENTIFY SECOND WINDOW IN
SECOND VIRTUAL ADDRESS
SPACE CORRESPONDING TO

PHYSICAL MEMORY ADDRESSES

172

END

FI1G. 7

US 10,114,764 B2

1

MULTI-LEVEL PAGING AND ADDRESS
TRANSLATION IN A NETWORK
ENVIRONMENT

RELATED APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 14/494,302 filed on Sep. 23, 2014, and U.S.
patent application Ser. No. 15/077,355 filed on Mar. 22,

2016, the contents of which are incorporated by reference 1n
their entireties.

TECHNICAL FIELD

This disclosure relates 1n general to the field of commu-
nications and, more particularly, to multi-level paging and
address translation 1n a network environment.

BACKGROUND

Computing systems including many advanced networking,
devices (such as switches and routers) typically contain a
combination of hardware and software components, such as
processors, buses, memory elements, input/output devices,
operating systems and applications. Computing systems also
include a data transier subsystem to transfer data between
the components 1nside the computing system. Older data
transier subsystems, such as Peripheral Component Inter-
connect (‘PCI’) and the PCI-eXtended (‘PCI-X"), include a
computer bus that logically connects several components
over the same set of wires and transiers data among the
components 1n parallel. Newer data transfer subsystems,
such as PCI Express (‘PCle’) based subsystems, include
point-to-point connections between components that facili-
tate serial data transmuittal.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
disclosure and features and advantages thereof, reference 1s
made to the following description, taken 1n conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, 1n which:

FIG. 1 1s a simplified block diagram illustrating a com-
munication system for facilitating multi-level paging and
address translation 1n a network environment:;

FIG. 2 1s a simplified block diagram illustrating other
example details of embodiments of the communication
system;

FIG. 3 1s a sismplified block diagram 1llustrating yet other
example details of embodiments of the communication
system;

FI1G. 4 1s a simplified block diagram illustrating yet other
example details of embodiments of the communication
system:

FIG. § 1s a simplified flow diagram illustrating example
operations that may be associated with an embodiment of
the communication system;

FIGS. 6 A and 6B are simplified flow diagrams 1llustrating,
other example operations that may be associated with an
embodiment of the communication system; and

FIG. 7 1s a simplified tflow diagram illustrating yet other
example operations that may be associated with an embodi-
ment of the communication system.

DETAILED DESCRIPTION OF EXAMPL.
EMBODIMENTS

L1

Overview
An example method for facilitating multi-level paging
and address translation in a network environment i1s pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

vided and includes receiving a request for memory 1n a
physical memory ol a network element, associating the
request with a first virtual address space, mapping (e.g.,
associating, linking, relating, correlating, connecting, cou-
pling, representing, corresponding, matching, etc.) a
memory region to a first window 1n the first virtual address
space, the memory region being located in the physical
memory, the memory region being also mapped to a second
window 1n a different, second virtual address space, remap-
ping the first window 1n the first virtual address space to the
second window 1n the second virtual address space, and
responding to the request with addresses of the second
window 1n the second virtual address space.

As used herein, the term “memory region” comprises a
block (e.g., section, portion, slice, chunk, piece, space, etc.)
of memory that can be accessed through a contiguous range
of memory addresses (e€.g., a memory address 1s a unique
identifier (e.g., binary identifier) used by a processor for
tracking a location of each memory byte stored in the
memory). “Virtual address space” refers to a set of ranges of
virtual (e.g., non-physical, unreal, etc.) addresses that are
made available to processes or devices. The virtual address
space renders the physical memory opaque to the processes
and devices requesting memory. As used herein, the term
“window” 1n the context of virtual address spaces refers to

a virtual memory region comprising a contiguous range of
virtual addresses.

Example Embodiments

Turning to FIG. 1, FIG. 1 1s a simplified block diagram
illustrating a communication system 10 for facilitating
multi-level paging and address translation mm a network
environment 1 accordance with one example embodiment.
FIG. 1 illustrates a commumnication system 10 comprising an
adapter 12 that provides high speed (e.g., 10G/40G) mput/
output interfaces, called virtual Network Interface Cards
(VNICs) 14 for network and storage trathic. Adapter 12
comprises an endpoint to a plurality of computing systems
(e.g., servers) 16 and deploys vINICs 14 to support storage
and networking functionality. In various embodiments,
adapter 12 includes support for PCle root complex, which
enables adapter 12 to facilitate communication with multiple
PCle devices 18 through root complex ports 20 and 1n some
embodiments, a PCle switch 22. Thus, adapter 12 serves as
a single host for multiple PCle devices 18. Root complex
support for PCle devices 16 can be used 1n several different
ways to extend virtualization such that real physical devices
can be shared across multiple servers 16.

In various embodiments, a PCI subsystem kernel 24 (e.g.,
computer code executing from a kernel space of adapter 12°s
memory) and a root complex driver 25 may discover PCle
devices 18 on imtialization (e.g., boot-up, start-up, etc.).
Root complex driver 25 may include an address translation
module (ATM) 26 that can provide a mechanism to access
more than 32-bit address spaces from 32-bit processors,
such as a processor 28 1n adapter 12. Note that processor 28
can comprise 32- or 64-bit (or any other appropriate mstruc-
tion set architecture) processors within the broad scope of
the embodiments. ATM 26 can enable adapter 12 to support
multiple PCle devices 18 on the root complex without
requiring changes to a default operating system (OS) 30’s
paging and address translation mechanism, which translates
addresses 1n a physical memory 32 into a virtual OS address
space 34.

ATM 26 can provide another virtual remap address space
36 to enable device driver(s) 38 1n operating system 30 to
co-exist without overwriting or corrupting address spaces of
different PCle devices 18 (e.g., in OS address space 34 or
physical memory 32). ATM 26 can enable different types of

US 10,114,764 B2

3

PCle device 18 1n a manner transparent to operating system
30 and to device driver(s) 38. In various embodiments, ATM
26 can abstract virtual address translation in platform spe-
cific design and implementation and without requiring any
changes 1n vendor provided stock device driver(s) 38 that
work with respective PCle devices 18.

For purposes of illustrating the techniques of communi-
cation system 10, 1t 1s important to understand the commu-
nications that may be traversing the system shown 1n FIG.
1. The following foundational information may be viewed as
a basis from which the present disclosure may be properly
explained. Such information 1s offered earnestly for pur-
poses of explanation only and, accordingly, should not be
construed 1n any way to limait the broad scope of the present
disclosure and 1ts potential applications.

A PCle data transfer subsystem in a computing system
(such as that of an adapter) uses existing PCI programming
and software concepts, and 1s based on a different and much
taster serial physical-layer communications protocol. The
physical-layer includes a network of serial interconnections
extending to each PCle adapter from a PCle root complex.
The PCle root complex comprises a computer hardware
chipset that handles communications between the compo-
nents of the computing system such as, for example, a
computer processor, random access memory non-volatile
memory, power management components, real-time system
clock, etc. The root complex enables PCle devices to be
discovered, enumerated and worked upon by the host oper-
ating system. The PCle root complex includes a host bridge
for communicating with one or more computer processors
on the host and a number of ports that each provides data
communication with a corresponding port on a PCle device.
Root complex functionality may be implemented as a dis-
crete device, or may be mtegrated with the processor.

The base PCle switching structure of a single root com-
plex has a tree topology, which addresses PCle endpoints
through a bus numbering scheme. Configuration software on
the root complex detects every bus, device and function
(e.g., storage adapter, networking adapter, graphics adapter,
hard drive interface, device controller, Ethernet controller,
etc.) within a given PCle topology. Each bus 1s assigned a
bus number by the configuration software; up to 32 device
attachments are permitted on a single bus; each device may
implement one or more functions (e.g., up to 8).

The host operating system assigns address space in the
host memory to each PCle device so that the PCle device
can understand at what address space 1t 1s 1dentified by the
host and map the corresponding interrupts accordingly. After
the host configuration of the PCle endpoint device 1s com-
plete, the PCle’s device driver compatible with the host
operating system can work efliciently with the PCle device
and facilitate the appropnate device specific functionality.

Each PCI device 1s enabled on the host computing system
by being mapped into the computing system’s input/output
(I/O) port address space or memory-mapped address space.
PCle devices have a set of registers referred to as configu-
ration space (e.g., register, typically consisting of 256 bytes)
that are mapped to memory locations on the host computing
system. The PCI configuration space controls the behavior
of the corresponding PCI device at all times. The configu-
ration space 1s primarily used as part of the enumeration and
allocation of a device drniver (e.g., computer program that
operates and controls the PCle device) to the PCle device.
Device drivers and diagnostic software must have access to
the configuration space. For example, the device driver

10

15

20

25

30

35

40

45

50

55

60

65

4

allocates bullers in the read only memory (RAM) of the host
for the device; the addresses of the bullers are written 1n the
configuration space.

The configuration space contains a number of base
address registers (BARs). The BARs are programmable
decoders that are used to decode access to the actual device
registers. An enumeration soitware allocates all the memory
for the devices requested by the enumeration process and
writes to all the device BARs. The computing system’s
firmware, device drivers or the operating system programs
the PCle device’s BARs mapped in the host memory to
inform the PCle device of its address mapping. When the
BAR 1for a particular PCle device 1s written, all memory
transactions generated to that bus address range are claimed
by the particular PCle device.

Initially, upon system reset, all PCI devices are in an
iactive state and have no addresses assigned to them by
which the operating system or device drivers can commu-
nicate with them. Subsequently, the operating system geo-
graphically addresses PCI slots (e.g., 1n a sequential man-
ner). The operating system attempts to read a vendor (or
device) ID register for each combination of bus number and
device number. If no response 1s recerved from the device,
the operating system performs an abort and returns an
all-bits-on value (FFFFFFFF 1n hexadecimal) indicating that
the bus/device/function 1s not present. When a read to a
specified bus/device/function combination for the vendor 1D
register succeeds, the device driver knows that the device
exists; 1t writes all ones to 1ts BARs and reads back the
device’s requested memory size in an encoded form. At this
point, the operating system programs the memory-mapped
and I/0O port addresses 1nto the PCle device’s BAR configu-
ration register. The addresses stay valid as long as the
computing system remains turned on. Upon power-ofl, all
these settmgs are lost and the procedure 1s repeated next time
the system 1s powered back on.

In a general sense, a physical PCle device 1s typically
configured such that there 1s a direct mapping of PCle
devices to memory addresses. A request directed to a specific
PCle device, such as a request from a device driver, includes
a hard-coded address associated with the PCle device. When
the request 1s received at the adaptor, the adaptor decodes the
address and the request 1s processed utilizing the PCle
device associated with the hard-coded address.

Thus, as a part of configuration, the host operating system
must have processor addressability equal to or greater than
the address associated to the device during enumeration. For
example, with 32 bit processors, the host operating system
assigns 32 bit addresses as BARs to the PCle devices.
However, 1n some adapters, the root complex address space
(e.g., address space allocated to the root complex and hence
to the PCle devices that are located behind the root complex)
can reside beyond the addressability of the processor, cre-
ating a functional mismatch for the operating system to work
with the PCle devices residing below the root complex.
Some adapters provide a hardware feature called a remap
window to enable accessing the address space beyond the
processor’s memory addressability. However, the remap
window 1n hardware presents a raw 1mage of the memory
footprint, and 1s not amenable to paging (e.g., using the
operating system’s virtual address maps).

The operating system of a computing system performs
memory management through paging and virtual address
space. In a general sense, the physical memory of a device
(e.g., a computing system) 1s the memory that a processor
addresses on 1ts bus. For example, a Pentium Pro processor
has 236 bytes (64 Gbytes) of physical address space. How-

ry

US 10,114,764 B2

S

ever, the processor instructions only allow access to the
address space from zero to 4 Gbytes. Each byte of memory
storage 1s assigned a unique address from zero to 2°°-1,
called a physical address. The physical address space 1s flat;
in other words, unsegmented. Segmentation and paging are
memory management facilities that allow memory to be
managed efliciently. Programs do not directly address physi-
cal memory; instead, they access the memory using various
memory models, for example flat memory model and/or
segmented memory model. In the flat memory model,
memory appears to a program as a single continuous address
space called linear address space, which 1s byte addressable,
with addresses running up to 2°°-1. Code, data, and the
procedure stack are all contained 1n the continuous address
space.

In the segmented memory model, memory 1s grouped 1nto
independent address spaces called segments. Code, data, and
stacks are typically contained in separate segments. To
address a byte 1n a segment, a program issues a logical
address, which consists of a 16-bit segment selector and a
32-bit oflset. The segment selector identifies the segment to
be accessed and the oflset 1dentifies a byte 1n the address
space ol the segment. The processor maps every logical
address 1nto a linear address within the linear address space.
If paging 1s not used, the processor maps linear addresses
into physical addresses. If paging 1s used, a second level of
address translation 1s used to translate the linear address into
a physical address.

Paging, also called virtual memory, allows the processor
to map a linear address 1nto a smaller physical address space
and disk storage. The processor divides the linear address
space 1nto 4 kbyte, 2 Mbyte, or 4 Mbyte size pages that can
be mapped into physical memory. When a program refer-
ences a logical address, the processor translates the logical
address mnto a linear address (e.g., address 1n the linear
address space). It then uses the paging mechanism to trans-
late the linear address into a corresponding physical address.

In other words, the virtual address space of the paging
tacility refers to a set of ranges of virtual (e.g., non-physical,
unreal, etc.) addresses that the operating system makes
available to a process; the virtual addresses are mapped to
physical addresses in the computing system’s physical
memory and the mappings are stored in page tables. The
range of virtual addresses usually starts at a low address and
can extend to the highest address allowed by the computer’s
instruction set architecture. When a new application process
on a 32-bit operating system (e.g., corresponding to a 32 bit
instruction set architecture) 1s executed, the process has a 4
(B virtual address space: each one of the memory addresses
from O to 2°4-1 in the virtual address space can have a single
byte as value. Presently, most operating systems do not
allow access to memory addresses above 32-bits, or 4
Gbytes.

Nevertheless, Address Windowing Extensions (AWE) 1s a
set of extensions that allows an application to quickly
manipulate physical memory greater than 4 GB. AWE
allows applications to directly address large amounts of
memory while continuing to use 32-bit pointers, thereby
allowing applications to have data caches larger than 4 GB
(where suflicient physical memory 1s present). AWE uses
physical non-paged memory and window views ol various
portions of the physical memory within a 32-bit virtual
address space. Remapping in AWE comprises manipulating
virtual memory tables. However, virtual address ranges
allocated for the AWE are not sharable with other processes.

10

15

20

25

30

35

40

45

50

55

60

65

6

Thus, with hardware remap, paging cannot be used; and with
AWE, virtual address space allocated to AWE 1s not sharable
between processes.

Communication system 10 1s configured to address these
issues (among others) to ofler a system and method for
facilitating multi-level paging and address translation 1n a
network environment. Assume, merely for example pur-
poses and not as a limitation that the root complex of adapter
12 (and thereby PCle devices 18) are assigned an address
space beyond the addressable range of processor 28. The
BAR of each PCle device 18 would reference (e.g., indicate,
point to, be associated with, etc.) an address range that
processor 28 cannot access. In various embodiments, ATM
26 1s configured to assign the relevant BAR, upon request
from a device driver, to a reusable remap window (e.g.,
memory region with addresses provided for the BAR by the
root complex) 1n remap address space 36; thus each BAR
indicating an address range beyond the addressability of
processor 28 could be mapped to corresponding addresses 1n
reusable remap window i1n remap address space 36. For

example, BAR 1 may be assigned to a 4 GB window starting
at address FFFFA80000051000 1n remap address space 36.
The addresses 1n remap address space 36 may be 1rrelevant
to operating system 30 or processor 28.

ATM 26 may allocate addresses 1in remap address space
36 to the BARs according to any suitable mechanism. For
example, the BARs may be assigned to respective base
addresses 1n remap address space 36 and corresponding
offsets. In various embodiments, the base addresses indi-
cated by the respective BARs may comprise addresses
beyond an addressability range of processor 28. ATM 26
may map each address 1 remap address space 36 to a
physical address in physical memory 32. In other words,
cach remap window i1n remap address space 36 would
correspond to a contiguous memory region in physical
memory 32. Each such contiguous memory region in physi-
cal memory 32 has a corresponding window (e.g., memory
region, for example, with addresses provided by operating
system 30) 1n OS address space 34, mapped by operating
system 30. Thus, each remap window in remap address
space 36 corresponds to another window in OS address
space 34, both such windows indicating the same memory
region 1n physical memory 30.

In some embodiments, ATM 26 may be aware of the
mapping between addresses 1n remap address space 36 and
corresponding addresses 1 OS address space 34, whereas
operating system 30 may be unaware of the exact mapping.
For example, AIM 26 may be aware that address

FFFFA80000051000 in remap address space 36 corresponds
to address 7F793950000 i OS address space 34, which
corresponds to address 7F793951001 1n physical memory
32.

In other embodiments, both ATM 26 and operating system
30 may be unaware of the mapping between addresses 1n
remap address space 36 and OS address space 34, each of
ATM 26 and operating system 30 being aware only of their
respective mappings to physical memory 32. For example,
ATM 26 may be aware that address FFFFAS80000051000 1n
remap address space 36 maps to address 7F793951001 1n
physical memory 32; likewise, operating system 30 may be
aware that address 7F793950000 1n OS address space 34
maps to address 7F793951001 in physical memory 32;
however ATM 26 and operating system 30 may not be aware
that address FFFFA80000051000 1n remap address space 36
corresponds to address 7F793950000 i OS address space
34.

US 10,114,764 B2

7

In various embodiments, operating system 30 may receive
a request for memory in physical memory 32 from device
driver 38. The request may be from device driver 38 and
may reference a BAR of a particular PCle device 18. The
BAR may correspond to an address space beyond an
addressability range of processor 28, 1n some embodiments.
Operating system 30 may associate the request with remap
address space 36 and punt the request to ATM 26. ATM 26
may map a memory region in physical memory 32 to a first
window 1n remap address space 36, the memory region
corresponding to the requested memory size. Operating
system 30 may independently map the memory region 1n
physical memory 32 to a second window 1n different, OS
virtual address space 34.

ATM 26 and operating system 30 may remap the memory
region from the first window 1n remap address space 36 to
the second window 1 OS address space 34. Operating
system 30 may respond to the request from device driver 38
with addresses of the second window 1 OS address space
34. In various embodiments, the remapping includes 1den-
tifying physical memory addresses of the memory region
corresponding to the first window 1n remap address space 36
and 1dentitying the second window 1n OS address space 34
corresponding to the physical memory addresses.

In various embodiments, ATM 26 can enable adapter 12
to communicate with several PCle devices 18 behind root
complex ports 20 with the help of remap address space 36
and by adding multilevel address translation support in
operating system 30. In some embodiments, adapter 12
includes a 32 bit MIPS processor 28, which 1s used to
discover and enumerate third party PCle devices 18 and
make them accessible to servers 16. In some embodiments,
the root complex address space available to PCle devices 18
may be beyond the addressable range of 32 bit MIPS
processor 28. Using remap address space 36, ATM 26 can
provide virtual address translation from 33 bit address of the
root complex address space to the 32 bit processor address-
able range 1n a manner transparent to operating system 30.

In various embodiments, operating system 30 (e.g., with
the help of platform specific design) discovers root complex
PCle ports 20 on adapter 12 and third party PCle devices 18
(e.g., which may include PCle bridges and third party end
point devices). Operating system 30 may associate address
spaces 1in remap address space 36 with PCle devices 18
discovered as per requests 1ssued by corresponding device
driver(s) 38. In other words, operating system 30 may
associate the BAR numbers of PCle devices 18 with remap
address space 36.

Remap address space 36 may be substantially totally
transparent to operating system 30 (e.g., operating system 30
cannot access remap address space 36) for example, because
it 1s modified by ATM 26 that executes on adapter 12
(independent of operating system 30). In some embodi-
ments, RC drniver 25 may report discovered PCle devices 18
to a management entity 38 (e.g., unified computing system,
which may execute 1n one of servers 16). Management entity
38 may request RC driver 25 to instantiate respective vendor
provided device drniver(s) 38 to manage PCle devices 18.
Subsequently, a usual device specific mitialization and func-
tional flow may be executed.

Device driver 38 may 1ssue a request to operating system
30 for memory associated to the BAR of respective PCle
device 18. Operating system 30’°s address remapping logic
may mnvoke ATM 26 to handle the request and translate from
a physical to a virtual mapping. ATM 26 may decode the
BAR address and determine that the request corresponds to
a particular PCle device 18 residing behind the root com-

10

15

20

25

30

35

40

45

50

55

60

65

8

plex. ATM 26 may configure a remap window in remap
address space 36 to translate the BAR address requested by
device driver 38 to an acceptable programmable range 1n
remap address space 36.

In some embodiments, ATM 26 may perform one more
level of virtual translation from the physical address to the
MIPS processor specific virtual address of OS address space
34. ATM 26 may return the newly mapped virtual address to
operating system 30, which then passes the address to device
driver 38. In some embodiments, ATM 26 may provide the
physical memory addresses 1n physical memory 32 to oper-
ating system 30, which may translate the physical memory
addresses to operating system specific virtual addresses 1n
OS address space 34 and return the virtual addresses to
device driver 38. Device driver 38 may thereafter perform
regular transactions with the virtual addresses. In various
embodiments, ATM 26 may implement 1ts own page trans-
lation sequence under a hood of operating system 30°s page
translation without disclosing the translation process to
operating system 30. In various embodiments, if the address
space range cannot be serviced 1n remap address space 36,
an appropriate error may be generated. In various embodi-
ments, the same remap window space may be used for
providing remapped virtual addresses to multiple PCle
devices 18 that are instantiated through respective device
drivers 38 by management entity 38.

In an example embodiment, device driver 38 may request
a memory mapped address to access the device memory
through a PCI_IOMAP(BAR) API function call. PCI sub-
system kernel 24 may pass the PCI_IOMAP request to RC
driver 25 to return the remapped address for the bus address
programmed in the BAR. As part of remapping, ATM 26
may check whether the bus address of the BAR resides in a
predefined address map that the root complex has reserved
for PCle devices 18. ATM 26 may i1dentily the particular
PCle device 18, which corresponds to the requested BAR.

After scanning through existing remap windows, ATM 26
may check whether any of the already allocated remap
windows 1n remap address space 36 can be reused for
satistying the new request. If an already allocated remap
window 1n remap address space 36 can satisiy the request,
ATM 26 may return an uncached remapped address of the
corresponding physical ofiset in the remap window. If no
remap window satisfies the request, ATM 26 may allocate a
new remap window for the bus address and return the
uncached remapped address. Using the remapped address,
device driver 38 can access the device register space. Note
that 11 no remap window 1s available (e.g., physical memory
32 1s full), ATM 26 may return NULL. In some embodi-
ments, four remap windows of 4 MB size each may be
available to access RC address space 36.

The remap window translations may be substantially
completely abstract (e.g., transparent) to device driver 38. In
some embodiments, 1f several PCI device drivers request
memory, the available remap window space may be
exhausted and some device drivers may not be able to get
their requests fulfilled to access the device memory allocated
in adapter 12. It may be also noted that if the allocated
addresses of diflerent BARs are out of range of any one
available window (e.g., 4 MB), multiple remap windows
may be used to satisiy the memory request. In some embodi-
ments, a single device driver requesting access to the device
memory may substantially always succeed.

Embodiments of communication system 10 can provide a
mechanism that 1s transparent to operating system 30 and
can translate higher order addresses (e.g., beyond a 32 bit
address range) allocated to PCle devices 18 to lower order

US 10,114,764 B2

9

addresses (e.g., within a 32 bit address range) that are
addressable by processor 28 seamlessly such that default
operating system’s address translation and paging are not
matenally affected. A new layer of mapping may be intro-
duced to be used to access any range of address translation
for any device.

Turning to the infrastructure of commumnication system
10, the network topology 1n which adapter 12 operates can
include any number of servers, hardware accelerators, vir-
tual machines, switches (including distributed wvirtual
switches), routers, and other nodes inter-connected to form
a large and complex network. A node may be any electronic
device, client, server, peer, service, application, or other
object capable of sending, receiving, or forwarding infor-
mation over communications channels 1n a network. Ele-
ments of FIG. 1 may be coupled to one another through one
or more interfaces employing any suitable connection (wired
or wireless), which provides a viable pathway for electronic
communications. Additionally, any one or more of these
clements may be combined or removed from the architecture
based on particular configuration needs.

Communication system 10 may include a configuration
capable of TCP/IP communications for the electronic trans-
mission or reception of data packets 1n a network. Commu-
nication system 10 may also operate in conjunction with a
User Datagram Protocol/Internet Protocol (UDP/IP) or any
other suitable protocol, where appropriate and based on
particular needs. In addition, gateways, routers, switches,
and any other suitable nodes (physical or virtual) may be
used to facilitate electronic communication between various
nodes 1n the network.

Note that the numerical and letter designations assigned to
the elements of FIG. 1 do not connote any type of hierarchy;
the designations are arbitrary and have been used for pur-
poses of teaching only. Such designations should not be
construed 1n any way to limit their capabilities, Tunctional-
ities, or applications in the potential environments that may
benefit from the features of communication system 10. It
should be understood that communication system 10 shown
in FIG. 1 1s simplified for ease of illustration.

The example network environment in which adapter 12
operates may be configured over a physical infrastructure
that may include one or more networks and, further, may be
configured in any form including, but not limited to, local
area networks (LLANs), wireless local area networks
(WLANSs), VLANs, metropolitan area networks (MANSs),
VPNs, Intranet, Extranet, any other appropriate architecture
or system, or any combination thereof that facilitates com-
munications 1n a network.

In some embodiments, a communication link may repre-
sent any electronic link supporting a LAN environment such
as, for example, cable, Ethernet, wireless technologies (e.g.,
IEEE 802.11x), ATM, fiber optics, etc. or any suitable
combination thereof. In other embodiments, communication
links may represent a remote connection through any appro-
priate medium (e.g., digital subscriber lines (DSL), tele-
phone lines, T1 lines, T3 lines, wireless, satellite, fiber
optics, cable, Ethernet, etc. or any combination thereof)
and/or through any additional networks such as a wide area
networks (e.g., the Internet).

In various embodiments, adapter 12 comprises a PCle-
based Converged Network Adapter (CNA) deployable on
computers, such as blade and rack servers. For example,
adapter 12 comprises a computer mput/output device that
combines the functionality of a host bus adapter (HBA) with
a network intertace controller (NIC), converging access to,
respectively, a storage area network and a general-purpose

10

15

20

25

30

35

40

45

50

55

60

65

10

computer network. In some embodiments, adapter 12 may
be mmplemented in a stand-alone pluggable motherboard
configured with approprniate interfaces to enable communi-
cation with PCle device 18 and computing systems 16. In
other embodiments, adapter 12 may be implemented in a
motherboard integrated with one of computing systems 16.

Note that although a plurality of computing systems 16
are 1illustrated herein, embodiments of communication sys-
tem 10 can operate with only one computing system 16
within the broad scope of the embodiments. Computing
systems 22 can include any suitable server, such as blade
servers, rack servers, or other computing devices. In some
embodiments, ATM 26 comprises a soltware module inte-
grated with the adapter’s firmware (e.g., in RC driver 25)
and configured to perform the remap operations described
herein. Note that in some embodiments, ATM 26 may be
independent of RC driver 25, and may execute separately
from RC drniver 25. PCle devices 18 include storage devices,
peripherals (e.g., display monitor, keyboard, etc.), televi-
sions, and other sources or destinations of network trafhic.

Turning to FIG. 2, FIG. 2 1s a simplified block diagram
illustrating example details of an embodiment of commu-
nication system 10. According to various embodiments,
network element 50 may include ATM 26, operating system
30 and physical memory 32. As used herein, the term
“network element” 1s meant to encompass computers, net-
work appliances, servers, routers, switches, gateways,
bridges, load balancers, firewalls, processors, modules, or
any other suitable device, component, element, or object
operable to exchange information 1n a network environment.
Moreover, the network elements may include any suitable
hardware, soitware, components, modules, interfaces, or
objects that facilitate the operations thereof. This may be
inclusive of appropriate algorithms and communication pro-
tocols that allow for the eflective exchange of data or
information.

A request module 351 (e.g., 1n device driver 38) may
request memory from operating system 30. Operating sys-
tem 30 may punt the request to ATM 26, requesting appro-
priate translation of memory addresses. ATM 26 may map a
memory region 52 in physical memory 32 to a remap
window 54 1n a first virtual address space 56. In some
embodiments, ATM 26 may be aware of the mapping of
remap window 54 in first virtual address space 36 to a
corresponding window 38 1n a second virtual address space
60. In such embodiments, ATM 26 may provide the
remapped addresses 1n window 58 to operating system 30.
Operating system 30 may associate the remapped addresses
in window 58 with memory region 52 1n physical memory
32.

In some embodiments, ATM 26 may not be aware of the
mapping of remap window 54 1n {first virtual address space
56 to corresponding window 58 1n second virtual address
space 60. In such embodiments, ATM 26 may provide the
physical addresses of memory region 52 as remapped
addresses to operating system 30. Operating system 30 may
map the provided physical addresses of memory region 52
to window 58 1n second virtual address space 60. Operating
system 30 may respond to the request from request module
51 with the virtual addresses 1n window 38 of second virtual
address space 60.

Turning to FIG. 3, FIG. 3 1s a simplified block diagram
illustrating example details of an embodiment of commu-
nication system 10. According to various embodiments,
BARs 62, 64, and 66 of PCle devices 18 (e.g., respectively,
PCle device 1, PCle device 2, PCle device 3) may request
memory. BAR 62 may be associated with window 68 in

US 10,114,764 B2

11

remap address space 36. Window 68 may correspond to
memory region 70 in physical memory 32. Memory region
70 may correspond to window 72 1 OS address space 36.
Likewise, BAR 64 may be associated with window 74 1n
remap address space 36, which maps to memory region 76
in physical memory 32, which in turn corresponds to win-
dow 78 1n OS address space 34. Similarly, BAR 66 may be
associated with window 80 in remap address space 36,
which maps to memory region 82 in physical memory 32,
which 1n turn corresponds to window 84 1n OS address space
34. Thus, windows 68, 74, and 80 1n remap address space 36
may be associated Wlth respective BARs 62, 64 and 66.
Windows 72, 78 and 84 1n OS address space 32 may be used
by device driver 38 or other processes interacting with
memory within operating system 30.

Turning to FIG. 4, FIG. 4 1s a simplified block diagram
illustrating example details of an embodiment of commu-
nication system 10. A single PCle device may be associated
with more than one BAR, for example, BARs 86, 88 and 90.
In various embodiments, two BARs of the same PCle device
can be allocated from different remap windows if one remap
window cannot satisly the request. For example, BAR 86
may be allocated to window 92 1n first virtual address space
56 and BAR 90 may be allocated to window 94 1n first
virtual address space 356.

Turning to FIG. 5, FIG. § 1s a simplified tlow diagram
illustrating example operations 100 that may be associated
with embodiments of communication system 10. At 102,
operating system 10 receives a PCI_IOMAP request from
device drniver 38 for IOMEM address to device BAR for a
particular PCle device. At 104, operating system 10 requests
ATM 26 to provide remapped address for the BAR. At 106,
ATM 26 associates the BAR to be remapped with physical
addresses 1 physical memory 32. At 108, a determination
may be made whether a reusable remap window 1s available.
If a reusable remap window 1s available, at 110, virtual
addresses for the remap window (e.g., starting address and
oflset) may be returned to device driver 38.

Turning back to 108, 11 a reusable remap window 1s not
available, at 114, a determination may be made 1f a [new]
remap window 1s available. The remap window may be
available, for example, 11 physical memory 32 has suilicient
space. IT the remap window 1s available, at 116, ATM 26 may
allocate a new remap window. The operations may continue
to 110, at which virtual addresses for the remap window
(e.g., starting address and oflset) may be returned to device
driver 38. However, if no remap window 1s available, for
example, because physical memory 32 has run out of space,
at 118, ATM 26 may return a NULL (e.g., error), which may
be relayed to device driver 38.

Turning to FIGS. 6A and 6B, FIGS. 6A and 6B are
simplified tlow diagrams illustrating example operations
120 that may be associated with embodiments of commu-
nication system 10. At 122, operating system 30 discovers
root complex PCle port 20 and third-party PCle devices 18.
At 124, operating system 30 associates remap address space
36 to the discovered PCle devices 18; remap address space
36 may be transparent to operating system 30. At 126, RC
driver 25 may report the discovered PCle devices 18 to
management 38. At 128, management entity 38 requests RC
driver 235 to instantiate device driver 38 to manage PCle
devices 18. At 130, RC driver 25 instantiates vendor pro-
vided stock device driver 38 and follows usual device
specific mitialization and functional flow.

At 132, device driver 38 issues a request to operating
system 30 with the BAR of the relevant PCle device 18. At

134, operating system 30’s address remapping logic invokes

10

15

20

25

30

35

40

45

50

55

60

65

12

RC driver 25 to handle the request for translation from
physical to virtual mapping. At 136, ATM 26 in RC driver
25 decodes the address associated with the BAR and deter-
mines that the request relates to a particular physical PCle
device residing behind the root complex. At 138, ATM 26
may configure a remap window to translate the address
requested by PCle device 18 to a range 1n which the remap
window can be programmed.

At 140, ATM 26 may decode remaps of address space
range and perform one or more level of virtual translation
from new physical address to MIPS processor specific
virtual address of OS address space 34. At 142, ATM 26 may
return newly mapped virtual address to operating system 30,
which passes addresses to device driver 38. At 144, device
driver 38 may perform regular transactions with the address
as 1f 1t 1s working with operating system provided virtual
address. In other words, device driver 38 i1s not aware that
the BAR was remapped to OS address space 34 from remap
address space 36. At 146, ATM 26 implements its own
opaque page translation sequence under hood of operating
system 30. At 148, 11 the address space range cannot be
serviced 1n the remap window, an appropriate error 1s
generated. At 150, a same remap window space may be used
to provide remapped virtual addresses to multiple devices.
In other words, BAR 1 of PCle device 1 may be mapped to
window 1 in remap address space 36; alter a few transac-
tions, 1f window 1 1s not used any more by PCle device 1,
window 1 may be reused for BAR 1 of another PCle device
2.

Turning to FIG. 7, FIG. 7 1s a simplified flow diagram
illustrating example operations 160 that may be associated
with embodiments of communication system 10. At 162,
operating system 30 may receive a request for memory from
request module 51. At 164, operating system 30 may asso-
ciate the request with first virtual address space 56. At 166,
ATM 26 may map memory region 32 in physical memory 32
to first window 54 1n first virtual address space 56. At 168,
first window 54 1n first virtual address space 56 may be
remapped to second window 38 1n second virtual address
space 60. In some embodiments, the remapping may include
at 170, identifying physical memory addresses of memory
region 52 corresponding to first window 34 1n {first virtual
address space 56; and at 172, identitying second window 58
in second virtual address space 60 corresponding to physical
memory addresses of memory region 52. At 174, operating
system 30 may return addresses 1n second window 58 of
second virtual address space 60.

Note that 1 this Specification, references to various
features (e.g., elements, structures, modules, components,
steps, operations, characteristics, etc.) included 1n “one
embodiment”, “example embodlment an embodiment”,

“another embodiment”, ‘“some embodlments”,, “various
embodiments™, “other embodlments” “alternative embodi-
ment”, and the like are intended to mean that any such
features are included 1n one or more embodiments of the
present disclosure, but may or may not necessarily be
combined 1n the same embodiments. Furthermore, the words
“optimize,” “optimization,” and related terms are terms of
art that refer to improvements 1n speed and/or efliciency of
a specified outcome and do not purport to indicate that a
process for achieving the specified outcome has achieved, or
1s capable of achieving, an “optimal” or perfectly speedy/
perfectly eflicient state.

In example implementations, at least some portions of the
activities outlined herein may be implemented 1n software
in, for example, adapter 12 or network element 50. In some
embodiments, one or more of these features may be 1mple-

- 44

US 10,114,764 B2

13

mented 1n hardware, provided external to these elements, or
consolidated 1n any appropriate manner to achieve the
intended functionality. The various network elements (e.g.,
adapter 12, PCle devices 18, computing systems 16) may
include software (or reciprocating soiftware) that can coor-
dinate in order to achieve the operations as outlined herein.
In still other embodiments, these elements may include any
suitable algorithms, hardware, software, components, mod-
ules, interfaces, or objects that facilitate the operations
thereol.

Furthermore, adapter 12 and network element 30
described and shown herein (and/or their associated struc-
tures) may also include suitable interfaces for receiving,
transmitting, and/or otherwise communicating data or infor-
mation in a network environment. Additionally, some of the
processors and memory elements associated with the various
nodes may be removed, or otherwise consolidated such that
a single processor and a single memory element are respon-
sible for certain activities. In a general sense, the arrange-
ments depicted 1in the FIGURES may be more logical 1n their
representations, whereas a physical architecture may include
various permutations, combinations, and/or hybrids of these
clements. It 1s imperative to note that countless possible
design configurations can be used to achieve the operational
objectives outlined here. Accordingly, the associated infra-
structure has a myriad of substitute arrangements, design
choices, device possibilities, hardware configurations, soit-
ware 1mplementations, equipment options, etc.

In some of example embodiments, one or more memory
clements (e.g., physical memory 32) can store data used for
the operations described herein. This includes the memory
clement being able to store instructions (e.g., software,
logic, code, etc.) 1n non-transitory media, such that the
instructions are executed to carry out the activities described
in this Specification. A processor can execute any type of
instructions associated with the data to achieve the opera-
tions detailed herein i this Specification. In one example,
processors (e.g., processor 28) could transform an element
or an article (e.g., data) from one state or thing to another
state or thing. In another example, the activities outlined
herein may be implemented with fixed logic or program-
mable logic (e.g., software/computer instructions executed
by a processor) and the elements 1dentified herein could be
some type of a programmable processor, programmable
digital logic (e.g., a field programmable gate array (FPGA),

an erasable programmable read only memory (EPROM), an
clectrically erasable programmable read only memory (EE-
PROM)), an ASIC that includes digital logic, software, code,
clectronic 1nstructions, flash memory, optical disks, CD-
ROMs, DVD ROMs, magnetic or optical cards, other types
of machine-readable mediums suitable for storing electronic
instructions, or any suitable combination thereof.

These devices may further keep information in any suit-
able type of non-transitory storage medium (e.g., random
access memory (RAM), read only memory (ROM), field
programmable gate array (FPGA), erasable programmable
read only memory (EPROM), electrically erasable program-
mable ROM (EEPROM), etc.), software, hardware, or in
any other suitable component, device, element, or object
where appropriate and based on particular needs. The 1nfor-
mation being tracked, sent, received, or stored 1n commu-
nication system 10 could be provided in any database,
register, table, cache, queue, control list, or storage structure,
based on particular needs and implementations, all of which
could be referenced 1n any suitable timeframe. Any of the
memory 1tems discussed herein should be construed as being,
encompassed within the broad term ‘memory element.’
Similarly, any of the potential processing elements, mod-

10

15

20

25

30

35

40

45

50

55

60

65

14

ules, and machines described in this Specification should be
construed as being encompassed within the broad term
‘processor.’

It 1s also important to note that the operations and steps
described with reference to the preceding FIGURES 1llus-
trate only some of the possible scenarios that may be
executed by, or within, the system. Some of these operations
may be deleted or removed where approprate, or these steps
may be modified or changed considerably without departing
from the scope of the discussed concepts. In addition, the
timing of these operations may be altered considerably and
still achieve the results taught 1n this disclosure. The pre-
ceding operational flows have been offered for purposes of
example and discussion. Substantial flexibility 1s provided
by the system 1in that any suitable arrangements, chronolo-
gies, configurations, and timing mechanisms may be pro-
vided without departing from the teachings of the discussed
concepts.

Although the present disclosure has been described 1n
detail with reference to particular arrangements and con-
figurations, these example configurations and arrangements
may be changed significantly without departing from the
scope of the present disclosure. For example, although the
present disclosure has been described with reference to
particular communication exchanges mnvolving certain net-
work access and protocols, communication system 10 may
be applicable to other exchanges or routing protocols. More-
over, although communication system 10 has been 1llus-
trated with reference to particular elements and operations
that facilitate the communication process, these elements,
and operations may be replaced by any suitable architecture
or process that achieves the intended functionality of com-
munication system 10.

Numerous other changes, substitutions, variations, altera-
tions, and modifications may be ascertained to one skilled in
the art and 1t 1s intended that the present disclosure encom-
pass all such changes, substitutions, variations, alterations,
and modifications as falling within the scope of the
appended claims. In order to assist the United States Patent
and Trademark Oflice (USPTO) and, additionally, any read-
ers of any patent 1ssued on this application in interpreting the
claims appended hereto, Applicant wishes to note that the
Applicant: (a) does not 111tend any of the appended claims to
invoke paragraph six (6) of 35 U.S.C. section 112 as it exists
on the date of the filing hereof unless the words “means for”

r “step for” are specifically used in the particular claims;
and (b) does not intend, by any statement in the specifica-
tion, to limit this disclosure 1n any way that 1s not otherwise
reflected 1n the appended claims.

What 1s claimed 1s:
1. A method executed at a network element having a
Processor comprising:

recerving a request from a device for space in a physical
memory of the network element;

determining 1f any allocated remap windows 1n a remap
address space can be reused to satisly the request;

allocating a remap window 1n the remap address space to
the device 1 none of the allocated remap windows
satisty the request; and

returning a remapped address of a physical offset 1 an
allocated remap window 1f one of the allocated remap
windows satisfies the request.

2. The method of claim 1, further comprising:

scanning through a remap address space 1n a {irst virtual
memory space of the network element,

wherein,
addresses 1n the remap address space correspond to

contiguous memory regions in the physical memory,
and

US 10,114,764 B2

15

the contiguous memory regions correspond to virtual
addresses 1n a second virtual memory space of the
network element.

3. The method of claim 1, further comprising:

translating the allocated remap window to addresses in a

second virtual memory space.

4. The method of claim 1, wherein the request 1s recerved
at an operating system (OS) of the network element from a
device driver of the device, the request referencing an
address space beyond an addressability range of the proces-
SOF.

5. The method of claim 4, wherein the allocating 1s
performed by an address translation module (ATM) of an
adaptor 1n the network element.

6. The method of claim 5, further comprising:

associating, by the OS, the request from the device driver

with the remap address space and punting the request to
the ATM.

7. The method of claim 4, wherein the remapped address
1s returned, by the OS to the device driver, from a virtual
memory space corresponding to the physical memory oflset.

8. The method of claim 4, wherein addresses 1n the remap
address space are 1rrelevant to the OS and the processor.

9. The method of claim 1, further comprising;:

scanning through a remap address space 1n a first virtual

memory space of the network element, wherein
addresses 1n the remap address space correspond to
contiguous memory regions 1n the physical memory,
wherein the contiguous memory regions correspond to
virtual addresses 1n a second virtual memory space of
the network element,

wherein,

an OS of the network element uses the second virtual
memory space, and

the device references an address in the first virtual
memory space.

10. The method of claim 1, further comprising;:

scanning through a remap address space 1n a first virtual

memory space of the network element, wherein
addresses 1n the remap address space correspond to
contiguous memory regions in the physical memory,
wherein the contiguous memory regions correspond to
virtual addresses 1n a second virtual memory space of
the network element,

wherein,

the device comprises a Peripheral Component Inter-
connect Express (PCle) device, and

a base address register (BAR) number of the device
corresponds to an address space in the first virtual
memory space.

11. Non-transitory tangible media that includes instruc-
tions for execution, which when executed by a processor of
a network element, 1s operable to perform operations com-
prising;:

receiving a request from a device for space 1n a physical

memory ol the network element;

10

15

20

25

30

35

40

45

50

55

16

determiming if any allocated remap windows 1n a remap
address space can be reused to satisty the request;

allocating a remap window 1n the remap address space to
the device 1 none of the allocated remap windows
satisty the request; and

returning a remapped address of a physical offset 1n an

allocated remap window 1f one of the allocated remap
windows satisfies the request.

12. The media of claim 11, wherein the request 1s recerved
at an OS of the network element from a device driver of the
device, the request referencing an address space beyond an
addressability range of the processor.

13. The media of claim 12, wherein the allocating 1s
performed by an ATM of an adaptor 1n the network element.

14. The media of claim 13, the operations further com-
prising:

associating, by the OS, the request from the device driver

with the remap address space and punting the request to
the ATM.

15. The media of claim 11, wherein the device references
an address 1n a first virtual memory space, and an OS of the
network element uses a second virtual memory space.

16. An apparatus comprising;:

a physical memory for storing data; and

a processor, wherein the processor executes instructions

associated with the data, wherein the processor and the

physical memory cooperate, such that the apparatus 1s

configured for:

receiving a request from a device for space in the
physical memory,

determining 1t any allocated remap windows 1n a remap
address space can be reused to satisiy the request,

allocating a remap window 1n the remap address space
to the device 11 none of the allocated remap windows
satisty the request, and

returning a remapped address of a physical oflset in an
allocated remap window 1f one of the allocated
remap windows satisfies the request.

17. The apparatus of claim 16, further comprising:

an OS, wherein the request 1s received at the OS from a

device driver of the device, the request referencing an
address space beyond an addressability range of the
Processor.

18. The apparatus of claim 17, further comprising:

an adaptor including an ATM, wherein the allocating 1s

performed by the ATM.

19. The apparatus of claim 18, the apparatus 1s configured
for associating, by the OS, the request from the device driver
with the remap address space and punting the request to the
ATM.

20. The apparatus of claim 16, wherein the device refer-
ences an address 1n a {irst virtual memory space, and an OS
of the apparatus uses a second virtual memory space.

e

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

