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MODIFYING SOYBEAN OIL COMPOSITION
THROUGH TARGETED KNOCKOUT OF
THE FAD2-1A/1B GENES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of priority from U.S.
Provisional Application Ser. No. 61/790,653, filed on Mar.
15, 2013.

TECHNICAL FIELD

This document relates to materials and methods for mak-
ing soybean plants that can be used to produce o1l having a
modified composition as compared to wild type plants. This
document also relates to soybean varieties that lack FAD2-

1A/1B activity.

BACKGROUND

Soybean (Glycine max) 1s an important legume crop
worldwide due to 1ts ability to fix atmospheric nitrogen.
Soybeans also serve as a major source of animal feed
protein, and 1ts o1l has uses ranging from cooking/irying to
industrial uses and biodiesel. Typically, a hydrogenation
process 1s used to increase heat stability and improve shelf
life and taste of soybean oi1l. However, hydrogenation
increases the cost of production and also results in the

formation of trans fats, which have been linked to cardio-
vascular disease 1n humans.

SUMMARY

Provided herein are materials and methods for modifying
soybean o1l composition by reducing or eliminating expres-
sion of the delta-twelve fatty acid desaturase 2 (FAD2) 1A
and 1B genes without the use of transgenesis. Soybean
varieties having such modified o1l composition also are
provided.

The methods described herein utilize sequence-specific,
rare-cutting endonucleases to introduce mutations in the
FAD2-1A and/or FAD2-1B coding sequences, thereby
knocking out gene function. These methods mediate FAD2-
1A/1B silencing without insertion of a transgene, which
would not be acceptable 1n Europe and other regions of the
world. The methods described herein also can be more
cost-eflective than transgenic approaches.

In one aspect, this document features a soybean plant,
plant part, or plant cell having a mutation in one or more
FAD2-1A alleles, a mutation in one or more FAD2-1B
alleles, or a mutation 1n one or more FAD2-1A alleles and a
mutation 1n one or more FAD2-1B alleles, wherein the plant,
plant part, or plant cell produces o1l that has increased oleic
acid content and decreased linoleic acid content as compared
to o1l produced from a corresponding wild type soybean
plant, plant part, or plant cell. Each mutation can be at a
sequence 1 SEQ ID NO:1 or SEQ ID NO:2. Fach mutation
can be induced by a rare-cutting endonuclease (e.g., a
transcription activator-like (TAL) eflector endonuclease).
The TAL eflector endonuclease can bind to a sequence as set
forth 1n any of SEQ ID NOS:18-33. Fach mutation can be
a deletion of more than one nucleotide. Each FAD2-1A and
FAD2-1B allele can have a deletion of an endogenous
nucleic acid sequence, without including any exogenous
nucleic acid. The plant part can be a seed.
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In another aspect, this document features a soybean plant,
plant part, or plant cell having a mutation in one or more
FAD2-1A alleles, a mutation 1n one or more FAD2-1B
alleles, or a mutation 1n one or more FAD2-1A alleles and a
mutation 1n one or more FAD2-1B alleles, wherein the plant,
plant part, or plant cell produces o1l that has an oleic acid
content of greater than 30% (e.g., greater than 40%, greater
than 50%, or greater than 55%).

In another aspect, this document features a soybean plant,
plant part, or plant cell having a mutation in one or more
FAD2-1A alleles, a mutation in one or more FAD2-1B
alleles, or a mutation 1n one or more FAD2-1A alleles and a
mutation 1n one or more FAD2-1B alleles, wherein the plant,
plant part, or plant cell produces o1l that has a linoleic acid
content of less than 10% (e.g., less than 5%, less than 3%,
or less than 1%).

In another aspect, this document features a method for
producing soybean o1l having increased oleic acid content
and reduced linoleic acid content. The method can include
(a) providing a soybean plant or plant part having a mutation
in one or more FAD?2-1A alleles, a mutation in one or more
FAD2-1B alleles, or a mutation in one or more FAD2-1A
alleles and a mutation in one or more FAD?2-1B alleles; and
(b) producing o1l from the plant or plant part. Each mutation
can be induced by a rare-cutting endonuclease (e.g., a TAL
ellector endonuclease). The TAL eflector endonuclease can
bind to a sequence as set forth 1n any of SEQ ID NOS:18-33.

In still another aspect, this document features a method
for making a soybean plant having a mutation i each
FAD2-1A allele and a mutation 1n each FAD2-1B allele. The
method can include (a) contacting a population of soybean
plant cells having functional FAD2-1A and FAD2-1B alleles
with one or more rare-cutting endonucleases targeted to
endogenous FAD2-1A sequences, and one or more rare-
cutting endonucleases targeted to endogenous FAD2-1B
sequences, (b) selecting, from the population, a cell 1n which
cach FAD2-1A allele and each FAD2-1B allele has been
inactivated, and (c¢) regenerating the selected plant cell into
a soybean plant. The soybean plant cells can contain coty-
ledon cells. The method can include transforming cotyledon
cells with one or more vectors encoding the one or more
rare-cutting endonucleases. The one or more rare-cutting
endonucleases can be TAL eflector endonucleases. Each of
the TAL eflector endonucleases can be targeted to a
sequence as set forth 1n any of SEQ ID NOS:18-33. The
method can include introducing into the plant cells one or
more TAL eflector endonuclease proteins. The method can
further include culturing the plant cells to generate plant
lines. The method can further include 1solating genomic
DNA containing at least a portion of the FAD2-1A locus or
at least a portion of the FAD2-1B locus from the plant cells.

This document also features a method for generating a
soybean plant having a mutation 1n each FAD2-1A allele and
a mutation in each FAD2-1B allele. The method can include
(a) crossing a first soybean plant having a mutation in at least
one FAD2-1A allele and a mutation 1n at least one FAD2-1B
allele with a second soybean plant having a mutation 1n at
least one FAD2-1A allele and a mutation 1n at least one
FAD2-1B allele, to obtain progeny; and (b) selecting from
the progeny a soybean plant that has a mutation 1 each
FAD2-1A and FAD2-1B allele. Each mutation can be
induced by a rare-cutting endonuclease (e.g., a TAL eflector
endonuclease). The TAL eflector endonuclease can bind to
a sequence as set forth 1n any of SEQ ID NOS:18-33. Each
mutation can be a deletion of more than one nucleotide.

Unless otherwise defined, all technical and scientific
terms used herein have the same meaning as commonly
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understood by one of ordinary skill in the art to which this
invention pertains. Although methods and materials similar
or equivalent to those described herein can be used to
practice the invention, suitable methods and materials are
described below. All publications, patent applications, pat-
ents, and other references mentioned herein are incorporated
by reference in their entirety. In case of contlict, the present
specification, including definitions, will control. In addition,
the materials, methods, and examples are illustrative only

and not mtended to be limiting.

The details of one or more embodiments of the invention
are set forth 1n the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and draw-
ings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 shows DNA sequences for various TAL eflector

endonuclease target sites in FAD2-1A and FAD2-1B. DNA
sequence from the FAD2-1A gene (SEQ ID NO:1) 1s shown
in FIG. 1A, and DNA sequence from the FAD2-1B gene
(SEQ ID NO:2) 1s shown in FIG. 1B. The underlined
sequences indicate target sites for TAL eflector endonu-
cleases. Lower case letters denote restriction endonuclease
sites used to screen for TAL eflector endonuclease-induced
mutations.

FIG. 2 1s a picture of a gel showing products from a PCR
enrichment assay used to screen soybean hairy roots for TAL
ellector endonuclease-induced mutations in FAD2-1A and
FAD2-1B.

FIG. 3 shows exemplary DNA sequences of TAL eflector
endonuclease-induced mutations 1n the FAD2-1A and
FAD2-1B genes in soybean hairy roots. The top line of each
panel shows the DNA sequence of the recognition site for
the TAL eflector endonucleases (underlined) in FAD2-1A
(top two panels) and FAD2-1B (bottom two panels). The
other sequences show representative mutations that were
induced by 1mprecise non-homologous end joining (NHEJ),
with the sizes of deletions given on the right.

FIG. 4 1s a picture of a gel showing the result of a T7E]
assay performed on regenerated soybean plants to 1dentily
TAL eflector endonuclease-induced mutations in FAD2-1A
and FAD2-1B. Table 4A herein provides information about
which regenerated plant and which particular FAD2-1 gene

were analyzed 1n each lane of the gel. The first and last lanes
are molecular length markers and are not numbered. DNA
samples listed as “uncut” in Table 4A were not treated with
T7EL.

FIG. 5 shows DNA sequences of TAL eflector endonu-

clease-induced mutations in FAD2-1A and FAD2-1B. These
mutations were genetically transmissible.

DETAILED DESCRIPTION

Commodity soybean o1l 1s made up of five fatty acids:
palmitic acid (10%), stearic acid (4%), oleic acid (18%),
linoleic acid (55%) and linolenic acid (13%). Plant o1ls with
high oleic acid content may require less processing to
improve stability and/or taste. Such oils also may be
healthier, as well as better suited for the production of
biodiesel. Soybean o1l having an oleic acid content of greater
than 55% and a linoleic acid content of less than 10% can be
particularly useful. Traditional breeding and mutagenesis
strategies have been used to generate soybean varieties
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containing elevated levels of oleic acid, but these varieties
have reduced vield and thus have not been acceptable to
farmers.

The enzymes responsible for the biosynthetic progression
from palmitic acid to linolenic acid have been 1dentified. For
example, the FAD2 genes are responsible for converting
oleic acid precursors to linoleic acid precursors during oil
accumulation 1n developing soybean seeds. Due to the
ancient polyploidization of soybean, two copies of FAD2
(FAD2-1A and FAD2-1B) exist in the soybean genome.
These genes have about 95% sequence 1dentity at the DNA
level, and the encoded proteins have about 99% sequence
identity at the amino acid level. Plants homozygous for
naturally occurring FAD2-1B mutant alleles can have a

modest increase (20.5% to 29.4%) 1n oleic acid composition,
as described elsewhere (Pham et al.,, BMC Plant Biol.

10:195, 2010). Mutations in FAD2-1A have been developed
through X-ray mutagenesis and TILLing, to produce seeds
containing up to 50% oleic acid (Sandhu et al., JAOCS
84:229-235, 2007), and mutating both the FAD2-1A and
FAD2-1B alleles resulted 1n o1l with an oleic acid content of
82.2% (Pham et al., supra).

This document provides soybean plants that have reduced
(e.g., lack) FAD2-1A and/or FAD2-1B activity, as well
methods for generating such plants, and o1l derived from
such plants. The methods described herein can be used to
generate soybean varieties having o1l with an increased oleic
acid component of at least 30% (e.g., at least 35%, at least
40%, at least 45%, at least 50%, or at least 55%, and a
reduction 1n linoleic acid component to 10% or less (e.g., 8%
or less, 5% or less, 4% or less, 3% or less, 2% or less, 1%
or less, or 0.5% or less). In some embodiments, this modi-
fication of soybean o1l composition can be achieved by
completely knocking out the expression of the FAD2-1A
and/or FAD2-1B genes. According to some of the methods
provided herein, both alleles of FAD2-1A and/or FAD2-1B
genes are 1nactivated using non-transgenic techniques.
Removing the all RNA transcripts of FAD2-1A/1B can
severely reduce the conversion of oleic acid precursors to
linoleic acid precursors 1n soybean seeds.

To accomplish the complete elimination of FAD2-1A/1B
expression, for example, an engineered, rare-cutting nucle-
ase was designed to recognize a conserved region of both
FAD2-1 genes and create a double-strand break. Improper
repair due to Non-Homologous End Joining (NHEJ) at the
DNA break site generates missense and/or nonsense muta-
tions in the FAD2-1A/1B coding regions, rendering the
FAD2-1A/1B RNA ftranscripts unstable and targeted for
degradation prior to translation.

In soybean, there are at least two members (1A and 1B)
in the FAD2 gene family. Representative examples of natu-
rally occurring soybean FAD2-1A and FAD2-1B nucleotide
sequences are shown in Table 5. The soybean plants, cells,
plant parts, seeds, and progeny thereof provided herein can
have a mutation in each of the endogenous FAD2-1A and
FAD2-1B alleles, such that expression of each gene 1is
reduced or completely inhibited. Alternatively, the soybean
plants, cells, plant parts, seeds, and progeny thereol pro-
vided herein may have a mutation 1n at least one FAD2-1A
allele and/or 1n at least one FAD2-1B allele, such that
expression of each gene 1s reduced or completely inhibited.
The soybean plants, cells, parts, seeds, and progeny can have
increased levels of oleic acid and reduced levels of linoleic
acid as compared to wild type soybean plants, cells, parts,
seeds, and progeny.

The plants, plant cells, plant parts, seeds, and plant
progeny provided herein can be generated using a TAL
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ellector endonuclease system to make targeted knockouts 1n
the FAD2-1A and/or FAD2-1B genes. Thus, this disclosure
provides materials and methods for using TAL eflector
endonucleases to generate plants and related products (e.g.,
seeds and plant parts) that are particularly suitable for
production of soybean o1l with increased oleic acid content
and decreased linoleic acid content. Other rare cutting,
sequence-specific nucleases can be used to generate the
desired plant material, including engineered homing endo-
nucleases or zinc finger nucleases.

“Plants” and “plant parts” refers to cells, tissues, organs,
seeds, and severed parts (e.g., roots, leaves, and tflowers) that
retain the distinguishing characteristics of the parent plant.
“Seed” refers to any plant structure that i1s formed by
continued differentiation of the ovule of the plant, following
its normal maturation point at flower opening, irrespective
of whether 1t 1s formed in the presence or absence of
fertilization and irrespective ol whether or not the seed
structure 1s fertile or infertile.

The term “allele(s)” means any of one or more alternative
forms of a gene at a particular locus. In a diploid (or
amphidiploid) cell of an organism, alleles of a given gene are
located at a specific location or locus on a chromosome. One
allele 1s present on each chromosome of the pair of homolo-
gous chromosomes. “Heterozygous™ alleles are two different
alleles residing at a specific locus, positioned individually on
corresponding pairs of homologous chromosomes.
“Homozygous” alleles are two 1dentical alleles residing at a
specific locus, positioned individually on corresponding
pairs of homologous chromosomes 1n the cell.

“Wild type” as used herein refers to a typical form of a
plant or a gene as 1t most commonly occurs in nature. A
“wild type FAD2-1A allele” 1s a naturally occurring FAID2-
1A allele (e.g., as found within naturally occurring soybean
plants) that encodes a functional FAD2-1A protein, while a
“mutant FAD2-1A allele” 1s a FAD2-1A allele that does not
encode a functional FAD2-1A protein. Such a “mutant
FAD2-1A allele” can include one or more mutations 1n 1ts
nucleic acid sequence, where the mutation(s) result 1 no
detectable amount of functional FAD2-1A protein in the
plant or plant cell 1n vivo.

The term “rare-cutting endonucleases” herein refer to
natural or engineered proteins having endonuclease activity
directed to nucleic acid sequences having a recognition
sequence (target sequence) about 12-40 bp 1n length (e.g.,
14-40 bp 1n length). Typical rare-cutting endonucleases
cause cleavage inside their recognition site, leaving 4 nt
staggered cut with 3'OH or 5'OH overhangs. These rare-
cutting endonucleases may be meganucleases, such as wild
type or variant proteins of homing endonucleases, more
particularly belonging to the dodecapeptide family (L AGLI-
DADG (SEQ ID NO:37); see, WO 2004/067736) or may
result from fusion proteins that associate a DNA binding
domain and a catalytic domain with cleavage activity. TAL-
ellector endonucleases and zinc-finger-nucleases (ZFN) are
examples of fusions of DNA binding domains with the
catalytic domain of the endonuclease Fokl. Customized TAL
ellector endonucleases are commercially available under the
trade name TALEN™ (Cellectis, Paris, France). For a
review ol rare-cutting endonucleases, see Baker, Nature
Methods 9:23-26, 2012.

“Mutagenesis” as used herein refers to processes 1n which
mutations are introduced into a selected DNA sequence.
Mutations induced by endonucleases generally are obtained
by a double strand break, which results 1 in-deletions
(“indels™) that can be detected by deep-sequencing analysis.
Such mutations typically are deletions of several base pairs,
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and have the ellect of mactivating the mutated allele. In the
methods described herein, for example, mutagenesis occurs
via double stranded DNA breaks made by TAL eflector
endonucleases targeted to selected DNA sequences 1n a plant
cell. Such mutagenesis results 1n “TAL effector endonu-
clease-induced mutations™ (e.g., TAL eflector endonuclease-
induced knockouts) and reduced expression of the targeted
gene. Following mutagenesis, plants can be regenerated
from the treated cells using known techniques (e.g., planting
seeds 1n accordance with conventional growing procedures,
tollowed by seli-pollination).

In some cases, a nucleic acid can have a nucleotide
sequence with at least about 735 percent sequence 1dentity to
a representative FAD2-1A or FAD2-1B nucleotide
sequence. For example, a nucleotide sequence can have at
least 75, at least 80, at least 85, at least 90, at least 91, at least
92, at least 93, at least 94, at least 95, at least 96, at least 97,
at least 98, or at least 99 percent sequence identity to a
representative, naturally occurring FAD2-1A or FAD2-1B
nucleotide sequence as set forth in Table 3.

The percent sequence identity between a particular
nucleic acid or amino acid sequence and a sequence refer-
enced by a particular sequence i1dentification number 1s
determined as follows. First, a nucleic acid or amino acid
sequence 1s compared to the sequence set forth 1n a particu-
lar sequence identification number using the BLAST 2

Sequences (Bl2seq) program from the stand-alone version of
BLASTZ containing BLASTN version 2.0.14 and BLASTP

version 2.0.14. This stand-alone version of BLASTZ can be
obtained online at fr.com/blast or at ncbinlm.nih.gov.
Instructions explaining how to use the Bl2seq program can
be found in the readme file accompanying BLASTZ. Bl2seq
performs a comparison between two sequences using either
the BLASTN or BLASTP algorithm. BLASTN 1s used to
compare nucleic acid sequences, while BLASTP 1s used to
compare amino acid sequences. To compare two nucleic
acid sequences, the options are set as follows: -1 1s set to a
file containing the first nucleic acid sequence to be compared
(e.g., C:seql.txt); -1 1s set to a file containing the second
nucleic acid sequence to be compared (e.g., C:\seq2.txt); -p
1s set to blastn; -0 1s set to any desired file name (e.g.,
C:output.txt); -q 1s set to -1; -r 1s set to 2; and all other
options are left at their default setting. For example, the
following command can be used to generate an output file
containing a comparison between two sequences: C:\Bl2seq
-1 c:\seql.txt -1 c:\seg2.txt -p blastn -o c:\output.txt -q -1 -r
2. To compare two amino acid sequences, the options of
Bl2seq are set as follows: -11s set to a file containing the first
amino acid sequence to be compared (e.g., C:\seql .txt); - 1s
set to a file containing the second amino acid sequence to be
compared (e.g., C:\seq2.txt); -p 1s set to blastp; -0 1s set to
any desired file name (e.g., C:\output.txt); and all other
options are left at their default setting. For example, the
following command can be used to generate an output file
containing a comparison between two amino acid
sequences: C:\Bl2seq -1 ¢:\seql.txt -1 c:\seq2.txt -p blastp -0
c:\output.txt. If the two compared sequences share homol-
ogy, then the designated output file will present those
regions ol homology as aligned sequences. If the two
compared sequences do not share homology, then the des-
ignated output file will not present aligned sequences.
Once aligned, the number of matches 1s determined by
counting the number of positions where an 1dentical nucleo-
tide or amino acid residue is presented in both sequences.
The percent sequence 1dentity 1s determined by dividing the
number of matches either by the length of the sequence set

forth 1n the i1dentified sequence (e.g., SEQ ID NO:1), or by
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an articulated length (e.g., 100 consecutive nucleotides or
amino acid residues from a sequence set forth 1n an identi-
fied sequence), followed by multiplying the resulting value
by 100. For example, a nucleic acid sequence that has 250
matches when aligned with the sequence set forth in SEQ ID
NO:1 1s 86.5 percent 1dentical to the sequence set forth in
SEQ ID NO:1 (1.e., 250+289%x100=86.5). It 1s noted that the
percent sequence i1dentity value 1s rounded to the nearest
tenth. For example, 75.11, 73.12, 75.13, and 75.14 1s
rounded down to 75.1, while 75.15, 75.16, 75.17, 75.18, and
75.19 1s rounded up to 75.2. It also 1s noted that the length
value will always be an integer.

Methods for selecting endogenous target sequences and
generating TAL eflector endonucleases targeted to such

sequences can be performed as described elsewhere. See, for
example, PCT Publication No. WO 2011/072246 (which 1s
incorporated herein by reference 1n 1ts entirety). TAL eflec-
tors are found in plant pathogenic bacteria in the genus
Xanthomonas. These proteins play important roles 1n dis-
case, or trigger defense, by binding host DNA and activating
cllector-specific host genes (see, e.g., Gu et al., Nature
435:1122-1125, 2005; Yang et al., Proc. Natl. Acad. Sci.
USA 103:10503-10508, 2006; Kay et al. Science 318:648-
651, 2007; Sugio et al., Proc. Natl. Acad. Sci. USA 104:
10720-10725, 2007; and Romer et al. Science 318:645-648,
2007). Specificity depends on an effector-variable number of
imperfect, typically 34 amino acid repeats (Schornack et al.,
J. Plant Physiol. 163:256-272, 2006; and WO 2011/
072246). Polymorphisms are present primarily at repeat
positions 12 and 13, which are referred to herein as the
repeat variable-diresidue (RVD).

The RVDs of TAL eflectors correspond to the nucleotides
in their target sites in a direct, linear fashion, one RVD to one
nucleotide, with some degeneracy and no apparent context
dependence. This mechanism for protein-DNA recognition
enables target site prediction for new target specific TAL
ellectors, as well as target site selection and engineering of
new TAL eflectors with binding specificity for the selected
sites.

TAL eflector DNA binding domains can be fused to other
sequences, such as endonuclease sequences, resulting in
chimeric endonucleases targeted to specific, selected DNA
sequences, and leading to subsequent cutting of the DNA at
or near the targeted sequences. Such cuts (1.e., double-
stranded breaks) in DNA can induce mutations into the wild
type DNA sequence via NHEJ or homologous recombina-
tion, for example. In some cases, TAL eflector endonu-
cleases can be used to facilitate site directed mutagenesis 1n
complex genomes, knocking out or otherwise altering gene
function with great precision and high efliciency. As
described 1 the Examples below, TAL eflector endonu-
cleases targeted to the soybean FAD2-1A and FAD2-1B
alleles can be used to mutagemize the endogenous genes,
resulting 1n plants with reduced expression (e.g., without
detectable expression) of these genes. The fact that some
endonucleases (e.g., Fokl) function as dimers can be used to
enhance the target specificity of the TAL effector endonu-
clease. For example, 1n some cases a pair of TAL eflector
endonuclease monomers targeted to different DNA
sequences (e.g., the underlined target sequences shown 1n
FIGS. 1A and 1B) can be used. When the two TAL eflector
endonuclease recognition sites are 1n close proximity, as
depicted 1in FIGS. 1A and 1B, the mmactive monomers can
come together to create a functional enzyme that cleaves the
DNA. By requiring DNA binding to activate the nuclease, a
highly site-specific restriction enzyme can be created.
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The term “expression” as used herein refers to the tran-
scription of a particular nucleic acid sequence to produce
sense or antisense mMRNA, and/or the translation of a sense
mRNA molecule to produce a polypeptide (e.g., a therapeu-
tic protein), with or without subsequent post-translational
events.

“Reducing the expression™ of a gene or polypeptide 1n a
plant or a plant cell includes inhibiting, interrupting, knock-
ing-out, or knocking-down the gene or polypeptide, such
that transcription of the gene and/or translation of the
encoded polypeptide are reduced as compared to a corre-
sponding wild type plant or plant cell. Expression levels can
be assessed using methods such as, for example, reverse
transcription-polymerase chain reaction (RT-PCR), North-
ern blotting, dot-blot hybridization, 1n situ hybridization,
nuclear run-on and/or nuclear run-oil, RNase protection, or
immunological and enzymatic methods such as ELISA,
radioimmunoassay, and western blotting.

Methods for using TAL eflector endonucleases to gener-
ate plants, plant cells, or plant parts having mutations 1n
endogenous genes include, for example, those described 1n
the Examples herein. For example, nucleic acids encoding
TAL effector endonucleases targeted to selected FAD2-1A or
FAD2-1B sequences (e.g., the FAD2-1A sequences shown 1n
FIG. 1A or the FAD2-1B sequences shown 1n FIG. 1B) can
be transformed mto plant cells (e.g., cells in cotyledons),
where they can be expressed. The cells subsequently can be
analyzed to determine whether mutations have been intro-
duced at the target site(s), through nucleic acid-based assays
or protein-based assays to detect expression levels as
described above, for example, or using nucleic acid-based
assays (e.g., PCR and DNA sequencing, or PCR followed by
a T7E1 assay; Mussolino et al., Nucleic Acids Res 39:9283-
0293, 2011) to detect mutations at the genomic loci.

The mutagenized population, or a subsequent generation
of that population, can be screened for a desired trait(s) (e.g.,
plants that have altered o1l composition) that results from the
mutations. Alternatively, the mutagenized population, or a
subsequent generation of that population, can be screened
for a mutation 1n a FAD2-1A or FAD2-1B gene. For
example, the progeny M, generation of M, plants may be
evaluated for the presence of a mutation in a FAD2-1A or
FAD2-1B gene. A “population” 1s any group of individuals
that share a common gene pool. As used herein, “M,,” refers
to plant cells (and plants grown therefrom) exposed to a TAL
cllector nuclease, while “M,” refers to seeds produced by
self-pollinated M, plants, and plants grown from such seeds.
“M.,” 1s the progeny (seeds and plants) of self-pollinated M,
plants, “M,”" 1s the progeny of self-pollinated M., plants, and
“M.,” 1s the progeny of self-pollinated M, plants. “M.” 1s the
progeny ol seli-pollinated M, plants. “M.”, “M,”, etc. are
cach the progeny of self-pollinated plants of the previous
generation. The term “selfed” as used herein means seli-
pollinated.

One or more M; soybean plants can be obtained from
individual, mutagenized M, plant cells (and plants grown
therefrom), and at least one of the plants can be 1dentified as
containing a mutation in a FAD2-1A or FAD2-1B gene. An
M, soybean plant may be heterozygous for a mutant allele
at a FAD2-1A and/or a FAD2-1B locus and, due to the
presence of the wild-type allele, exhibit delta-twelve fatty
acid desaturase activity. Alternatively, an M, soybean plant
may have a mutant allele at a FAD2-1A or FAD2-1B locus
and exhibit the phenotype of lacking delta-twelve fatty acid
desaturase activity. Such plants may be heterozygous and
lack delta-twelve fatty acid desaturase activity due to phe-
nomena such a dominant negative suppression, despite the
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presence of the wild-type allele, or may be homozygous due
to imdependently induced mutations 1n both alleles at the

FAD2-1A or FAD2-1B locus.

A soybean plant carrying mutant FAD2-1A and FAD2-1B
alleles can be used 1n a plant breeding program to create
novel and useful lines and varieties. Thus, 1n some embodi-
ments, an M,;, M,, M,, or later generation soybean plant
containing at least one mutation in a FAD2-1A and at least
one mutation 1 a FAD2-1B gene 1s crossed with a second

soybean plant, and progeny of the cross are identified 1n
which the FAD2-1A and FAD2-1B gene mutations are

present. It will be appreciated that the second soybean plant
can contain the same FAD2-1A and FAD2-1B mutations as
the plant to which 1t 1s crossed, different FAD2-1A and
FAD?2-1B mutations, or be wild-type at the FAD2-1A and/or
FAD2-1B loci.

Breeding can be carried out via known procedures. DNA
fingerprinting, SNP or similar technologies may be used 1n

a marker-assisted selection (MAS) breeding program to
transier or breed mutant FAD2-1A and FAD2-1B alleles into

other soybean plants. For example, a breeder can create
segregating populations from hybridizations of a genotype
containing a mutant allele with an agronomically desirable
genotype. Plants 1n the F, or backcross generations can be
screened using markers developed from FAD2-1A and
FAD2-1B sequences or fragments thereof. Plants identified
as possessing the mutant allele can be backcrossed or
self-pollinated to create a second population to be screened.
Depending on the expected inheritance pattern or the MAS
technology used, 1t may be necessary to self-pollinate the
selected plants before each cycle of backcrossing to aid
identification of the desired individual plants. Backcrossing
or other breeding procedure can be repeated until the desired
phenotype of the recurrent parent i1s recovered.

Successiul crosses yield F, plants that are fertile and that
can be backcrossed with one of the parents 1f desired. In
some embodiments, a plant population 1n the F, generation
1s screened for FAD2-1A and FAD2-1B gene expression,
¢.g., a plant 1s 1dentified that fails to express FAD2-1A and
FAD2-1B due to the absence of a FAD2-1A and FAD2-1B
genes according to standard methods, for example, using a
PCR method with primers based upon the nucleotide
sequence information for FAD2-1A and FAD2-1B described
herein. Selected plants are then crossed with one of the
parents and the first backcross (BC,) generation plants are
self-pollinated to produce a BC, F, population that 1s again
screened for variant FAD2-1A and FAD2-1B gene expres-
sion (e.g., null versions of the FAD2-1A and FAD2-1B
genes). The process of backcrossing, self-pollination, and
screening 1s repeated, for example, at least four times until
the final screeming produces a plant that 1s fertile and
reasonably similar to the recurrent parent. This plant, it
desired, can be self-pollinated, and the progeny subse-
quently can be screened again to confirm that the plant lacks
FAD2-1A and FAD2-1B gene expression. Cytogenetic
analyses of the selected plants optionally can be performed
to confirm the chromosome complement and chromosome
pairing relationships. Breeder’s seed of the selected plant
can be produced using standard methods including, for
example, field testing, confirmation of the null condition for
FAD2-1A and FAD2-1B, and/or analyses of o1l to determine
the level of oleic acid and linoleic acid.

In situations where the original F, hybrid resulting from
the cross between a first, mutant soybean parent and a
second, wild-type soybean parent, 1s hybridized or back-
crossed to the mutant soybean parent, the progeny of the
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backcross can be self-pollinated to create a BC,F, genera-
tion that 1s screened for the mutant FAD2-1A and FAD2-1B

alleles.

The result of a plant breeding program using the mutant
soybean plants described herein can be novel and useful
lines and varieties. As used herein, the term “variety” refers
to a population of plants that share constant characteristics
which separate them from other plants of the same species.
A variety 1s often, although not always, sold commercially.
While possessing one or more distinctive traits, a variety can
be further characterized by a very small overall variation
between individuals within that variety. A “pure line” variety
may be created by several generations of self-pollination and
selection, or vegetative propagation from a single parent
using tissue or cell culture techniques. A variety can be
essentially derived from another line or variety. As defined
by the International Convention for the Protection of New
Varieties of Plants (Dec. 2, 1961, as revised at Geneva on
Nov. 10, 1972, on Oct. 23, 1978, and on Mar. 19, 1991), a
variety 1s “essentially derived” from an 1nitial variety if: a)
it 1s predominantly derived from the 1nitial variety, or from
a variety that 1s predominantly derived from the mitial
variety, while retaining the expression of the essential char-
acteristics that result from the genotype or combination of
genotypes of the mitial variety; b) it 1s clearly distinguish-
able from the 1mitial variety; and ¢) except for the differences
which result from the act of derivation, it conforms to the
initial variety in the expression of the essential characteris-
tics that result from the genotype or combination of geno-
types of the imitial variety. Essentially derived varieties can
be obtained, for example, by the selection of a natural or
induced mutant, a somaclonal variant, a variant individual
from plants of the initial variety, backcrossing, or transior-
mation. A “line” as distinguished from a variety most often
denotes a group of plants used non-commercially, for
example 1n plant research. A line typically displays little
overall variation between individuals for one or more traits
of interest, although there may be some variation between
individuals for other traits.

The methods provided herein can be used to produce plant
parts (e.g., seeds) or plant products (e.g., oi1l) having
increased oleic acid content and reduced linoleic acid con-
tent, as compared corresponding plant parts or products
from wild type plants. The fatty acid content of a plant part
or a plant product can be evaluated using standard methods,
such as those described 1n Example 5 herein, for example.

The mvention will be further described in the following
examples, which do not limit the scope of the mvention
described in the claims.

EXAMPLES

Example 1

Engineering Sequence-specific Nucleases to
Mutagenize the FAD2-1A and FAD2-1B Genes

-

o completely inactivate or knock-out the alleles of
FAD2-1A and FAD2-1B genes 1n G. max, sequence-speciiic
nucleases were designed that target the protein coding
region 1n the vicinity of the start codon. Eight TAL eflector
endonuclease pairs were designed to target the FAD2-1 gene
tamily within the first 300 bp of the coding sequence using
software that specifically identifies TAL eflector endonu-
clease recognition sites, such as TALE-NT 2.0 (Doyle et al.,
Nucleic Acids Res 40:W117-122, 2012). The TAL eflector

endonuclease recognition sites for the FAD2-1 genes are




11

US 10,113,162 B2

underlined in FIG. 1 and are listed 1in Table 1. TAL eftector

endonucleases were synthesized using
those described elsewhere (Cermak et al

methods similar to
., Nucleic Acids Res

39:e82, 2011; Reyon et al., Nat Biotechnol 30:460-463,

2012; and Zhang et al., Nat Biotechnol

Example 2

29:149-153, 2011).

FAD2-1 TAL Eflector Endonuclease Activity 1n

Yeast

e

To assess the activity of the TAL e

‘ector endonucleases

targeting the FAD2-1 genes, activity assays were performed
in yeast by methods similar to those described elsewhere

(Christian et al., Genetics 186:757-76

|, 2010). For these

assays, a target plasmid was constructed with the TAL

cllector endonuclease recognition site

cloned 1n a non-

functional p-galactosidase reporter gene (Table 2). The
target site was tlanked by a direct repeat of 3-galactosidase
coding sequence such that 1f the reporter gene was cleaved
by the TAL eflector endonuclease, recombination would

occur between the direct repeats and

function would be

restored to the [3-galactosidase gene. p-galactosidase activ-
ity, therefore, served as a measure of TAL eflector endonu-
clease cleavage activity. Results are summarized 1n Table 3.

All of the FAD2-1 TAL eflector endonuclease pairs dis-
played cleavage activity. Cleavage activities were normal-

1zed to the benchmark nuclease, 1-Scel.

TABLE 1
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TABLE 3

FAD2 TAL effector endonuclease activity in yeast

TAL eflector

endonuclease subunit

FAD2 TO1_ Left CI11
FAD2_ TO01_Right C11
FAD2 TO1_ Left C40
FAD2_ TO01__Right C40
FAD2 TO02 lLeft CI11
FAD2_ T01_Right CI11
FAD2 TO02 lLeft C40
FAD2 TO1_Right C40
FAD2 TO03_ lLeft CI11
FAD2_TO03_ Right Cl11
FAD2 TO03 Left C40
FAD2 TO03_ Right C40
FAD2 To04 Left Cl11
FAD2 T03_ Right CI1
FAD2_ T04 Left C40
FAD2 TO03_Right C40

*Normalized to I-Scel (max = 1.0)

Activity 1 yeast™®

0.73

0.79

0.00

0.00

0.00

0.00

0.00

0.00

TAL effector endonuclease tardget sec

LelNCes

Gene Target Sequence Left

FAD2 TO1 C11
FAD2 TO1 C40
FAD2 T02 C11
FAD2 T02 C40
FAD2 TO03 C1ll CTCATGGAAAATAAGCCAT
FAD2 TO03 C40 CTCATGGAAAATAAGCCAT
FAD2 T04 C11

FAD2 T04 C40

FAD2 TAL effector endonuclease Target Sequences for Yeast Aeeay

GCCACCACCTACTTCCACCTCCT 18

GCCACCACCTACTTCCACCTCCT 20

ACATTGCCACCACCTACTTCCACCT 22

ACATTGCCACCACCTACTTCCACCT 24

ATTTCTCATGGAAAATAAGCCAT 30

ATTTCTCATGGAAAATAAGCCAT 32

SEQ 1D

SEQ ID

NO : Target Sequence Right NO

ATTGCATGGCCAATCT 195

ATTGCATGGCCAATCT 21

ATTGCATGGCCAATCT 23

ATTGCATGGCCAATCT 25

26 ACCOGTGATGAAGTGTTTGTCCC 27

28 ACCOGTGATGAAGTGTTTGTCCC 29

TABLE

ACCGTGATGAAGTGTTTGTCCC 31

ACCGTGATGAAGTGTTTGTCCC 33

2

FAD2_T1 FAD2_ 12

0.87

0.73

0.97

0.96

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.65

0.63

0.00

0.00

FAD2 T3 FAD2 14

0.00

0.00

0.00

0.00

0.53

0.51

0.54

0.52

TAL effector
endonucleage
target

FAD2 Target 1

FADZ Target 2

FAD2 Target 3

FAD2 Target 4

TAL effector endonuclease target sequence

GCCACCACCTACTTCCACCTCCTTCCTCAACCCTTTTCCCTCATTGCATGGCCAATCT

ACATTGCCACCACCTACTTCCACCTCCTTCCTCAACCCTTTTCCCTCATTGCATGGCCAATCT

CTCATGGAARAATAAGCCATCGCCGCCATCACTCCAACACAGGTTCCCTTGACCGTGATGAAGTGTTTGTCCC

ATTTCTCATGGAAAATAAGCCATCGCcgecCATCACTCCAACACAGGTTCCCTTGACCGTGATGAAGTGTTTGTCCC

SEQ ID
NO

34

35

36

7
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Example 3

TAL Effector Endonuclease Expression and

Activity 1n Soybean Hairy Roots

Based on the activity of the various FAD2 TAL eflector
endonucleases 1n yeast, four TAL eflector endonucleases 1n

two diflerent scaflolds were chosen for expression in soy-
bean cells (FAD2_TO1, FAD2 T02, FAD2_T03 and

FAD2_TO04). The activities of these TAL eflector endonu-
cleases were assessed at their endogenous target sites 1n
soybean using a hairy root assay described elsewhere (Cur-
tin et al. Plant Physiology 156(2):466-473, 2011). First, each
TAL eflector endonuclease was cloned into a T-DNA vector
downstream of an estradiol-inducible promoter (Zuo et al.,
Plant J. 24:265-2773, 2000), and then transformed into the
K599 strain of Agrobacterium rhizogenes (Govindarajulu et
al., Mol. Plant Microbe Interact. 21:1027-10335, 2008). A.
rhizogenes strains with the various TAL effector endonu-
cleases were then used to infect half-cotyledons of soybean
and produce transgenic hairy roots. Three weeks after infec-
tion, hairy roots were collected and frozen in liquid nitrogen,
and genomic DNA was prepared using standard methods
(Murray et al., Nucl. Acids Res. 8(19):4321-4325, 1980).
To determine 1f NHEJ-mediated mutations were created
by the TAL eflector endonucleases at the target sites 1n the
soybean genome, DNA from nine hairy roots were subjected
to a PCR enrichment assay (Zhang et al., Proc. Natl. Acad.
Sci. USA 107(26):12028-12033, 2010). This assay monitors
loss of a restriction enzyme site within the TAL eflector
endonuclease spacer sequence due to NHEJ-induced muta-
tions. The restriction enzyme sites used in this assay are
shown 1n FIG. 1 (sigmified by lower case letters). Genomic
DNA derived from three hairy root samples expressing
FAD2_TO01 was digested with Mnll to monitor mutations at
the FAD2-1A locus. Hphl was used to monitor mutations at
FAD2-1B caused by FAD2_TO1. Acil was used to monitor
mutations at both the FAD2-1A and FAD2-1B loci in
digested genomic DNA from six hairy root samples express-
ing FAD2 T04. Following digestion, an aliquot of each
reaction was used as a template for PCR with primers
flanking either the FAD2_TO01 or FAD2_T04 target sites. To
assess activity of FAD2_TO1, separate PCR reactions were
conducted with primers specific for FAD2-1A and FAD?2-
1B. PCR products were first analyzed on a 1% agarose gel
to verity that amplification had occurred, and then digested
with the restriction enzyme located 1n the spacer sequence of
the particular TAL eflector endonuclease being analyzed.
This second restriction digestion reaction was then analyzed
on a 2% agarose gel, along with digested and undigested
control DNA from wild type samples. Samples with TAL
ellector endonuclease-induced NHEJ mutations may lack
the restriction enzyme site within the spacer sequence,
resulting 1n an undigested PCR product which appears as a
tull-length band on the gel. As shown in FIG. 2, undigested
PCR products were observed for FAD2-1A, FAD2-1B, or
both genes 1n the same sample. For example, sample “b” in
FIG. 2C shows that mutations were present in FAD2-1B,
sample “d” 1n FIG. 2B shows that mutations were present 1n
FAD2-1A, and sample “1” 1n FIGS. 2B and 2D shows that
mutations were present in both FAD2-1A and FAD2-1B.
Undigested PCR products were cloned and sequenced to
verily that they contained TAL eflector endonuclease-in-
duced mutations in the spacer sequence. The PCR products
were cloned using the Qiagen TOPO cloning kit according,
to manufacturer’s instructions. Individual clones derived
from a given undigested fragment were sequenced, and the
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DNA sequences aligned with the wild type FAD2-1A or
FAD2-1B sequences. As shown 1n FIG. 3, multiple, inde-
pendent deletions were recovered i both FAD2-1A and
FAD2-1B, ranging 1n size from 6 to 92 base pairs.

Example 4

Regeneration of Soybean Plants with TAL Effector
Endonuclease-induced Mutations in FAD2 Genes

Following  venfication that FAD2 TALl1 and
FAD2 TAL4 created targeted modifications at endogenous

target sites, experiments were conducted to create soybean
plants with mutations in FAD2-1A and FAD2-1B. To accom-

plish this, each of the four FAD2-1 TAL ellector endonu-
cleases were cloned 1into a T-DNA vector, and TAL eflector
endonuclease expression was driven by either the cauli-
flower mosaic virus 35S promoter or the estradiol-induced
XVE promoter system (Zuo et al., supra). The T-DNA vector
also contained a bar selectable marker that confers resistance
to glufosinate.

Transgenic soybean plants expressing the TAL eflector
endonucleases were generated using standard Agrobacte-
rium tumefaciens transformation protocols (Curtin et al.,
supra). Following cultivation of the T-DNA-containing A.
tumefaciens strains with soybean half cotyledons (variety
Bert) and subsequent selection for expression of bar, puta-
tively transgenic plants were regenerated. The plants were
transferred to soil, and after approximately 4 weeks of
growth, a small leal was harvested from each plant for DNA
extraction and genotyping. Each DNA sample was first
screened using PCR for the presence of bar. All bar-positive
plants were then subjected to a T7E] assay to identily plants
with mutations at the FAD2-1A and FAD2-1B TAL eflector
endonuclease recognition site (Kim et al., Genome Res.
19:1279-1288, 2009). Brietly, a PCR product spanning the

TAL eflector endonuclease recognition site was generated,
denatured, and allowed to reanneal. T7E1 endonuclease was

added to the annealed products to cleave heteroduplexes
generated when a wild type DNA fragment annealed with a
fragment carrying a TAL eflector endonuclease-induced
mutation, and cleavage products were visualized by agarose
gel electrophoresis. As shown 1n FIG. 4, four plants showed
evidence of TAL eflector endonuclease-induced mutations
(GmO026-18, GmO026-23, Gm027-06 and GmO027-07). In
addition, all four plants had mutations at both FAD2-1A and
FAD2-1B, indicating that both genes were mutagenized
simultaneously. The genotyping data for all plants regener-
ated 1s shown 1n Table 4B.

To determine 1f mutations introduced by TAL eflector
endonucleases 1n leal tissue were transmitted to the next
generation, seeds were collected from TO plants Gm026-18,
GmO026-23 and GmO027-06. In each T1 population, 20-60
individual plants were genotyped to confirm transmission of
the mutations. Both FAD2-1A and FADZ2-1B mutations
segregated 1n the T1 progeny of GM026-18. In contrast, only
FAD2-1A or FAD2-1B mutations were transmitted to the T1
progeny ol GM-026-23 and GMO27-6, respectively. The
DNA sequences of the heritable mutations are shown in FIG.
5.

Example 5

Fatty Acid Profile Analysis on Seeds Produced
from TAL Effector Endonuclease-induced

Mutations 1 Soybean FAD2 Genes

Seed derived from soybean lines that are homozygous
mutant 1 either FAD2-1A or FAD2-1B, or homozygous for
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both FAD2-1A and FAD2-1B, are analyzed for fatty acid

composition. Briefly, individual soybean seeds derived from

16

TABLE b

Representative FAD2-12A and FAD2-1B coding

Gmo026-23, GmO027-6, or Gm026-18 are pulverized indi- sequences*
vidually. DNA is prepared from a portion of the ground ° FAD2-1A
tissue and 1s analyze‘d to confirm the gen‘jtype ot each seed. ATGgtcatgatttcactctctctaatctcteccattcattttgtagttyg
Pulverized tissue from FAD2-1A homozygous (Gm26-23),
tcattatctttagatttttcactacctggtttaaaattgagggattgt
FAD2-1B homozygous (Gm027-6), or FAD2-1A/FAD2-1B
_ agttctgttggtacatattacacattcagcaaaacaactgaaactcaa
double homozygous (GmO026-18) knock out seeds 1s pooled.
. . . . . . . ctgaacttagtttatactttgacacaglGGTCTAGCAAAGGALACALACARD
Fatty acid composition 1s then determined using fatty acid & 3 3 &
methyl esters (FAME) gas chromatography (Beuselinck et TGGGACCT ACAGCETCATATCECCARAACTCCAACT TCAACCCAACAAGC
. 15
al., Crop Sci. 47:747-750, 2006), to assess whether seeds CTCTCTCAAGGGTTCCAAACACAAAGCCACCATTCACTGTTGGCCAAC
with various FAD2-1 mutations are altered 1n the proportion PO AR GARAGE AATTCCOACCACACTEOTTTC AGCEOTCC CTC T CACTT
of linoleic acid and oleic acid relative to wild type seed.
CATTCTCCTATETTGTT TATGACCTTTCATTTGCCTTCATTTTCTACA
20
TARIE 4A TTGCCACCACCTACTTCCACCTCCTTCCTCAACCCTTTTCCCTCATTE
List of regenerated plants and FAD2-1 genes analyzed in FIG. 4 CATGGCCAATCTATTGGGTTC TCCAAGGTTEGCCTTCTCACTGETGTET
COCTCATTGC TCACCAGTETGGTCACCATGCCTTCAGCARGTACCAAT
Lane DNA (ene 55
CCCTTCATCATCTTCTGGATTTEACCCTTCACTCAACACTTTTAGTCC
1 GMO26-7a FADII 1A
2 GMO26-17 FADII 1A CTTATTTCTCATCCAAAATAAGCCATCECCECCATCACTCCAACACAR
3 GMO26-1% FADII 1A
4 GMO26-20 FADII 1A GTTCCCTTGACCGTGATGAAGTGTTTGTCCCAAAACCAADATCCARALG
5 GM026-23 FADII 1A 30
q GMOD7-3 FADIT 1A TTGCATGETTTTCCAAGTACT TAAACAACCCTCTACCAACGGCTGTTT
/ GMO27-6 FADITLA CTCTTCTCRTCACACTCACAATACGCGETGGCCTATATATTTAGCCTTCA
8 GMO27-7 FADII 1A
) GMOZ7-10 FADIL 1A ATCTCTCTCGTAGACCCTATCATAGTTTTCCARAGCCACTACCACCCTT
10 GMO27-11 FADII 1A 35
11 GMOOR-6 FADII 1A ATGCTCCCATATATTCTAACCCTGAGAGGCTTCTCGATCTATGTCTCTE
12 Bert WT FADII 1A
13 GMO026-7a FADII 1A uncut ATCTTGCTTTGTTTTCTOTCACTTACTC TCTCTACCETATTGCARCCC
14 GMO26-17 FADII 1A uncut
15 GMO26-18 FADII 1A uncut A0 TGAAAGCETTCETTTEGCTGC TATETCTTTATGEGGTGCCTTTGCTCA
16 GMO26-7a FADII 1B
17 GMO26-17 FADII 11 TTGTCAACCETTTTC TTOTCACTATCACATATTTGCAGCACACACACT
18 GMO26-18 FADII 1B
19 GMO26-90 FADII 1R TTGCCTTECCTCATTACGATTCATCAGAATCGCGACTCGECTGAACGGAG
20 GMO26-23 FADII 1B
,1 GMO273 FADI | R 45 CTTTGGECAACTATGCACACACATTATCGCATTCTCAACAAGATETTTC
22 GMO27-6 FADII 1B
o ATCACATAACTGATACTCATETGGC TCACCATCTCTTCTCTACAATGC
23 GMO27-7 FADII 1B
24 GMO27-10 FADII 1B CACATTACCATGCAATCCACCGCAACCAATEGCAATCAACGCCAATATTAER
25 GMO27-11 FADII 1B
26 GMO08-6 FADII 1B U GTGAGTACTACCAATTTGATGACACACCATTT TACAAGGCACTGTGGA
27 Bert WT FADII 1B
28 GMO26-7a FADII 1B uncut GAGAAGCRAGACGACTERCCTCTATETGCAGCCACGATCAACGGAACATCCC
29 GMO26-17 FADII 1B uncut
30 GMO26-18 FADII 1B uncut AGAAGGGCGTGTATTGGTACAGGAACAAGTATTGA (SEQ ID NO: 38)
TABLE 4B
Mutant Screening in TO Transgenic Soybean Plants
GMO26- GMO26- GMO26- GMO26- GMO26- GMO27- GMO27-
7a 17 18 20 23 GMO027-3 GMO27-6 GMO27-7 10 11
FAD2-1A Wt Wt Mutation Wt Mutation Wt Mutation Mutation Wt Wt
FAD2-1B Wt Wt Mutation Wt Mutation Wt Mutation Mutation Wt Wt

*Wt signifies wild type genotype based on T7E] assay
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TABLE 5-continued TABLE 5-continued
Representative FAD2-1A and FAD2-1B coding Representative FAD2-1A and FAD2-1B coding
gsequences® gsequencesg®

5
FAD2-1B CATATATTCAAATCGTGAGAGGCTTTTGATCTATGTCTCTGATGTTGC
ATGgtcatgatttcactetctetaatctgtcactteccetccattcatt TTTGTTTTCTGTGACTTACTTGCTCTACCGTGTTGCAACTATGAAAGG
ttgtacttetcatatttttcacttectggttgaaaattgtagttctct GTTGGET T TGGCTGC TATGTGT TTATGGGGTGCCATTGCTCATTGTGAA
10
tggtacatactagtattagacattcagcaacaacaactgaactgaact CGGETTTTCTTGTGACCATCACATATCTGCAGCACACACACTATGCCTT
tctttatactttgacacagGGTCTAGCAAAGGAAACAATAATGGGAGG GCCTCACTATGATTCATCAGAATGGGATTGGCTGAGGGGTGCTTTGGC
TGGAGGCCGTGTGGCCAAAGTTGAAATTCAGCAGAAGAAGCCTCTCTC AACTATGGACAGAGATTATGGAATTCTGAACAAGGTGTTTCACCACAT
15
AAGGGTTCCAAACACAAAGCCACCATTCACTGTTGGCCAACTCAAGAA AACTGATACTCATGTGGCTCACCATCTTTTCTCTACAATGCCACATTA
AGCCATTCCACCGCACTGCTTTCAGCGTTCCCTCCTCACTTCATTGTC CCATGCAACGGAGGCAACCAATGCAATGAAGCCAATATTGGGTGAGTA
CTATGTTGTTTATGACCTTTCATTGGCTTTCATTTTCTACATTGCCAC CTACCGATTTGATGACACACCATTTTACAAGGCACTGTGGAGAGAAGC
CACCTACTTCCACCTCCTCCCTCACCCCTTTTCCCTCATTGCATGGCC 20 AAGAGAGTGCCTCTATGTGGAGCCAGATGAAGGAACAT CCGAGAAGGG
AATCTATTGGGTTCTCCAAGGTTGCATTCTTACTGGCGTGTGGGTGAT CGTGTATTGGTACAGGAACAAGTATTGA
(SEQ ID NO: 39)
TGCTCACGAGTGTGGTCACCATGCCTTCAGCAAGTACCCATGGGTTGA
*Intron seqguences are 1n lower case
TGATGTTATGGGTTTGACCGTTCACTCAGCACTTTTAGTCCCTTATTT 25
CTCATGGAAAATAAGCCATCGCCGCCACCACTCCAACACGGGTTCCCT OTHER EMBODIMENTS
GTACACCAAGTACCTGAACAACCCTCTAGGAAGGGCTGCTTCTCTTCT 30 described 1n COIlJlilllC'[IOIl Wlth the .dEtaIIEd de‘SCI'lp'[IOIl
thereof, the foregoing description 1s intended to illustrate
CATCACACTCACAATAGGGTGGCCTTTGTATTTAGCCTTCAATGTCTC and not limit the scope of the imnvention, which 1s defined by
the scope of the appended claims. Other aspects, advantages,
TGGCAGACCCTATGATGGTTTTGCTAGCCACTACCACCCTTATGCTCC and modifications are within the scope of the following
claims.
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 39
<210> SEQ ID NO 1
<211> LENGTH: 289
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<400> SEQUENCE: 1
ttcattttct acattgccac cacctacttce cacctcecctte ctcaacccectt ttcececctceatt 60
gcatggccaa tctattgggt tctccaaggt tgccttcectca ctggtgtgtg ggtgattgcet 120
cacgagtgtg gtcaccatgc cttcagcaag taccaatggg ttgatgatgt tgtgggtttg 180
acccttcact caacactttt agtcceccttat ttcectcatgga aaataagcca tcecgceccecgcecat 240
cactccaaca caggttccct tgaccgtgat gaagtgtttg tcecccaaaac 289
<210> SEQ ID NO 2
<211> LENGTH: 289
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<400> SEQUENCE: 2
ttcattttct acattgccac cacctacttc cacctcecctcece ctcaccceccectt ttececctceatt 60
gcatggccaa tctattgggt tcectccaaggt tgcattcectta ctggegtgtg ggtgattgcet 120
cacgagtgtg gtcaccatgc cttcagcaag tacccatggg ttgatgatgt tatgggtttg 180
accgttcact cagcactttt agtcccttat ttcectcatgga aaataagcca tcgceccgcecac 240
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-continued

cactccaaca cgggttccct tgaccgtgat gaagtgtttg tcccaaaac

<210> SEQ ID NO
<211> LENGTH: 7o
<212> TYPE: DNA

3

<213> ORGANISM: Glycine max

<400> SEQUENCE:

gccaccacct acttccacct ccttcecctcaa ccoccttttecc tcattgcatg gccaatctat

tgggttctcce aaggt

<210> SEQ ID NO
<«211> LENGTH: 60
<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«220> FEATURE:

<«223> OTHER INFORMATION:

<400> SEQUENCE:

gccaccacct acttccacct ccttectcaa gattgccaat ctattgggtt ctccaaggtt

<«210> SEQ ID NO
<211> LENGTH: 31
<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE:

gcatggccaa tctattgggt tctccaaggt t

<210> SEQ ID NO
<«211> LENGTH: 62

«212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«220> FEATURE:

<«223> OTHER INFORMATION:

<400> SEQUENCE:

gccaccacct acttccacct cctecectcat tgcatggceca atctattggg ttcectcecaagg

Ct

<210> SEQ ID NO
<211> LENGTH: 7o
<212> TYPE: DNA

3

t

4

4

5

5

6

6

v

synthetic oligonucleotide

synthetic oligonucleotide

synthetic oligonucleotide

<213> ORGANISM: Glycine max

<400> SEQUENCE:

atttctcatg gaaaataagc catcgceccgcece atcactccaa cacaggttcece cttgaccgtyg

atgaagtgtt tgtcc

<210> SEQ ID NO
<211> LENGTH: 68
<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«220> FEATURE:

«223> OTHER INFORMATION:

<400> SEQUENCE:

atttctcatg gaaaataagc catcgceccgcece atcactceccaa cacttgaccg tgatgaagtyg

tttgtcece

7

C

8

8

synthetic oligonucleotide

289

60

76

60

31

60

62

60

76

60

68

20
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-continued

<210> SEQ ID NO ©

<211> LENGTH: 46

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: synthetic oligonucleotide

<400> SEQUENCE: ©

atttctcatg gaaaataagc catcgceccgeg atgaagtgtt tgtccc

<210> SEQ ID NO 10

<211> LENGTH: 70

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: synthetic oligonucleotide

<400> SEQUENCE: 10

atttctcatg gaaaataagc catcgceccgcec accactccaa cacccttgac cgtgatgaag

tgtttgtccc

<210> SEQ ID NO 11

<211> LENGTH: 15

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: synthetic oligonucleotide

<400> SEQUENCE: 11

tgaagtgttt gtccc

<210> SEQ ID NO 12

<211> LENGTH: 54

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: synthetic oligonucleotide

<400> SEQUENCE: 12

atttctcatg gaaaataaca cgggttccct tgaccgtgat gaagtgtttg tccce

<210> SEQ ID NO 13
«211> LENGTH: 77

<212> TYPE: DNA
<213> ORGANISM: Glycine max

<400> SEQUENCE: 13
atttctcatg gaaaataagc catcgceccgcece atcactceccaa cacaggttcece cttgaccogtyg

atgaagtgtt tgtccca

<210> SEQ ID NO 14
<211> LENGTH: 27

<212> TYPE: DHNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: synthetic oligonucleotide

<400> SEQUENCE: 14

cttgaccgtg atgaagtgtt tgtccca
<210> SEQ ID NO 15

<211l> LENGTH: 77

<212> TYPE: DNA
<213> ORGANISM: Glycine max

46

60

70

15

54

60

77

277
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-continued

<400> SEQUENCE: 15

atttctcatg gaaaataagc catcgceccgcece accactccaa cacgggttcece cttgaccgtyg

atgaagtgtt tgtccca

<210> SEQ ID NO 16

<211> LENGTH: 54

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

223> OTHER INFORMATION: synthetic oligonucleotide

<400> SEQUENCE: 16

atttctcatg gaaaataagc catcgceccctt gaccgtgatg aagtgtttgt ccca

<210> SEQ ID NO 17

<211> LENGTH: 63

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: synthetic oligonucleotide

<400> SEQUENCE: 17

atttctcatg gaaaataagc catcgcecctca ggttcecccttg accgtgatga agtgtttgtc

cCca

<210> SEQ ID NO 18

<211l> LENGTH: 23

<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 18
gccaccacct acttceccacct cct
<210> SEQ ID NO 19

<211l> LENGTH: 16

<212> TYPE: DHNA

<213> ORGANISM: Glycine max
<400> SEQUENCE: 19
attgcatggc caatct

<210> SEQ ID NO 20

<211> LENGTH: 23

<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 20

gccaccacct acttccacct cct

<210> SEQ ID NO 21

<211> LENGTH: 16

<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 21
attgcatggc caatct
<210> SEQ ID NO 22
<211> LENGTH: 25

<212> TYPE: DNA
<213> ORGANISM: Glycine max

60

77

54

60

63

23

lo

23

16

24
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<400> SEQUENCE: 22

acattgccac cacctacttc cacct

<210> SEQ ID NO 23
<211> LENGTH: 16

<212> TYPE: DNA
<213> ORGANISM: Glycine max

<400> SEQUENCE: 23
attgcatggc caatct

<210> SEQ ID NO 24

<211> LENGTH: 25

<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 24

acattgccac cacctacttc cacct

<210> SEQ ID NO 25

<211> LENGTH: 16

<212> TYPE: DHNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 25
attgcatggc caatct
<210> SEQ ID NO 26
<211> LENGTH: 19

<212> TYPE: DHNA
<213> ORGANISM: Glycine max

<400> SEQUENCE: 26
ctcatggaaa ataagccat

<210> SEQ ID NO 27

<211l> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Glycine max
<400> SEQUENCE: 27
accgtgatga agtgtttgtc cc

<210> SEQ ID NO 28
<211> LENGTH: 19

<212> TYPE: DHNA
<213> ORGANISM: Glycine max

<400> SEQUENCE: 28

ctcatggaaa ataagccat

<210> SEQ ID NO 29
<211> LENGTH: 22
<212> TYPE: DNA

<213> ORGANISM: Glycine max
<400> SEQUENCE: 29
accgtgatga agtgtttgtc cc
<210> SEQ ID NO 30

<211l> LENGTH: 23

<212> TYPE: DNA
<213> ORGANISM: Glycine max

US 10,113,162 B2
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lo

25

16

19

22

19

22

26
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-continued

<400> SEQUENCE: 30

atttctcatg gaaaataagc cat 23

<210> SEQ ID NO 31

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 31

accgtgatga agtgtttgtce cc 22
«<210> SEQ ID NO 32

«211> LENGTH: 23

<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 32

atttctcatg gaaaataagc cat 23
«210> SEQ ID NO 33

«211> LENGTH: 22

«212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 33

accgtgatga agtgtttgtce cc 22
«<210> SEQ ID NO 34

«211> LENGTH: 58

«<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 34

gccaccacct acttccacct ccttectcaa cecttttece tcecattgecatg gceccaatcet 58
«210> SEQ ID NO 35

<211> LENGTH: 63

<212> TYPE: DHNA
<213> ORGANISM: Glycine max

<400> SEQUENCE: 35

acattgccac cacctacttc cacctceccttce ctcaaccctt ttceccctcatt gcatggceccaa 60
tct o3
<210> SEQ ID NO 236

<211l> LENGTH: 72

<212> TYPE: DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE: 36
ctcatggaaa ataagccatc gccgcecatca ctcecaacaca ggttcocecttg accgtgatga 60

agtgtttgte cc 72

<210> SEQ ID NO 37

<211> LENGTH: 9

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: consensus

<400> SEQUENCE: 37
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Leu Ala Gly Leu Ile Asp Ala Asp Gly

1

5

<210> SEQ ID NO 38

<211> LENGTH:
<212> TYPERE:

1331
DNA

<213> ORGANISM: Glycine max

<400> SEQUENCE:

atggtcatga
gatttttcac
ttcagcaaaa
aggaaacaac
ctctctcaag
ttccaccaca
tttcatttge
CLtccecetcat
gggtgattgce
ttgtgggttt
atcgccgceca
caaaatccaa
ctcttetegt
gaccctatga
agaggcttct
gtgttgcaac
ttgtgaacgg
attacgattc
atgggattct
tctctacaat
gtgagtacta
agtgcctcta
acaagtattg
<210>
<21l>
<212>

<213>

<400>

atggtcatga

Catttttcac

cagcaacaac

aataatggga

aagggttcca

gcactgcttt

ggctttcatt

SEQUENCE :

38

Cttcactctc

tacctggttt

caactgaaac

aatgggaggt

ggttccaaac

ctgctttcag

CLLtcattttc

tgcatggcca

tcacgagtgt

gacccttcac

tcactccaac

agttgcatgyg

cacactcaca

tagttttgca

gatctatgtc

cctgaaaggy

ttttettgty

atcagaatgyg

gaacaaggtg

gccacattac

ccaatttgat

tgtggagcca

a

SEQ ID NO 39
LENGTH:
TYPE :

ORGANISM: Glycine max

1324
DNA

39

CLtcactctc

ttccotggtty

aactgaactyg

ggtggaggcc

dacacadadadgcC

cagcgttccc

ttctacattyg

Cctaatctct

aaaattgagg

tcaactgaac

agaggtcgtg

acaaagCccac

cgctcecectcec

tacattgcca

atctattggg

ggtcaccatg

tcaacacttt

acaggttccc

ttttcecaagt

atagggtggc

agccactacc

tctgatgttyg

ttggtttggc

actatcacat

gactggctga
tttcatcaca

catgcaatgyg

gacacaccat

gatgaaggaa

tctaatetgt

aaaattgtag

aacttcttta

gtgtggccaa

caccattcac

tcctcactte

ccaccaccta

ccattcattt

gattgtagtt

ttgtttatac

tggccaaagt

cattcactgt
tcacttcatt

ccacctactt

ttctccaagg

ccttcagcaa

tagtccctta

ttgaccgtga

acttaaacaa

ctatgtattt

acccttatgc

CCCLCgttttc

tgctatgtgt

atttgcagca

agggagcttt

taactgatac

aggcaaccaa

tttacaaggc

catccgagaa

cacttcccete

ttctettggt

tactttgaca

agttgaaatt

tgttggccaa

attgtcctat

cttccacctce

-continued

tgtagttgtc

ctgttggtac

tttgacacag

ggaagttcaa

tggccaactc

ctcctatgtt

ccacctcectt

ttgccttete

gtaccaatgg

tttectecatgg

tgaagtgttt

ccctetagga

agccttcaat

tcccatatat

tgtgacttac

ttatggggtg

cacacacttt

ggcaactatyg

tcatgtggct

tgcaatcaag

actgtggaga

gggcgtgtat

cattcatttt

acatactagt

cagggtctag

cagcagaaga

ctcaagaaag

gttgtttatg

ctceccectcecacce

attatcttta
atattacaca
ggtctagcaa
gggaagaagc
aagaaagcaa
gtttatgacc
cctcaaccect
actggtgtgt
gttgatgatg
aaaataagcc
gtcccaaaac
agggctgttt
gtctctggta
tctaaccgtyg
tctctectacce
cctttgctca
gccttgectce
gacagagatt
caccatctcet
ccaatattgyg
gaagcgagag

tggtacagga

gtacttctca

attagacatt

caaaggaaac

agcctctctc

ccattccacce

acctttcatt

CCttttccct

60

120

180

240

300

360

420

480

540

600

660

720

780

840

500

560

1020

1080

1140

1200

1260

1320

1331

60

120

180

240

300

360

420
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32

-contilnued
cattgcatgg ccaatctatt gggttctcca aggttgcatt cttactggceg tgtgggtgat 480
tgctcacgag tgtggtcacc atgccttcag caagtaccca tgggttgatg atgttatggg 540
tttgaccgtt cactcagcac ttttagtccce ttatttctca tggaaaataa gccatcgcecg 600
ccaccactcce aacacgggtt cceccttgaccg tgatgaagtg tttgtcccaa aaccaaaatc 660
caaagttgca tggtacacca agtacctgaa caaccctcta ggaagggcectg cttcetcettet 720
catcacactc acaatagggt ggcctttgta tttagcecttce aatgtcectcectg gcagacccta 780
tgatggtttt gctagccact accacccectta tgctcecceccata tattcaaatce gtgagaggcet 840
tttgatctat gtctctgatg ttgctttgtt ttcectgtgact tacttgctct accgtgttgce 900
aactatgaaa gggttggttt ggctgctatg tgtttatggg gtgccattgce tcattgtgaa 960
cggttttett gtgaccatca catatctgca gcacacacac tatgccttgce ctcactatga 1020
ttcatcagaa tgggattggc tgaggggtgc tttggcaact atggacagag attatggaat 1080
tctgaacaag gtgtttcacc acataactga tactcatgtg gctcaccatc ttttctctac 1140
aatgccacat taccatgcaa cggaggcaac caatgcaatg aagccaatat tgggtgagta 1200
ctaccgattt gatgacacac cattttacaa ggcactgtgg agagaagcaa gagagtgcecct 1260
ctatgtggag ccagatgaag daacatccga gaagggcecgtg tattggtaca ggaacaadgta 1320
ttga 1324
What 1s claimed 1s: 30 (b) a deletion in each FAD2-1B allele, wherein said

1. A soybean plant, plant part, or plant cell comprising:

(a) a deletion i each FAD2-1A allele, wherein said
deletion 1n each FAD2-1A allele was induced by tran-

scription activator-like (TAL) ef

targeted to SEQ ID NOS: 32 and 33, and
(b) a deletion 1n each FAD2-1B allele, wherein said
deletion 1n each FAD2-1B allele 1s 23 bp 1n size, and

wherein said deletion in each FAD2-1B allele was

induced by TAL e

SEQ ID NOS: 32 and 33,
wherein o1l produced from said plant, plant part, or plant
cell has increased oleic acid content and decreased
linoleic acid content as compared to o1l produced from
a corresponding wild type soybean plant, plant part, or
plant cell.

2. The soybean plant, plant part, or plant cell of claim 1,

‘ector endonucleases

35

fector endonucleases targeted to

40

45

wherein each said FAD2-1A and FAD2-1B allele has a

deletion of an endogenous nucleic acid sequence and does
not include any exogenous nucleic acid.

3. A soybean plant, plant part, or plant cell comprising:
(a) a deletion i each FAD2-1A allele, wherein said >0

deletion 1n each FAD2-1A allele was induced by TAL

deletion 1n each FAD2-1B allele 1s 23 bp 1n size, and
wherein said deletion in each FAD2-1B allele was

induced by TAL eflector endonucleases targeted to

SEQ ID NOS: 32 and 33,
wherein o1l produced from said plant, plant part, or plant
cell has a linoleic acid content of less than 10%.

6. The soybean plant, plant part, or plant cell of claim 5,
wherein said linoleic acid content 1s less than 5%.
7. A method for producing soybean o1l having increased
oleic acid content and reduced linoleic acid content, com-

prising:

(a) providing a soybean plant or plant part comprising
(1) a deletion 1 each FAD2-1A allele, wherein said
deletion 1n each FAD2-1A allele was induced by TAL

and 33, and

(11) a deletlon in each FAD2-1B allele, wheremn said
deletion 1n each FAD2-1B allele 1s 23 bp 1n size, and

wherein said deletion in each FAD2-1B allele was

induced by TAL eflector endonucleases targeted to

cllector endonucleases targeted to SEQ 1D NOS:

32

cllector endonucleases targeted to SEQ 1D NOS: 32
and 33, and

(b) a deletlon in each FAD2-1B allele, wherein said
deletion 1n each FAD2-1B allele 1s 23 bp in size, and
wherein said deletion 1n each FAD2-1B allele was
induced by TAL effector endonucleases targeted to
SEQ ID NOS: 32 and 33,

wherein o1l produced from said plant, plant part, or plant
cell has an oleic acid content of greater than 30%.

4. The soybean plant, plant part, or plant cell of claim 3,

wherein said oleic acid content 1s greater than 40%.
5. A soybean plant, plant part, or plant cell comprising:

(a) a deletion i each FAD2-1A allele, wherein said

deletion in each FAD2-1A allele was induced by TAL
ellector endonucleases targeted to SEQ 1D NOS: 32
and 33, and

55

60

65

SEQ ID NOS: 32 and 33; and

(b) producing o1l from said plant or plant part.

8. A method for making a soybean plant comprising a
deletion 1 each FAD2-1A allele and a deletion 1 each
FAD?2-1B allele, wherein the deletion 1n each said FAD2-1B
allele 1s 23 bp 1n size, said method comprising:

(a) contacting a population of soybean plant cells com-

prising functional FAD2-1A and FAD2-1B alleles with
a TAL eflector endonuclease targeted to SEQ ID NO:
32, and a TAL eflector endonuclease targeted to SEQ
ID NO: 33,

(b) selecting, from said population, a cell 1n which each
FAD2-1A allele and each FAD2-1B allele comprises a
deletion, wherein said deletion 1n each FAD2-1A allele
was induced by said TAL eflector endonucleases tar-

geted to SEQ ID NOS: 32 and 33, wherein said deletion
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in each FAD2-1B allele was induced by said TAL
cllector endonucleases targeted to SEQ 1D NOS: 32
and 33, and wherein said deletion 1n each said FAD?2-

1B allele 1s 23 bp 1n size, and

(c) regenerating said selected plant cell into a soybean

plant.

9. The method of claim 8, wherein said soybean plant
cells comprise cotyledon cells, and wherein said methods
comprises transforming said cotyledon cells with one or
more vectors encoding said TAL effector endonucleases.

10. The method of claim 8, comprising mtroducing into
said plant cells one or more TAL eflector endonuclease
proteins.

11. The method of claim 8, further comprising culturing
said plant cells to generate plant lines.

12. The method of claim 8, further comprising i1solating
genomic DNA comprising at least a portion of the FAD2-1A
locus or at least a portion of the FAD2-1B locus from said
plant cells.

13. A method for generating a soybean plant comprising
a deletion 1n each FAD2-1A allele and a deletion 1n each
FAD?2-1B allele, wherein the deletion 1n each said FAD2-1B
allele 1s 23 bp 1n size, said method comprising:

34

(a) crossing a first soybean plant comprising a deletion in
at least one FAD2-1A allele and a 23 bp deletion 1n at
least one FAD2-1B allele with a second soybean plant

comprising a deletion in at least one

FAD2-1A allele

d and a 23 bp deletion 1n at least one FAD2-1B allele, to

obtain progeny, wherein said deletion 1n at least one
FAD2-1A allele in said first soybean plant was induced

10

15

by TAL eflector endonucleases targeted to SEQ ID
NOS: 32 and 33, wherein said deletion 1n at least one
FAD2-1B allele 1n said first soybean plant was induced
by TAL eflector endonucleases targeted to SEQ ID
NOS: 32 and 33, wherein said deletion 1n at least one
FAD2-1A allele in said second soybean plant was
induced by TAL eflector endonucleases targeted to

SEQ ID NOS: 32 and 33, and wherein said deletion 1n

at least one FAD2-1B allele i said second soybean

plant was 1nduced by TAL effector endonucleases tar-
geted to SEQ ID NOS: 32 and 33; and

20 deletion 1n each FAD2-1A allele and

allele.

(b) from said progeny a soybean plant that comprises a

each FAD2-1B
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