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METHOD AND APPARATUS FOR
EFFICIENT USE OF GRAPHICS
PROCESSING RESOURCES IN A
VIRTUALIZED EXECUTION
ENVIORNMENT

BACKGROUND

Field of the Invention

This mvention relates generally to the field of computer
processors. More particularly, the invention relates to an
apparatus and method for eflicient use of graphics process-
ing resources 1n a virtualized execution environment.

Description of the Related Art

Current solutions to using graphics processing unit (GPU)
hardware 1n a Hypervisor virtual machine server environ-
ment provide little or no mechanism to efliciently use host
multiple GPU hardware resources. Existing solutions for
using GPUs 1n a server environment do not allow pre-
emptive GPU hardware context switching based on load
balancing algorithms or guest rendering patterns. They also
do not allow the Hypervisor to control the pre-emption
algorithm based on server management software parameters.
The problem 1s that existing solutions do not allow the
Hypervisor software enough control over the submission of
command buflers to multiple host GPUs based on guest
usage patterns or server management soltware. This can
create a situation of underutilization within the available
host GPU domain.

One reason a guest might underutilize a host GPU 1s that
rendering software in any guest has no knowledge of the
host environment. The guest software assumes 1t “owns” the
GPU completely and command buflers sent to the GP
reflect the lack of global or Hypervisor knowledge within
the guest soltware. Rendering soiftware in the guest virtual
machine has no knowledge of host GPU hardware resources
including the number of GPUs available, amount of
memory, number of execution umts, load on the host GPU
engines, rendering or compute load on GPU hardware, or
server rendering activity changes due to command builers
submitted from other guests. The guest OS 1s unaware of
server GPU workloads that contain display output com-
mands, 3D rendering commands, video decode or video
encode, and pixel copy/convert operations. Only the host
GPU hardware and/or kernel mode driver has the informa-
tion necessary to load balance the workloads from guests
and only the Hypervisor software can properly deliver guest
command buflers to the appropriate GPU for specific tasks
like display output or video encode. In addition, there are
varying conditions of activity that cause underutilization or
over commitment of host GPU hardware resources.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description 1n conjunc-
tion with the following drawings, 1n which:

FIG. 1 1s a block diagram of an embodiment of a computer
system with a processor having one or more processor cores
and graphics processors;

FIG. 2 1s a block diagram of one embodiment of a
processor having one or more processor cores, an integrated
memory controller, and an integrated graphics processor;
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FIG. 3 1s a block diagram of one embodiment of a
graphics processor which may be a discreet graphics pro-

cessing unit, or may be graphics processor integrated with a
plurality of processing cores;

FIG. 4 1s a block diagram of an embodiment of a
graphics-processing engine for a graphics processor;

FIG. 5 1s a block diagram of another embodiment of a
graphics processor;

FIG. 6 1s a block diagram of thread execution logic
including an array of processing elements;

FIG. 7 illustrates a graphics processor execution unit
instruction format according to an embodiment;

FIG. 8 1s a block diagram of another embodiment of a
graphics processor which includes a graphics pipeline, a
media pipeline, a display engine, thread execution logic, and
a render output pipeline;

FIG. 9A 1s a block diagram illustrating a graphics pro-
cessor command format according to an embodiment;

FIG. 9B 1s a block diagram illustrating a graphics pro-
cessor command sequence according to an embodiment;

FIG. 10 illustrates exemplary graphics software architec-
ture for a data processing system according to an embodi-
ment,

FIG. 11 1illustrates an exemplary IP core development
system that may be used to manufacture an integrated circuit
to perform operations according to an embodiment;

FIG. 12 illustrates an exemplary system on a chip inte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment;

FIG. 13 illustrates an exemplary graphics processor of a
system on a chip integrated circuit that may be fabricated
using one or more IP cores;

FIG. 14 illustrates an additional exemplary graphics pro-
cessor of a system on a chip integrated circuit that may be
tabricated using one or more IP cores;

FIG. 15 illustrates a virtualized graphics processing sys-
tem on which embodiments of the invention may be imple-
mented;

FIG. 16 1llustrates additional details of the virtualized
graphics processing system including first-in-first-out bui-
fers for queuwing work items;

FIG. 17 1llustrates a FIFO buller containing a plurality of
exemplary meta-commands;

FIG. 18 illustrates one embodiment i which video
encode commands are dynamically routed to a designated
GPU; and

FIG. 19 illustrates one embodiment in which GPU display
commands are submitted to a specitic GPU.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the embodiments of the
invention described below. It will be apparent, however, to
one skilled 1n the art that the embodiments of the invention
may be practiced without some of these specific details. In
other 1nstances, well-known structures and devices are
shown 1n block diagram form to avoid obscuring the under-
lying principles of the embodiments of the mmvention.

Exemplary Graphics Processor Architectures and Data
lypes

System Overview

FIG. 1 1s a block diagram of a processing system 100,
according to an embodiment. In various embodiments the
system 100 includes one or more processors 102 and one or
more graphics processors 108, and may be a single processor
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desktop system, a multiprocessor workstation system, or a
server system having a large number of processors 102 or
processor cores 107. In one embodiment, the system 100 1s
a processing platform incorporated within a system-on-a-
chip (SoC) integrated circuit for use 1n mobile, handheld, or
embedded devices.

An embodiment of system 100 can include, or be incor-
porated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 100 1s a mobile
phone, smart phone, tablet computing device or mobile
Internet device. Data processing system 100 can also
include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 100 1s
a television or set top box device having one or more
processors 102 and a graphical interface generated by one or
more graphics processors 108.

In some embodiments, the one or more processors 102
cach include one or more processor cores 107 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 107 1s configured to process a
specific mstruction set 109. In some embodiments, instruc-
tion set 109 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 107 may each process a different
instruction set 109, which may include 1nstructions to facili-
tate the emulation of other instruction sets. Processor core
107 may also include other processing devices, such a
Digital Signal Processor (DSP).

In some embodiments, the processor 102 includes cache
memory 104. Depending on the architecture, the processor
102 can have a single internal cache or multiple levels of
internal cache. In some embodiments, the cache memory 1s
shared among various components of the processor 102. In
some embodiments, the processor 102 also uses an external
cache (e.g., a Level-3 (L3) cache or Last Level Cache
(LLC)) (not shown), which may be shared among processor
cores 107 using known cache coherency techniques. A
register file 106 1s additionally included 1n processor 102
which may include different types of registers for storing
different types of data (e.g., integer registers, floating point
registers, status registers, and an instruction pointer regis-
ter). Some registers may be general-purpose registers, while
other registers may be specific to the design of the processor
102.

In some embodiments, processor 102 1s coupled with a
processor bus 110 to transmit communication signals such as
address, data, or control signals between processor 102 and
other components in system 100. In one embodiment the
system 100 uses an exemplary ‘hub’ system architecture,
including a memory controller hub 116 and an Input Output
(I/O) controller hub 130. A memory controller hub 116
facilitates communication between a memory device and
other components of system 100, while an I/O Controller
Hub (ICH) 130 provides connections to I/O devices via a
local I/O bus. In one embodiment, the logic of the memory
controller hub 116 1s itegrated within the processor.

Memory device 120 can be a dynamic random access
memory (DRAM) device, a static random access memory
(SRAM) device, flash memory device, phase-change
memory device, or some other memory device having
suitable performance to serve as process memory. In one

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiment the memory device 120 can operate as system
memory for the system 100, to store data 122 and 1instruc-
tions 121 for use when the one or more processors 102
executes an application or process. Memory controller hub
116 also couples with an optional external graphics proces-
sor 112, which may communicate with the one or more
graphics processors 108 in processors 102 to perform graph-
ics and media operations.

In some embodiments, ICH 130 enables peripherals to
connect to memory device 120 and processor 102 via a
high-speed 1I/O bus. The 1/O peripherals include, but are not
limited to, an audio controller 146, a firmware interface 128,
a wireless transceiver 126 (e.g., Wi-F1, Bluetooth), a data
storage device 124 (e.g., hard disk drive, flash memory, etc.),
and a legacy I/O controller 140 for coupling legacy (e.g.,
Personal System 2 (PS/2)) devices to the system. One or
more Universal Serial Bus (USB) controllers 142 connect
iput devices, such as keyboard and mouse 144 combina-
tions. A network controller 134 may also couple with ICH
130. In some embodiments, a high-performance network
controller (not shown) couples with processor bus 110. It
will be appreciated that the system 100 shown 1s exemplary
and not limiting, as other types of data processing systems
that are differently configured may also be used. For
example, the I/O controller hub 130 may be integrated
within the one or more processor 102, or the memory
controller hub 116 and I/O controller hub 130 may be
integrated 1nto a discreet external graphics processor, such
as the external graphics processor 112.

FIG. 2 1s a block diagram of an embodiment of a
processor 200 having one or more processor cores 202A-
202N, an imtegrated memory controller 214, and an 1nte-
grated graphics processor 208. Those elements of FIG. 2
having the same reference numbers (or names) as the
clements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 200 can include additional
cores up to and including additional core 202N represented
by the dashed lined boxes. Each of processor cores 202A-
202N 1ncludes one or more internal cache units 204 A-204N.
In some embodiments each processor core also has access to
one or more shared cached units 206.

The internal cache units 204A-204N and shared cache
umts 206 represent a cache memory hierarchy within the
processor 200. The cache memory hierarchy may include at
least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (L2), Level 3 (LL3), Level 4 (L4),
or other levels of cache, where the highest level of cache
before external memory 1s classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 206 and 204A-204N.

In some embodiments, processor 200 may also include a
set of one or more bus controller units 216 and a system
agent core 210. The one or more bus controller units 216
manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 210 provides management
functionality for the various processor components. In some
embodiments, system agent core 210 includes one or more
integrated memory controllers 214 to manage access to
various external memory devices (not shown).

In some embodiments, one or more of the processor cores
202A-202N 1include support for simultaneous multi-thread-
ing. In such embodiment, the system agent core 210 includes
components for coordinating and operating cores 202A-
202N during multi-threaded processing. System agent core
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210 may additionally include a power control unit (PCU),
which includes logic and components to regulate the power
state of processor cores 202A-202N and graphics processor
208.

In some embodiments, processor 200 additionally
includes graphics processor 208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 208 couples with the set of shared cache units 206,
and the system agent core 210, including the one or more
integrated memory controllers 214. In some embodiments, a
display controller 211 1s coupled with the graphics processor
208 to drive graphics processor output to one or more
coupled displays. In some embodiments, display controller
211 may be a separate module coupled with the graphics
processor via at least one interconnect, or may be integrated
within the graphics processor 208 or system agent core 210.

In some embodiments, a ring based interconnect unit 212
1s used to couple the internal components of the processor
200. However, an alternative interconnect unit may be used,
such as a point-to-point interconnect, a switched intercon-
nect, or other techniques, imncluding techniques well known
in the art. In some embodiments, graphics processor 208
couples with the ring interconnect 212 via an IO link 213.

The exemplary I/O link 213 represents at least one of
multiple varieties of I/O interconnects, icluding an on
package 1I/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 218, such as an eDRAM
module. In some embodiments, each of the processor cores
202A-202N and graphics processor 208 use embedded
memory modules 218 as a shared Last Level Cache.

In some embodiments, processor cores 202A-202N are
homogenous cores executing the same 1nstruction set archi-
tecture. In another embodiment, processor cores 202A-202N
are heterogeneous in terms ol instruction set architecture
(ISA), where one or more of processor cores 202A-202N
execute a first instruction set, while at least one of the other
cores executes a subset of the first instruction set or a
different istruction set. In one embodiment processor cores
202A-202N are heterogeneous in terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. Additionally, processor
200 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, 1n addi-
tion to other components.

FIG. 3 1s a block diagram of a graphics processor 300,
which may be a discrete graphics processing unit, or may be
a graphics processor itegrated with a plurality of processing
cores. In some embodiments, the graphics processor com-
municates via a memory mapped I/O interface to registers
on the graphics processor and with commands placed into
the processor memory. In some embodiments, graphics
processor 300 includes a memory interface 314 to access
memory. Memory interface 314 can be an interface to local
memory, one or more internal caches, one or more shared
external caches, and/or to system memory.

In some embodiments, graphics processor 300 also
includes a display controller 302 to drive display output data
to a display device 320. Display controller 302 includes
hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface
clements. In some embodiments, graphics processor 300
includes a video codec engine 306 to encode, decode, or
transcode media to, from, or between one or more media
encoding formats, including, but not limited to Moving
Picture Experts Group (MPEG) formats such as MPEG-2,
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Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421 M/VC-1, and Jont
Photographic Experts Group (JPEG) formats such as JPEG,
and Motion JPEG (MJPEG) formats.

In some embodiments, graphics processor 300 includes a
block 1mage transfer (BLIT) engine 304 to perform two-
dimensional (2D) rasterizer operations including, {for
example, bit-boundary block transfers. However, in one
embodiment, 2D graphics operations are performed using
one or more components ol graphics processing engine
(GPE) 310. In some embodiments, GPE 310 1s a compute
engine for performing graphics operations, including three-
dimensional (3D) graphics operations and media operations.

In some embodiments, GPE 310 includes a 3D pipeline
312 for performing 3D operations, such as rendering three-
dimensional 1images and scenes using processing functions
that act upon 3D primitive shapes (e.g., rectangle, triangle,
etc.). The 3D pipeline 312 includes programmable and fixed
function elements that perform various tasks within the
clement and/or spawn execution threads to a 3D/Media
sub-system 3135. While 3D pipeline 312 can be used to
perform media operations, an embodiment of GPE 310 also
includes a media pipeline 316 that 1s specifically used to
perform media operations, such as video post-processing
and 1mage enhancement.

In some embodiments, media pipeline 316 includes fixed
function or programmable logic units to perform one or
more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
cration in place of, or on behalf of video codec engine 306.
In some embodiments, media pipeline 316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 315. The spawned threads
perform computations for the media operations on one or
more graphics execution umts included mm 3D/Media sub-
system 313.

In some embodiments, 3D/Media subsystem 313 includes
logic for executing threads spawned by 3D pipeline 312 and
media pipeline 316. In one embodiment, the pipelines send
thread execution requests to 3D/Media subsystem 315,
which 1includes thread dispatch logic for arbitrating and
dispatching the various requests to available thread execu-
tion resources. The execution resources mclude an array of
graphics execution umts to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 3135
includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes
shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

Graphics Processing Engine

FIG. 4 1s a block diagram of a graphics processing engine
410 of a graphics processor i1n accordance with some
embodiments. In one embodiment, the graphics processing
engine (GPE) 410 1s a version of the GPE 310 shown 1n FIG.
3. Elements of FIG. 4 having the same reference numbers (or
names) as the elements of any other figure herein can operate
or function 1 any manner similar to that described else-
where herein, but are not limited to such. For example, the
3D pipeline 312 and media pipeline 316 of FIG. 3 are
illustrated. The media pipeline 316 1s optional 1 some
embodiments of the GPE 410 and may not be explicitly
included within the GPE 410. For example and in at least
one embodiment, a separate media and/or 1mage processor

1s coupled to the GPE 410.
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In some embodiments, GPE 410 couples with or includes
a command streamer 403, which provides a command
stream to the 3D pipeline 312 and/or media pipelines 316. In
some embodiments, command streamer 403 1s coupled with

memory, which can be system memory, or one or more of 53

internal cache memory and shared cache memory. In some
embodiments, command streamer 403 receives commands
from the memory and sends the commands to 3D pipeline
312 and/or media pipeline 316. The commands are direc-
tives fetched from a ring builer, which stores commands for
the 3D pipeline 312 and media pipeline 316. In one embodi-
ment, the ring bufler can additionally include batch com-
mand builers storing batches of multiple commands. The
commands for the 3D pipeline 312 can also include refer-
ences to data stored 1n memory, such as but not limited to
vertex and geometry data for the 3D pipeline 312 and/or
image data and memory objects for the media pipeline 316.
The 3D pipeline 312 and media pipeline 316 process the
commands and data by performing operations via logic
within the respective pipelines or by dispatching one or
more execution threads to a graphics core array 414.

In various embodiments the 3D pipeline 312 can execute
one or more shader programs, such as vertex shaders,
geometry shaders, pixel shaders, fragment shaders, compute
shaders, or other shader programs, by processing the instruc-
tions and dispatching execution threads to the graphics core
array 414. The graphics core array 414 provides a unified
block of execution resources. Multi-purpose execution logic
(e.g., execution units) within the graphic core array 414
includes support for various 3D API shader languages and
can execute multiple simultaneous execution threads asso-
ciated with multiple shaders.

In some embodiments the graphics core array 414 also
includes execution logic to perform media functions, such as
video and/or image processing. In one embodiment, the
execution units additionally include general-purpose logic
that 1s programmable to perform parallel general purpose
computational operations, 1n addition to graphics processing
operations. The general purpose logic can perform process-
ing operations in parallel or 1n conjunction with general
purpose logic within the processor core(s) 107 of FIG. 1 or
core 202A-202N as 1 FIG. 2.

Output data generated by threads executing on the graph-
ics core array 414 can output data to memory in a unified
return bufler (URB) 418. The URB 418 can store data for
multiple threads. In some embodiments the URB 418 may
be used to send data between different threads executing on
the graphics core array 414. In some embodiments the URB
418 may additionally be used for synchromization between
threads on the graphics core array and fixed function logic
within the shared function logic 420.

In some embodiments, graphics core array 414 1s scalable,
such that the array includes a variable number of graphics
cores, each having a variable number of execution units
based on the target power and performance level of GPE
410. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

The graphics core array 414 couples with shared function
logic 420 that includes multiple resources that are shared
between the graphics cores 1n the graphics core array. The
shared functions within the shared function logic 420 are
hardware logic units that provide specialized supplemental
functionality to the graphics core array 414. In various
embodiments, shared function logic 420 includes but 1s not
limited to sampler 421, math 422, and mter-thread commu-
nication (ITC) 423 logic. Additionally, some embodiments
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implement one or more cache(s) 425 within the shared
function logic 420. A shared function 1s implemented where
the demand for a given specialized function 1s 1nsuflicient
for inclusion within the graphics core array 414. Instead a
single instantiation of that specialized function i1s 1mple-
mented as a stand-alone entity in the shared function logic
420 and shared among the execution resources within the
graphics core array 414. The precise set of functions that are
shared between the graphics core array 414 and included

within the graphics core array 414 varies between embodi-
ments.

FIG. 5 1s a block diagram of another embodiment of a
graphics processor 500. Elements of FIG. 5 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, graphics processor 300 includes a
ring interconnect 502, a pipeline front-end 504, a media
engine 537, and graphics cores 580A-580N. In some
embodiments, ring interconnect 502 couples the graphics
processor to other processing units, including other graphics
Processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor 1s one of many
processors itegrated within a multi-core processing system.

In some embodiments, graphics processor 500 receives
batches of commands via ring interconnect 502. The incom-
ing commands are interpreted by a command streamer 503
in the pipeline front-end 504. In some embodiments, graph-
ics processor 300 includes scalable execution logic to per-
form 3D geometry processing and media processing via the
graphics core(s) 580A-580N. For 3D geometry processing
commands, command streamer 503 supplies commands to
geometry pipeline 536. For at least some media processing
commands, command streamer 503 supplies the commands
to a video front end 534, which couples with a media engine
537. In some embodiments, media engine 337 includes a
Video Quality Engine (VQE) 330 for video and image
post-processing and a multi-format encode/decode (MEX)
533 engine to provide hardware-accelerated media data
encode and decode. In some embodiments, geometry pipe-
line 536 and media engine 537 each generate execution
threads for the thread execution resources provided by at
least one graphics core S80A.

In some embodiments, graphics processor 500 includes
scalable thread execution resources featuring modular cores
580A-580N (sometimes referred to as core slices), each
having multiple sub-cores 550A-550N, 560A-560N (some-
times referred to as core sub-slices). In some embodiments,
graphics processor 300 can have any number of graphics
cores 380A through 580N. In some embodiments, graphics
processor 300 includes a graphics core 580A having at least
a first sub-core 550A and a second sub-core 360A. In other
embodiments, the graphics processor 1s a low power pro-
cessor with a single sub-core (e.g., 550A). In some embodi-
ments, graphics processor 500 includes multiple graphics
cores S80A-580N, each including a set of first sub-cores
550A-550N and a set of second sub-cores 560A-560N. Each
sub-core 1n the set of first sub-cores 550 A-550N 1ncludes at
least a first set of execution units 5S52A-552N and media/
texture samplers 354A-554N. Each sub-core 1n the set of
second sub-cores 560A-560N includes at least a second set
of execution units 362A-562N and samplers 364A-564N. In
some embodiments, each sub-core 550A-550N, 560A-560N
shares a set of shared resources 570A-570N. In some
embodiments, the shared resources include shared cache
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memory and pixel operation logic. Other shared resources
may also be included i the various embodiments of the
graphics processor.

Execution Units

FI1G. 6 illustrates thread execution logic 600 including an
array ol processing elements employed 1 some embodi-
ments of a GPE. Elements of FIG. 6 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function 1n any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, thread execution logic 600
includes a shader processor 602, a thread dispatcher 604,
instruction cache 606, a scalable execution unit array includ-
ing a plurality of execution units 608 A-608N, a sampler 610,
a data cache 612, and a data port 614. In one embodiment the
scalable execution unit array can dynamically scale by
enabling or disabling one or more execution units (e.g., any
of execution unit 608A, 6088, 608C, 608D, through 608N-1
and 608N) based on the computational requirements of a
workload. In one embodiment the included components are
interconnected via an interconnect fabric that links to each
of the components. In some embodiments, thread execution
logic 600 includes one or more connections to memory, such
as system memory or cache memory, through one or more
ol instruction cache 606, data port 614, sampler 610, and
execution units 608A-608N. In some embodiments, each
execution unit (e.g. 608A) 1s a stand-alone programmable
general purpose computational unit that 1s capable of execut-
ing multiple simultaneous hardware threads while process-
ing multiple data elements 1n parallel for each thread. In
vartous embodiments, the array of execution units 608A-
608N 1is scalable to include any number individual execution
units.

In some embodiments, the execution units 608A-608N
are primarily used to execute shader programs. A shader
processor 602 can process the various shader programs and
dispatch execution threads associated with the shader pro-
grams via a thread dispatcher 604. In one embodiment the
thread dispatcher includes logic to arbitrate thread 1nitiation
requests from the graphics and media pipelines and instan-
tiate the requested threads on one or more execution unit in
the execution units 608A-608N. For example, the geometry
pipeline (e.g., 336 of FIG. 5) can dispatch vertex, tessella-
tion, or geometry shaders to the thread execution logic 600
(FIG. 6) for processing. In some embodiments, thread dis-
patcher 604 can also process runtime thread spawning
requests from the executing shader programs.

In some embodiments, the execution units 608A-608N
support an instruction set that includes native support for
many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 608A-608N 1s capable of
multi-issue single mstruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an eflicient execu-
tion environment 1n the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution 1s multi-issue per clock
to pipelines capable of iteger, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
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neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 608 A-608N causes a waiting thread to sleep
until the requested data has been returned. While the waiting
thread 1s sleeping, hardware resources may be devoted to
processing other threads. For example, during a delay asso-
ciated with a vertex shader operation, an execution unit can
perform operations for a pixel shader, fragment shader, or
another type of shader program, including a different vertex
shader.

Each execution unit in execution units 608 A-608N oper-
ates on arrays of data elements. The number of data elements
1s the “execution size,” or the number of channels for the
instruction. An execution channel 1s a logical unit of execu-
tion for data element access, masking, and flow control
within mnstructions. The number of channels may be inde-
pendent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units
608A-608N support integer and floating-point data types.

The execution unit instruction set includes SIMD instruc-
tions. The various data elements can be stored as a packed
data type 1n a register and the execution unit will process the
various elements based on the data size of the elements. For
example, when operating on a 256-bit wide vector, the 256
bits of the vector are stored in a register and the execution
unit operates on the vector as four separate 64-bit packed
data elements (Quad-Word (QW) size data elements), eight
separate 32-bit packed data elements (Double Word (DW)
size data elements), sixteen separate 16-bit packed data
clements (Word (W) size data elements), or thirty-two
separate 8-bit data elements (byte (B) size data elements).
However, different vector widths and register sizes are
possible.

One or more mnternal instruction caches (e.g., 606) are
included 1n the thread execution logic 600 to cache thread
instructions for the execution units. In some embodiments,
one or more data caches (e.g., 612) are included to cache
thread data during thread execution. In some embodiments,
a sampler 610 1s included to provide texture sampling for 3D
operations and media sampling for media operations. In
some embodiments, sampler 610 includes specialized tex-
ture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

During execution, the graphics and media pipelines send
thread 1mitiation requests to thread execution logic 600 via
thread spawning and dispatch logic. Once a group of geo-
metric objects has been processed and rasterized into pixel
data, pixel processor logic (e.g., pixel shader logic, fragment
shader logic, etc.) within the shader processor 602 1s
invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buflers,
depth buflers, stencil builers, etc.). In some embodiments, a
pixel shader or fragment shader calculates the values of the
various vertex attributes that are to be interpolated across the
rasterized object. In some embodiments, pixel processor
logic within the shader processor 602 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. To execute the shader program,
the shader processor 602 dispatches threads to an execution
unit (e.g., 608A) via thread dispatcher 604. In some embodi-
ments, pixel shader 602 uses texture sampling logic 1n the
sampler 610 to access texture data in texture maps stored 1n
memory. Arithmetic operations on the texture data and the
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input geometry data compute pixel color data for each
geometric fragment, or discards one or more pixels from
turther processing.

In some embodiments, the data port 614 provides a
memory access mechanism for the thread execution logic
600 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 614 includes or couples to one or more cache
memories (e.g., data cache 612) to cache data for memory
access via the data port.

FI1G. 7 1s a block diagram 1llustrating a graphics processor
instruction formats 700 according to some embodiments. In
one or more embodiment, the graphics processor execution
units support an mstruction set having instructions i mul-
tiple formats. The solid lined boxes 1llustrate the compo-
nents that are generally included in an execution unit
istruction, while the dashed lines include components that
are optional or that are only included 1n a sub-set of the
istructions. In some embodiments, instruction format 700
described and illustrated are macro-instructions, in that they
are instructions supplied to the execution unit, as opposed to
micro-operations resulting from instruction decode once the
instruction 1s processed.

In some embodiments, the graphics processor execution
units natively support instructions m a 128-bit instruction
format 710. A 64-bit compacted instruction format 730 1s
available for some 1nstructions based on the selected mstruc-
tion, instruction options, and number of operands. The
native 128-bit mstruction format 710 provides access to all
instruction options, while some options and operations are
restricted 1n the 64-bit instruction format 730. The native
instructions available 1n the 64-bit instruction format 730
vary by embodiment. In some embodiments, the instruction
1s compacted 1n part using a set of index values 1 an 1ndex
field 713. The execution unit hardware references a set of
compaction tables based on the index values and uses the
compaction table outputs to reconstruct a native instruction
in the 128-bit instruction format 710.

For each format, instruction opcode 712 defines the
operation that the execution unit 1s to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 714 enables conftrol over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit mstruction format 710 an exec-size field 716 limaits
the number of data channels that will be executed in parallel.
In some embodiments, exec-size field 716 1s not available
for use 1n the 64-bit compact instruction format 730.

Some execution unit mstructions have up to three oper-
ands mcluding two source operands, src0 720, srcl 722, and
one destination 718. In some embodiments, the execution
units support dual destination instructions, where one of the
destinations 1s 1mplied. Data manipulation instructions can
have a third source operand (e.g., SRC2 724), where the
istruction opcode 712 determines the number of source
operands. An 1nstruction’s last source operand can be an
immediate (e.g., hard-coded) value passed with the mstruc-
tion.

In some embodiments, the 128-bit instruction format 710
includes an access/address mode field 726 specifying, for
example, whether direct register addressing mode or indirect
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register addressing mode 1s used. When direct register
addressing mode 1s used, the register address of one or more
operands 1s directly provided by bits in the instruction.

In some embodiments, the 128-bit instruction format 710
includes an access/address mode field 726, which specifies
an address mode and/or an access mode for the istruction.
In one embodiment the access mode 1s used to define a data
access alignment for the instruction. Some embodiments
support access modes including a 16-byte aligned access
mode and a 1-byte aligned access mode, where the byte
alignment of the access mode determines the access align-
ment of the instruction operands. For example, when 1n a
first mode, the instruction may use byte-aligned addressing
for source and destination operands and when 1n a second
mode, the mnstruction may use 16-byte-aligned addressing
for all source and destination operands.

In one embodiment, the address mode portion of the
access/address mode field 726 determines whether the
istruction 1s to use direct or indirect addressing. When
direct register addressing mode 1s used bits 1n the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode 1s used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field 1n the mnstruction.

In some embodiments instructions are grouped based on
opcode 712 bit-fields to simplity Opcode decode 740. For an
8-bit opcode, bits 4, 5, and 6 allow the execution unit to
determine the type of opcode. The precise opcode grouping
shown 1s merely an example. In some embodiments, a move
and logic opcode group 742 includes data movement and
logic 1nstructions (e.g., move (mov), compare (cmp)). In
some embodiments, move and logic group 742 shares the
five most significant bits (MSB), where move (mov) mstruc-
tions are 1n the form of 0000xxxxb and logic 1nstructions are
in the form of 0001xxxxb. A tlow control mstruction group
744 (e.g., call, jump (ymp)) includes 1nstructions 1n the form
of 0010xxxxb (e.g., 0x20). A miscellaneous instruction
group 746 includes a mix of instructions, including synchro-
nization instructions (e.g., wait, send) in the form of
0011xxxxb (e.g., 0x30). A parallel math instruction group
748 includes component-wise arithmetic instructions (e.g.,
add, multiply (mul)) 1n the form of 0100xxxxb (e.g., 0x40).
The parallel math group 748 performs the arithmetic opera-
tions 1n parallel across data channels. The vector math group
750 1ncludes arithmetic mstructions (e.g., dp4) in the form
of 0101xxxxb (e.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector oper-
ands.

Graphics Pipeline

FIG. 8 1s a block diagram of another embodiment of a
graphics processor 800. Elements of FIG. 8 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, graphics processor 800 includes a
graphics pipeline 820, a media pipeline 830, a display
engine 840, thread execution logic 850, and a render output
pipeline 870. In some embodiments, graphics processor 800
1s a graphics processor within a multi-core processing sys-
tem that includes one or more general purpose processing
cores. The graphics processor 1s controlled by register writes
to one or more control registers (not shown) or via com-
mands 1ssued to graphics processor 800 via a ring intercon-
nect 802. In some embodiments, ring interconnect 802
couples graphics processor 800 to other processing compo-
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nents, such as other graphics processors or general-purpose
processors. Commands from ring interconnect 802 are inter-
preted by a command streamer 803, which supplies mnstruc-
tions to individual components of graphics pipeline 820 or
media pipeline 830.

In some embodiments, command streamer 803 directs the
operation of a vertex fetcher 805 that reads vertex data from
memory and executes vertex-processing commands pro-
vided by command streamer 803. In some embodiments,
vertex fetcher 805 provides vertex data to a vertex shader
807, which performs coordinate space transformation and
lighting operations to each vertex. In some embodiments,
vertex fetcher 805 and vertex shader 807 execute vertex-
processing instructions by dispatching execution threads to
execution units 852A-852B via a thread dispatcher 831.

In some embodiments, execution units 852A-852B are an
array ol vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 852A-852B have an attached L1
cache 851 that 1s specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that 1s partitioned to
contain data and instructions in different partitions.

In some embodiments, graphics pipeline 820 includes
tessellation components to perform hardware-accelerated
tessellation of 3D objects. In some embodiments, a pro-
grammable hull shader 811 configures the tessellation opera-
tions. A programmable domain shader 817 provides back-
end evaluation of tessellation output. A tessellator 813
operates at the direction of hull shader 811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that 1s provided

as mput to graphics pipeline 820. In some embodiments, 1f
tessellation 1s not used, tessellation components (e.g., hull
shader 811, tessellator 813, and domain shader 817) can be
bypassed.

In some embodiments, complete geometric objects can be
processed by a geometry shader 819 via one or more threads
dispatched to execution units 852A-852B, or can proceed
directly to the clipper 829. In some embodiments, the
geometry shader operates on entire geometric objects, rather
than vertices or patches of vertices as in previous stages of
the graphics pipeline. If the tessellation 1s disabled the
geometry shader 819 receives mput from the vertex shader
807. In some embodiments, geometry shader 819 is pro-
grammable by a geometry shader program to perform geom-
etry tessellation if the tessellation umts are disabled.

Belore rasterization, a clipper 829 processes vertex data.
The clipper 829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 873 1n the render output pipeline 870 dispatches
pixel shaders to convert the geometric objects mto their per
pixel representations. In some embodiments, pixel shader
logic 1s 1ncluded 1n thread execution logic 850. In some
embodiments, an application can bypass the rasterizer and
depth test component 873 and access un-rasterized vertex
data via a stream out unit 823.

The graphics processor 800 has an interconnect bus,
interconnect fabric, or some other interconnect mechanism
that allows data and message passing amongst the major
components of the processor. In some embodiments, execu-
tion units 852A-852B and associated cache(s) 851, texture
and media sampler 854, and texture/sampler cache 858
interconnect via a data port 856 to perform memory access
and communicate with render output pipeline components of
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the processor. In some embodiments, sampler 854, caches
851, 858 and execution units 852A-852B each have separate
memory access paths.

In some embodiments, render output pipeline 870 con-
tains a rasterizer and depth test component 873 that converts
vertex-based objects mnto an associated pixel-based repre-
sentation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
878 and depth cache 879 are also available 1n some embodi-
ments. A pixel operations component 877 performs pixel-
based operations on the data, though 1n some 1nstances, pixel
operations associated with 2D operations (e.g. bit block
image transiers with blending) are performed by the 2D
engine 841, or substituted at display time by the display
controller 843 using overlay display planes. In some
embodiments, a shared L3 cache 875 1s available to all
graphics components, allowing the sharing of data without
the use of main system memory.

In some embodiments, graphics processor media pipeline
830 includes a media engine 837 and a video front end 834.
In some embodiments, video front end 834 receives pipeline
commands from the command streamer 803. In some
embodiments, media pipeline 830 includes a separate com-
mand streamer. In some embodiments, video front-end 834
processes media commands before sending the command to
the media engine 837. In some embodiments, media engine
837 includes thread spawning functionality to spawn threads
for dispatch to thread execution logic 850 via thread dis-
patcher 831.

In some embodiments, graphics processor 800 includes a
display engine 840. In some embodiments, display engine
840 1s external to processor 800 and couples with the
graphics processor via the ring interconnect 802, or some
other interconnect bus or fabric. In some embodiments,
display engine 840 includes a 2D engine 841 and a display
controller 843. In some embodiments, display engine 840
contains special purpose logic capable of operating inde-
pendently of the 3D pipeline. In some embodiments, display
controller 843 couples with a display device (not shown),
which may be a system integrated display device, as 1n a
laptop computer, or an external display device attached via
a display device connector.

In some embodiments, graphics pipeline 820 and media
pipeline 830 are configurable to perform operations based on
multiple graphics and media programming interfaces and are
not specific to any one application programming interface
(API). In some embodiments, driver software for the graph-
ics processor translates API calls that are specific to a
particular graphics or media library into commands that can
be processed by the graphics processor. In some embodi-
ments, support 1s provided for the Open Graphics Library
(OpenGL), Open Computing Language (OpenCL), and/or
Vulkan graphics and compute API, all from the Khronos
Group. In some embodiments, support may also be provided
for the Direct3D library from the Microsoit Corporation. In
some embodiments, a combination of these libraries may be
supported. Support may also be provided for the Open
Source Computer Vision Library (OpenCV). A future API
with a compatible 3D pipeline would also be supported if a
mapping can be made from the pipeline of the future API to
the pipeline of the graphics processor.

Graphics Pipeline Programming,

FIG. 9A 1s a block diagram illustrating a graphics pro-
cessor command format 900 according to some embodi-
ments. FIG. 9B 1s a block diagram illustrating a graphics
processor command sequence 910 according to an embodi-
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ment. The solid lined boxes 1 FIG. 9A illustrate the com-
ponents that are generally 1included 1n a graphics command
while the dashed lines include components that are optional
or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 900 of FIG. 9A includes data fields to identify a target
client 902 of the command, a command operation code
(opcode) 904, and the relevant data 906 for the command. A
sub-opcode 905 and a command size 908 are also included
in some commands.

In some embodiments, client 902 specifies the client unit
of the graphics device that processes the command data. In
some embodiments, a graphics processor command parser
examines the client field of each command to condition the
turther processing of the command and route the command
data to the appropnate client unit. In some embodiments, the
graphics processor client units include a memory interface
unit, a render unit, a 2D unit, a 3D unit, and a media unit.
Each client unit has a corresponding processing pipeline that
processes the commands. Once the command 1s received by
the client unit, the client unit reads the opcode 904 and, i
present, sub-opcode 905 to determine the operation to per-
form. The client unit performs the command using informa-
tion 1 data field 906. For some commands an explicit
command size 908 1s expected to specily the size of the
command. In some embodiments, the command parser auto-
matically determines the size of at least some of the com-
mands based on the command opcode. In some embodi-
ments commands are aligned via multiples of a double word.

The flow diagram 1n FIG. 9B shows an exemplary graph-
ics processor command sequence 910. In some embodi-
ments, software or firmware of a data processing system that
features an embodiment of a graphics processor uses a
version of the command sequence shown to set up, execute,
and terminate a set of graphics operations. A sample com-
mand sequence 1s shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be 1ssued as batch of commands 1n a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

In some embodiments, the graphics processor command
sequence 910 may begin with a pipeline flush command 912
to cause any active graphics pipeline to complete the cur-
rently pending commands for the pipeline. In some embodi-
ments, the 3D pipeline 922 and the media pipeline 924 do
not operate concurrently. The pipeline flush 1s performed to
cause the active graphics pipeline to complete any pending
commands. In response to a pipeline tlush, the command
parser for the graphics processor will pause command
processing until the active drawing engines complete pend-
ing operations and the relevant read caches are invalidated.
Optionally, any data in the render cache that 1s marked
‘dirty’ can be flushed to memory. In some embodiments,
pipeline flush command 912 can be used for pipeline syn-
chronization or belfore placing the graphics processor 1nto a
low power state.

In some embodiments, a pipeline select command 913 1s
used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 913 1s required
only once within an execution context before 1ssuing pipe-
line commands unless the context 1s to 1ssue commands for
both pipelines. In some embodiments, a pipeline flush
command 912 i1s required immediately before a pipeline
switch via the pipeline select command 913.
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In some embodiments, a pipeline control command 914
configures a graphics pipeline for operation and 1s used to
program the 3D pipeline 922 and the media pipeline 924. In
some embodiments, pipeline control command 914 config-
ures the pipeline state for the active pipeline. In one embodi-
ment, the pipeline control command 914 1s used for pipeline
synchronization and to clear data from one or more cache
memories within the active pipeline belore processing a
batch of commands.

In some embodiments, commands for the return bufler
state 916 are used to configure a set of return buflers for the
respective pipelines to write data. Some pipeline operations
require the allocation, selection, or configuration of one or
more return buflers into which the operations write inter-
mediate data during processing. In some embodiments, the
graphics processor also uses one or more return builers to
store output data and to perform cross thread communica-
tion. In some embodiments, configuring the return bufler
state 916 includes selecting the size and number of return
buflers to use for a set of pipeline operations.

The remaining commands 1 the command sequence
differ based on the active pipeline for operations. Based on
a pipeline determination 920, the command sequence 1is
tailored to the 3D pipeline 922 beginning with the 3D
pipeline state 930 or the media pipeline 924 beginming at the
media pipeline state 940.

The commands to configure the 3D pipeline state 930
include 3D state setting commands for vertex buller state,
vertex element state, constant color state, depth builer state,
and other state variables that are to be configured before 3D
primitive commands are processed. The values of these
commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 930 commands are also able to selectively disable or
bypass certain pipeline elements 11 those elements will not
be used.

In some embodiments, 3D primitive 932 command 1s
used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 932
command are forwarded to the vertex fetch function 1n the
graphics pipeline. The vertex fetch function uses the 3D
primitive 932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buflers. In some embodiments, 3D primitive 932
command 1s used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics
processor execution units.

In some embodiments, 3D pipeline 922 1s triggered via an
execute 934 command or event. In some embodiments, a
register write triggers command execution. In some embodi-
ments execution 1s triggered via a ‘go’ or ‘kick” command in
the command sequence. In one embodiment, command
execution 1s triggered using a pipeline synchronization com-
mand to flush the command sequence through the graphics
pipeline. The 3D pipeline will perform geometry processing
for the 3D primitives. Once operations are complete, the
resulting geometric objects are rasterized and the pixel
engine colors the resulting pixels. Additional commands to
control pixel shading and pixel back end operations may
also be included for those operations.

In some embodiments, the graphics processor command
sequence 910 follows the media pipeline 924 path when
performing media operations. In general, the specific use
and manner of programming for the media pipeline 924
depends on the media or compute operations to be per-
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formed. Specific media decode operations may be ofifloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed 1n whole or 1n part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor 1s used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

In some embodiments, media pipeline 924 1s configured
in a similar manner as the 3D pipeline 922. A set of
commands to configure the media pipeline state 940 are
dispatched or placed into a command queue before the
media object commands 942. In some embodiments, com-
mands for the media pipeline state 940 include data to
configure the media pipeline elements that will be used to
process the media objects. This 1includes data to configure
the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 940 also
support the use of one or more pointers to “indirect” state
clements that contain a batch of state settings.

In some embodiments, media object commands 942 sup-
ply pointers to media objects for processing by the media
pipeline. The media objects imnclude memory bullers con-
taining video data to be processed. In some embodiments, all
media pipeline states must be valid before 1ssuing a media
object command 942. Once the pipeline state 1s configured
and media object commands 942 are queued, the media
pipeline 924 1s triggered via an execute command 944 or an
equivalent execute event (e.g., register write). Output from
media pipeline 924 may then be post processed by opera-
tions provided by the 3D pipeline 922 or the media pipeline
924. In some embodiments, GPGPU operations are config-
ured and executed 1n a similar manner as media operations.

Graphics Software Architecture

FI1G. 10 1llustrates exemplary graphics software architec-
ture for a data processing system 1000 according to some
embodiments. In some embodiments, software architecture
includes a 3D graphics application 1010, an operating sys-
tem 1020, and at least one processor 1030. In some embodi-
ments, processor 1030 includes a graphics processor 1032
and one or more general-purpose processor core(s) 1034.
The graphics application 1010 and operating system 1020
cach execute 1n the system memory 1050 of the data
processing system.

In some embodiments, 3D graphics application 1010
contains one or more shader programs including shader
instructions 1012. The shader language instructions may be
in a high-level shader language, such as the High Level
Shader Language (HLSL) or the OpenGL Shader Language
(GLSL). The application also includes executable instruc-
tions 1014 1n a machine language suitable for execution by
the general-purpose processor core 1034. The application
also mcludes graphics objects 1016 defined by vertex data.

In some embodiments, operating system 1020 1s a Micro-
solt® Windows® operating system Ifrom the Microsoit
Corporation, a proprictary UNIX-like operating system, or
an open source UNIX-like operating system using a variant

of the Linux kernel. The operating system 1020 can support
a graphics API 1022 such as the Direct3D API, the OpenGL

API, or the Vulkan API. When the Direct3D API 1s 1n use,
the operating system 1020 uses a front-end shader compiler
1024 to compile any shader mstructions 1012 1n HLSL 1nto
a lower-level shader language. The compilation may be a
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just-in-time (JIT) compilation or the application can perform
shader pre-compilation. In some embodiments, high-level
shaders are compiled into low-level shaders during the
compilation of the 3D graphics application 1010. In some
embodiments, the shader instructions 1012 are provided 1n

an mtermediate form, such as a version of the Standard
Portable Intermediate Representation (SPIR) used by the
Vulkan API.

In some embodiments, user mode graphics driver 1026
contains a back-end shader compiler 1027 to convert the
shader instructions 1012 into a hardware specific represen-
tation. When the OpenGL API is 1n use, shader instructions
1012 1n the GLSL high-level language are passed to a user
mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operat-
ing system kernel mode functions 1028 to communicate
with a kernel mode graphics driver 1029. In some embodi-
ments, kernel mode graphics driver 1029 communicates
with graphics processor 1032 to dispatch commands and
instructions.

IP Core Implementations

One or more aspects of at least one embodiment may be
implemented by representative code stored on a machine-
readable medium which represents and/or defines logic
within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the mstructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.

FIG. 11 1s a block diagram 1llustrating an IP core devel-
opment system 1100 that may be used to manufacture an
integrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated mnto a larger design or used to construct an
entire mtegrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a software simulation 1110
of an IP core design 1n a high level programming language
(e.g., C/C++). The software simulation 1110 can be used to
design, test, and verity the behavior of the IP core using a
simulation model 1112. The simulation model 1112 may
include functional, behavioral, and/or timing simulations. A
register transier level (RTL) design 11135 can then be created
or synthesized from the simulation model 1112. The RTL
design 11135 1s an abstraction of the behavior of the inte-
grated circuit that models the tlow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 1115, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

The RTL design 1115 or equivalent may be further
synthesized by the design facility into a hardware model
1120, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verity the IP
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core design. The IP core design can be stored for delivery to
a 3rd party fabrication facility 1165 using non-volatile
memory 1140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 1150 or wireless connection 1160. The fabrica-
tion facility 1165 may then fabricate an integrated circuit
that 1s based at least in part on the IP core design. The
tabricated integrated circuit can be configured to perform
operations 1n accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

FIGS. 12-14 illustrate exemplary integrated circuits and
associated graphics processors that may be fabricated using
one or more IP cores, according to various embodiments
described herein. In addition to what 1s 1llustrated, other
logic and circuits may be included, including additional
graphics processors/cores, peripheral interface controllers,
or general purpose processor cores.

FIG. 12 1s a block diagram illustrating an exemplary
system on a chip integrated circuit 1200 that may be
tabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 1200 includes
one or more application processor(s) 1205 (e.g., CPUs), at
least one graphics processor 1210, and may additionally
include an 1mage processor 1215 and/or a video processor
1220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 1200

includes peripheral or bus logic including a USB controller
1225, UART controller 1230, an SPI/SDIO controller 1235,

and an 12S5/12C controller 1240. Additionally, the integrated
circuit can include a display device 1245 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 1250 and a mobile industry processor interface
(MIPI) display interface 12355. Storage may be provided by
a flash memory subsystem 1260 including flash memory and
a tlash memory controller. Memory interface may be pro-
vided via a memory controller 1263 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 1270.

FIG. 13 1s a block diagram illustrating an exemplary
graphics processor 1310 of a system on a chip integrated
circuit that may be fabricated using one or more IP cores,
according to an embodiment. Graphics processor 1310 can
be a vaniant of the graphics processor 1210 of FIG. 12.
Graphics processor 1310 includes a vertex processor 13035
and one or more fragment processor(s) 1315A1315N (e.g.,
1315A, 1315B, 1315C, 1315D, through 1315N-1, and
1315N). Graphics processor 1310 can execute different
shader programs via separate logic, such that the vertex
processor 1305 1s optimized to execute operations for vertex
shader programs, while the one or more {fragment
processor(s) 1315A-1315N execute fragment (e.g., pixel)
shading operations for fragment or pixel shader programs.
The vertex processor 1305 performs the vertex processing
stage of the 3D graphics pipeline and generates primitives
and vertex data. The fragment processor(s) 1315A-1315N
use the primitive and vertex data generated by the vertex
processor 1305 to produce a framebutler that 1s displayed on
a display device. In one embodiment, the Ifragment
processor(s) 1315A-1315N are optimized to execute frag-
ment shader programs as provided for 1n the OpenGL API,
which may be used to perform similar operations as a pixel
shader program as provided for in the Direct 3D API.

Graphics processor 1310 additionally includes one or
more memory management units (MMUSs) 1320A-13208,
cache(s) 1325A-1325B, and circuit interconnect(s) 1330A-
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1330B. The one or more MMU(s) 1320A-1320B provide for
virtual to physical address mapping for graphics processor

1310, including for the vertex processor 1305 and/or frag-
ment processor(s) 1315A-1315N, which may reference ver-
tex or image/texture data stored in memory, 1 addition to
vertex or image/texture data stored in the one or more
cache(s) 1325A-1325B. In one embodiment the one or more
MMU(s) 1320A-1320B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
1205, 1image processor 1215, and/or video processor 1220 of
FIG. 12, such that each processor 1205-1220 can participate
in a shared or unified virtual memory system. The one or
more circuit mterconnect(s) 1330A-1330B enable graphics
processor 1310 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

FIG. 14 1s a block diagram illustrating an additional
exemplary graphics processor 1410 of a system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment. Graphics processor
1410 can be a vanant of the graphics processor 1210 of FIG.
12. Graphics processor 1410 includes the one or more
MMU(s) 1320A-1320B, cache(s) 1325A-1325B, and circuit
interconnect(s) 1330A-1330B of the integrated circuit 1300
of FIG. 13.

Graphics processor 1410 includes one or more shader
core(s) 1415A-14135N (e.g., 1415A, 14158, 1415C, 1415D,
1415E, 1415F, through 1315N-1, and 1315N), which pro-
vides for a unified shader core architecture in which a single
core or type or core can execute all types of programmable
shader code, including shader program code to implement
vertex shaders, fragment shaders, and/or compute shaders.
The exact number of shader cores present can vary among
embodiments and implementations. Additionally, graphics
processor 1410 includes an inter-core task manager 1405,
which acts as a thread dispatcher to dispatch execution
threads to one or more shader core(s) 1415A-1415N and a
tiling unit 1418 to accelerate tiling operations for tile-based
rendering, in which rendering operations for a scene are
subdivided 1n 1mage space, for example to exploit local
spatial coherence within a scene or to optimize use of
internal caches.

Method and Apparatus for Efficient Use of
Graphics Processing Resources 1 a Virtualized
Execution Environment

Virtual machines (VMs) running on a physical host may
use one or more graphics processing units (GPUs) to per-
form graphics operations. Hypervisor software manages
how the GPU can be used by the VMs. Each VM runs a
guest operating system, which may be a desktop, laptop or
tablet operating system like Linux, Microsoit Windows, or
Android. Devices from the host physical machine can be
presented to a VM as virtual devices under the management
soltware within the host. Some of the devices assigned or
placed within the VM OS environment are built into the
motherboard (e.g., the keyboard, serial ports) but other
devices reside on the peripheral component interconnect
(PCI) bus. The PCI bus architecture is presented to the VM
OS using a virtual PCI (VPCI) abstraction layer.

The GPU on the host PCI bus can be directly assigned to
one VM and used only by that VM. This 1s Direct Device
Assignment (DDA) for the host GPU. The host GPU can be
a multiple GPU sub-system with the ability to assign each
separate GPU to a VM {for exclusive use by that VM 1n a
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fashion similar to DDA. For a single root input/output
virtualization (SR-IOV) device, the host GPU can be parti-
tioned and assigned to separate VMs using the bus protocol.
There are physical functions (PFs) and virtual functions
(VFs). The PF 1s single instantiated in the host runtime and 5
cach VF 1s used by the guest OS. The guest OS views a GPU
that 1s partitioned with less resources then the whole. For
example, a GPU with 1024 execution units (EUs) may be
assigned to 8 guests where each guest can use 128 EUs. In
this environment fixed sized memory like that on a discreet 10
GPU 1s often split among the VMSs using 1t. Another example

1s a GPU with 8 GB of memory where each of the GPUs 1s
assigned to 8 guests then each guest uses 1 GB of memory.
The system or GPU resources are exposed using the SR-IOV
specification and managed by the Hypervisor system soft- 15
ware.

Modern GPUs can context switch from one logical state
to anther logical state quickly. This 1s a requirement of a
modern GPU due to the multi-threaded nature of rendering
environments. GPUs use direct memory access (DMA) to 20
get command data from system memory or dedicated
memory on the adapter. The command data or stream
consists comes 1n three types: meta-data, memory context
commands and commands specific to the type of engine. The
meta-data commands set registers, program power manage- 25
ment state, perform jump and return commands or other
privileged commands. Memory context commands set the
base memory pointer to the entire GPU or for just the engine
context. The commands 1n a command builer are engine-
specific. These are commands sent to the 3D rendering 30
engine, video decode, video encode, display engine, bit
block transter (BLIT) engine, or other application specific
engine. Almost all commands in command buflers can be
executed by any GPU after a memory context switch fol-
lowed by an engine context switch. This means that com- 35
mand buflers can be processed by any GPU from any VM.
Out-of-order rendering 1s enabled in modern GPUs but for
some operations ordered rendering i1s very important. An
example 1s blending with transparency. The render target
memory and rendering state can be switched easily with a 40
very small number of writes to the GPU context registers.
The context switch does take time and 1t flushes internal
GPU caches but the time taken 1s usually on the order of
milliseconds. The context switch of the memory state 1s
usually heavy weight. However the engine switch of context 45
1s usually light weight because 1t takes less time and 1t can
be pipelined.

GPUs may be used by application software to perform
specific tasks which fall into several categories that are
relevant to the embodiments of ivention. Applications or 50
window system interfaces draw 3D scenes, block image
transier (BLIT) pixel data, decode or encode video streams,
and manage output to the display. Applications use appli-
cation programming interfaces (APIs) to access GPU
resources and render to the destination surface. The desti- 55
nation for rendering commands can be a render target or a
display depending on the desired results. Examples of 3D
APIs are OpenGL and DirectX. The layering of the software
calls through the device driver interface (DDI) into the
KMD. The KMD manages system resources for the GPU 60
hardware and prepares the GPU for the application work-
load. The GPU accepts many diflerent resources including
shaders (microcode written specific to the GPU), surface
data (textures, depth/stencil, and render targets), bullers
(vertex buflers, index bufler, control points), control com- 65
mands that read/write data for the GPU processors, and
many other sources of data.
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System software 1mn a computer can manage the GPU
hardware 1n several ways. The GPU power consumption can
be controlled through system software. The system software
1s 1implemented 1n the system basic mput/output software
(BIOS) or advanced configuration and power interface
(ACPI). There are PCI registers to control the power of a
GPU. When the GPU 1s used 1n a hypervisor environment,
the power management 1s completely controlled by the
hypervisor. The guest does not have any control of power
management. The GPU can be completely shut down or
parts of the internal hardware can be shutdown using less
power.

In one embodiment of the invention, one or more GPUs
generate performance data comprised of nanosecond timers
and engine counters implemented within the GPU hardware.
Timing for each part of the GPU engine 1s available to
system soltware and application software. The performance
data generated within the GPU 1s written into shared
memory using DMA or bus write commands. The shared
memory 1s available to applications through page mapping
in the OS. In the hypervisor environment shared memory 1s
available to the guest OS as well as the host system software.
The GPU scheduler or KMD generates a header and trailer
for each command bufler before giving 1t the GPU. The
header and trailer write performance data per GPU and per
VM. This allows hypervisor host software to manage the
performance of each VM per command bufler.

In current DDA and SR-IOV implementations there 1s no
para-virtualization and the drivers work as 1f they were
running in a native machine. If one guest underutilized the
GPU resources then those resources are wasted and if a guest
driver runs out of resources then the guest must invoke often
complex algorithms to manage the limited resources. There
1s no load balancing or any other techmque for managing
multiple GPUs. Since each guest 1s 1solated from the others,
there 1s no global management of power, performance or
even an attempt at eflicient use of GPU resources. DDA,
SR-IOV and direct assignment are all fixed allocation mod-
cls either at the GPU compute level or at the GPU memory
level.

In the VM server environment there are additional prob-
lems that cannot be solved with DDA or SR-IOV. The first
1s resource load balancing. The second 1s display output
when several VMs are all generating display output com-
mands; 1t 1s diflicult or even impossible to predict when VM
“owns” the one display connected to the server. In reality,
there 1s often no display on the server so the dithcult task of
deciding how to manage the display output from potentially
hundreds of VMs running graphics software. Most likely the
display output from all VMs goes to different remote view-
ing applications. The Hypervisor system software can and
must make the decision about the final TCP/IP address of the
display commands. The decision cannot be left up to a VM
that 1s 1solated and unaware that 1t 1s running on a server with
hundreds of VMs.

As 1llustrated 1n FIG. 15, 1n one embodiment, multiple
GPUs 1531-1532 1n the host physical machine are efliciently
shared between VMs 1501-1502 using a virtualization soft-
ware 1510 (sometimes referred to as “hypervisor 15107).
The wvirtualization software 1510 may be provided with
control over the manner in which GPU resources are shared
through memory 1550 with a GPU scheduler/Multi-GPU
Manager 1520 (heremafter “GPU scheduler 1520”) or a
server/host kernel mode drniver (KMD) 1513 controlling the
multiple GPUs 1531-1532. Graphics microcode (GuC) may
be used to implement the GPU scheduler 1520 in one
embodiment. In one embodiment, load balancing 1n either
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graphics microcode or in the KMD may be used to distribute
the workload on the multiple GPU subsystem. Software in
control of the hypervisor 1510 or the host system software
can be used to determine how the multiple GPU subsystem

1s used. In one embodiment, the control of the behavior of 5

the GPU scheduler or KMD software 1s contained within
one or more memory pages 1351-1552 shared between the
server user mode components and the kernel components.

In one embodiment, the hypervisor 1510 reads pertor-
mance data from GPU performance data pages 1552 (pro-
vided by GPUs 1531-1532 via memory interface unit (MIU)
1540) and uses this data to tune the parameters controlling
the load balancing algorithms as described herein. In one
embodiment, the entire GPU resources for a particular GPU
can be assigned to a specific VM (e.g., GPU 1531 may be
tully assigned to VM 1501). There may be no fixed alloca-
tions of GPU resources because the GPU scheduler or KMD
host software determines the GPU resources dynamically as
needed. In one embodiment, GPU memory 1550 1s allocated
and managed completely by the host software and mapped
into the guest environment as needed using host-based
memory management software.

In one embodiment, each VM 1501-1502 generates com-
mand buflers that the GPU scheduler 1520 or host KMD
1513 manage 1n a simple queuing model. As each command
bufler 1s sent to a specific GPU 1520, header information
including performance commands are added 1f capturing
performance data 1s enabled. Power management of each
GPU may also be enabled through the shared memory page
1551.

Virtual machines 1501-1502 are abstracted by the virtu-
alization software 1510 running on a physical machine
which may include a host system memory 1550, multiple
CPUs (not shown) and multiple GPUs 1531-1531. In one
embodiment, the wvirtualization software 1510 includes
memory management software 1514, virtual motherboard
soltware (not shown), virtual device software, virtual PCI
bus software, VMX processes 1518 that manage virtual
machine resources, and host KMDs 1513. The VMX process
1518 includes a VMM guest management component 1512
to manage all guest resources including exposing a virtual
GPU (VGPU) to the guest OS and a virtual device manage-
ment component 1511 for managing virtual devices (e.g.,
VGPUs). In one embodiment, each guest/VM 1501-1502
that connects to a VMX process 1518 receives a unique
system-wide ID. The guest/VM enumerates the devices to
find the VGPU and loads VGPU drivers just as a native
system would. As 1llustrated, a guest may include applica-
tion soitware, a graphics API software and kernel mode
drivers (KMDs). One of the kemel mode drivers in the
guest/VM 1501 manages the VGPU resources and activity.
The guest VGPU drivers can be para-virtualized to commu-
nicate with the host VMX process 1518.

Virtualization software 1510 in the server or host initial-
1zes the host GPU drivers which, 1n one embodiment, are
split between driver components 1n the VMX processes
1518 and 1n host KMD 1513. In one embodiment, there 1s a
negotiation of resources including host memory 1550 that
cach host GPU can use. Shared memory 1550 1s allocated
for the purpose of managing parameters to the KMD or GPU
scheduler. Host hypervisor management software 1514 can
access this memory 1550. Hypervisor soltware 1 a com-
mand shell or GUI interfaces with the hypervisor manage-
ment soltware 1514 to write values into shared pages which
includes GPU parameters memory pages (GPMP) 1551. In
the illustrated embodiment, a GPU execution scheduler
1515 of the management software 1514 writes the values to
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the GPMP 1551. In one embodiment, the GPU parameters
are used to communicate with the KMD and GPU scheduler
specific runtime options (described in greater detail below).

In one embodiment, guest software including applications

use an application programming interface (API) such as
DirectX, OpenGL or DXVA to buld graphics command
buflers (e.g., built 1n the guest UMD or guest KMD) which
are specific to the GPU architecture exposed to the guest OS
by the VMX process 1518. The command buflers are
submitted to the host GPU through a process of writing into
guest memory. The write into guest memory either wakes up
a thread runming in the VMX software stack or in the host
KMD 1513 or possibly the host GPU scheduler. The thread
that wakes up processes the command bufler and submits 1t
to the KMD or GPU scheduler for turther processing by a
specific GPU or multiple GPUs. The command builers
submitted by the KMD or GPU scheduler contain metadata
in the form of a header which may enable performance data
1552 to be written 1nto the shared memory area allocated by

the hypervisor host software (e.g., virtualization software
1510). In one embodiment, a GPU scheduler 1520 schedules

execution of the command buflers by the GPUs 1531-1532
in accordance with the performance data 1552. In particular,
as 1llustrated in FIG. 16, the GPU scheduler 1520 may
generate a FIFO of work items 1622-1623 for each GPU
1530-1531, respectively. Each GPU 1530-1531 will then
read commands from 1ts respective FIFO bufier 1622-1623,
respectively. A memory terface unit 1540 provides the
GPUs with access to the shared system memory 1550.
Additional details related to the metadata header and per-
formance data are described below.

In one embodiment, the GPU 1s imtialized by writing
memory state or context mformation to PCI registers (not
shown). The PCI registers may be exposed through standard
OS PCI bus mechanisms to the guest OS by a virtual PCI
(VPCI) module in the VMX process 1518. Thus, GPU
initialization sets the GPU memory state or context. It 1s
quick and easy to change the GPU memory context by
writing the same PCI registers and using a protocol of writes
that 1s specific to the GPU hardware. In one embodiment, the
host KMD 1513 1s written to perform this 1nitial setup. Once
the basic memory context 1s setup, GPU hardware can
access memory 1550 to read command butlers or read other
GPU memory resources and write mto GPU memory
resources as required by the commands in the command
bufler.

In one embodiment, the GPU command buflers reside in
system memory 1550 and the GPU memory context 1s used
by the host GPU to gain access to the system memory. There
are various different types of commands. The first type
involves memory and GPU memory context. This 1s often a
guest physical address (GPA) that points to several pages of
guest memory that describes the page tables. The second
type of command involves programming metadata i the
GPU 1tself which could be, for example, a command to write
a memory-to-memory-mnput-output (MMIO) register in the
PCI BAR address space or some other internal register to the
GPU. The third type of command in the command builer 1s
engine-specific and often involves a translation of API calls.
Examples of engine specific commands are set texture
handle, draw triangle, decode a macrocode block, encode an
image, copy pixel data, update vertex or index bullers, set a
shader microcode handle, set blend state, set depth/stencil
state, set color format for render target, to name just a few.
There are a significant number of execution specific com-
mands which depend on the type of engine. Even though the
embodiments of the mmvention only reference preexisting
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engine types, there can be a large number of them. The point
1s that the commands are stored 1n memory 1550 and that
memory 1s setup and accessed using mformation from the

GPU memory state or the GPU memory context.
The host KMD 1513 or GPU scheduler 1520 receives
command buflers from each VMX process 1518 or from the

guest OS directly. In one embodiment, the command buflers
are tagged with the guest’s/VM’s 1501 unique ID. This 1s the
basic element used by the virtualization software 1510 and
GPU hardware to determine how to send command buflers
to any or all GPUs. There are two basic types of command
butlers: those that have metadata and those that do not. In the
later case, the guest OS may not be aware of the host
soltware requirements because the guest drivers are not
using a para-virtualized implementation or the version of the
para-virtualization does not match the host runtime. In this
case, the host VMX process 1518 can choose between
several different actions with respect to the guest OS. It can
reject all command buflers and disable the guest or it may
not expose the GPU to the guest at all in which case the guest
OS will use VESA or VGA mode for the desktop. It 15 also
possible for the VMX process 1518 to use Direct Device
Assignment (DDA) for that guest/VM. For the enlightened
guest, 1.e., the guest that i1s para-virtualized, the command
builer contains header information that indicates the type of
command bufler. The details of the meta-data associated
with guest command builers 1s discussed i1n greater detail
below.

In one embodiment of the invention, the virtualization
software 1510 uses some number of host GPUs 1531-1532
to share with guests and there may be GPUs 1n the host not
shared with any guests. In one embodiment, each host GPU
that 1s shared 1s assigned 1ts own unique ID. For each host
GPU shared, a data structure 1n the parameters page 1551 1s
used to setup the GPU state as a shared device. Entries in the

parameters page are shared between the virtualization soft-
ware 1510, the host KMD 13513 and the physical GPU or

GuC 1531-1532. The data format and details can be GPU-
specific. One exemplary set of parameter data might be: {int
enableFeatures; int enablePM: int enablePerformance; int
enableSchedulingAlgo; int enableDebugFeatures; uintptr_t
baseAddressOfPerformancePage; uwint64 oflsetlntoPerfor-
mancePage; uint64 sizeOfPerformanceBuffer;}.

A privileged command bufler 1s sent to each GPU shared
with the base address of the parameters page 1551 and the
offset mto the page 1s specific to that GPU. The GPU
hardware 1531-1532 or GPU scheduler reads the parameters
and sets up GPU behavior based on these enable/disable bits.
At any time, the VMM soltware can update the shared
memory page and re-send the commands inline with other
command buflers thus changing the GPU behavior on the
fly. The command causes the GPU to possibly flush internal
caches, read the parameter data and switch internal execu-
tion behavior on the fly.

In the invention, VMM software can enable each GPU to
write performance data into the shared performance data
pages. One 1mplementat10n might compute nanosecond tim-
ers for each command bufler from a guest sent to any GPU.
The data format written 1s GPU specific but the oflset into
the parameters page, enabling this feature, and the size of the
bufler (number of pages) 1s set by mitialization of the GPU
for sharing. One example of the performance data might be
{int uniquelD; uint64 startTime; uint64 endTime;}. In this
case, uniquelD 1s supplied by VMM software when the
performance commands are added to the ring bufler com-
mands. The GPU write logic will wrap within the perfor-
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mance buller when 1t reaches the end. VMM software can
control this behavior using parameter data.

Using the host shared memory that contains the parameter
data 1551 the host KMD 1513 or GPU scheduler 1520 may
decode and queue up command buflers to a specific GPU 1n
the multi-GPU environment. It may also choose to load
balance the command buifers based on host GPU perfor-
mance data indicating the load on each GPU 1531-1532. The
GPU parameter memory 1551 may indicate that there should
be one GPU per guest/VM 1n a DDA-style assignment
strategy and/or it may indicate that load balancing should be
ecnabled and the host KMD 1513 or scheduler 1520 will
decide how to queue up command buflers to a GPU based
on metadata included in each command bufler. For each
GPU 1531-1332, there may be a queue or FIFO 1622-1623
(e.g., implemented as a ring bufler). In operation, the com-
mand buflers are submitted to a GPU and the performance
data 1s gathered (if enabled). In one embodiment, the per-
formance data includes the type of command buflers and the
time delta to execute commands 1n that GPU. The size of the
queue for each GPU 1s available to the KMD 1513 or GPU
scheduler 1520 along with the performance data written by
the GPU hardware 1nto the shared performance pages 1552.
This information 1s used to determine how to queue up new
command buflers or preempt command buflers 1n a specific
GPU queue. The host KMD 1513 or GPU scheduler 1520
may submit and manage the guest command buflers by
collecting and using various different data including, for
example: data specilying how to map host GPU to guest OS;
an indication of the performance commands attached to
submitted command buflers; load balancing techniques/
algorithms; whether the command buflers are sernalized;
whether guest out-of-order hints are 1gnored; the manage-
ment of manage GPU assignment to guest OS without
meta-data headers; how to apply power management strat-
egies to one or all GPUs 1n the host; which GPU gets a
power management strategy; whether the host KMD 1513 or
GPU scheduler 1520 attaches performance commands to
submitted command buflers; which GPU(s) control display
output (e.g., display should be attached to one or several
GPUs); which GPU(s) perform specific tasks such as video
decode or video encode; memory context switch time mea-
surement and reporting to performance memory pages 1552;
measurement of engine memory context switch time and
reporting to performance memory pages 1552; and other
management tasks that the system software may require.

In one embodiment, each command bufler from a guest/
VM 1501 1s submitted to a specific GPU FIFO or queue
1622-1623. The host KMD 1513 or GPU scheduler 1520
may (1f enabled) prefix meta-commands to the guest/VM
work item. The metadata may include a write GPU perfor-
mance data command causing its respective GPU to write
performance data into the shared performance page and
jump-and-return command causing the GPU to jump to the
write GPU performance data command and return to the
normal 1nstruction sequence. The following types of com-
mands may be used by the host KMD 1513 or GPU
scheduler 1520 before and/or after the guest command
buflers: write performance data into shared performance
memory 1552 (shared with host system soitware); write
GPU engine load data into shared performance memory
1552 (e.g., indicating the current load on the GPU engine);
write GPU power consumption data into shared performance
memory 1552; write fence data for a specific guest and GPU
combination to host memory 1550; write commands to
block on a fence value or other barrier until the GPU makes
progress; write commands that switch resource destination
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in the engine (e.g., for video encode); write commands that
switch source resources 1n the GPU engine (e.g., for video
decode); and other types of data that might be necessary to
manage multiple rendering on multiple GPUSs.

In one embodiment, as the GPU 1531 starts to work on
that command bufler (e.g., reading commands from 1ts FIFO
queue 1622), 1t reads the host physical address (HPA) of the
FIFO command and jumps to the guest/VM 1501 command
bufler to execute the commands from guest memory. After
finishing all the commands in the guest provided bufler, the
GPU 1530 returns to the FIFO memory address immediately
after the jump-and-return command. In that memory 1s a
command to write GPU performance data to the shared
memory page 1552. Thus the FIFO commands include (1)
write GPU performance data into shared performance pages
1552, (2) jump-and-return using HPA, and (3) write GPU
performance data into shared performance pages 1552. The
write GPU time command may include an HPA 1nside the
shared memory performance pages 1552. The host KMD
1512 or GuC may use the performance to gather the per-
command bufler, per-VM performance data and feed that
back into the scheduler 1520 or provide the virtualization
software 1510 with the ability to make decisions based on
GPU performance. This information can be used, for
example, to kill shaders running on a specific GPU from a
guest VM 11 the command buflers are taking too long. In this
case, the virtualization software 1510 can kill the guest OS
or send a kill command 1nto the guest OS. In turn, the guest
OS can perform a TDR or timeout for the offending appli-
cation.

One embodiment of the invention uses GPU nanosecond
timers to collect performance data (e.g., sampling the timers
betore and after the execution of each command or blocks of
commands). In this embodiment, the prefix commands on all
command buflers include a quadword value to store a start
nanosecond time from the GPU hardware and/or an end
nanosecond time (e.g., comprising the final performance
data writes). This allows the virtualization software 1510 or
the scheduler 1520 to determine specific timing for specific
command buflers from a guest OS.

One embodiment of the invention uses GPU engine load
metrics (1.e., indicating a “busyness” level) for GPU perior-
mance data. For example, a bit vector may be written into
the shared memory area where each bit indicates whether an
engine in the GPU 1530 1s busy (1) or idle (0). In this
implementation, commands are added to the start of a guest
command bufler which include the current bit vector. This
information can be used by the host KMD 13513 or GPU
scheduler 1520 to submit command builers of specific types
from different guests. For example, 11 GPU 1331 1s busy
running a video decode task and the GPU hardware 1s
designed to allow full execution overlap, then the bit vector
tor that GPU would indicate that the video decode engine 1s
busy but other engines are 1dle and the scheduler 1520 can
therefore submit command buflers for 3D rendering or BLIT
operations to the same GPU 1531 (e.g., using a different
execution engine within the same GPU hardware).

It 1s possible for the host KMD 1513 or GPU scheduler
1520 to queue up command buflers to different GPUs
1531-1532 from the same VM 1501. At first this appears to
be a problem because out-of-order rendering 1s not univer-
sally correct. The canonical example of order-dependent
rendering 1s transparency using a blend operation with the
destination pixel data in a render target. In this case, it 1s very
important that command buflers be submitted 1n a very
specific order. In one embodiment, the guest metadata in the
command bufler header contains commands to the host GPU
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or GPU scheduler. These are meta-commands that instruct
the schedulers 1520 to behave 1n a specific manner. The
meta-commands mnform the host KMD 1513 or GPU sched-
uler 1520 to synchronize all command buflers from the VM
1501 and wait until all rendering 1s finished 1n all GPUs
1531-1532. Meta-commands can be used to force ordered
rendering i which case the host KMD 13513 or GPU
scheduler 1520 may force all rendering to one GPU 1531 or
impose barriers in the commands so that multiple GPUs can
render but one may block until another 1s at a certain barrier.

If the guest header indicates that synchronization 1s nec-
essary, then the host KMD 1513 or GPU scheduler 1520 can
use fences or other techniques to block the GPU ifrom
consuming GPU commands from that guest/VM and instead

synchronize the command bufler processing. This means
that the host KMD 1513 or GPU scheduler 1520 may append

“write DWORD” or “write QWORD” commands to com-
mand buflers submitted to any GPU which may then be used
to synchronize rendering from a specific guest/VM. The host
KMD 1513 or GPU scheduler 1520 may, for example, block
on a fence or may send barrier commands to a specific GPU
to wait on a barrier object.

I1 the guest header indicates that serialization 1s necessary,
then the host KMD 1513 or GPU scheduler 1520 can force
all command butlers from that guest to one GPU. Since the
guest 1s submitting command buflers with additional header
information, 1t can send command bufler type information.
The different types of commands builers submitted with the
header are used by the host KMD 1513 or GPU scheduler
1520 1n the submission of command buflers to a specific
GPU. The last type of commands are engine-specific, which
are sent to the 3D rendering engine, video decode, video
encode, display engine, BLIT engine, or other application
specific engine.

FIG. 17 illustrates an exemplary embodiment 1n which a
plurality of guest command buflers 1730 are managed in
system memory 1550. Commands are read from the com-
mand buffers 1730 and stored within one or more FIFO
command buflers 1701 prior to execution by the GPUs
1530-1531. The exemplary commands 1n FIG. 17 include
two write time data commands, one write busyness data
command, one jump-to-builer command, and one HPA of
command bufler command. In response to execution of the
commands, the GPUs 1530-1531 update the GPU pertor-
mance data pages 1552 1n system memory, which may then
be read and used for subsequent resource allocation deci-
sions, as described herein.

In one embodiment of the invention, illustrated in FIG.
18, all video encode command builers 1821 from all guests/
VMs 1501-1502 are sent to one GPU 1823. This host GPU
1823 is purposely dedicated to video encode by the host
software. In this case, the host KMD 1513 or GPU scheduler
1520 switches the render target to the guest designated
render target as the outcome of the encode kernels. Just as
the performance data and the jump-and-return command are
prefixed to the guest/ VM command builer, the switch des-
tination render target or write builer 1s command prefixed to
the command buiflers from the guest. By prefixing the
command butler with a new header, the host KMD 1513 or
GPU scheduler 1520 can manage the multiple GPUs and the
guest rendering state.

In another embodiment, the encode engine can be used by
host software to encode display output from a guest because
the guest command builers have a header 1818, 1814 to
indicates the type of commands in the command builer.
Since the guest 1s submitting command builers with a header
that describes the commands in the bufler, 1t can designate
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some command bulflers are output to the display. For this
case, the host software builds and submits an encode com-
mand bufler 1821 to the host KMD 1513 or GPU scheduler
1520 with the destination of the display commands from the
guest as the source to the encode GPU 1823, potentially with

a specialized video encode engine 1833. The results of the
encodmg are stored as encoded data in memory bullers
1853. This allows the host software to intercede 1n the active
display commands from a guest and istead encode the final
desktop and possibly write the encode buller data to a
network adapter 1830 (e.g., to be streamed to a client
utilizing the wvirtualized graphics architecture described
herein). This 1s one way to implement remote rendering
using the embodiments of the mmvention.

In a stmilar manner, 1n one embodiment, all video decode
command buil

ers from all guests/VMs are sent to one GPU.
This host GPU 1s purposely dedicated to video decode by the
host software. Since the host KMD 1513 or GPU scheduler
1520 prefixes all command buflers submitted to a specific
GPU, 1t adds a memory context to switch the render target

memory context to the command budl

ers for this case. This
embodiment allows the GPU to perform video decode to
different render targets or surfaces 1n memory. The benefit 1s
that one single GPU can be added into the server for video
decode and this GPU or set of GPUs can be optimized for
these types of command buflers. This 1s significant because
it allows the server to be built for specific tasks that involve
graphics operations and the host software to determine how
GPU hardware 1s used.

It 1s also possible to submit all active display command
buflers to a single GPU that controls the display as illus-
trated mm FIG. 19. As 1in prior embodiments, a command
butler header 1918-1919 indicates the type of commands in
the command bufler (e.g., in this case, display commands).
The server setup may be part of the host parameters page
that the host KMD 1513 or GPU scheduler 1520 uses. This
implementation of the invention allows the host software to
control the output to the local display 1930 attached to a
GPU or multiple GPUs. For example, it 1s possible to have
zero, one or many displays 1930 attached to the server. The
host KMD 1513 or GPU scheduler 1520 determines where
guest output goes by reading the parameter memory 1551
and sending all guest command buflers with active display
to the appropriate GPU 1923 for output. In the 1illustrated
example display output hardware 1933 renders each image
frame for display, storing the rendered frames within
memory dedicated to the display scan output 1953. This
implementation of the invention allows for a console display
or a merge of all guest desktops to be output to a GPU with
an active display.

In contrast to the embodiments of the invention described
above, current solutions to using GPU hardware in a hyper-
visor virtual machine server environment provide little or no
mechanism to efliciently use multiple GPU hardware
resources. Existing solutions for using GPUs 1n a server
environment such as DDA or SR-IOV do not allow pre-
emptive GPU hardware context switching based on load
balancing algorithms or guest rendering patterns. They also
do not allow the hypervisor to control the pre-emption
algorithm based on server management software. The prob-
lem 1s that existing solutions do not provide the hypervisor
suflicient control over the submission of command builers to
multiple host GPUs based on guest usage patterns or server
management software. This can create a situation of under-
utilization within the available host GPU domain.

The embodiments of the invention described herein allow
the hypervisor to gather data about GPU resource usage as
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a consequence of host and/or guest command buller pro-
cessing. These embodiments utilize techniques to use this
data to alleviate bottlenecks and specific rendering tasks to
cihiciently use host GPU hardware resources. Shared
memory allows the hypervisor to gather GPU performance
data, enabling various techniques to more efliciently use
GPU resources which may include compute execution units,
system memory or GPU memory and specific functional
engines. In addition, these embodiments define how a hyper-
visor can use shared memory between the host KMD and
metadata from guest drivers to more efliciently use host
GPUs 1n a server with multiple GPUs. With command butler
metadata from a guest and performance data from the GPU,
the hypervisor can queue up guest command buil

ers for
specific rendering operations to a host GPU and gain demon-
strable 1mprovements 1n GPU utilization. The hypervisor
can use preemptive GPU command bufler submission across
multiple GPUs 1n the server based on guest behavioral
patterns. Depending on the server management soitware, the
hypervisor can use different preemption algorithms such as
first-come first-serve scheduling, shortest-job-first schedul-
ing or priority scheduling. Pre-emption here refers to com-
mon bufler submission from guests and switching usage of
host GPU hardware on a per-command bufler basis.

Embodiments of the invention may include various steps,
which have been described above. The steps may be embod-
ied 1n machine-executable mstructions which may be used to
cause a general-purpose or special-purpose processor to
perform the steps. Alternatively, these steps may be per-
formed by specific hardware components that contain hard-
wired logic for performing the steps, or by any combination
of programmed computer components and custom hardware
components.

As described herein, instructions may refer to specific
configurations of hardware such as application specific
integrated circuits (ASICs) configured to perform certain
operations or having a predetermined functionality or sofit-
ware 1nstructions stored i memory embodied 1 a non-
transitory computer readable medium. Thus, the techniques
shown 1n the figures can be implemented using code and
data stored and executed on one or more electronic devices
(e.g., an end station, a network element, etc.). Such elec-
tronic devices store and communicate (internally and/or with
other electronic devices over a network) code and data using
computer machine-readable media, such as non-transitory
computer machine-readable storage media (e.g., magnetic
disks; optical disks; random access memory; read only
memory; flash memory devices; phase-change memory) and
transitory computer machine-readable commumnication
media (e.g., electrical, optical, acoustical or other form of
propagated signals—such as carrier waves, inirared signals,
digital signals, etc.). In addition, such electronic devices
typically include a set of one or more processors coupled to
one or more other components, such as one or more storage
devices (non-transitory machine-readable storage media),
user mput/output devices (e.g., a keyboard, a touchscreen,
and/or a display), and network connections. The Couphng of
the set of processors and other components i1s typically
through one or more busses and bridges (also termed as bus
controllers). The storage device and signals carrying the
network traflic respectively represent one or more machine-
readable storage media and machine-readable communica-
tion media. Thus, the storage device of a given electronic
device typically stores code and/or data for execution on the
set of one or more processors of that electronic device. Of
course, one or more parts of an embodiment of the invention
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may be implemented using different combinations of soft-
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ware, lirmware, and/or hardware. Throughout this detailed
description, for the purposes of explanation, numerous spe-
cific details were set forth 1 order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled 1n the art that the invention may be
practiced without some of these specific details. In certain
instances, well known structures and functions were not
described 1n elaborate detail 1n order to avoid obscuring the
subject matter of the present invention. Accordingly, the
scope and spirit of the invention should be judged in terms
of the claims which follow.

What 1s claimed 1s:

1. An apparatus comprising:

a plurality of graphics processing units (GPUs) to be
shared by a plurality of virtual machines (VMs) within
a virtualized execution environment;

a shared memory to be shared between the plurality of
VMs and GPUs executed within the virtualized execu-
tion environment;

the GPUs to collect performance data related to execution
of commands within command buflers submitted by the
VMs, the GPUs to store the performance data within
the shared memory, wherein at least one command
bufler 1s tagged with an 1dentifier (ID) of a respective

submitting VM, the ID being used for GPU selection;
and

a GPU scheduler and/or driver to schedule subsequent
command buflers to the GPUs based on the perfor-
mance data.

2. The apparatus as in claim 1 wherein the GPU scheduler
or driver 1s to mmplement a load balancing function to
perform load balancing across the GPUs and/or individual
resources of the GPUs based on the performance data.

3. The apparatus as 1n claim 2 wherein the performance
data specifies a current load on individual resources within
one or more of the GPUs and wherein the load balancing
function comprises submitting the command buflers based
on the current load on the individual resources.

4. The apparatus as 1n claim 3 wherein the individual
resources comprise a GPU three-dimensional (3D) render-
ing engine, video decode engine, video encode engine,
display engine, BLIT engine, and/or other application-spe-
cific engine.

5. The apparatus as 1n claim 4 wherein a bit vector 1s to
be written 1nto the shared memory where each bit indicates
whether an engine 1n each GPU i1s busy or idle.

6. The apparatus as 1n claim 1 wherein the GPUs collect
the performance data responswe to commands included
within the command buflers.

7. The apparatus as 1n claim 6 wheremn the commands
include one or more of: write performance data into the
shared memory; write GPU engine load data into the shared
memory; write GPU power consumption data into the shared
memory; write fence data for a specific VM and GPU
combination to the shared memory;, write commands to
block on a fence value or other barrier until the GPU makes
progress; write commands that switch resource destination
in a GPU engine; and write commands that switch source
resources 1n the GPU engine

8. The apparatus as in claim 6 further comprising:

a first-1n-first out butler for each GPU to queue commands
from the respective command bufler submitted to each
GPU.

9. The apparatus as 1n claim 1 wherein a header 1s to be

added to each of the command buflers to 1dentily types of

commands within the respective command buitler.
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10. The apparatus as 1n claim 9 wherein the header may
include an indication as to whether serialization 1s necessary,
wherein upon detecting the header, the GPU scheduler or
driver causes all commands from that command bufler to be
executed by one particular GPU.

11. The apparatus as 1 claim 9 wherein a first header 1s
to indicate that commands in a first command builer are to
encode video, the GPU scheduler or driver to responsively
submit the first command bufler to a GPU having a video
encoding engine which 1s not currently busy; a second
header 1s to indicate that commands in a second command
buller are to decode video, the GPU scheduler or driver to
responsively submit the first command buffer to a GPU
having a video decoding engine which 1s not currently busy;
and a third header 1s to indicate that commands 1n a third
command bufler are to render a display output, the GPU
scheduler or driver to responsively submit the third com-
mand bufler to a GPU having a display engine which 1s not
currently busy.

12. A method comprising:

sharing a plurality of graphics processing units (GPUs)

with a plurality of virtual machines (VMs) within a
virtualized execution environment:;

sharing a memory between the plurality of VMs and

GPUs executed within the virtualized execution envi-
ronment;
collecting performance data related to execution of com-
mands within command buflers submitted by the VMs,
the GPUs to store the performance data within the
shared memory, wherein at least one command butler 1s
tagged with an 1dentifier (ID) of a respective submitting
VM, the ID being used for GPU selection; and

scheduling subsequent command buflers to the GPUs
based on the performance data.

13. The method as in claim 12 further comprising:

implementing a load balancing function to perform load

balancing across the GPUs and/or individual resources
of the GPUs based on the performance data.

14. The method as 1n claim 13 wherein the performance
data specifies a current load on individual resources within
one or more of the GPUs and wherein the load balancing
function comprises submitting the command buflers based
on the current load on i1ndividual resources.

15. The method as in claim 14 wherein the individual
resources comprise a GPU three-dimensional (3D) render-
ing engine, video decode engine, video encode engine,
display engine, BLIT engine, and/or other application-spe-
cific engine.

16. The method as 1n claim 15 wherein a bit vector 1s to
be written 1nto the shared memory where each bit indicates
whether an engine in each GPU 1s busy or idle.

17. The method as 1n claim 12 wherein the GPUs collect
the performance data responsive to commands included
within the command buflers.

18. The method as 1n claim 17 wherein the commands
include one or more of: write performance data into the
shared memory; write GPU engine load data into the shared
memory; write GPU power consumption data into the shared
memory; write fence data for a specific VM and GPU
combination to the shared memory; write commands to

block on a fence value or other barrier until the GPU makes
progress; write commands that switch resource destination
in a GPU engine; and write commands that switch source
resources 1n the GPU engine.
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19. The method as 1n claim 17 further comprising:
a first-1n-first out butler for each GPU to queue commands

from the respective command bufler submitted to each
GPU.
20. The method as 1n claim 12 wherein a header 1s to be

added to each of the command bullers to 1dentily types of
commands within the respective command builer.

21. The method as in claim 20 wherein the header may
include an indication as to whether serialization 1s necessary,
wherein upon detecting the header, all commands from that
command buller are to be executed by one particular GPU.

22. The method as 1in claim 20 wherein a first header 1s to
indicate that commands 1n a first command bufler are to
encode video, responsively submitting the first command
builer to a GPU having a video encoding engine which 1s not
currently busy; a second header 1s to indicate that commands
in a second command bufler are to decode video, respon-
sively submitting the first command builer to a GPU having
a video decoding engine which 1s not currently busy; and a
third header 1s to indicate that commands 1n a third com-
mand bufler are to render a display output, responsively
submitting the third command bufler to a GPU having a
display engine which 1s not currently busy.

23. A system comprising;:

a memory to store data and program code;

a central processing unit (CPU) comprising an instruction
cache for caching a portion of the program code and a
data cache for caching a portion of the data, the CPU
further comprising execution logic to execute at least
some of the program code and responsively process at
least some of the data, at least a portion of the program
code comprising graphics commands;

a plurality of graphics processing units (GPUs) to be
shared by a plurality of virtual machines (VMs) within
a virtualized execution environment;

a shared memory to be shared between the plurality of
VMs and GPUs executed within the virtualized execu-
tion environment;
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the GPUs to collect performance data related to execution
of graphics commands within command buflers sub-
mitted by the VMs, the GPUs to store the performance
data within the shared memory, wherein at least one
command builer 1s tagged with an 1dentifier (ID) of a
respective submitting VM, the ID being used for GPU
selection; and

a GPU scheduler and/or driver to schedule subsequent

command buflers to the GPUs based on the perfor-
mance data.

24. 'The system as 1n claim 23 wherein the GPU scheduler
or driver 1s to mmplement a load balancing function to
perform load balancing across the GPUs and/or individual
resources of the GPUs based on the performance data.

25. The system as 1n claim 24 wherein the performance
data specifies a current load on idividual resources within
one or more of the GPUs and wherein the load balancing
function comprises submitting command buflers based on
the current load on 1ndividual resources.

26. The system as 1n claim 25 wherein the individual
resources comprise a GPU 3D rendering engine, video
decode engine, video encode engine, display engine, BLIT
engine, and/or other application-specific engine.

27. The system as 1n claim 23 wherein the GPUs collect
the performance data responsive to commands included
within the command buflers.

28. The system as 1n claim 27 wherein the commands
include one or more of: write performance data into the
shared memory; write GPU engine load data into the shared
memory; write GPU power consumption data into the shared
memory; write fence data for a specific VM and GPU
combination to the shared memory; write commands to
block on a fence value or other barrier until the GPU makes
progress; write commands that switch resource destination
in a GPU engine; and write commands that switch source
resources 1n the GPU engine.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

