12 United States Patent

Myren et al.

US010108400B1

US 10,108,400 B1
Oct. 23, 2018

(10) Patent No.:
45) Date of Patent:

(54) RAPID AVIONICS DEVELOPMENT
ENVIRONMENT

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

(56)

Applicant: Rockwell Collins, Inc., Cedar Rapids,

Inventors:

Assignee:

Notice:

Appl.
Filed:

IA (US)

Jason A. Myren, Marion, 1A (US);

David W. Hubin, Cedar Rapids, A
(US); Joshua R. Bertram, Cedar
Rapids, 1A (US); Matthew A. Griess,
Richardson, TX (US); Levi D. Van
Oort, Cedar Rapids, 1A (US)

IA (US)

Rockwell Collins, Inc., Cedar Rapids,

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 67 days.

No.: 14/590,722

Jan. 6, 2015

Int. CIL.

GoOo6F 9/44
GO6F 8/34
GO6F 13/42
GO6F 11/34

(2018.0
(2018.0
(2006.0°
(2006.0°

)
)
)
)

U.S. CL

CPC

Field
CPC

GO6F 8/34 (2013.01); GO6F 11/3419

(2013.01); GO6F 13/4221 (2013.01); GO6F

of Classification Search

2201/865 (2013.01)

GO6F 8/34; GO6F 13/4221

See application file for complete search history.

9,229,920 B1*
2011/0191747 Al*

References Cited

U.S. PATENT DOCUMENTS

1/2016 Fiedler
8/2011 Charisius

ttttttt

L I]

2012/0005679 Al* 1/2012 Shin GOO6F 11/3466
718/100
2012/0030647 Al* 2/2012 Wangccccoeeennn.. GOo6F 8/34
717/105
2013/0290749 Al* 10/2013 Broekaert GO6F 1/3203
713/300
2014/0215439 Al1* 7/2014 Krishnan GO6F 11/3664
717/124
2015/0220311 Al1* 8/2015 Salter GO6F 17/5009
717/105
2016/0182563 Al* 6/2016 Sambandam HO4L 63/1466
726/22

OTHER PUBLICATTONS

Schoofs et al., “An Integrated Modular Avionics Development
Environment”, IEEE/AIAA 28th Digital Avionics Systems Confer-

ence, Oct. 23-29, 2009, pp. 1.A.2-1 through 1.A.2-9.*
VanderLeest et al., “ARINC 653 Hypervisor”, 2010 IEEE/AIAA
29th Diagital Avionics Systems Conference (DASC), Oct. 3-7, 2010,
Salt Lake City, UT, pp. 5.E.2-1 through 5. E.2-20.*

* cited by examiner

Primary Examiner — S. Sough
Assistant Examiner — Timothy P Duncan

(74) Attorney, Agent, or Firm — Angel N. Gerdzhikov;
Donna P. Suchy; Damel M. Barbier

(57) ABSTRACT

An avionics development environment based on high level
interpreted language for rapid creation and deployment of
avionics software 1s disclosed. Functional modules are seg-
regated 1 time and allocated segregated resources so that
functional modules only interact in predictable, determinis-
tic ways. Segregated functional modules are individually
certifiable for avionics operation, and parameters necessary
for certification are associated with each functional module
to ensure the end application conforms to such parameters.

19 Claims, 5 Drawing Sheets

RECEIVE AN INPUT
CORRESPONDING T QNE OR
MORE SOFTWARE FUNCTIONS

¥

............. GOO6F 17/24
............... GO6F 8/20
717/103
622 REFLICATE GRAPHICAL DATA
o FLOW ELEMENTS IN TEXTUAL
CODE AND VYICE YERSA
Y
H24
UPDATE GRAPHICAL AnD
N TEXTUAL REPRESEMTATIONS
516 RECEIVE AN INPUT FROM A
S PORTABLE CODE ELEMENT
Y
618
M CONVERT THE INPUT FORMAT
v
G20 TRAMSFER CONYERTED INPUT
N1 TO A SECOND PORTABLE CODE
ELEMENT

o

ALLOCATE A BLOCK OF MEMORY | 602
ADDRESSES TO EACH SOFTWARE "
FUNCTION
DESIGNATE A WORSE CASE 604
EXECUTION TWE FOR EACH [
SOFTWARE FUNCTION
RECEIVE AN INPUT

CORRESPONDING TO A -

FUNCTIONAL RELATIONSHIP | 7
BETWEEN ONE OR MORE INPUT
PARAMETERS AND A SOFTWARE

FUNCTION

PARSE THE SOFTWARE 508
FUNCTIONS AND FUNCTIONAL
RELATIONSHIPS INTO RUNTIAME

EXECUTABLE CODE
EXECUTE EACH SOFTWARE 610
FUNCTION IN A SEPARATE
THREAD

612

TRACK THREAD UFTIME VALUES (-~

614

RECORD ONE OR MORE .

CERTIFICATION METRICS [

U.S. Patent Oct. 23, 2018 Sheet 1 of 5 US 10,108,400 B1

106
HARDWARE
100
PROCESSOR
104
102
DATA MEMORY

FIG. 1

US 10,108,400 B1

Sheet 2 of §

Oct. 23, 2018

U.S. Patent

{ "Old

S8 V.LVQ

NONTd - None | L Ni9nd
INIONT Ldids Y | INIONT LdRDS fny ~J INIONT 1dRDS

iNaw3133eod [V| iNawai33aod |] 1Naw313 300D

1didD5

|y Noisy3ANDD

US 10,108,400 B1

USANYWWOD SSID0ud “TTvD

Sheet 3 of 5

(3714 gvo1 “1vD

Oct. 23, 2018

vOL

L€

obe

SANVWWOD

NIYW -NOLLONNA

U.S. Patent

.

0f

_ LS NYN13Y
£ SONYWWOD ISANYWWOD SS330Ud = LINS3Y
03U47av0T - SONVYWWOD

;i

Q0L

U.S. Patent Oct. 23, 2018 Sheet 4 of 5 US 10,108,400 B1

400

APPLICATION 402 A

: [SCRIPT \ o
406 UBRARY | SCRIPT

408

FIG. 4
500

APPLICATION

SCRIPT

— MANAGE

LIBRARY A | LIBRARY B

508 510

FIG, 5

U.S. Patent Oct. 23, 2018

622

CODE AND VICE VERSA

624

UPDATE GRAPHICAL AND
TEXTUAL REPRESENTATIONS

616

PORTABLE CODE ELEMENT

618

CONVERT THE INPUT FORMAT

620

TRANSFER CONVERTED INPUT
TO A SECOND PORTABLE CODE

ELEMENT

Sheet 5 of 5

RECEIVE AN INPUT 600
CORRESPONDING TO ONE OR
MORE SOFTWARE FUNCTIONS

ADDRESSES TO EACH SOFTWARE
FUNCTION

DESIGNATE A WORSE CASE
EXECUTION TIME FOR EACH
SOFTWARE FUNCTION

602

604

RECEIVE AN INPUT

CORRESPONDING TO A
FUNCTIONAL RELATIONSHIP |

BETWEEN ONE OR MORE INPUT |

PARAMETERS AND A SOFTWARE

606

PARSE THE SOFTWARE

FUNCTIONS AND FUNCTIONAL
RELATIONSHIPS INTO RUNTIME

608

EXECUTE EACH SOFTWARE

610

FUNCTION IN A SEPARATE
THREAD

612
-t TRACK THREAD UPTIME VALUES ’

614

RECORD ONE OR MORE
CERTIFICATION METRICS

FIG. 6

US 10,108,400 B1

US 10,108,400 B1

1

RAPID AVIONICS DEVELOPMENT
ENVIRONMENT

FIELD OF THE INVENTION

The present invention 1s directed generally toward soft-
ware development and more particularly to software devel-
opment for hardware 1n avionics applications.

BACKGROUND

Software development for avionics hardware requires
substantial knowledge of programming languages and avi-
onics certification requirements. Typically, in avionics envi-
ronments, the software development cycle 1s measured in
months or years. Developing a working software prototype
can take weeks or months.

Further, due to the special nature of avionics safety
requirements, the avionics industry has developed a number
of avionics-specific standards which are not necessarily
focused on ease-of-use for the software developer. Informa-
tion and tutorials on most of these standards 1s not readily
available.

While much progress has been made 1n the past decade in
terms of model based development and higher-level lan-
guages, these tools come with a high license cost, certifica-
tion burden, and a recurring certification effort to maintain
the environments, the runtime environments or libraries, and
the software itself.

What 1s needed 1s a means for early prototype develop-
ment along with a mechanism to provide a path to certifi-
cation in both military and commercial avionics environ-
ments.

SUMMARY

Accordingly, embodiments of the inventive concepts dis-
closed herein are directed to a method and apparatus for
prototype development and certification 1n an avionics envi-
ronment.

One embodiment of the inventive concepts disclosed
herein 1s directed to a development environment wherein
system resources are strictly partitioned to control access by
defined functions. Functions are utilized through high level
scripting and a scripting engine to interpret the called
functions and enforce parameter boundaries defined by
avionic certification standards.

The script engine manages typical housekeeping tasks in
an avionics application. The software developer only works
on key functions, reducing development time. The script
engine detects and outputs code coverage metrics that are
required 1n certification

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the
invention claimed. The accompanying drawings, which are
incorporated 1n and constitute a part of the specification,
illustrate exemplary embodiments of the inventive concepts
disclosed herein and together with the general description,
serve to explain the principles.

BRIEF DESCRIPTION OF THE DRAWINGS

The numerous advantages of the imnventive concepts dis-
closed herein may be better understood by those skilled 1n
the art by reference to the accompanying figures in which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 shows a block diagram of a computer apparatus
suitable for implementing embodiments of the mmventive
concepts disclosed herein;

FIG. 2 shows a block diagram of an embedded scripting,
environment according to one embodiment of the inventive
concepts disclosed herein;

FIG. 3 shows a combined textual, graphical scripting
environment;

FIG. 4 shows a block diagram of script interpreting
system according to one embodiment of the mnventive con-
cepts disclosed herein;

FIG. 5 shows a block diagram of script interpreting
system according to another embodiment of the mventive
concepts disclosed herein;

FIG. 6 shows a tlowchart of a method according to one
embodiment of the inventive concepts disclosed herein;

DETAILED DESCRIPTION

Reterence will now be made in detail to the subject matter
disclosed, which 1s illustrated in the accompanying draw-
ings. The scope of the inventive concepts disclosed herein 1s
limited only by the claims; numerous alternatives, modifi-
cations and equivalents are encompassed. For the purpose of
clanty, technical material that i1s known in the technical
fields related to the embodiments has not been described 1n
detail to avoid unnecessarily obscuring the description.

Retferring to FIG. 1, a computer apparatus comprising a
processor 100, a memory 102 connected to the processor
100, and a data storage eclement 104 connected to the
processor 100 instantiate a development environment or
framework for avionic applications, and specifically for
avionics applications for specific avionics hardware 106. In
some embodiments of the inventive concepts disclosed
herein, a development framework executing on the proces-
sor 100 comprises a scripting environment where software
applications are constructed through scripting. Scripting
allows functionality to be easily plugged into applications.
The scripting environment references compiled certification
specifications and requirements from the data storage ele-
ment 104 to ensure that scripts conform to avionics stan-
dards and practices during development and at runtime.
Certification specifications and requirements include, but are
not limited to, acceptable ranges of mput and output param-
eters, acceptable worst case execution time, acceptable error
handling, etc. The development framework produces run-
time executables to run on target avionics hardware 106 by
partitioning scripts into well-defined executable units.

During partitioning, scripts are parsed through an appro-
priate interpreter to produce executables. In some embodi-
ments, the processor 100 may utilize various configuration
methods to convert the scripts to an executable language.
For example, an XML based parser may translate script
functionality to XML tags for high design level assurance;
alternatively, a reverse polish notation parser may translate
script functionality where such functionality comprises math
formulas and where control flow 1s not an 1ssue such as 1n
an engine-indication and crew alerting system; furthermore,
a scripting language such as Lua may be utilized where
formulas and control flow are both important.

Script partitions are executed with well-defined resource
allocations to track the execution of each script component.
In one embodiment, the development framework allows
cach script partition to be independently replaced with
traditional non-script-based executable code that complies
with all standards for obtaining necessary certifications.

US 10,108,400 B1

3

Referring to FIG. 2, an embedded scripting environment
1s shown. A first application 202 contains one or more
portable code elements 206, and a second application 204
contains one or more portable code elements 208, 210. Even
where all the portable code elements 206, 208, 210 conform
to a single data model, the portable code elements 206, 208,
210 may not be compatible with each other. A scripting layer
200 includes a plurality script engine plugins 212, 214, 216,
cach of which recetves output from a portable code element
206, 208, 210 and either allows the output to pass through
to a transport layer/data bus 218, or performs some required
conversion to the output based on a data conversion script
222 1 a scripting engine 220 before sending the output to
the transport layer/data bus 218. Likewise, data received
from the transport layer/data bus 218, directed toward one of
the portable code elements 206, 208, 210 1s converted by a
script engine plugin 212, 214, 216 according to the data
conversion script 222 to be compatible with the target
portable code element 206, 208, 210.

One aspect of the development framework according to
the inventive concepts disclosed herein 1s the ability to work
at a very high conceptual level, much higher than 1s ordi-
narily available with typical programming languages such as
C, C++, Java, or ADA. A scripting environment may allow
development in half the time as compared to a full devel-
opment suite. A scripting environment according the inven-
tive concepts disclosed herein may be textual or graphically
based.

Referring to FIG. 3, 1n a combined textual and graphical
scripting environment according to embodiments of the
iventive concepts disclosed herein, a developer would be
supplied with application programming interfaces (APIs)
specifically designed for avionics applications such as an
API that provides simple mechanisms to draw typical avi-
onics components, such as an aircrait’s synoptic layout of
the hydraulic system, or an API that provides easy mput/
output operations such as networking, and special purpose
avionics mput/output busses such as ARINC 429, AFDX, or
MIL STD 1553.

In the embodiment shown 1n FIG. 3, blocks of function-
ality 304, 306, 308, 310, 312, 314, 316 arc placed on a
graphical scripting environment 302 and input/outputs of
cach block of functionality 304, 306, 308, 310, 312, 314, 316
are connected together. In some embodiments, the graphical
development environment would simultaneously display a
graphical representation i1n the graphical scripting environ-
ment 302 and equivalent script source code in the textual
scripting environment 300. Likewise, as the scripting code 1s
modified 1 the textual scripting environment 300, the
graphical view of the script 1s sitmultaneously updated. This
process provides two benefits: the {first benefit being
enhanced precision as both the high-level and low-level
consequences of a change are quickly apparent. The second
benefit 1s that the developer 1s able to obtain a different view
or perspective of the source code, which will help to validate
the correct operation of the scripting code and will make
certain bugs easier to spot 1n one environment or the other.
The contrast of this cross-referencing view will reduce the
chances of madvertently introducing a bug.

The scripting environment would additionally support
creating libraries of components that could be reused. The
reusable libraries become elements that can be dragged and
dropped into the graphical scripting environment 302.

Errors detected in incompatible types, missing connec-
tions 1n the data flow, such as error handling or loop
termination errors, and other common programming errors
could be detected and indicated on the graphical scripting

10

15

20

25

30

35

40

45

50

55

60

65

4

environment 302. In this way, the graphical environment
302 works to encourage and enforce good programming
practices, eliminating a common source of errors, and
increase the safety and tlight-worthiness of the software.
High-level languages and scripting environments require
an underlying program to load and execute the high-level
language or script on a target platform. In an embodiment of
the mventive concepts disclosed herein, a runtime execut-
able would load and interpret the script at runtime. This
embodiment would be used during rapid prototyping and
would allow a developer to quickly create and test new
functionality. This embodiment also provides a live testing
environment for development on the host computer. As the
developer updates the script source code, the script if
deemed “valid” by the development environment would be
executed 1n real-time on the host against a set of test iputs
provided by the developer, allowing the developer to
instantly observe the results. For example, when developing
some element of display software, such as a hydraulic
synoptic, as the developer modifies the script, the valves are
rendered and updated. This embodiment improves produc-
tivity of the developer by providing instant feedback. The
ability to specily test mputs also allows the developer to

quickly validate a range of behavior of the component being
developed.

In another embodiment of the present invention, the script
1s compiled on the host platform into an intermediate form,
and the mtermediate form 1s loaded and executed by the
runtime environment. This embodiment supports deploy-
ment of the script to the target device, and removes the time
required to parse and interpret the source script, yielding
higher startup and runtime performance on the target device.

In at least one embodiment, the runtime executable allows
portions of the environment to be written 1n diflerent script-
ing languages. Additionally, runtime executable may be
configured to interpret “native” calls to standard language
libraries such as C, C++, or Ada such that the scripting
language could mvoked such libraries 1n the scripting envi-
ronment.

Retferring to FIG. 4, 1n a software application 400 with
variability, an executing system instantiates a deterministic
script engine 402 that allows the developer to implement a
desired functionality. Functionality 1s embodied 1n scripts
404. In some embodiments, each script 404 1s associated
with a bounded set of input parameters 406. Each function
comprising a script 404 1s associated by the scripting engine
with certain execution performance metrics such as a worst
case execution time. Fach function may also be associated
with a bounded set of input parameters 406 and output
parameters such that all outputs 408 for any permissible
input are well defined.

In some embodiments, the executing system defines a set
of tiered capability limits to limit the access outside of a
script 404 depending on a design assurance level; for
example, scripts 404 or data having a high level of criticality
may be 1naccessible. Further, data sets are classified accord-
ing to permissible levels of manipulation. In one example,
for highly critical data, a deterministic script engine 402
provides each script 404 with a limited set of mputs, and
allows each script 404 to respond with a limited set of
outputs; no script 404 can modily mput parameters 406
beyond the subset provided. In another example, for data
having a lower level of criticality, the deterministic script
engine 402 maintains a set ol permissions for each data
clement, and allows each script 404 access to a wider range
of data, but each script 404 can only change a safe subset.

US 10,108,400 B1

S

In the context of the inventive concepts disclosed herein,
criticality may be understood to refer to one or a combina-
tion of several factors including: the importance of a data set
or script to saife operation of an avionics system; the 1mpor-

tance of a data set or script to the deterministic operation of 2

an avionics system; and the necessity of a data set or script
to the certification of an avionics system.

Likewise, 1n at least one embodiment of the present
invention, a deterministic script engine 402 will limit the
tunctions that can be called to those with boundable tem-
poral performance such that for any set of permitted input
parameters 406, the worst case execution time of the func-
tion 1s entirely predicable.

In at least one embodiment, the system calls a determin-

1stic script engine 402 with a defined execution limit, and the
deterministic script engine 402 can enforce it. The deter-
mimstic script engine 402 has error handling to halt execu-
tion or run to completion. The deterministic script engine
402 1s reasonably deterministic in 1ts performance with no
more jitter 1n either operating system (OS) calls or cache
access than 1s typical of applications during worst case
execution time.

In an avionics environment, software must comply with
one or more design assurance levels. For example, execution
ol design assurance level-C script code requires the inter-
preter executing the code (in the present case, the determin-
1stic script engine 402) to perform in a deterministic way.
Deterministic execution means profiling the execution time
of each statement and designing constraints to ensure worst
case execution time can be measured. It also means tracking
the code executed to allow for statement coverage. In some
embodiments, a runtime executable interpreter 1s configured
to profile the execution time of each statement for the range
of all possible constraints.

In some embodiments, the deterministic script engine 402
has been analyzed for worst case execution time (1) of any
istructions. In one embodiment, the executing system
instantiates a virtual machine designed to break down 1inter-
nal functions into simple steps such that even the most
complex data structure or manipulation doesn’t end up with
a very high worst case execution time T for an individual
instruction. In at least one embodiment, each 1nstruction
may execute via a separate thread. The executing operating
system 1ncludes an up-time clock for each thread to deter-
mine the actual execution time of the script as compared to
the predicted execution time for certification purposes.

Starting with a desired Maximum Allowed Script Dura-
tion (SD,,), the Off-thread Uptime (UT ,,) 1s recorded and
the executing system enters a loop. Within the loop, the
system gets the Current Thread Uptime (UT), then runs
the scripting engine virtual machine for a number of cycles
equal to:

SDy — (Ulcr — UTpr)
T

I1 that value 1s less than one, 1t 1s possible that the Maximum
Allowed Script Duration SD, , can be exceeded 11 any more
cycles of the virtual machine are run, therefore the system
logs an error. The executing system thereby creates an
execution algorithm bounded 1n time such that 11 the amount
of time available for a function (the amount of time left 1n
the desired Maximum Script duration SD, ,, after all previ-
ously executed functions) 1s less than the worst case execu-
tion time, the script 1s flagged as possibly non-deterministic.

10

15

20

25

30

35

40

45

50

55

60

65

6

Referring to FIG. 5, in some embodiments of the imven-
tive concepts disclosed herein, a software application 500
provides a management framework 506 that manages most
of the functionality including 1nitialization of libraries 508,
510, periodic servicing of libraries 508, 510, and periodic
calls to scripts 504 through a deterministic script engine 502.

During application startup, the Main() function nitiates
libraries 508, 510, loads scripts 504, and creates a thread that
periodically services libraries 508, 510, and calls scripts
504. The deterministic script engine 502 binds a useful
subset of the libraries 508, 510 to the deterministic script
engine 302. The number of libraries 508, 510 bound and
iitiated drives parameters necessary for certification.

In some embodiments, each virtual instruction 1s com-
pleted 1n a static duration such that if the low level process-
ing of certain instructions takes more time, a delay 1s added
to the remaining virtual istructions to normalize the execu-
tion time. The script 504 takes the same amount of time
every time 1t 1s run, reducing risk of non-repeatable behav-
ior. Furthermore, memory 1s pre-allocated and managed by
the deterministic script engine 302 to allow reuse of an
ofl-the-shell dynamic memory design typical of existing
script interpreter software. In one exemplary embodiment,
where a script 504 1s partitioned into functional elements
and each functional element 1s allocated a segregated
memory space, the deterministic script engine 302 could
de-allocate or re-allocate memory spaces previously allo-
cated to completed functional elements where the determin-
1stic script engine 502 has determined that memory alloca-
tion was 1nsuilicient to conform to one or more certification
standards associated with the script 504.

To ensure deterministic execution and measure any nec-
essary metrics, the software application 500 and runtime
executable partition a script’s 504 execution mto well-
defined execution environments. In some embodiments of
the 1mventive concepts disclosed herein, elements of the
script 304 are separated by time, space, and resource parti-
tioning such that one aspect of the script 504 cannot not
corrupt another aspect of the script 304. There must be a
clear boundary between such partitions such that the devel-
opment environment ensures no memory 1s shared between
two partitions, no resources (file descriptors, sockets, sema-
phores, etc.) are directly shared or allocated between two
partitions, the scheduling or execution order/timing 1s
known for each partition and one partition i1s unable to
interfere with any others timing, and the binary interface
between two partitions 1s compatible with other languages
(1.e., a standard application binary interface or calling con-
vention 1s used between script partitions). Resources which
cannot be directly referenced and which are managed
through calls to the libraries 508, 510 are obligated to be
managed 1n an appropriate partitioning manner by the librar-
ies 508, 510.

The script partitioning boundary 1s used to show that the
script partitions are truly isolated from each other, and
provides a clean way to interface the scripting environment
with other languages such as C, C++, Java, ADA, or even
other scripting environments using a different scripting
language. Further, the script partitioning boundary provides
a mechamism to analyze the script 504, and provides a
controlled mechanisms to support fault isolation.

The mputs and outputs of the well-known script parti-
tioning boundary 1s also monitored and validated at runtime
to further ensure correct operation of the script 504.

With the script partitioning boundary 1n place, script 504
clements are eflectively segregated. In some embodiments
of the inventive concepts disclosed herein, a developer

US 10,108,400 B1

7

gradually phases 1n compiled source code 1n place of indi-
vidual segregated script 504 elements. For example, 1f an
aspect of the script 504 1s safety critical or requires high
performance, the developer may choose to re-develop the
script 1n a traditional language or runtime, such as C, C++,
or ADA. In those cases, development techniques are used to
develop and deploy the flight critical soiftware while still
utilizing the scripting environment for less critical aspects of
the software. This would allow the developer the option for
rapid development, but also allow targeted redevelopment
later 1n the development cycle to support safety or other
objectives.

Additionally, instead of the scripting environment con-
verting the script to an intermediate binary format, 1n at least
one embodiment the scripting environment generates source
code 1n a traditional language, such as C, C++ or ADA from
the script code. Converting the script code to a high level
language allows for rapid prototyping and also provides a
starting point to further refine and optimize the source code.
Depending on the sophistication of the code generation, the
code could be a stepping stone for the development process
wherein the developers modily the generated code and
review 1t manually, or a qualified development tool capable
of directly generating source code that 1s guaranteed to be
equivalent to the script.

In some embodiments of the inventive concepts disclosed

herein, the runtime executable environment 1s certified to the
highest certification level required for the system, and forms
a reliable foundation for executing script partitions, and
enforcing the separation of script partitions. Further, the
runtime executable provides a certified mechanism to moni-
tor the operation of script partitions and acts as a gatekeeper
between script partitions to ensure that mputs and outputs
are within known, safe limits. In this embodiment, certifi-
cation requires certitying the individual script partitions
rather than the entire application as a whole.
In cases where the highest standards must be followed,
such as safety critical software, the script partition may 1n
fact be traditionally compiled source code, and would thus
follow standard techniques for certification. In cases where
the scripting environment interfaces with a target device, the
aspect of the runtime executable instantiated within the
script partition boundary 1s certified to show that it can
execute the scripting language (or intermediate form) 1n a
deterministic, predictable manner. The certification process
then focuses on ensuring that the modules 1n the scripting
language are correct, gradually building to show that the
script overall 1s correct.

Script modules developed using embodiments of the
present invention to work with particular avionics hardware
are pre-certified. Developers attempting to further develop
applications for the hardware may only need to certity the
business logic within their scripting codebase. Such devel-
oper may reuse the entire stack of software a high-level
conceptual API.

In some embodiments of the inventive concepts disclosed
herein, encryption 1s used to secure the script libraries and
validate such libraries for use with particular hardware.
Script libraries are thereby matched against the hardware to
ensure compatibility and correct operation. Additionally,
such encryption mechanisms may be used to enforce soft-
ware licensing by ensuring only purchased functionality 1s
operational and deactivate code as necessary.

Referring to FI1G. 6, a flowchart of a method according to
one embodiment of the inventive concepts disclosed herein
1s shown. An avionics software development system execut-
ing processor executable code receives 600 1put corre-

10

15

20

25

30

35

40

45

50

55

60

65

8

sponding to one or more soitware functions. Each software
function 1s allocated 602 a block of memory addresses and
designated 604 a worst case execution time. The avionics
soltware development system then receives 606 iput cor-
responding to functional relationships between mputs and
the one or more soitware functions. The software functions
and functional relationships are then parsed 608 1nto runtime
executable code. FEach software function 1s then executed
610 in a separate thread while the thread uptime values are
tracked 612. During execution, metrics relevant to avionics
certification are recorded 614. In at least one embodiment,
the avionics software development system receives 616
input from one or more portable code elements, converts 618
the mput into a different format suitable for use by the
runtime software functions, and transfers 620 the converted
input to a second portable code element. In at least one
embodiment, the avionics software development system
interpolates and represents 622 textual software commands
into graphical form and vice versa, and updates 624 textual
and graphical representations in real time as they are
mampulated.
It 1s believed that the mnventive concepts disclosed herein
and many of their attendant advantages will be understood
by the foregoing description of embodiments of the iven-
tive concepts disclosed herein, and 1t will be apparent that
various changes may be made 1n the form, construction, and
arrangement of the components thereof without departing
from the scope and spirit of the invention or without
sacrificing all of 1ts matenial advantages. The form herein
before described being merely an explanatory embodiment
thereot, it 1s the mtention of the following claims to encom-
pass and include such changes.
What 1s claimed 1s:
1. An avionics software development apparatus compris-
ng:
at least one processor;
memory connected to the at least one processor;
a data storage element connected to the processor and
configured for persistent data storage, the data storage
clement 1ncluding a plurality of libraries defining a
plurality of software functions applicable to avionics
hardware; and
computer executable program code stored 1n the memory,
configured to instruct the at least one processor to:
receive one or more input parameters corresponding to
one or more software functions of the plurality of
soltware functions, wherein the one or more input
parameters correspond to the one or more soltware
functions based on one or more metrics relevant to
certification of the one or more software functions
for use 1n an avionics application;

allocate one or more blocks of addresses in the
memory, wherein each of the one or more blocks of
addresses 1s associated with one of the one or more
software functions;

designate a worst case execution time for each of the
one or more software functions;

receive 1nput corresponding to one or more functional
relationships between the one or more mput param-
eters and the one or more software functions;

parse the one or more software functions and one or
more functional relationships nto runtime execut-
able code:

define a static duration for each software function;

execute each of the one or more soiftware functions
during the defined static duration 1n a separate thread
to generate one or more output parameters by modi-

US 10,108,400 B1

9

fying at least a portion of the one or more input
parameters, and adding a delay;
track a current thread uptime value for each thread;
run a script engine virtual machine for a number of
cycles equal to a desired maximum allowed script
duration minus the difference between the current
thread uptime and an ofl-thread uptime, divided by
the worst case execution time;
determine that the number of cycles 1s less than one;
and
flag the script thread as non-deterministic.
2. The avionics soitware development apparatus of claim
1, further comprising an avionics specific hardware element
connected to the at least one processor, wherein the com-
puter executable program code 1s further configured to
instruct the at least one processor to apply the runtime
executable code to the avionics specific hardware element.
3. The avionics software development apparatus of claim
1, wherein the computer executable program code 1s further
configured to instruct the at least one processor to:
receive a lirst mput from a first portable code element;
execute a data conversion script to convert the first input
from a first format to a second format; and
transter the first mnput to a data bus.
4. The avionics soltware development apparatus of claim
3, wherein the computer executable program code 1s further
configured to instruct the at least one processor to:
receive the first input from the data bus; and
pass-through the first mnput to a second portable code.
5. The avionics software development apparatus of claim
1, wherein the computer executable program code 1s further
configured to instruct the at least one processor to:
receive a textual modification to a displayed textual script
of a source code for a software function;
convert the textual modification to a graphical data flow
clement for a displayed graphical data tlow; and
simultaneously modily the displayed textual script of a
source code for the software function to include the
textual modification and modity the displayed graphi-
cal data tlow of the software function to include the
graphical data flow element,
wherein the graphical data flow element 1s saved as a
reusable element within a library of elements of the
plurality of libraries for the displayed graphical data
flow.
6. The avionics software development apparatus of claim
1, wherein the computer executable program code 1s further
configured to instruct the at least one processor to:
receive a graphical modification to a graphical data flow
clement in a displayed graphical data flow of a software
function;
convert the graphical modification to a textual modifica-
tion to a textual script for the software function; and
simultaneously modify the graphical data flow element 1n
the displayed graphical data flow to include the graphi-
cal modification and modity the displayed textual script
of the software function to 1nclude the textual modifi-
cation,
wherein the graphical data flow element modified to
include the graphical modification 1s saved as a reus-
able element within a library of elements of the plu-
rality of libraries for the displayed graphical data tlow.
7. An avionics software development environment com-
prising:
a processor, configured to execute:
a script editing element;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

a script engine for interpreting a script to a runtime
executable format:;
a resource allocation processing element;
a data storage element comprising a set of iput param-
eters corresponding to one or more certification metrics
for an avionics software package,
wherein:
the script engine parses each function defined by the
script 1nto separately executable elements;

the resource allocation processing element allocates
separate resources 1o each separately executable ele-
ment;

the script engine defines a static duration for each
separately executable element;

the script engine executes each separately executable
clement 1n a separate execution thread, wherein the
script engine utilizes one or more input parameters of
the set of input parameters from the data storage
clement to generate one or more boundable execu-
tion metrics for each of the separately executable
clements and a current thread uptime value for each
execution thread from at least a portion of the one or
more input parameters, and adding a delay, wherein
the generating of the one or more boundable execu-
tion metrics 1s monitored and validated at runtime to
ensure correct operation of the script;

the resource allocation processing element generates
one or more boundable execution metrics for the
script based on the one or more boundable execution
metrics ol the corresponding separately executable
elements; and

a script engine virtual machine runs a number of cycles
equal to a desired maximum allowed script duration
minus the difference between the current thread
uptime and an ofl-thread uptime, divided by a worst
case execution time;
determines that the number of cycles 1s less than one; and
flags the script as non-deterministic.
8. The avionics software development environment of
claim 7, wherein the one or more boundable execution
metrics for each of the separately executable elements
comprises the worst case execution time.
9. The avionics software development environment of
claiam 7, wherein the processor i1s further configured to
execute:
a graphical data tlow element; and
a script-to-function processing element,
wherein the script-to-function processing element 1s con-
figured to:
receive a source code input 1n the script editing ele-
ment, convert the source code mput in the script
editing element input 1to an mput in the graphical
data flow element, and simultaneously modify the
script editing element and the graphical data tlow
element; and

receive an input in the graphical data flow element,
convert the mput 1n the graphical data flow element
into a source code 1nput 1n the script editing element,
and simultaneously modily the graphical data flow
clement and the script editing element,

wherein the input 1n the graphical data flow element 1s
saved 1n the data storage element as a reusable input
for the graphical data flow element.

10. The avionics software development environment of
claim 7, further comprising:

US 10,108,400 B1

11

an avionics hardware simulation processor, wherein the
avionics hardware simulation processor 1s configured
to execute an avionics hardware simulation element,

wherein the script engine i1s configured to deliver an
output to the avionics hardware simulation processor,

wherein the avionics hardware simulation processor 1s
coniigured to run a simulation with the delivered output
in the avionics hardware simulation element.

11. The avionics software development environment of
claim 10, wherein the avionics hardware simulation proces-
sor 1s Turther configured to apply one or more mnput param-
cters of the set of input parameters from the data storage
clement to determine i1f an avionics hardware device com-
plies with one or more certification metrics.

12. The avionics software development environment of
claam 10, wherein the resource allocation processing ele-
ment allocates separate, distinct execution schedules for
cach separately executable element.

13. A computer apparatus comprising:

at least one processor configured to execute a script

engine;

a memory connected to the at least one processor; and

computer executable program code configured to mstruct

the at least one processor to:

receive a script;

associate the script with a bounded set of 1nput param-
clers;,

partition the script into separate executable functions;

instantiate separate executable environments for each
executable function within a separate execution
thread:

define a static duration for each executable function;

iteratively execute each executable function with the
bounded set of input parameters, and adding a delay,
to generate a bounded set of output parameters by
moditying at least a portion of the bounded set of
input parameters, wherein the iterative executing of
cach executable function 1s monitored and validated
at runtime to ensure correct operation of the script;

record an execution time of each executable function
based on a current thread uptime of the correspond-
ing execution thread; and

10

15

20

25

30

35

40

12

determine a worst case execution time for the script
based on the execution times of the executable
functions;

run a script engine virtual machine for a number of
cycles equal to a desired maximum allowed script
duration minus the difference between the current
thread uptime and an ofi-thread uptime, divided by
the worst case execution time;

determine that the number of cycles 1s less than one;
and

flag the script as non-deterministic.

14. The computer apparatus of claam 13, wherein the
computer executable program code 1s further configured to
instruct the at least one processor to record, in the memory,
any failure states of the executable functions.

15. The computer apparatus of claim 13, wherein the
computer executable program code 1s further configured to
instruct the at least one processor to convert one of the
executable functions to machine code and maintain remain-
ing executable functions 1n script for interpretation by the
script engine.

16. The computer apparatus of claam 13, wherein the
computer executable program code 1s further configured to
instruct the at least one processor to convert one of the
executable functions to a high-level programming language
and maintain remaining executable functions in script for
interpretation by the script engine.

17. The computer apparatus of claam 13, wherein the
computer executable program code 1s further configured to
instruct the at least one processor to:

compile the script into a library; and
apply an encryption to the library.

18. The computer apparatus of claam 17, wherein the
encryption 1s configured to validate the library for use with
specific avionics hardware.

19. The computer apparatus of claim 13, wherein the
bounded set of mnput parameters are configured to ensure an
avionics system operates deterministically.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

